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Abstract. G. Lupton conjectured that the group of self-homotopy equivalences of an

F0-space inducing the identity on the homotopy groups is finite. Thus, the aim of this
paper is to establish this conjecture.

1. Introduction

Let X be a simply connected space with finite dimensional rational homotopy, finite
dimensional rational homology (i.e. a rationally elliptic space), and positive Euler charac-
teristic. The collection of such spaces X is referred to as the class of F0-spaces. Exten-
sively studied by Halperin, [5], F0-spaces are rational Poincaré duality spaces with rational
cohomology Q[x1, . . . , xn]/(P1, . . . , Pn), where the polynomials P1, . . . , Pn form a regular
sequence in Q[x1, . . . , xn], i.e., P1 ̸= 0 and for every i ≥ 1, Pi is not a zero divisor in
Q[x1, . . . , xn]/(P1, . . . , Pi−1). For instance, products of even spheres, complex Grassman-
nian manifolds and homogeneous spaces G/H such that rank G = rank H are F0-spaces.

Let E(X) denote the group of self-homotopy equivalences of X and let E#(X) be its
subgroup of the elements inducing the identity on the homotopy groups ([3],[2]).

Halperin has conjectured that the rational Serre spectral sequence collapses for any
rational fibration, provided the fiber X is a F0-space. This conjecture, which remains un-
solved, can be rephrased in terms of the (graded Lie algebra of) negative-degree derivations
of the rational cohomology of X (see [8] for more details). Namely:

Der<0H
∗(X;Q) = 0 ⇐⇒ Halperin’s conjecture holds

If we look at the zero-degree derivations of the rational cohomology of X, there exists a
correspondence between the decomposable derivations of Der0H

∗(X;Q) and the subgroup
E#(X). Hence,

Der0H
∗(X;Q) is trivial =⇒ E#(X) is finite

Motivated by Halperin’s conjecture and this correspondence, Lupton raises the following
question:
Question([1], Problem 10): For an F0-space X, is E#(X) finite?
Thus, the purpose of this paper is to settle this question in the positive using standard
tools of rational homotopy theory which we refer to [4] for a general introduction to these
techniques. We recall some of the notation here. By a Sullivan algebra we mean a free
graded commutative algebra ΛV , for some finite-type graded vector space V = V ≥2, i.e.,
dimV n < ∞ for all n ≥ 2, together with a differential ∂ of degree +1 that is decomposable,
i.e., satisfies ∂ : V → Λ≥2V . Here Λ≥2V denotes the graded vector space spanned by all
the monomials v1 . . . vr such that v1, . . . , vr ∈ V and r ≥ 2.
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Every simply connected space X with rational cohomology of finite-type has a corre-
sponding Sullivan algebra called the Sullivan model of X, unique up to isomorphism, that
encodes the rational homotopy type of X. In particular we have

V ∗ ∼= Hom(π∗(X)⊗Q,Q), H∗(ΛV ) ∼= H∗(X,Q).

By a free differential graded Lie algebra (L(W ), δ) (DGL for short), we mean a free
graded Lie algebra L(W ), for some finite-type vector space W = (W≥1), together with a
decomposable differential δ of degree -1, i.e., δ(W ) ⊂ L≥2(W ). Here L≥2(W ) denotes the
graded vector space spanned by all the brackets of lengths ≥ 2.

Every simply connected space X with rational cohomology of finite-type has a corre-
sponding DGL (L(W ), δ) called the Quillen model of X, unique up to isomorphism, which
determines completely the rational homotopy type of X. In particular we have

W∗ ∼= H∗+1(X;Q), H∗(L(W )) ∼= π∗+1(X)⊗Q.

This work consists of five sections, the first one being the introduction. Section 2 is
devoted to state some results on the notion of DGL-homotopy as well as the properties
of an F0-space X notably, if (L(W ), δ) is its Quillen model, then we introduce the group
E#(L(W )) of the self-homotopy equivalences of (L(W ), δ) constituting on the elements [α]
satisfying H∗(α) = id. In Section 3, we prove that if [α] ∈ E#(L(W )), then α is homotopic
to DGL-map α̃ satisfying α̃(W ) = W . In Section 4 and 5, we focus on studying the
properties of (L(W ), δ) to show that E#(L(W )) is trivial. Consequently, by virtue of the
localization theorem of Maruyama [7], we derive that E#(X) is finite.

2. Preliminaries

2.1. Homotopy between DGL-maps (see [4, §21]). Let (L(W ), δ) be a DGL. Define
the DGL L(W, sW,W ′), D) with W ∼= W ′ and (sW )i = Wi−1. The differential D is given
by

D(w) = ∂(w), D(sw) = w′, D(w′) = 0. (1)

Define S as the derivation of degree +1 on L(W, sW,W ′) given by

S(w) = sw, S(sw) = S(w′) = 0.

A homotopy between two DGL-maps α, α′ : (L(W ), δ) → (L(W ), δ) is DGL-map

F : (L(W, sW,W ′), D) → (L(W ), δ),

such that F (w) = α(w) and F ◦ eθ(w) = α′(w), where

eθ(w) = w + w′ +
∑
n≥1

1

n!
(S ◦D)n(w), and θ = D ◦ S + S ◦D.

Thus, the notion of DGL-homotopy allows us to define the following group.

Definition 2.1. Let E#(L(W )) denote the group of self-homotopy equivalences of (L(W ), δ)
constituting with the elements [α] satisfying H∗(α) = id, where

H∗(α) : H∗(L(W)) → H∗(L(W)).

By virtue of the properties of the model of Quillen and the localization theorem of
Maruyama [7], we deduce that if X is an F0-space, then we have

E#(X)⊗Q ∼= E#(L(W )). (2)

Thus, the group E#(X) is finite if and only if the group E#(L(W )) is trivial.

Later on we will need the following two lemmas.
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Lemma 2.2. Let α, α̃ : (L(W≤n), δ) → (L(W≤n), δ) be two DGL-maps such that

α(w) = α̃(w) + y on Wn and α = α̃ on W≤n−1.

Assume that y = δ(z), where z ∈ L(W≤n). Then α and α̃ are homotopic.

Proof. Define F : (L(W≤n, sW≤n,W
′
≤n), D) → (L(W≤n), δ) by setting

F (w) = α(w), F (w′) = −y and F (sw) = −z for w ∈ Wn, (3)

F (w) = α(w), F (w′) = 0 and F (sw) = 0 for w ∈ W≤n−1.

Let w ∈ Wn, by considering the relations (1), (3) and as δ(w) ∈ L(W≤n−1), we get

δF (w) = δα(w), FD(w) = F (δ(w)) = αδ(w).

Moreover, a straightforward computation shows

δF (w′) = δ(−y) = −δ(δ(z)) = 0, FD(w′) = F (0) = 0,

δF (sw) = δ(−z) = −y, FD(sw) = F (w′) = −y,

implying that F is a DGL-map. Next, on the one hand, from (3), we have F (w) = α(w)
for every w ∈ W . On the other hand, by expanding the expression (S ◦ ∂)n(w) leads to
linear combinations of brackets involving the generators sw, where w ∈ W≤n−1. Since in
this case F (sw) = 0, it follows that

∑
n≥1

1
n!F (S ◦D)n(w) = 0. Consequently, we obtain

F ◦ eθ(w) = F (w) + F (w′) = α(w)− y = α̃(w) , if w ∈ Wn,

F ◦ eθ(w) = F (w) + F (w′) = α(w), if w ∈ W≤n−1.

But by hypothesis we have α(w) = α̃(w) on W≤n−1, so for all w ∈ W we have F ◦ eθ(w) =
α̃(w) implying that F is the needed homotopy. □

Lemma 2.3. Let α, β : (L(W≤n), δ) → (L(W≤n), δ) be two DGL-maps such that

α(w) = β(w) + y, w ∈ Wn, y ∈ Ln(W≤n−1),

α ≃ β, on L(W≤n−1).

There is a cycle y′ ∈ Ln(W≤n−1) such that α is homotopic to the following DGL-map

α′(w) = β(w) + y′, w ∈ Wn,

α′ = β, on L(W≤n−1). (4)

Proof. Since α and β are homotopic on L(W≤n−1), there exits a homotopy

F : (L(W≤n−1, sW≤n−1,W
′
≤n−1), D) → (L(W≤n−1), δ),

such that

F (w) = β(w), F ◦ eθ(w) = α(w), ∀w ∈ W≤n−1. (5)

Therefore for w ∈ Wn, the element F
(∑
n≥1

1
n! (S ◦ D)n(w)

)
is a well-defined element in

Ln(W≤n−1). Thus we define

y′ = y − F
(∑
n≥1

1

n!
(S ◦D)n(w)

)
. (6)

Now, by hypothesis we have

δ(β(w)) + δ(y) = δα(w) = α(δ(w)) = F ◦ eθ(δ(w)) = F ◦ eθ(D(w)). (7)
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But eθ is a DGL-automorphism, so

F ◦ eθ(D(w)) = F ◦D(eθ(w)) = F ◦D
(
w + w′ +

∑
n≥1

1

n!
(S ◦D)n(w)

)
= F (D(w)) + F (D(w′)) + F ◦D

(∑
n≥1

1

n!
(S ◦D)n(w)

)
= F (δ(w)) + δ ◦ F

(∑
n≥1

1

n!
(S ◦D)n(w)

)
= β(δ(w)) + δ

(∑
n≥1

1

n!
F (S ◦D)n(w)

)
= δ(β(w)) + δ

(∑
n≥1

1

n!
F (S ◦D)n(w)

)
. (8)

Here we use the facts that D(w′) = 0 by (1), F ◦D = δ ◦F and F (δ(w)) = β(δ(w)) because
δ(w) ∈ L(W≤n−1) and F = β on W≤n−1 by (5). Comparing (7) and (8) we get

δ(y) = δ
(∑
n≥1

1

n!
F (S ◦D)n(w)

)
,

which implies according to (6) that δ(y′) = 0.

Now define G : (L(W≤n, sW≤n,W
′
≤n), D) → (L(W≤n), δ) by setting

G(w) = α′(w), G(w′) = G(sw) = 0, for w ∈ Wn,

G = F, on W≤n−1.

Let us consider the relations (1). A simple computation shows that

δ(G(w)) = δ(α′(w)), G(D(w)) = G(δ(w)).

As δ(w) ∈ Ln(W≤n−1), it follows that G(δ(w)) = F (δ(w)) and by (4), (5) we get F (δ(w)) =
β(δ(w)) = α′(δ(w)). As a result δ(G(w)) = G(D(w)). Also by taking into consideration
the relations (1), we obtain

δ(G(w′)) = GD(w′) = 0, δ(G(sw)) = 0, GD(sw) = G(w′) = 0,

proving that G is a DGL-map satisfying G(w) = α′(w) for all w ∈ W≤n. Moreover, we
have

G ◦ eθ(w) = G
(
w + w′ +

∑
n≥1

1

n!
(S ◦D)n(w)

)
= G(w) +G

(∑
n≥1

1

n!
(S ◦D)n(w)

)
.

As
∑
n≥1

1
n! (S ◦D)n(w) ∈ Ln(W≤n−1) and F = G on W≤n−1, it follows that

G ◦ eθ(w) = α′(w) + F
(∑
n≥1

1

n!
(S ◦D)n(w)

)
= (β(w) + y′) + (y − y′) = α(w).

Here we use (6). Consequently, α and α′ are homotopic. □
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2.2. Whitehead exact sequence of a DGL. Let (L(W ), δ) be a DGL. If

jn : Hn(L(W≤n)) → Wn, jn({w + y}) = w,

where w ∈ Wn, y ∈ Ln(W≤n−1) and where {w+ y} denote the homology class of the cycle
w + y, then we define the graded vector space Γ∗ by setting

Γn = ker
(
Hn(L(W≤n))

jn−→ Wn

)
, ∀n ≥ 2. (9)

To every DGL (L(W ), δ), we can assign (see [2, 3] for more details) the following long exact
sequence

· · · → Wn+1
bn+1−→ Γn → Hn(L(W )) → Wn

bn−→ · · · (10)

called the Whitehead exact sequence of (L(W ), δ). Here bn(w) = {δ(w)}, where {δ(w)}
denotes the homology class of δ(w) in Ln−1(W≤n−1).

2.3. Elliptic spaces. Recall that a simply connected space X is called rationally elliptic
if it satisfies dim (π∗(X)⊗Q) < ∞ and dimH∗(X,Q) < ∞ ([4], §32). The following result
mentions some important properties of rationally elliptic spaces.

Proposition 2.4. ([4] Proposition 32.6 and 32.10). If (L(W ), δ) is the Quillen model of a
rationally elliptic space of formal dimension M , then

• dimWM−1 = 1 and Wi = 0 for all i ≥ M.
•
∑

i≥1(2i+ 1) dimH2i(L(W ))−
∑

i≥1(2i) (dimH2i−1(L(W ))− 1) = M.

Furthermore, the following statements are equivalent

(1) X is an F0-space.
(2) dimHeven(L(W )) = dimHeven(L(W )).
(3) Weven = 0.

Remark 2.5. According to Proposition 2.4, the formal dimension of an F0-space must be
an even integer.

3. Properties of the group E#(L(W ))

The purpose of this section is to study the properties of the group E#(L(W )), introduced
in definition 2.1, in the case where the DGL (L(W), δ) is the Quillen model of an F0-space.

As it is stated in the introduction, an F0-space is an elliptic space such that its ra-
tional cohomology is a graded algebra on the form Q[x1, . . . , xn]/(P1, . . . , Pn), where the
polynomials P1, . . . , Pn form a regular sequence in Q[x1, . . . , xn].
In [5], it is shown that the Sullivan model of an F0-space is given by

(ΛV, ∂) = (Λ(x1, . . . , xn; y1, . . . , yn), ∂) , ∂(xi) = 0 , ∂(yi) = Pi , 1 ≤ i ≤ n,

where the generator x1, . . . , xn are of even degrees and y1, . . . , yn are of odd degrees.

It well-known that F0-spaces are formal (see [5], theorem 5), i.e., there exists a quasi-
isomorphism M(X) → (H∗(X,Q), 0). As a result, the differential of the Quillen model
(L(W ), δ) is purely quadratic, i.e., δ(W) ⊂ [W,W ] (see [9], proposition 3.2). Moreover,
taking into account that Weven = 0, we deduce that W = Wodd.

Remark 3.1. Recall that we have V even ∼= Hodd(L(W)), therefore, to each xi ∈ V even

corresponds a homology class {wi+ qi} ∈ Hodd(L(W)) such that wi is indecomposable and
qi is decomposable. Since δ(wi) = −δ(qi), it follows that δ(wi) has bracket length greater
or equal than 3. But δ is purely quadratic, it follows that qi = 0. As a result, Hodd(L(W))
is generated by w1, . . . , wn.
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Proposition 3.2. Let (L(W), δ) be the Quillen model of an F0-space X. Then the graded
vector space Γodd, defined in (9), is trivial.

Proof. Assume there is {z} ≠ 0 ∈ Γodd. Since Weven = 0, the exact sequence (10)implies
that {z} ∈ Hodd(L(W )) which is impossible as z is decomposable due to Remark 3.1. □

Let us consider the Quillen model (L(W), δ) of an F0-space X of formal dimension M .
By virtue of Proposition 2.4, we can write

W = Wr1 ⊕ · · · ⊕Wrm ⊕WM−1, r1 < · · · < rm < M − 1,

Wri =
〈
w(1,ri), . . . , w(ni,ri)

〉
, 1 ≤ i ≤ m, WM−1 = ⟨µ⟩. (11)

If [α] ∈ E(L(W )), then for every 1 ≤ i ≤ m and 1 ≤ j ≤ ni, let us write

α(w(j,ri)) =

ni∑
si=1

λ(j,ri),siw(j,ri) +A(j,ri), A(j,ri) ∈ L≥3(W≤ri−1
),

α(µ) = aµ+Aµ, Aµ ∈ L≥3(W≤M−2), (12)

where all the coefficients λ(ri,j),si , a are rationals.

Set α̃(w(j,ri)) =
∑ni

si=1 λ(j,ri),siw(j,ri), then (12) becomes

α(w(j,ri)) = α̃(w(j,ri)) +A(j,ri).

Note that α̃(w(j,ri)) ∈ Wri . Moreover, if l(A(j,ri)) denotes the bracket length of A(j,ri),
then l(A(j,ri)) ≥ 3 because |A(j,ri)| is odd and W = Wodd.

Theorem 3.3. Let X be an F0-space and let (L(W), δ) be its Quillen model. If [α] ∈
E#(L(W )), then α is homotopic to the DGL-map α̃. Here E#(L(W )) is defined in (2.1).

Proof. Let [α] ∈ E#(L(W )) and αrk : (L(W≤rk), δ) → (L(W≤rk), δ), the restriction of α to
L(W≤rk). Since Hr1(α) = idHr1

(L(Wodd)) = idWr1
, we deduce that αr3 = id on Wr1 .

First, from the relation (12), we have

αr2(w(j,r2)) = α̃r2(w(j,r2)) +A(j,r2), l(A(j,r2)) ≥ 3, αr2 = id , on L(Wr1),

implying that
δαr2(w(j,r2)) = δ(α̃r2(w(j,r2))) + δ(A(j,r2)).

Next, as δ(t(j,r2)) ∈ L(Wr1), we get

αr2δ(w(j,r2)) = δ(w(j,r2)).

Since δαr2 = αr2δ, l(A(j,r2)) ≥ 3 and δ is purely quadratic, it follows that δ(A(j,r2)) = 0
for every 1 ≤ j ≤ n2. As a result, the homology class {A(j,r2)} belongs to Γr2 which is, by
proposition 3.2, trivial as r2 is odd, therefore A(j,r2) is a boundary. Now applying lemma
2.2, it follows that αr2 and α̃r2 are homotopic on L(W≤r2).
Assume by induction that αrk−1

and α̃rk−1
are homotopic on L(W≤rk−1

). Therefore using
(12) we get

αrk(w(j,rk)) = α̃rk(w(j,rk)) +A(j,rk), l(A(j,rk)) ≥ 3,

αrk−1
≃ α̃rk−1

, on L(W≤rk−1
).

Due to lemma 2.3, we deduce that there is a cycle A′
(j,rk)

such that l(A′
(j,rk)

) ≥ 3 and αrk

is homotopic to the DGL-map α′
rk

given by

α′
rk
(w(j,rk)) = α̃rk(w(j,rk)) +A′

(j,rk)
, l(A(j,rk)) ≥ 3,

α′
rk−1

= α̃rk−1
, on L(W≤rk−1

).
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The cycle A′
(j,rk)

defines a homology class {A′
(j,rk)

} belonging to Γodd which is trivial by

3.2 because |A′
(j,rk)

| = rk = odd. Therefore, from lemma 2.2, we deduce that α′
k ≃ α̃rk

and so are αrk and α̃rk . Hence, α ≃ α̃. □

As a consequence of Theorem 3.3, we deduce the following fact

Corollary 3.4. Let X be an F0-space and let (L(W), δ) be its Quillen model. If [α] ∈
E#(L(W )), then for every 1 ≤ s ≤ m we have α(Wrs) = Wrs and α(µ) = aµ, where a is a
non-zero rational.

Proof. It follows from Theorem 3.3 and the relations (12). □

Corollary 3.5. Let X be an F0-space and let (L(W), δ) be its Quillen model. If [α] ∈
E#(L(W )), then for every indecomposable cycle w(j,rs) ∈ W , we have α(w(j,rs)) = w(j,rs).

Proof. By virtue of (2), if [α] ∈ E#(L(W )), then H∗(α) = idH∗(L(W )). Therefore, since
w(j,rs) is a cycle we get

H∗(α)({w(j,rs)}) = {w(j,rs)},
implying α(w(j,rs))−w(j,rs) is a boundary in (L(W ), δ). As δ is purely quadratic, it follows
that α(w(j,rs)) = w(j,rs). □

4. Properties of the Quillen model of an F0-space

Let X be an F0-space of formal dimension M and let

(ΛV, ∂) = (Λ(x1, . . . , xn; y1, . . . , yn, ∂) , ∂(xi) = 0 , 1 ≤ i ≤ n,

be its Sullivan model and (L(W ), δ) its Quillen model. Assume that

|x1| ≤ · · · ≤ |xn|.

Recall that a basis of Wrs is given by (see (11))

Wrs =
〈
w(1,rs), . . . , w(ns,rs)

〉
, 1 ≤ s ≤ m, WM−1 = ⟨µ⟩.

To each generator w(j,rs) corresponds a non-trivial cohomology class {xi1
1 . . . xin

n } such that

rs = i1|x1|+ · · ·+ in|xn| − 1, i1 ≥ 0, . . . , in ≥ 0. (13)

The differential is given by

δ(w(j,rs)) =
∑

λ(i,t)[w(i,rp), w(t,rq)], rp ≤ rq , rp + rq = rs − 1, (14)

where λ(i,t) ∈ Q and where the generators w(i,rp) ∈ Wrp and w(t,rq) ∈ Wrq correspond

respectively to the non-trivial cohomology classes {xp1

1 . . . xpn
n } and {xl1

1 . . . xln
n } such that

xi1
1 . . . xin

n =
(
xp1

1 . . . xpn
n

)(
xl1
1 . . . xln

n

)
, rp =

n∑
i

pi|xi| − 1, rq =

n∑
i

li|xi| − 1

p1 ≥ 0, . . . , pn ≥ 0, l1 ≥ 0, . . . , ln ≥ 0.

It well-known that if M is the formal dimension of the F0-space X, then, thanks to the
Poincaré duality ([4], §38), we have an isomorphism of vector spaces

ϕ : Wrs → WM−2−rs .
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So if
{
w(i,rs)

}
1≤i≤ns

is a basis for Wrs , then
{
ϕ(w(i,rs)) = w∗

(i,rs)

}
1≤i≤ns

is a basis for

WM−2−rs , called the dual basis. Consequently, we can choose a basis for W on the form

B =
{
w(1,rs), . . . , w(ns,rs);w

∗
(1,rs)

, . . . , w∗
(rs,rs)

, µ
}
r1≤rs≤M−2

2

, (15)

where WM−1 = ⟨µ⟩. Moreover, due to (Theorem 2, [10]), we have

δ(µ) =
1

2

∑
rs,t

[w(t,rs), w
∗
(t,rs)

], 1 ≤ s ≤ m, 1 ≤ t ≤ nrs . (16)

Note that the integer M is even (see Remark 2.5), and if rp < rq, then |w∗
t,rq | < |w∗

t,rp |.

The following result plays a crucial role afterwards.

Lemma 4.1. Let (L(W), δ) be the Quillen model of an F0-space X of formal dimension
M . For every w∗

(j,rs)
∈ B, there exists w∗

(k,rσ)
∈ B such that

δ(w∗
(k,rσ)

) = β(k,rσ)[w(s1,rp), w
∗
(j,rs)

] + Θ(k,rσ), (17)

where Θ(k,rσ) is a linear combination of 2-brackets where w(s1,rp) and w∗
(j,rs)

are not in-

volved. Moreover, w(s1,rp) is a cycle.

Proof. First, recall that |w(j,rs)| = rs and |w∗
(j,rs)

| = M −2−rs. Next, by (13) and (14) we

know that to w(j,rs) and w∗
(j,rs)

correspond two non-trivial cohomology classes {xt1
s1 . . . x

th
sh
}

and {xi1
j1
. . . xik

jk
} in the Sullivan model (ΛV, ∂), such that

|xt1
s1 . . . x

th
sh
| = |w(j,rs)|+ 1 = rs + 1, |xs1 | ≤ · · · ≤ |xsh |.

|xi1
j1
. . . xik

jk
| = |w∗

(j,rs)
|+ 1 = M − 1− rs, |xj1 | ≤ · · · ≤ |xjk |.

Here we can assume t1 ≥ 1, . . . , th ≥ 1 and i1 ≥ 1, . . . , ik ≥ 1. Note that if the generator
w(j,rs) is a cycle, then the corresponding element in (ΛV, ∂) is the cohomology class {xs1}.

Next, Poincaré duality implies that the multiplication

Hrs+1(ΛV )×HM−1−rs(ΛV ) → HM (ΛV ),

sending
(
{xt1

s1 . . . x
th
sh
}; {xi1

j1
. . . xik

jk
}
)
to {xt1

s1 . . . x
th
sh
.xi1

j1
. . . xik

jk
}, is non-degenerate. It fol-

lows that xsi(x
i1
j1
. . . xik

jk
) is not a coboundary for every 1 ≤ i ≤ h. As a result, we must

have a generator w∗
(k,rσ)

corresponding to cohomology class {xsi(x
i1
j1
. . . xik

jk
)} such that

δ(w∗
(k,rσ)

) satisfies the following formula

δ(w∗
(k,rσ)

) = β(k,rσ)[w(s1,rp), w
∗
(j,rs)

] + Θ(k,rσ),

where w(s1,rp) corresponds to xs1 which implies that w(s1,rp) is a cycle.
Finally, from the formula (14), it is clear that Θ(k,rσ) is a linear combination of 2-brackets
where w(s1,rp) and w∗

(j,rs)
are not involved. □

Remark 4.2. In the cohomology class {xt1
s1 . . . x

th
sh
} corresponding to w(j,rs), we might have

|xs1 | = · · · = |xsτ |, 1 ≤ τ ≤ h.

In this case, the formula (17) can be written as follows

δ(w∗
(k,rσ)

) = β1[w(s1,rp), w
∗
(j,rs)

] +

h∑
j′ ̸=j , i>1

βi[w(si,rp), w
∗
(j′,rs)

] + Θ(k,rσ),

furthermore, we have the following facts.
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(1) Since |xs1 | ≤ · · · ≤ |xsh |, we deduce that Θ(k,rσ) is a linear combination of 2-
brackets of the form [w(a,b), w(c,d)] such that

rp < |w(a,b)| ≤ |w(c,d)| < M − 2− rs.

(2) All the generators w∗
(j,rs)

and w∗
(j′,rs)

, where j′ ̸= j, are distinct and have the same

degree M − 2− rs.
(3) All the generators w(si,rp), 1 ≤ i ≤ h, are distinct cycles with |w(si,rp)| = rp.
(4) All the rationals βi are not zero.

Remark 4.3. A special case of Lemma 4.1 is when rs =
M−2

2 . In this case the lemma still
valid for any generator w(j,rs) such that δ(w∗

(j,rs)
) ̸= 0 because the dual of w∗

(j,rs)
, namely

(w∗
(j,rs)

)∗, is w(j,rs).

5. Main result

In all this section, let X denote an F0-space of formal dimension M , (ΛV, ∂) its Sullivan
model, (L(W), δ) its Quillen model and B the basis of W given in (15). Recall that by
Corollary (3.4) there exists a rational a ̸= 0 such that α(µ) = aµ, where WM−1 = ⟨µ⟩.

Subsequently, we prove some important lemmas concerning the properties of (L(W), δ)
needed to establish the main result in this paper. Indeed, if [α] ∈ E#(L(W )), then by
considering the basis (15) and Remark 4.2, we can summarize the next steps as follows.

• In Lemma 5.1, we show that α(w∗
j,rs

) = aw∗
j,rs

for all j and rs <
M−2

2 .

• In Lemma 5.2, we show that α(wj,rs) = wj,rs for every j and rs <
M−2

2 .
• Lemmas 5.3 and 5.4, show that α(wj,ξ) = awj,ξ and α(w∗

j,ξ) = aw∗
j,ξ for every j,

where ξ = M−2
2 .

• In Proposition 5.5, we show that a = 1.

Lemma 5.1. If [α] ∈ E#(L(W )), then for w∗
j,rs

∈ B such that rs < M−2
2 , we have

α(w∗
j,rs

) = aw∗
j,rs

.

Proof. First, let us prove that for every j we have

α(w∗
(j,r1)

) = aw∗
(j,r1)

. (18)

Indeed, let w∗
(j,r1)

∈ WM−2−r1 =
〈
w∗

(1,r1)
, w∗

(2,r1)
, . . .

〉
. Using Corollary 3.4, we can write

α(w∗
(j,r1)

) =
∑
i≥1

λiw
∗
(i,r1)

, λi ∈ Q. (19)

The formula (16) can be written as

δ(µ) =
1

2

∑
j

[w(j,r1), w
∗
(j,r1)

] +
1

2

∑
r1 ̸=rs

[w(t,rs), w
∗
(t,rs)

]. (20)

Next, w(j,r1) is obviously a cycle as w(j,r1) ∈ Wr1 . By Corollary 3.5, it follows that

α(w(j,r1)) = w(j,r1). (21)

On the one hand, using (19), (20) and (21), we get

α(δ(µ)) =
1

2

∑
j

∑
i≥1

λi[w(j,r1), w
∗
(i,r1)

] +
1

2

∑
r1 ̸=rs

[α(w(t,rs)), α(w
∗
(t,rs)

)].
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On the other hand, by the relation (20) and Corollary 3.4, we have

δ(α(µ)) = aδ(µ) =
a

2

∑
j

[w(j,r1), w
∗
(j,r1)

] +
a

2

∑
r1 ̸=rs

[w(t,rs), w
∗
(t,rs)

].

Since α(δ(µ)) = δ(α(µ)), and taking into account that r1 ̸= rs, which means that the
generator w∗

(j,r1)
cannot appear in the expression

∑
r1 ̸=rs

[α(w(t,rs)), α(w
∗
(t,rs)

)], it follows

that all the rationals λi in (19) are zero except λ1 = a showing (18).

Next, assume by induction that

α(w∗
(j,rq)

) = aw∗
(j,rq)

, (22)

for all the generators w∗
j,rq

such that rq < rs. Let us prove it for every generator

w∗
(j,rs)

∈ WM−2−rs =
〈
w∗

(1,rs)
, w∗

(2,rs)
, . . .

〉
.

For this purpose, write

α(w∗
(j,rs)

) =
∑
τ≥1

λτw
∗
(τ,rs)

, λτ ∈ Q. (23)

By virtue of Lemma 4.1 and Remark 4.2, there exists w∗
(k,rσ)

such that

δ(w∗
(k,rσ)

) = β1[w(s1,rp), w
∗
(j,rs)

] +

h∑
j′ ̸=j , i>1

βi[w(si,rp), w
∗
(j′,rs)

] + Θ(k,rσ), (24)

where β1 ̸= 0. As a result, we obtain

α(δ(w∗
(k,rσ)

)) = β1[α(w(s1,rp)), α(w
∗
(j,rs)

)] +

h∑
j′ ̸=j , i>1

βi[α(w(si,rp)), α(w
∗
(j′,rs)

)] + α(Θ(k,rσ))

=
∑
τ≥1

λτβ1[w(s1,rp), w
∗
(τ,rs)

] +

h∑
j′ ̸=j , i>1

βi[w(si,rp), α(w
∗
(j′,rs)

)] + α(Θ(k,rσ)).

Note that, according to Remark 4.2, all the generators w(si,rp) are cycles implying that
α(w(si,rp)) = w(si,rp) due to Corollary 3.5.
Next, as |w∗

(k,rσ)
| > |w∗

(j,rs)
| which implies that rq < rs, using (22) and (24), we get

δ(α(w∗
(k,rσ)

)) = aδ(w∗
(k,rσ)

) = aβ1[w(s1,rp), w
∗
(j,rs)

] +

h∑
j′ ̸=j , i>1

aβi[w(si,rp), w
∗
(j′,rs)

] + aΘ(k,rσ).

Since α(δ(w∗
(i,rq)

)) = δ(α(w∗
(i,rq)

)) and taking into account that the bracket [w(s1,rp), w
∗
(j,rs)

]

does not appear in the expressions (see Remark 4.2)

h∑
j′ ̸=j , i>1

aβi[w(si,rp), w
∗
(j′,rs)

] and α(Θ(k,rσ)),

we deduce that all the coefficients λτ in (23) are nil except λ1β1 = aβ1 and because β1 ̸= 0,
we obtain α(w∗

(j,rs)
) = aw∗

(j,rs)
. □

Lemma 5.2. If [α] ∈ E#(L(W )), then for every wj,rs ∈ B, where rs < M−2
2 , we have

α(wj,rs) = wj,rs .
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Proof. First, we know from Corollary 3.5 that if δ(wj,rs) = 0, then α(wj,rs) = wj,rs ,
therefore we can suppose that δ(wj,rs) ̸= 0. Secondly, recall that from the formula (16) we
can write

δ(µ) =
1

2
[w(j,rs), w

∗
(j,rs)

] +
1

2

∑
t ̸=j

[w(t,rs), w
∗
(t,rs)

].

As a result, we get

α(δ(µ)) =
1

2
[α(w(j,rs)), α(w

∗
(j,rs)

)] +
1

2

∑
t̸=j

[α(w(t,rs)), α(w
∗
(t,rs)

)],

and because rs <
M−2

2 , Lemma 5.1 implies that

α(w∗
(j,rs)

) = aw∗
(j,rs)

, α(w∗
(t,rs)

) = aw∗
(t,rs)

, ∀t ̸= j.

Next, by Corollary 3.4, we can write

α(w(j,rs)) =
∑
i

ρiw(i,rs), ρi ∈ Q,

implying that

α(δ(µ)) =
a

2
ρj [w(j,rs), w

∗
(j,rs)

] +
a

2

∑
i ̸=j

ρi[w(i,rs), w
∗
(j,rs)

] +
a

2

∑
t̸=j

[α(w(t,rs)), w
∗
(t,rs)

]. (25)

Finally, using Corollary 3.5, we obtain

δ(α(µ)) = aδ(µ) =
a

2
[w(j,rs), w

∗
(j,rs)

] +
a

2

∑
t ̸=j

[w(t,rs), w
∗
(t,rs)

]. (26)

Since α(δ(µ)) = δ(α(µ)) and w∗
(j,rs)

̸= w∗
(t,rs)

, comparing (25) and (26), it follows that

ρi = 0 for all i ̸= j and ρj = 1. Hence, α(w(j,rs)) = w(j,rs). □

Lemma 5.3. If [α] ∈ E#(L(W )), then α(w∗
(j,ξ)) = aw∗

(j,ξ), where ξ = M−2
2 .

Proof. By virtue of Lemma 4.1 and Remark 4.2, there exists w∗
(k,rσ)

such that

δ(w∗
(k,rσ)

) = β1[w(s1,rp), w
∗
(j,ξ)] +

h∑
j′ ̸=j , i>1

βi[w(si,rp), w
∗
(j′,ξ)] + Θ(k,rσ), (27)

where the generators w(si,rp) are cycles implying that α(w(si,rp)) = w(si,rp) for all 1 ≤ i ≤ h.
Next, since that a basis of Wξ is formed by the generators w(i,ξ) and their duals w∗

(i,ξ)

because in this case we have |w(i,ξ)| = |w∗
(i,ξ)| = ξ = M−2

2 , by Corollary 3.5, we can write

α(w∗
(j,ξ)) =

∑
i≥1

µiw
∗
(i,ξ) +

∑
τ≥1

γτw(τ,ξ), (28)

As a result, we obtain

α(δ(w∗
(k,rσ)

)) =
∑
i

µiβ1[w(s1,rp), w
∗
(i,ξ)] +

∑
τ

γτβ1[w(s1,rp), w(τ,ξ)]

+

h∑
j′ ̸=j , i>1

βi[w(si,rp), α(w
∗
(j′,ξ))] + α(Θ(k,rσ)).
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Next, as |w∗
(k,rσ)

| > |w∗
(j,ξ)| = ξ = M−2

2 , it follows that rσ < ξ. Thus, using Lemma 5.1

and the relation (27), we get

δ(α(w∗
(i,rq)

)) = aδ(w∗
(i,rq)

) = aβ1[w(s1,rp), w
∗
(j,ξ)] +

h∑
j′ ̸=j , i>1

aβi[w(si,rp), w
∗
(j′,ξ)] + aΘ(k,rσ).

Since α(δ(w∗
(i,rq)

)) = δ(α(w∗
(i,rq)

)) and taking into account that the bracket [w(s1,rp), w
∗
(j,ξ)]

does not appear in the expression α(Θ(i,rq)), according to Remark 4.2, we deduce that all
the coefficients µi and γτ in (28) are nil except µjβ1 = aβ1 implying that µj = a because
β1 ̸= 0. Hence, α(w∗

(j,ξ)) = aw∗
(j,ξ) □

Lemma 5.4. If [α] ∈ E#(L(W )), then for every w(j,ξ) ∈ B, we have α(w(j,ξ)) = aw(j,ξ).

Proof. The proof is as in Lemma 5.3 after taking into consideration Remark 4.3. □

Proposition 5.5. If (L(W), δ) is the Quillen model of an F0-space of formal dimension
M , then the group E#(L(W ))is trivial.

Proof. It suffices to prove that the rational a given in Lemmas 5.1, 5.3 and 5.4 satisfies
a = 1. Indeed, first the formula (16) can be written as

δ(µ) =
1

2

∑
j

[w(j,ξ), w
∗
(j,ξ)] +

1

2

∑
rp<ξ

∑
t

[w(t,rp), w
∗
(t,rp)

].

It follows that

α(δ(µ)) =
1

2

∑
j

[α(w(j,ξ)), α(w
∗
(j,ξ))] +

1

2

∑
rp<ξ

∑
t

[α(w(t,rp)), α(w
∗
(t,rp)

)].

Now, for all t and rp < ξ, Lemmas 5.1 and 5.2 yield the following

α(w(t,rp)) = w(t,rp), α(w∗
(t,rp)

) = aw∗
(t,rp)

,

and for for all t, by lemmas 5.3 and Corollary 5.4, we have

α(w(t,ξ)) = aw(t,ξ), α(w∗
(t,ξ)) = aw∗

(t,ξ),

Therefore, on the one hand, we have

α(δ(µ)) =
1

2

∑
j

a2[w(i,ξ), w
∗
(j,ξ)] +

a

2

∑
rp<ξ

∑
t

[w(t,rp), w
∗
(t,rp)

].

On the other hand, by the relation (5) and Corollary 3.4 we have

δ(α(µ)) =
a

2

∑
j

[w(j,ξ), w
∗
(j,ξ)] +

a

2

∑
rp<ξ

∑
t

[w(t,rp), w
∗
(t,rp)

].

Since α(δ(µ)) = δ(α(µ)), it follows that a2 = a and as a ̸= 0, it follows that a = 1. □

Now we are able to announce the main result in this paper.

Theorem 5.6. If X is an F0-space, the E#(X) is finite.

Proof. It suffices to apply Proposition 5.5 and the identification (2). □
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