ON THE GROUP OF SELF-HOMOTOPY EQUIVALENCES OF AN F_0 -SPACE

MAHMOUD BENKHALIFA

ABSTRACT. G. Lupton conjectured that the group of self-homotopy equivalences of an F_0 -space inducing the identity on the homotopy groups is finite. Thus, the aim of this paper is to establish this conjecture.

1. INTRODUCTION

Let X be a simply connected space with finite dimensional rational homotopy, finite dimensional rational homology (i.e. a rationally elliptic space), and positive Euler characteristic. The collection of such spaces X is referred to as the class of F_0 -spaces. Extensively studied by Halperin, [5], F_0 -spaces are rational Poincaré duality spaces with rational cohomology $\mathbb{Q}[x_1, \ldots, x_n]/(P_1, \ldots, P_n)$, where the polynomials P_1, \ldots, P_n form a regular sequence in $\mathbb{Q}[x_1, \ldots, x_n]$, i.e., $P_1 \neq 0$ and for every $i \geq 1$, P_i is not a zero divisor in $\mathbb{Q}[x_1, \ldots, x_n]/(P_1, \ldots, P_{i-1})$. For instance, products of even spheres, complex Grassmannian manifolds and homogeneous spaces G/H such that rank $G = \operatorname{rank} H$ are F_0 -spaces.

Let $\mathcal{E}(X)$ denote the group of self-homotopy equivalences of X and let $\mathcal{E}_{\#}(X)$ be its subgroup of the elements inducing the identity on the homotopy groups ([3],[2]).

Halperin has conjectured that the rational Serre spectral sequence collapses for any rational fibration, provided the fiber X is a F_0 -space. This conjecture, which remains unsolved, can be rephrased in terms of the (graded Lie algebra of) negative-degree derivations of the rational cohomology of X (see [8] for more details). Namely:

 $Der_{\leq 0}H^*(X;\mathbb{Q}) = 0 \iff$ Halperin's conjecture holds

If we look at the zero-degree derivations of the rational cohomology of X, there exists a correspondence between the decomposable derivations of $Der_0H^*(X;\mathbb{Q})$ and the subgroup $\mathcal{E}_{\#}(X)$. Hence,

$Der_0H^*(X;\mathbb{Q})$ is trivial $\Longrightarrow \mathcal{E}_{\#}(X)$ is finite

Motivated by Halperin's conjecture and this correspondence, Lupton raises the following question:

Question([1], Problem 10): For an F_0 -space X, is $\mathcal{E}_{\#}(X)$ finite?

Thus, the purpose of this paper is to settle this question in the positive using standard tools of rational homotopy theory which we refer to [4] for a general introduction to these techniques. We recall some of the notation here. By a Sullivan algebra we mean a free graded commutative algebra ΛV , for some finite-type graded vector space $V = V^{\geq 2}$, i.e., dim $V^n < \infty$ for all $n \geq 2$, together with a differential ∂ of degree +1 that is decomposable, i.e., satisfies $\partial : V \to \Lambda^{\geq 2}V$. Here $\Lambda^{\geq 2}V$ denotes the graded vector space spanned by all the monomials $v_1 \dots v_r$ such that $v_1, \dots, v_r \in V$ and $r \geq 2$.

²⁰⁰⁰ Mathematics Subject Classification. 55P10, 55P62.

Key words and phrases. F_0 -spaces, Group of homotopy self-equivalences, Sullivan model, Quillen model.

MAHMOUD BENKHALIFA

Every simply connected space X with rational cohomology of finite-type has a corresponding Sullivan algebra called the Sullivan model of X, unique up to isomorphism, that encodes the rational homotopy type of X. In particular we have

$$V^* \cong \operatorname{Hom}(\pi_*(X) \otimes \mathbb{Q}, \mathbb{Q}), \qquad H^*(\Lambda V) \cong H^*(X, \mathbb{Q}).$$

By a free differential graded Lie algebra $(\mathbb{L}(W), \delta)$ (DGL for short), we mean a free graded Lie algebra $\mathbb{L}(W)$, for some finite-type vector space $W = (W_{\geq 1})$, together with a decomposable differential δ of degree -1, i.e., $\delta(W) \subset \mathbb{L}^{\geq 2}(W)$. Here $\mathbb{L}^{\geq 2}(W)$ denotes the graded vector space spanned by all the brackets of lengths ≥ 2 .

Every simply connected space X with rational cohomology of finite-type has a corresponding DGL ($\mathbb{L}(W), \delta$) called the Quillen model of X, unique up to isomorphism, which determines completely the rational homotopy type of X. In particular we have

$$W_* \cong H_{*+1}(X; \mathbb{Q}), \qquad H_*(\mathbb{L}(W)) \cong \pi_{*+1}(X) \otimes \mathbb{Q}.$$

This work consists of five sections, the first one being the introduction. Section 2 is devoted to state some results on the notion of DGL-homotopy as well as the properties of an F_0 -space X notably, if $(\mathbb{L}(W), \delta)$ is its Quillen model, then we introduce the group $\mathcal{E}_{\#}(\mathbb{L}(W))$ of the self-homotopy equivalences of $(\mathbb{L}(W), \delta)$ constituting on the elements $[\alpha]$ satisfying $H_*(\alpha) = \text{id}$. In Section 3, we prove that if $[\alpha] \in \mathcal{E}_{\#}(\mathbb{L}(W))$, then α is homotopic to DGL-map $\tilde{\alpha}$ satisfying $\tilde{\alpha}(W) = W$. In Section 4 and 5, we focus on studying the properties of $(\mathbb{L}(W), \delta)$ to show that $\mathcal{E}_{\#}(\mathbb{L}(W))$ is trivial. Consequently, by virtue of the localization theorem of Maruyama [7], we derive that $\mathcal{E}_{\#}(X)$ is finite.

2. Preliminaries

2.1. Homotopy between DGL-maps (see [4, §21]). Let $(\mathbb{L}(W), \delta)$ be a DGL. Define the DGL $\mathbb{L}(W, sW, W'), D$) with $W \cong W'$ and $(sW)_i = W_{i-1}$. The differential D is given by

$$D(w) = \partial(w), \qquad D(sw) = w', \qquad D(w') = 0. \tag{1}$$

Define S as the derivation of degree +1 on $\mathbb{L}(W, sW, W')$ given by

$$S(w) = sw, \qquad \qquad S(sw) = S(w') = 0$$

A homotopy between two DGL-maps $\alpha, \alpha' : (\mathbb{L}(W), \delta) \to (\mathbb{L}(W), \delta)$ is DGL-map

$$F: (\mathbb{L}(W, sW, W'), D) \to (\mathbb{L}(W), \delta),$$

such that $F(w) = \alpha(w)$ and $F \circ e^{\theta}(w) = \alpha'(w)$, where

$$e^{\theta}(w) = w + w' + \sum_{n \ge 1} \frac{1}{n!} (S \circ D)^n(w), \text{ and } \theta = D \circ S + S \circ D$$

Thus, the notion of DGL-homotopy allows us to define the following group.

Definition 2.1. Let $\mathcal{E}_{\#}(\mathbb{L}(W))$ denote the group of self-homotopy equivalences of $(\mathbb{L}(W), \delta)$ constituting with the elements $[\alpha]$ satisfying $H_*(\alpha) = \mathrm{id}$, where

$$H_*(\alpha): H_*(\mathbb{L}(W)) \to H_*(\mathbb{L}(W)).$$

By virtue of the properties of the model of Quillen and the localization theorem of Maruyama [7], we deduce that if X is an F_0 -space, then we have

$$\mathcal{E}_{\#}(X) \otimes \mathbb{Q} \cong \mathcal{E}_{\#}(\mathbb{L}(W)).$$
⁽²⁾

Thus, the group $\mathcal{E}_{\#}(X)$ is finite if and only if the group $\mathcal{E}_{\#}(\mathbb{L}(W))$ is trivial.

Later on we will need the following two lemmas.

Lemma 2.2. Let $\alpha, \tilde{\alpha} : (\mathbb{L}(W_{\leq n}), \delta) \to (\mathbb{L}(W_{\leq n}), \delta)$ be two DGL-maps such that

$$\alpha(w) = \tilde{\alpha}(w) + y \text{ on } W_n \text{ and } \alpha = \tilde{\alpha} \text{ on } W_{\leq n-1}$$

Assume that $y = \delta(z)$, where $z \in \mathbb{L}(W_{\leq n})$. Then α and $\tilde{\alpha}$ are homotopic.

Proof. Define $F: (\mathbb{L}(W_{\leq n}, sW_{\leq n}, W'_{< n}), D) \to (\mathbb{L}(W_{\leq n}), \delta)$ by setting

$$F(w) = \alpha(w), \quad F(w') = -y \text{ and } F(sw) = -z \text{ for } w \in W_n,$$
(3)

$$F(w) = \alpha(w), \quad F(w') = 0 \text{ and } F(sw) = 0 \text{ for } w \in W_{\leq n-1}.$$

Let $w \in W_n$, by considering the relations (1), (3) and as $\delta(w) \in \mathbb{L}(W_{\leq n-1})$, we get

$$\delta F(w) = \delta \alpha(w),$$
 $FD(w) = F(\delta(w)) = \alpha \delta(w).$

Moreover, a straightforward computation shows

$$\delta F(w') = \delta(-y) = -\delta(\delta(z)) = 0, \qquad FD(w') = F(0) = 0, \\ \delta F(sw) = \delta(-z) = -y, \qquad FD(sw) = F(w') = -y,$$

implying that F is a DGL-map. Next, on the one hand, from (3), we have $F(w) = \alpha(w)$ for every $w \in W$. On the other hand, by expanding the expression $(S \circ \partial)^n(w)$ leads to linear combinations of brackets involving the generators sw, where $w \in W_{\leq n-1}$. Since in this case F(sw) = 0, it follows that $\sum_{n \geq 1} \frac{1}{n!} F(S \circ D)^n(w) = 0$. Consequently, we obtain

$$F \circ e^{\theta}(w) = F(w) + F(w') = \alpha(w) - y = \tilde{\alpha}(w) , \quad \text{if } w \in W_n,$$

$$F \circ e^{\theta}(w) = F(w) + F(w') = \alpha(w), \quad \text{if } w \in W_{\leq n-1}.$$

But by hypothesis we have $\alpha(w) = \tilde{\alpha}(w)$ on $W_{\leq n-1}$, so for all $w \in W$ we have $F \circ e^{\theta}(w) = \tilde{\alpha}(w)$ implying that F is the needed homotopy.

Lemma 2.3. Let $\alpha, \beta \colon (\mathbb{L}(W_{\leq n}), \delta) \to (\mathbb{L}(W_{\leq n}), \delta)$ be two DGL-maps such that

$$\begin{aligned} \alpha(w) &= \beta(w) + y, \quad w \in W_n, \quad y \in \mathbb{L}_n(W_{\leq n-1}), \\ \alpha &\simeq \beta, \quad \text{on } \mathbb{L}(W_{\leq n-1}). \end{aligned}$$

There is a cycle $y' \in \mathbb{L}_n(W_{\leq n-1})$ such that α is homotopic to the following DGL-map

$$\begin{aligned} \alpha'(w) &= \beta(w) + y', \quad w \in W_n, \\ \alpha' &= \beta, \quad \text{on } \mathbb{L}(W_{\leq n-1}). \end{aligned}$$
(4)

Proof. Since α and β are homotopic on $\mathbb{L}(W_{\leq n-1})$, there exits a homotopy

$$F: (\mathbb{L}(W_{\leq n-1}, sW_{\leq n-1}, W'_{\leq n-1}), D) \to (\mathbb{L}(W_{\leq n-1}), \delta),$$

such that

$$F(w) = \beta(w), \qquad F \circ e^{\theta}(w) = \alpha(w), \qquad \forall w \in W_{\le n-1}.$$
(5)

Therefore for $w \in W_n$, the element $F\left(\sum_{n\geq 1} \frac{1}{n!} (S \circ D)^n(w)\right)$ is a well-defined element in $\mathbb{L}_n(W_{\leq n-1})$. Thus we define

$$y' = y - F\left(\sum_{n \ge 1} \frac{1}{n!} (S \circ D)^n (w)\right).$$
 (6)

Now, by hypothesis we have

$$\delta(\beta(w)) + \delta(y) = \delta\alpha(w) = \alpha(\delta(w)) = F \circ e^{\theta}(\delta(w)) = F \circ e^{\theta}(D(w)).$$
(7)

But e^{θ} is a DGL-automorphism, so

$$F \circ e^{\theta}(D(w)) = F \circ D(e^{\theta}(w)) = F \circ D\left(w + w' + \sum_{n \ge 1} \frac{1}{n!} (S \circ D)^n(w)\right)$$

$$= F(D(w)) + F(D(w')) + F \circ D\left(\sum_{n \ge 1} \frac{1}{n!} (S \circ D)^n(w)\right)$$

$$= F(\delta(w)) + \delta \circ F\left(\sum_{n \ge 1} \frac{1}{n!} (S \circ D)^n(w)\right)$$

$$= \beta(\delta(w)) + \delta\left(\sum_{n \ge 1} \frac{1}{n!} F(S \circ D)^n(w)\right)$$

$$= \delta(\beta(w)) + \delta\left(\sum_{n \ge 1} \frac{1}{n!} F(S \circ D)^n(w)\right).$$
(8)

Here we use the facts that D(w') = 0 by (1), $F \circ D = \delta \circ F$ and $F(\delta(w)) = \beta(\delta(w))$ because $\delta(w) \in \mathbb{L}(W_{\leq n-1})$ and $F = \beta$ on $W_{\leq n-1}$ by (5). Comparing (7) and (8) we get

$$\delta(y) = \delta\Big(\sum_{n \ge 1} \frac{1}{n!} F(S \circ D)^n(w)\Big),$$

which implies according to (6) that $\delta(y') = 0$.

Now define $G\colon (\mathbb{L}(W_{\leq n}, sW_{\leq n}, W'_{\leq n}), D) \to (\mathbb{L}(W_{\leq n}), \delta)$ by setting

$$G(w) = \alpha'(w), \qquad G(w') = G(sw) = 0, \qquad \text{for } w \in W_n,$$

$$G = F, \qquad \text{on } W_{\leq n-1}.$$

Let us consider the relations (1). A simple computation shows that

$$\delta(G(w)) = \delta(\alpha'(w)), \qquad \qquad G(D(w)) = G(\delta(w)).$$

As $\delta(w) \in \mathbb{L}_n(W_{\leq n-1})$, it follows that $G(\delta(w)) = F(\delta(w))$ and by (4), (5) we get $F(\delta(w)) = \beta(\delta(w)) = \alpha'(\delta(w))$. As a result $\delta(G(w)) = G(D(w))$. Also by taking into consideration the relations (1), we obtain

$$\delta(G(w')) = GD(w') = 0,$$
 $\delta(G(sw)) = 0,$ $GD(sw) = G(w') = 0,$

proving that G is a DGL-map satisfying $G(w) = \alpha'(w)$ for all $w \in W_{\leq n}$. Moreover, we have

$$G \circ e^{\theta}(w) = G\Big(w + w' + \sum_{n \ge 1} \frac{1}{n!} (S \circ D)^n(w)\Big) = G(w) + G\Big(\sum_{n \ge 1} \frac{1}{n!} (S \circ D)^n(w)\Big).$$

As $\sum_{n\geq 1} \frac{1}{n!} (S \circ D)^n(w) \in \mathbb{L}_n(W_{\leq n-1})$ and F = G on $W_{\leq n-1}$, it follows that

$$G \circ e^{\theta}(w) = \alpha'(w) + F\left(\sum_{n \ge 1} \frac{1}{n!} (S \circ D)^n(w)\right) = (\beta(w) + y') + (y - y') = \alpha(w).$$

Here we use (6). Consequently, α and α' are homotopic.

2.2. Whitehead exact sequence of a DGL. Let $(\mathbb{L}(W), \delta)$ be a DGL. If

$$j_n: H_n(\mathbb{L}(W_{\leq n})) \to W_n, \qquad \qquad j_n(\{w+y\}) = w,$$

where $w \in W_n$, $y \in \mathbb{L}_n(W_{\leq n-1})$ and where $\{w+y\}$ denote the homology class of the cycle w+y, then we define the graded vector space Γ_* by setting

$$\Gamma_n = \ker \left(H_n(\mathbb{L}(W_{\leq n})) \xrightarrow{j_n} W_n \right), \qquad \forall n \geq 2.$$
(9)

To every DGL $(\mathbb{L}(W), \delta)$, we can assign (see [2, 3] for more details) the following long exact sequence

$$\dots \to W_{n+1} \xrightarrow{b_{n+1}} \Gamma_n \to H_n(\mathbb{L}(W)) \to W_n \xrightarrow{b_n} \dots$$
(10)

called the Whitehead exact sequence of $(\mathbb{L}(W), \delta)$. Here $b_n(w) = \{\delta(w)\}$, where $\{\delta(w)\}$ denotes the homology class of $\delta(w)$ in $\mathbb{L}_{n-1}(W_{\leq n-1})$.

2.3. Elliptic spaces. Recall that a simply connected space X is called rationally elliptic if it satisfies dim $(\pi_*(X) \otimes \mathbb{Q}) < \infty$ and dim $H^*(X, \mathbb{Q}) < \infty$ ([4], §32). The following result mentions some important properties of rationally elliptic spaces.

Proposition 2.4. ([4] Proposition 32.6 and 32.10). If $(\mathbb{L}(W), \delta)$ is the Quillen model of a rationally elliptic space of formal dimension M, then

- dim $W_{M-1} = 1$ and $W_i = 0$ for all $i \ge M$.
- $\sum_{i\geq 1} (2i+1) \dim H_{2i}(\mathbb{L}(W)) \sum_{i\geq 1} (2i) (\dim H_{2i-1}(\mathbb{L}(W)) 1) = M.$

Furthermore, the following statements are equivalent

- (1) X is an F_0 -space.
- (2) dim $H_{\text{even}}(\mathbb{L}(W)) = \dim H_{\text{even}}(\mathbb{L}(W)).$
- (3) $W_{\text{even}} = 0.$

Remark 2.5. According to Proposition 2.4, the formal dimension of an F_0 -space must be an even integer.

3. Properties of the group $\mathcal{E}_{\#}(\mathbb{L}(W))$

The purpose of this section is to study the properties of the group $\mathcal{E}_{\#}(\mathbb{L}(W))$, introduced in definition 2.1, in the case where the DGL $(\mathbb{L}(W), \delta)$ is the Quillen model of an F_0 -space.

As it is stated in the introduction, an F_0 -space is an elliptic space such that its rational cohomology is a graded algebra on the form $\mathbb{Q}[x_1, \ldots, x_n]/(P_1, \ldots, P_n)$, where the polynomials P_1, \ldots, P_n form a regular sequence in $\mathbb{Q}[x_1, \ldots, x_n]$.

In [5], it is shown that the Sullivan model of an F_0 -space is given by

$$(\Lambda V, \partial) = (\Lambda(x_1, \dots, x_n; y_1, \dots, y_n), \partial) , \ \partial(x_i) = 0 , \ \partial(y_i) = P_i , \ 1 \le i \le n$$

where the generator x_1, \ldots, x_n are of even degrees and y_1, \ldots, y_n are of odd degrees.

It well-known that F_0 -spaces are formal (see [5], theorem 5), i.e., there exists a quasiisomorphism $\mathcal{M}(X) \to (H_*(X, \mathbb{Q}), 0)$. As a result, the differential of the Quillen model $(\mathbb{L}(W), \delta)$ is purely quadratic, i.e., $\delta(W) \subset [W, W]$ (see [9], proposition 3.2). Moreover, taking into account that $W_{\text{even}} = 0$, we deduce that $W = W_{\text{odd}}$.

Remark 3.1. Recall that we have $V^{\text{even}} \cong H_{\text{odd}}(\mathbb{L}(W))$, therefore, to each $x_i \in V^{\text{even}}$ corresponds a homology class $\{w_i + q_i\} \in H_{\text{odd}}(\mathbb{L}(W))$ such that w_i is indecomposable and q_i is decomposable. Since $\delta(w_i) = -\delta(q_i)$, it follows that $\delta(w_i)$ has bracket length greater or equal than 3. But δ is purely quadratic, it follows that $q_i = 0$. As a result, $H_{\text{odd}}(\mathbb{L}(W))$ is generated by w_1, \ldots, w_n .

Proposition 3.2. Let $(\mathbb{L}(W), \delta)$ be the Quillen model of an F_0 -space X. Then the graded vector space Γ_{odd} , defined in (9), is trivial.

Proof. Assume there is $\{z\} \neq 0 \in \Gamma_{\text{odd}}$. Since $W_{\text{even}} = 0$, the exact sequence (10) implies that $\{z\} \in H_{\text{odd}}(\mathbb{L}(W))$ which is impossible as z is decomposable due to Remark 3.1. \Box

Let us consider the Quillen model ($\mathbb{L}(W), \delta$) of an F_0 -space X of formal dimension M. By virtue of Proposition 2.4, we can write

$$W = W_{r_1} \oplus \dots \oplus W_{r_m} \oplus W_{M-1}, \qquad r_1 < \dots < r_m < M-1,$$

 $W_{r_i} = \left\langle w_{(1,r_i)}, \dots, w_{(n_i,r_i)} \right\rangle, \qquad 1 \le i \le m,$ $W_{M-1} = \langle \mu \rangle.$ (11)If $[\alpha] \in \mathcal{E}(\mathbb{L}(W))$, then for every $1 \leq i \leq m$ and $1 \leq j \leq n_i$, let us write

$$\alpha(w_{(j,r_i)}) = \sum_{s_i=1}^{n_i} \lambda_{(j,r_i),s_i} w_{(j,r_i)} + A_{(j,r_i)}, \qquad A_{(j,r_i)} \in \mathbb{L}^{\geq 3}(W_{\leq r_{i-1}}),
\alpha(\mu) = a\mu + A_{\mu}, \qquad A_{\mu} \in \mathbb{L}^{\geq 3}(W_{\leq M-2}),$$
(12)

where all the coefficients $\lambda_{(r_i,j),s_i}$, a are rationals.

Set $\tilde{\alpha}(w_{(j,r_i)}) = \sum_{s_i=1}^{n_i} \lambda_{(j,r_i),s_i} w_{(j,r_i)}$, then (12) becomes $\alpha(w_{(j,r_i)}) = \tilde{\alpha}(w_{(j,r_i)}) + A_{(j,r_i)}$

$$\alpha(w_{(j,r_i)}) = \dot{\alpha}(w_{(j,r_i)}) + A_{(j,r_i)}.$$

Note that $\tilde{\alpha}(w_{(j,r_i)}) \in W_{r_i}$. Moreover, if $l(A_{(j,r_i)})$ denotes the bracket length of $A_{(j,r_i)}$, then $l(A_{(i,r_i)}) \geq 3$ because $|A_{(i,r_i)}|$ is odd and $W = W_{\text{odd}}$.

Theorem 3.3. Let X be an F_0 -space and let $(\mathbb{L}(W), \delta)$ be its Quillen model. If $[\alpha] \in$ $\mathcal{E}_{\#}(\mathbb{L}(W))$, then α is homotopic to the DGL-map $\tilde{\alpha}$. Here $\mathcal{E}_{\#}(\mathbb{L}(W))$ is defined in (2.1).

Proof. Let $[\alpha] \in \mathcal{E}_{\#}(\mathbb{L}(W))$ and $\alpha_{r_k} : (\mathbb{L}(W_{\leq r_k}), \delta) \to (\mathbb{L}(W_{\leq r_k}), \delta)$, the restriction of α to $\mathbb{L}(W_{\leq r_k})$. Since $H_{r_1}(\alpha) = id_{H_{r_1}}(\mathbb{L}(W_{\text{odd}})) = id_{W_{r_1}}$, we deduce that $\alpha_{r_3} = id$ on W_{r_1} .

First, from the relation (12), we have

$$\alpha_{r_2}(w_{(j,r_2)}) = \tilde{\alpha}_{r_2}(w_{(j,r_2)}) + A_{(j,r_2)}, \quad l(A_{(j,r_2)}) \ge 3, \qquad \alpha_{r_2} = id \ , \ \text{on } \mathbb{L}(W_{r_1})$$

implying that

$$\delta \alpha_{r_2}(w_{(j,r_2)}) = \delta(\tilde{\alpha}_{r_2}(w_{(j,r_2)})) + \delta(A_{(j,r_2)})$$

Next, as $\delta(t_{(j,r_2)}) \in \mathbb{L}(W_{r_1})$, we get

$$\alpha_{r_2}\delta(w_{(j,r_2)}) = \delta(w_{(j,r_2)}).$$

Since $\delta \alpha_{r_2} = \alpha_{r_2} \delta$, $l(A_{(j,r_2)}) \geq 3$ and δ is purely quadratic, it follows that $\delta(A_{(j,r_2)}) = 0$ for every $1 \leq j \leq n_2$. As a result, the homology class $\{A_{(j,r_2)}\}$ belongs to Γ_{r_2} which is, by proposition 3.2, trivial as r_2 is odd, therefore $A_{(j,r_2)}$ is a boundary. Now applying lemma 2.2, it follows that α_{r_2} and $\tilde{\alpha}_{r_2}$ are homotopic on $\mathbb{L}(W_{\leq r_2})$.

Assume by induction that $\alpha_{r_{k-1}}$ and $\tilde{\alpha}_{r_{k-1}}$ are homotopic on $\mathbb{L}(W_{\leq r_{k-1}})$. Therefore using (12) we get

$$\begin{aligned} \alpha_{r_k}(w_{(j,r_k)}) &= \tilde{\alpha}_{r_k}(w_{(j,r_k)}) + A_{(j,r_k)}, & l(A_{(j,r_k)}) \ge 3, \\ \alpha_{r_{k-1}} &\simeq \tilde{\alpha}_{r_{k-1}}, & \text{on } \mathbb{L}(W_{\le r_{k-1}}). \end{aligned}$$

Due to lemma 2.3, we deduce that there is a cycle $A'_{(i,r_k)}$ such that $l(A'_{(i,r_k)}) \geq 3$ and α_{r_k} is homotopic to the DGL-map α'_{r_k} given by

$$\begin{aligned} \alpha'_{r_k}(w_{(j,r_k)}) &= \tilde{\alpha}_{r_k}(w_{(j,r_k)}) + A'_{(j,r_k)}, & l(A_{(j,r_k)}) \ge 3, \\ \alpha'_{r_{k-1}} &= \tilde{\alpha}_{r_{k-1}}, & \text{on } \mathbb{L}(W_{\le r_{k-1}}). \end{aligned}$$

The cycle $A'_{(j,r_k)}$ defines a homology class $\{A'_{(j,r_k)}\}$ belonging to Γ_{odd} which is trivial by 3.2 because $|A'_{(j,r_k)}| = r_k = \text{odd}$. Therefore, from lemma 2.2, we deduce that $\alpha'_k \simeq \tilde{\alpha}_{r_k}$ and so are α_{r_k} and $\tilde{\alpha}_{r_k}$. Hence, $\alpha \simeq \tilde{\alpha}$.

As a consequence of Theorem 3.3, we deduce the following fact

Corollary 3.4. Let X be an F_0 -space and let $(\mathbb{L}(W), \delta)$ be its Quillen model. If $[\alpha] \in \mathcal{E}_{\#}(\mathbb{L}(W))$, then for every $1 \leq s \leq m$ we have $\alpha(W_{r_s}) = W_{r_s}$ and $\alpha(\mu) = a\mu$, where a is a non-zero rational.

Proof. It follows from Theorem 3.3 and the relations (12).

Corollary 3.5. Let X be an F_0 -space and let $(\mathbb{L}(W), \delta)$ be its Quillen model. If $[\alpha] \in \mathcal{E}_{\#}(\mathbb{L}(W))$, then for every indecomposable cycle $w_{(j,r_s)} \in W$, we have $\alpha(w_{(j,r_s)}) = w_{(j,r_s)}$.

Proof. By virtue of (2), if $[\alpha] \in \mathcal{E}_{\#}(\mathbb{L}(W))$, then $H_*(\alpha) = id_{H_*(\mathbb{L}(W))}$. Therefore, since $w_{(j,r_s)}$ is a cycle we get

$$H_*(\alpha)(\{w_{(j,r_s)}\}) = \{w_{(j,r_s)}\},\$$

implying $\alpha(w_{(j,r_s)}) - w_{(j,r_s)}$ is a boundary in $(\mathbb{L}(W), \delta)$. As δ is purely quadratic, it follows that $\alpha(w_{(j,r_s)}) = w_{(j,r_s)}$.

4. Properties of the Quillen model of an F_0 -space

Let X be an F_0 -space of formal dimension M and let

$$\Lambda V, \partial) = (\Lambda(x_1, \dots, x_n; y_1, \dots, y_n, \partial), \ \partial(x_i) = 0, \ 1 \le i \le n,$$

be its Sullivan model and $(\mathbb{L}(W), \delta)$ its Quillen model. Assume that

$$|x_1| \le \dots \le |x_n|.$$

Recall that a basis of W_{r_s} is given by (see (11))

$$W_{r_s} = \langle w_{(1,r_s)}, \dots, w_{(n_s,r_s)} \rangle, \qquad 1 \le s \le m, \qquad W_{M-1} = \langle \mu \rangle.$$

To each generator $w_{(i,r_s)}$ corresponds a non-trivial cohomology class $\{x_1^{i_1} \ldots x_n^{i_n}\}$ such that

$$r_s = i_1 |x_1| + \dots + i_n |x_n| - 1, \qquad i_1 \ge 0, \dots, i_n \ge 0.$$
(13)

The differential is given by

$$\delta(w_{(j,r_s)}) = \sum \lambda_{(i,t)}[w_{(i,r_p)}, w_{(t,r_q)}], \qquad r_p \le r_q \ , \ r_p + r_q = r_s - 1, \tag{14}$$

where $\lambda_{(i,t)} \in \mathbb{Q}$ and where the generators $w_{(i,r_p)} \in W_{r_p}$ and $w_{(t,r_q)} \in W_{r_q}$ correspond respectively to the non-trivial cohomology classes $\{x_1^{p_1} \dots x_n^{p_n}\}$ and $\{x_1^{l_1} \dots x_n^{l_n}\}$ such that

$$x_1^{i_1} \dots x_n^{i_n} = (x_1^{p_1} \dots x_n^{p_n}) (x_1^{l_1} \dots x_n^{l_n}), \quad r_p = \sum_i^n p_i |x_i| - 1, \quad r_q = \sum_i^n l_i |x_i| - 1$$
$$p_1 \ge 0, \dots, p_n \ge 0, \qquad l_1 \ge 0, \dots, l_n \ge 0.$$

It well-known that if M is the formal dimension of the F_0 -space X, then, thanks to the Poincaré duality ([4], §38), we have an isomorphism of vector spaces

$$\phi: W_{r_s} \to W_{M-2-r_s}.$$

MAHMOUD BENKHALIFA

So if $\{w_{(i,r_s)}\}_{1 \le i \le n_s}$ is a basis for W_{r_s} , then $\{\phi(w_{(i,r_s)}) = w^*_{(i,r_s)}\}_{1 \le i \le n_s}$ is a basis for W_{M-2-r_s} , called the dual basis. Consequently, we can choose a basis for W on the form

$$\mathcal{B} = \left\{ w_{(1,r_s)}, \dots, w_{(n_s,r_s)}; w_{(1,r_s)}^*, \dots, w_{(r_s,r_s)}^*, \mu \right\}_{r_1 \le r_s \le \frac{M-2}{2}},\tag{15}$$

where $W_{M-1} = \langle \mu \rangle$. Moreover, due to (Theorem 2, [10]), we have

$$\delta(\mu) = \frac{1}{2} \sum_{r_s, t} [w_{(t, r_s)}, w^*_{(t, r_s)}], \qquad 1 \le s \le m, \qquad 1 \le t \le n_{r_s}.$$
(16)

Note that the integer M is even (see Remark 2.5), and if $r_p < r_q$, then $|w_{t,r_q}^*| < |w_{t,r_q}^*|$.

The following result plays a crucial role afterwards.

Lemma 4.1. Let $(\mathbb{L}(W), \delta)$ be the Quillen model of an F_0 -space X of formal dimension M. For every $w^*_{(i,r_s)} \in \mathcal{B}$, there exists $w^*_{(k,r_{\sigma})} \in \mathcal{B}$ such that

$$\delta(w_{(k,r_{\sigma})}^{*}) = \beta_{(k,r_{\sigma})}[w_{(s_{1},r_{p})}, w_{(j,r_{s})}^{*}] + \Theta_{(k,r_{\sigma})},$$
(17)

where $\Theta_{(k,r_{\sigma})}$ is a linear combination of 2-brackets where $w_{(s_1,r_p)}$ and $w^*_{(j,r_s)}$ are not involved. Moreover, $w_{(s_1,r_p)}$ is a cycle.

Proof. First, recall that $|w_{(j,r_s)}| = r_s$ and $|w_{(j,r_s)}^*| = M - 2 - r_s$. Next, by (13) and (14) we know that to $w_{(j,r_s)}$ and $w_{(j,r_s)}^*$ correspond two non-trivial cohomology classes $\{x_{s_1}^{t_1} \dots x_{s_h}^{t_h}\}$ and $\{x_{j_1}^{i_1} \dots x_{j_k}^{i_k}\}$ in the Sullivan model $(\Lambda V, \partial)$, such that

$$\begin{aligned} |x_{s_1}^{t_1} \dots x_{s_h}^{t_h}| &= |w_{(j,r_s)}| + 1 = r_s + 1, \\ |x_{j_1}^{i_1} \dots x_{j_k}^{i_k}| &= |w_{(j,r_s)}^*| + 1 = M - 1 - r_s, \\ |x_{j_1}| &\le \dots \le |x_{j_k}|. \end{aligned}$$

Here we can assume $t_1 \ge 1, \ldots, t_h \ge 1$ and $i_1 \ge 1, \ldots, i_k \ge 1$. Note that if the generator $w_{(j,r_s)}$ is a cycle, then the corresponding element in $(\Lambda V, \partial)$ is the cohomology class $\{x_{s_1}\}$. Next, Poincaré duality implies that the multiplication

 $H^{r_s+1}(\Lambda V)\times H^{M-1-r_s}(\Lambda V)\to H^M(\Lambda V),$

sending $\left(\{x_{s_1}^{t_1} \dots x_{s_h}^{t_h}\}; \{x_{j_1}^{i_1} \dots x_{j_k}^{i_k}\} \right)$ to $\{x_{s_1}^{t_1} \dots x_{s_h}^{t_h} \cdot x_{j_1}^{i_1} \dots x_{j_k}^{i_k}\}$, is non-degenerate. It follows that $x_{s_i}(x_{j_1}^{i_1} \dots x_{j_k}^{i_k})$ is not a coboundary for every $1 \leq i \leq h$. As a result, we must have a generator $w_{(k,r_{\sigma})}^*$ corresponding to cohomology class $\{x_{s_i}(x_{j_1}^{i_1} \dots x_{j_k}^{i_k})\}$ such that $\delta(w_{(k,r_{\sigma})}^*)$ satisfies the following formula

$$\delta(w_{(k,r_{\sigma})}^{*}) = \beta_{(k,r_{\sigma})}[w_{(s_{1},r_{p})}, w_{(j,r_{s})}^{*}] + \Theta_{(k,r_{\sigma})},$$

where $w_{(s_1,r_p)}$ corresponds to x_{s_1} which implies that $w_{(s_1,r_p)}$ is a cycle. Finally, from the formula (14), it is clear that $\Theta_{(k,r_{\sigma})}$ is a linear combination of 2-brackets where $w_{(s_1,r_p)}$ and $w^*_{(j,r_s)}$ are not involved.

Remark 4.2. In the cohomology class $\{x_{s_1}^{t_1} \dots x_{s_h}^{t_h}\}$ corresponding to $w_{(j,r_s)}$, we might have $|x_{s_1}| = \dots = |x_{s_\tau}|, \qquad 1 \le \tau \le h.$

In this case, the formula (17) can be written as follows

$$\delta(w_{(k,r_{\sigma})}^{*}) = \beta_{1}[w_{(s_{1},r_{p})}, w_{(j,r_{s})}^{*}] + \sum_{j' \neq j, \, i > 1}^{h} \beta_{i}[w_{(s_{i},r_{p})}, w_{(j',r_{s})}^{*}] + \Theta_{(k,r_{\sigma})},$$

furthermore, we have the following facts.

(1) Since $|x_{s_1}| \leq \cdots \leq |x_{s_h}|$, we deduce that $\Theta_{(k,r_{\sigma})}$ is a linear combination of 2brackets of the form $[w_{(a,b)}, w_{(c,d)}]$ such that

$$r_p < |w_{(a,b)}| \le |w_{(c,d)}| < M - 2 - r_s.$$

- (2) All the generators $w^*_{(j,r_s)}$ and $w^*_{(j',r_s)}$, where $j' \neq j$, are distinct and have the same degree $M - 2 - r_s$.
- (3) All the generators $w_{(s_i,r_p)}, 1 \le i \le h$, are distinct cycles with $|w_{(s_i,r_p)}| = r_p$.
- (4) All the rationals β_i are not zero.

Remark 4.3. A special case of Lemma 4.1 is when $r_s = \frac{M-2}{2}$. In this case the lemma still valid for any generator $w_{(j,r_s)}$ such that $\delta(w^*_{(j,r_s)}) \neq 0$ because the dual of $w^*_{(j,r_s)}$, namely $(w_{(j,r_s)}^*)^*$, is $w_{(j,r_s)}$.

5. Main result

In all this section, let X denote an F_0 -space of formal dimension M, $(\Lambda V, \partial)$ its Sullivan model, $(\mathbb{L}(W), \delta)$ its Quillen model and \mathcal{B} the basis of W given in (15). Recall that by Corollary (3.4) there exists a rational $a \neq 0$ such that $\alpha(\mu) = a\mu$, where $W_{M-1} = \langle \mu \rangle$.

Subsequently, we prove some important lemmas concerning the properties of $(\mathbb{L}(W), \delta)$ needed to establish the main result in this paper. Indeed, if $[\alpha] \in \mathcal{E}_{\#}(\mathbb{L}(W))$, then by considering the basis (15) and Remark 4.2, we can summarize the next steps as follows.

- In Lemma 5.1, we show that $\alpha(w_{j,r_s}^*) = aw_{j,r_s}^*$ for all j and $r_s < \frac{M-2}{2}$.
- In Lemma 5.2, we show that $\alpha(w_{j,r_s}) = w_{j,r_s}$ for every j and $r_s < \frac{M-2}{2}$. Lemmas 5.3 and 5.4, show that $\alpha(w_{j,\xi}) = aw_{j,\xi}$ and $\alpha(w_{j,\xi}^*) = aw_{j,\xi}^*$ for every j, where $\xi = \frac{M-2}{2}$.
- In Proposition 5.5, we show that a = 1.

Lemma 5.1. If $[\alpha] \in \mathcal{E}_{\#}(\mathbb{L}(W))$, then for $w_{j,r_s}^* \in \mathcal{B}$ such that $r_s < \frac{M-2}{2}$, we have $\alpha(w_{j,r_s}^*) = aw_{j,r_s}^*.$

Proof. First, let us prove that for every j we have

$$\alpha(w_{(j,r_1)}^*) = aw_{(j,r_1)}^*.$$
(18)

Indeed, let $w_{(i,r_1)}^* \in W_{M-2-r_1} = \langle w_{(1,r_1)}^*, w_{(2,r_1)}^*, \dots \rangle$. Using Corollary 3.4, we can write

$$\alpha(w_{(j,r_1)}^*) = \sum_{i \ge 1} \lambda_i w_{(i,r_1)}^*, \qquad \lambda_i \in \mathbb{Q}.$$
(19)

The formula (16) can be written as

$$\delta(\mu) = \frac{1}{2} \sum_{j} [w_{(j,r_1)}, w^*_{(j,r_1)}] + \frac{1}{2} \sum_{r_1 \neq r_s} [w_{(t,r_s)}, w^*_{(t,r_s)}].$$
(20)

Next, $w_{(j,r_1)}$ is obviously a cycle as $w_{(j,r_1)} \in W_{r_1}$. By Corollary 3.5, it follows that

$$\alpha(w_{(j,r_1)}) = w_{(j,r_1)}.$$
(21)

On the one hand, using (19), (20) and (21), we get

$$\alpha(\delta(\mu)) = \frac{1}{2} \sum_{j} \sum_{i \ge 1} \lambda_i[w_{(j,r_1)}, w^*_{(i,r_1)}] + \frac{1}{2} \sum_{r_1 \ne r_s} [\alpha(w_{(t,r_s)}), \alpha(w^*_{(t,r_s)})].$$

MAHMOUD BENKHALIFA

On the other hand, by the relation (20) and Corollary 3.4, we have

$$\delta(\alpha(\mu)) = a\delta(\mu) = \frac{a}{2} \sum_{j} [w_{(j,r_1)}, w^*_{(j,r_1)}] + \frac{a}{2} \sum_{r_1 \neq r_s} [w_{(t,r_s)}, w^*_{(t,r_s)}].$$

Since $\alpha(\delta(\mu)) = \delta(\alpha(\mu))$, and taking into account that $r_1 \neq r_s$, which means that the generator $w^*_{(j,r_1)}$ cannot appear in the expression $\sum_{r_1 \neq r_s} [\alpha(w_{(t,r_s)}), \alpha(w^*_{(t,r_s)})]$, it follows that all the rationals λ_i in (19) are zero except $\lambda_1 = a$ showing (18).

Next, assume by induction that

$$\alpha(w_{(j,r_q)}^*) = a w_{(j,r_q)}^*, \tag{22}$$

for all the generators w_{j,r_q}^* such that $r_q < r_s$. Let us prove it for every generator

$$w_{(j,r_s)}^* \in W_{M-2-r_s} = \langle w_{(1,r_s)}^*, w_{(2,r_s)}^*, \dots \rangle.$$

For this purpose, write

$$\alpha(w_{(j,r_s)}^*) = \sum_{\tau \ge 1} \lambda_\tau w_{(\tau,r_s)}^*, \qquad \lambda_\tau \in \mathbb{Q}.$$
 (23)

By virtue of Lemma 4.1 and Remark 4.2, there exists $w^*_{(k,r_{\sigma})}$ such that

$$\delta(w_{(k,r_{\sigma})}^{*}) = \beta_{1}[w_{(s_{1},r_{p})}, w_{(j,r_{s})}^{*}] + \sum_{j'\neq j, \, i>1}^{h} \beta_{i}[w_{(s_{i},r_{p})}, w_{(j',r_{s})}^{*}] + \Theta_{(k,r_{\sigma})}, \tag{24}$$

where $\beta_1 \neq 0$. As a result, we obtain

i

$$\begin{aligned} \alpha(\delta(w_{(k,r_{\sigma})}^{*})) &= \beta_{1}[\alpha(w_{(s_{1},r_{p})}),\alpha(w_{(j,r_{s})}^{*})] + \sum_{j'\neq j,\ i>1}^{h} \beta_{i}[\alpha(w_{(s_{i},r_{p})}),\alpha(w_{(j',r_{s})}^{*})] + \alpha(\Theta_{(k,r_{\sigma})}) \\ &= \sum_{\tau\geq1} \lambda_{\tau}\beta_{1}[w_{(s_{1},r_{p})},w_{(\tau,r_{s})}^{*}] + \sum_{j'\neq j,\ i>1}^{h} \beta_{i}[w_{(s_{i},r_{p})},\alpha(w_{(j',r_{s})}^{*})] + \alpha(\Theta_{(k,r_{\sigma})}). \end{aligned}$$

Note that, according to Remark 4.2, all the generators $w_{(s_i,r_p)}$ are cycles implying that $\alpha(w_{(s_i,r_p)}) = w_{(s_i,r_p)}$ due to Corollary 3.5.

Next, as $|w_{(k,r_{\sigma})}^*| > |w_{(j,r_s)}^*|$ which implies that $r_q < r_s$, using (22) and (24), we get

$$\delta(\alpha(w_{(k,r_{\sigma})}^{*})) = a\delta(w_{(k,r_{\sigma})}^{*}) = a\beta_{1}[w_{(s_{1},r_{p})}, w_{(j,r_{s})}^{*}] + \sum_{j'\neq j, i>1}^{h} a\beta_{i}[w_{(s_{i},r_{p})}, w_{(j',r_{s})}^{*}] + a\Theta_{(k,r_{\sigma})}.$$

Since $\alpha(\delta(w_{(i,r_q)}^*)) = \delta(\alpha(w_{(i,r_q)}^*))$ and taking into account that the bracket $[w_{(s_1,r_p)}, w_{(j,r_s)}^*]$ does not appear in the expressions (see Remark 4.2)

$$\sum_{\substack{\substack{\substack{\prime \neq j, i > 1}}}}^{h} a\beta_i[w_{(s_i, r_p)}, w^*_{(j', r_s)}] \quad \text{and} \quad \alpha(\Theta_{(k, r_\sigma)}),$$

we deduce that all the coefficients λ_{τ} in (23) are nil except $\lambda_1\beta_1 = a\beta_1$ and because $\beta_1 \neq 0$, we obtain $\alpha(w^*_{(j,r_s)}) = aw^*_{(j,r_s)}$.

Lemma 5.2. If $[\alpha] \in \mathcal{E}_{\#}(\mathbb{L}(W))$, then for every $w_{j,r_s} \in \mathcal{B}$, where $r_s < \frac{M-2}{2}$, we have $\alpha(w_{j,r_s}) = w_{j,r_s}$.

Proof. First, we know from Corollary 3.5 that if $\delta(w_{j,r_s}) = 0$, then $\alpha(w_{j,r_s}) = w_{j,r_s}$, therefore we can suppose that $\delta(w_{j,r_s}) \neq 0$. Secondly, recall that from the formula (16) we can write

$$\delta(\mu) = \frac{1}{2} [w_{(j,r_s)}, w^*_{(j,r_s)}] + \frac{1}{2} \sum_{t \neq j} [w_{(t,r_s)}, w^*_{(t,r_s)}].$$

As a result, we get

$$\alpha(\delta(\mu)) = \frac{1}{2} [\alpha(w_{(j,r_s)}), \alpha(w^*_{(j,r_s)})] + \frac{1}{2} \sum_{t \neq j} [\alpha(w_{(t,r_s)}), \alpha(w^*_{(t,r_s)})],$$

and because $r_s < \frac{M-2}{2}$, Lemma 5.1 implies that

$$\alpha(w^*_{(j,r_s)}) = aw^*_{(j,r_s)}, \quad \alpha(w^*_{(t,r_s)}) = aw^*_{(t,r_s)}, \quad \forall t \neq j.$$

Next, by Corollary 3.4, we can write

$$\alpha(w_{(j,r_s)}) = \sum_{i} \rho_i w_{(i,r_s)}, \qquad \rho_i \in \mathbb{Q}.$$

implying that

$$\alpha(\delta(\mu)) = \frac{a}{2}\rho_j[w_{(j,r_s)}, w^*_{(j,r_s)}] + \frac{a}{2}\sum_{i\neq j}\rho_i[w_{(i,r_s)}, w^*_{(j,r_s)}] + \frac{a}{2}\sum_{t\neq j}[\alpha(w_{(t,r_s)}), w^*_{(t,r_s)}].$$
 (25)

Finally, using Corollary 3.5, we obtain

$$\delta(\alpha(\mu)) = a\delta(\mu) = \frac{a}{2}[w_{(j,r_s)}, w^*_{(j,r_s)}] + \frac{a}{2} \sum_{t \neq j} [w_{(t,r_s)}, w^*_{(t,r_s)}].$$
(26)

Since $\alpha(\delta(\mu)) = \delta(\alpha(\mu))$ and $w^*_{(j,r_s)} \neq w^*_{(t,r_s)}$, comparing (25) and (26), it follows that $\rho_i = 0$ for all $i \neq j$ and $\rho_j = 1$. Hence, $\alpha(w_{(j,r_s)}) = w_{(j,r_s)}$.

Lemma 5.3. If $[\alpha] \in \mathcal{E}_{\#}(\mathbb{L}(W))$, then $\alpha(w^*_{(j,\xi)}) = aw^*_{(j,\xi)}$, where $\xi = \frac{M-2}{2}$.

Proof. By virtue of Lemma 4.1 and Remark 4.2, there exists $w^*_{(k,r_{\sigma})}$ such that

$$\delta(w_{(k,r_{\sigma})}^{*}) = \beta_{1}[w_{(s_{1},r_{p})}, w_{(j,\xi)}^{*}] + \sum_{\substack{j' \neq j, i > 1}}^{h} \beta_{i}[w_{(s_{i},r_{p})}, w_{(j',\xi)}^{*}] + \Theta_{(k,r_{\sigma})},$$
(27)

where the generators $w_{(s_i,r_p)}$ are cycles implying that $\alpha(w_{(s_i,r_p)}) = w_{(s_i,r_p)}$ for all $1 \le i \le h$. Next, since that a basis of W_{ξ} is formed by the generators $w_{(i,\xi)}$ and their duals $w_{(i,\xi)}^*$ because in this case we have $|w_{(i,\xi)}| = |w_{(i,\xi)}^*| = \xi = \frac{M-2}{2}$, by Corollary 3.5, we can write

$$\alpha(w_{(j,\xi)}^*) = \sum_{i\geq 1} \mu_i w_{(i,\xi)}^* + \sum_{\tau\geq 1} \gamma_\tau w_{(\tau,\xi)},$$
(28)

As a result, we obtain

$$\begin{aligned} \alpha(\delta(w^*_{(k,r_{\sigma})})) &= \sum_{i} \mu_{i} \beta_{1}[w_{(s_{1},r_{p})}, w^*_{(i,\xi)}] + \sum_{\tau} \gamma_{\tau} \beta_{1}[w_{(s_{1},r_{p})}, w_{(\tau,\xi)}] \\ &+ \sum_{j' \neq j, \, i > 1}^{h} \beta_{i}[w_{(s_{i},r_{p})}, \alpha(w^*_{(j',\xi)})] + \alpha(\Theta_{(k,r_{\sigma})}). \end{aligned}$$

Next, as $|w_{(k,r_{\sigma})}^*| > |w_{(j,\xi)}^*| = \xi = \frac{M-2}{2}$, it follows that $r_{\sigma} < \xi$. Thus, using Lemma 5.1 and the relation (27), we get

$$\delta(\alpha(w_{(i,r_q)}^*)) = a\delta(w_{(i,r_q)}^*) = a\beta_1[w_{(s_1,r_p)}, w_{(j,\xi)}^*] + \sum_{j'\neq j, i>1}^h a\beta_i[w_{(s_i,r_p)}, w_{(j',\xi)}^*] + a\Theta_{(k,r_\sigma)}.$$

Since $\alpha(\delta(w_{(i,r_q)}^*)) = \delta(\alpha(w_{(i,r_q)}^*))$ and taking into account that the bracket $[w_{(s_1,r_p)}, w_{(j,\xi)}^*]$ does not appear in the expression $\alpha(\Theta_{(i,r_q)})$, according to Remark 4.2, we deduce that all the coefficients μ_i and γ_{τ} in (28) are nil except $\mu_j\beta_1 = a\beta_1$ implying that $\mu_j = a$ because $\beta_1 \neq 0$. Hence, $\alpha(w_{(j,\xi)}^*) = aw_{(j,\xi)}^*$

Lemma 5.4. If $[\alpha] \in \mathcal{E}_{\#}(\mathbb{L}(W))$, then for every $w_{(j,\xi)} \in \mathcal{B}$, we have $\alpha(w_{(j,\xi)}) = aw_{(j,\xi)}$.

Proof. The proof is as in Lemma 5.3 after taking into consideration Remark 4.3. \Box

Proposition 5.5. If $(\mathbb{L}(W), \delta)$ is the Quillen model of an F_0 -space of formal dimension M, then the group $\mathcal{E}_{\#}(\mathbb{L}(W))$ is trivial.

Proof. It suffices to prove that the rational a given in Lemmas 5.1, 5.3 and 5.4 satisfies a = 1. Indeed, first the formula (16) can be written as

$$\delta(\mu) = \frac{1}{2} \sum_{j} [w_{(j,\xi)}, w^*_{(j,\xi)}] + \frac{1}{2} \sum_{r_p < \xi} \sum_{t} [w_{(t,r_p)}, w^*_{(t,r_p)}].$$

It follows that

$$\alpha(\delta(\mu)) = \frac{1}{2} \sum_{j} [\alpha(w_{(j,\xi)}), \alpha(w_{(j,\xi)}^*)] + \frac{1}{2} \sum_{r_p < \xi} \sum_{t} [\alpha(w_{(t,r_p)}), \alpha(w_{(t,r_p)}^*)].$$

Now, for all t and $r_p < \xi$, Lemmas 5.1 and 5.2 yield the following

$$\alpha(w_{(t,r_p)}) = w_{(t,r_p)}, \qquad \qquad \alpha(w_{(t,r_p)}^*) = aw_{(t,r_p)}^*,$$

and for for all t, by lemmas 5.3 and Corollary 5.4, we have

$$\alpha(w_{(t,\xi)}) = aw_{(t,\xi)}, \qquad \qquad \alpha(w_{(t,\xi)}^*) = aw_{(t,\xi)}^*$$

Therefore, on the one hand, we have

$$\alpha(\delta(\mu)) = \frac{1}{2} \sum_{j} a^2[w_{(i,\xi)}, w^*_{(j,\xi)}] + \frac{a}{2} \sum_{r_p < \xi} \sum_{t} [w_{(t,r_p)}, w^*_{(t,r_p)}].$$

On the other hand, by the relation (5) and Corollary 3.4 we have

$$\delta(\alpha(\mu)) = \frac{a}{2} \sum_{j} [w_{(j,\xi)}, w^*_{(j,\xi)}] + \frac{a}{2} \sum_{r_p < \xi} \sum_{t} [w_{(t,r_p)}, w^*_{(t,r_p)}].$$

Since $\alpha(\delta(\mu)) = \delta(\alpha(\mu))$, it follows that $a^2 = a$ and as $a \neq 0$, it follows that a = 1. \Box

Now we are able to announce the main result in this paper.

Theorem 5.6. If X is an F_0 -space, the $\mathcal{E}_{\#}(X)$ is finite.

Proof. It suffices to apply Proposition 5.5 and the identification (2).

References

- 1. Arkowitz, M., Problems on Self-homotopy equivalences, Contemporary Math., 274, (2001), 309-315.
- M. Benkhalifa, The effect of cell-attachment on the group of self-equivalences of an elliptic space, Michigan Mathematical Journal, Vol. 71(2), 611-617, 2022.
- 3. M. Benkhalifa, On the group of self-homotopy equivalences of an elliptic space, Proceedings of the American Mathematical Society. Vol.148 (6),2695-2706, 2020
- Y. Félix, S. Halperin, and J.-C. Thomas, *Rational homotopy theory*, Graduate Texts in Mathematics, Vol. 205, Springer-Verlag, New York, 2001.
- Halperin S., Finiteness in the minimal models of Sullivan, Trans. Amer. Math. Soc. 230, 269-331, 1977.
- G. Lupton, A note on the conjecture of S. Halperin, Lectures Notes in Mathematics, vol. 1440, Springer-Verlag, 148-163, 1990.
- K. Maruyama, Localization of a certain subgroup of self-homotopy equivalences, Pacific J. Math. 136, 293-301, 1989.
- 8. W. Meier, Rational universal fibrations and flag manifolds. Math. Ann., 258(3):329-340, 1981.
- J. Neisendorfer and T. Miller, Formal and coformal spaces, Illinois J. Math. Vol. 205 (4), 565-580, 1978
- 10. J. Stasheff, Rational Poincaré duality spaces. Illinois J. Math. Vol. 27 (1), 104-109, 1983.

DEPARTMENT OF MATHEMATICS. COLLEGE OF SCIENCES, UNIVERSITY OF SHARJAH. UAE *Email address*: mbenkhalifa@sharjah.ac.ae