ON THE GROUP OF SELF-HOMOTOPY EQUIVALENCES OF AN F_{0}-SPACE

MAHMOUD BENKHALIFA

Abstract

G. Lupton conjectured that the group of self-homotopy equivalences of an F_{0}-space inducing the identity on the homotopy groups is finite. Thus, the aim of this paper is to establish this conjecture.

1. Introduction

Let X be a simply connected space with finite dimensional rational homotopy, finite dimensional rational homology (i.e. a rationally elliptic space), and positive Euler characteristic. The collection of such spaces X is referred to as the class of F_{0}-spaces. Extensively studied by Halperin, [5], F_{0}-spaces are rational Poincaré duality spaces with rational cohomology $\mathbb{Q}\left[x_{1}, \ldots, x_{n}\right] /\left(P_{1}, \ldots, P_{n}\right)$, where the polynomials P_{1}, \ldots, P_{n} form a regular sequence in $\mathbb{Q}\left[x_{1}, \ldots, x_{n}\right]$, i.e., $P_{1} \neq 0$ and for every $i \geq 1, P_{i}$ is not a zero divisor in $\mathbb{Q}\left[x_{1}, \ldots, x_{n}\right] /\left(P_{1}, \ldots, P_{i-1}\right)$. For instance, products of even spheres, complex Grassmannian manifolds and homogeneous spaces G / H such that $\operatorname{rank} G=\operatorname{rank} H$ are F_{0}-spaces.

Let $\mathcal{E}(X)$ denote the group of self-homotopy equivalences of X and let $\mathcal{E}_{\#}(X)$ be its subgroup of the elements inducing the identity on the homotopy groups ([3],[2]).

Halperin has conjectured that the rational Serre spectral sequence collapses for any rational fibration, provided the fiber X is a F_{0}-space. This conjecture, which remains unsolved, can be rephrased in terms of the (graded Lie algebra of) negative-degree derivations of the rational cohomology of X (see [8] for more details). Namely:

$$
\operatorname{Der}_{<0} H^{*}(X ; \mathbb{Q})=0 \Longleftrightarrow \text { Halperin's conjecture holds }
$$

If we look at the zero-degree derivations of the rational cohomology of X, there exists a correspondence between the decomposable derivations of $\operatorname{Der}_{0} H^{*}(X ; \mathbb{Q})$ and the subgroup $\mathcal{E}_{\#}(X)$. Hence,

$$
\operatorname{Der}_{0} H^{*}(X ; \mathbb{Q}) \text { is trivial } \Longrightarrow \mathcal{E}_{\#}(X) \text { is finite }
$$

Motivated by Halperin's conjecture and this correspondence, Lupton raises the following question:
Question([1], Problem 10): For an F_{0}-space X, is $\mathcal{E}_{\#}(X)$ finite?
Thus, the purpose of this paper is to settle this question in the positive using standard tools of rational homotopy theory which we refer to [4] for a general introduction to these techniques. We recall some of the notation here. By a Sullivan algebra we mean a free graded commutative algebra ΛV, for some finite-type graded vector space $V=V \geq 2$, i.e., $\operatorname{dim} V^{n}<\infty$ for all $n \geq 2$, together with a differential ∂ of degree +1 that is decomposable, i.e., satisfies $\partial: V \rightarrow \Lambda^{\geq 2} V$. Here $\Lambda^{\geq 2} V$ denotes the graded vector space spanned by all the monomials $v_{1} \ldots v_{r}$ such that $v_{1}, \ldots, v_{r} \in V$ and $r \geq 2$.

[^0]Every simply connected space X with rational cohomology of finite-type has a corresponding Sullivan algebra called the Sullivan model of X, unique up to isomorphism, that encodes the rational homotopy type of X. In particular we have

$$
V^{*} \cong \operatorname{Hom}\left(\pi_{*}(X) \otimes \mathbb{Q}, \mathbb{Q}\right), \quad H^{*}(\Lambda V) \cong H^{*}(X, \mathbb{Q})
$$

By a free differential graded Lie algebra $(\mathbb{L}(W), \delta)$ (DGL for short), we mean a free graded Lie algebra $\mathbb{L}(W)$, for some finite-type vector space $W=\left(W_{\geq 1}\right)$, together with a decomposable differential δ of degree -1 , i.e., $\delta(W) \subset \mathbb{L} \geq 2(W)$. Here $\mathbb{L}^{\geq 2}(W)$ denotes the graded vector space spanned by all the brackets of lengths ≥ 2.

Every simply connected space X with rational cohomology of finite-type has a corresponding DGL $(\mathbb{L}(W), \delta)$ called the Quillen model of X, unique up to isomorphism, which determines completely the rational homotopy type of X. In particular we have

$$
W_{*} \cong H_{*+1}(X ; \mathbb{Q}), \quad H_{*}(\mathbb{L}(W)) \cong \pi_{*+1}(X) \otimes \mathbb{Q}
$$

This work consists of five sections, the first one being the introduction. Section 2 is devoted to state some results on the notion of DGL-homotopy as well as the properties of an F_{0}-space X notably, if $(\mathbb{L}(W), \delta)$ is its Quillen model, then we introduce the group $\mathcal{E}_{\#}(\mathbb{L}(W))$ of the self-homotopy equivalences of $(\mathbb{L}(W), \delta)$ constituting on the elements $[\alpha]$ satisfying $H_{*}(\alpha)=$ id. In Section 3, we prove that if $[\alpha] \in \mathcal{E}_{\#}(\mathbb{L}(W))$, then α is homotopic to DGL-map $\tilde{\alpha}$ satisfying $\tilde{\alpha}(W)=W$. In Section 4 and 5 , we focus on studying the properties of $(\mathbb{L}(W), \delta)$ to show that $\mathcal{E}_{\#}(\mathbb{L}(W))$ is trivial. Consequently, by virtue of the localization theorem of Maruyama [7], we derive that $\mathcal{E}_{\#}(X)$ is finite.

2. Preliminaries

2.1. Homotopy between DGL-maps (see [4, §21]). Let $(\mathbb{L}(W), \delta)$ be a DGL. Define the DGL $\left.\mathbb{L}\left(W, s W, W^{\prime}\right), D\right)$ with $W \cong W^{\prime}$ and $(s W)_{i}=W_{i-1}$. The differential D is given by

$$
\begin{equation*}
D(w)=\partial(w), \quad D(s w)=w^{\prime}, \quad D\left(w^{\prime}\right)=0 \tag{1}
\end{equation*}
$$

Define S as the derivation of degree +1 on $\mathbb{L}\left(W, s W, W^{\prime}\right)$ given by

$$
S(w)=s w, \quad S(s w)=S\left(w^{\prime}\right)=0
$$

A homotopy between two DGL-maps $\alpha, \alpha^{\prime}:(\mathbb{L}(W), \delta) \rightarrow(\mathbb{L}(W), \delta)$ is DGL-map

$$
F:\left(\mathbb{L}\left(W, s W, W^{\prime}\right), D\right) \rightarrow(\mathbb{L}(W), \delta)
$$

such that $F(w)=\alpha(w)$ and $F \circ e^{\theta}(w)=\alpha^{\prime}(w)$, where

$$
e^{\theta}(w)=w+w^{\prime}+\sum_{n \geq 1} \frac{1}{n!}(S \circ D)^{n}(w), \quad \text { and } \quad \theta=D \circ S+S \circ D
$$

Thus, the notion of DGL-homotopy allows us to define the following group.
Definition 2.1. Let $\mathcal{E}_{\#}(\mathbb{L}(W))$ denote the group of self-homotopy equivalences of $(\mathbb{L}(W), \delta)$ constituting with the elements $[\alpha]$ satisfying $H_{*}(\alpha)=\mathrm{id}$, where

$$
H_{*}(\alpha): H_{*}(\mathbb{L}(W)) \rightarrow H_{*}(\mathbb{L}(W)) .
$$

By virtue of the properties of the model of Quillen and the localization theorem of Maruyama [7], we deduce that if X is an F_{0}-space, then we have

$$
\begin{equation*}
\mathcal{E}_{\#}(X) \otimes \mathbb{Q} \cong \mathcal{E}_{\#}(\mathbb{L}(W)) \tag{2}
\end{equation*}
$$

Thus, the group $\mathcal{E}_{\#}(X)$ is finite if and only if the group $\mathcal{E}_{\#}(\mathbb{L}(W))$ is trivial.
Later on we will need the following two lemmas.

Lemma 2.2. Let $\alpha, \tilde{\alpha}:\left(\mathbb{L}\left(W_{\leq n}\right), \delta\right) \rightarrow\left(\mathbb{L}\left(W_{\leq n}\right), \delta\right)$ be two DGL-maps such that

$$
\alpha(w)=\tilde{\alpha}(w)+y \text { on } W_{n} \quad \text { and } \quad \alpha=\tilde{\alpha} \quad \text { on } W_{\leq n-1}
$$

Assume that $y=\delta(z)$, where $z \in \mathbb{L}\left(W_{\leq n}\right)$. Then α and $\tilde{\alpha}$ are homotopic.
Proof. Define $F:\left(\mathbb{L}\left(W_{\leq n}, s W_{\leq n}, W_{\leq n}^{\prime}\right), D\right) \rightarrow\left(\mathbb{L}\left(W_{\leq n}\right), \delta\right)$ by setting

$$
\begin{array}{lll}
F(w)=\alpha(w), & F\left(w^{\prime}\right)=-y \quad \text { and } \quad F(s w)=-z & \text { for } \quad w \in W_{n} \tag{3}\\
F(w)=\alpha(w), \quad F\left(w^{\prime}\right)=0 \quad \text { and } \quad F(s w)=0 \quad \text { for } \quad w \in W_{\leq n-1}
\end{array}
$$

Let $w \in W_{n}$, by considering the relations (1), (3) and as $\delta(w) \in \mathbb{L}\left(W_{\leq n-1}\right)$, we get

$$
\delta F(w)=\delta \alpha(w), \quad F D(w)=F(\delta(w))=\alpha \delta(w)
$$

Moreover, a straightforward computation shows

$$
\begin{array}{ll}
\delta F\left(w^{\prime}\right)=\delta(-y)=-\delta(\delta(z))=0, & F D\left(w^{\prime}\right)=F(0)=0 \\
\delta F(s w)=\delta(-z)=-y, & F D(s w)=F\left(w^{\prime}\right)=-y
\end{array}
$$

implying that F is a DGL-map. Next, on the one hand, from (3), we have $F(w)=\alpha(w)$ for every $w \in W$. On the other hand, by expanding the expression $(S \circ \partial)^{n}(w)$ leads to linear combinations of brackets involving the generators $s w$, where $w \in W_{\leq n-1}$. Since in this case $F(s w)=0$, it follows that $\sum_{n \geq 1} \frac{1}{n!} F(S \circ D)^{n}(w)=0$. Consequently, we obtain

$$
\begin{array}{ll}
F \circ e^{\theta}(w)=F(w)+F\left(w^{\prime}\right)=\alpha(w)-y=\tilde{\alpha}(w), & \text { if } w \in W_{n} \\
F \circ e^{\theta}(w)=F(w)+F\left(w^{\prime}\right)=\alpha(w), & \text { if } w \in W_{\leq n-1}
\end{array}
$$

But by hypothesis we have $\alpha(w)=\tilde{\alpha}(w)$ on $W_{\leq n-1}$, so for all $w \in W$ we have $F \circ e^{\theta}(w)=$ $\tilde{\alpha}(w)$ implying that F is the needed homotopy.

Lemma 2.3. Let $\alpha, \beta:\left(\mathbb{L}\left(W_{\leq n}\right), \delta\right) \rightarrow\left(\mathbb{L}\left(W_{\leq n}\right), \delta\right)$ be two DGL-maps such that

$$
\begin{aligned}
\alpha(w) & =\beta(w)+y, \quad w \in W_{n}, \quad y \in \mathbb{L}_{n}\left(W_{\leq n-1}\right) \\
\alpha & \simeq \beta, \quad \text { on } \mathbb{L}\left(W_{\leq n-1}\right) .
\end{aligned}
$$

There is a cycle $y^{\prime} \in \mathbb{L}_{n}\left(W_{\leq n-1}\right)$ such that α is homotopic to the following DGL-map

$$
\begin{align*}
\alpha^{\prime}(w) & =\beta(w)+y^{\prime}, \quad w \in W_{n} \\
\alpha^{\prime} & =\beta, \quad \text { on } \mathbb{L}\left(W_{\leq n-1}\right) . \tag{4}
\end{align*}
$$

Proof. Since α and β are homotopic on $\mathbb{L}\left(W_{\leq n-1}\right)$, there exits a homotopy

$$
F:\left(\mathbb{L}\left(W_{\leq n-1}, s W_{\leq n-1}, W_{\leq n-1}^{\prime}\right), D\right) \rightarrow\left(\mathbb{L}\left(W_{\leq n-1}\right), \delta\right)
$$

such that

$$
\begin{equation*}
F(w)=\beta(w), \quad F \circ e^{\theta}(w)=\alpha(w), \quad \forall w \in W_{\leq n-1} \tag{5}
\end{equation*}
$$

Therefore for $w \in W_{n}$, the element $F\left(\sum_{n \geq 1} \frac{1}{n!}(S \circ D)^{n}(w)\right)$ is a well-defined element in $\mathbb{L}_{n}\left(W_{\leq n-1}\right)$. Thus we define

$$
\begin{equation*}
y^{\prime}=y-F\left(\sum_{n \geq 1} \frac{1}{n!}(S \circ D)^{n}(w)\right) . \tag{6}
\end{equation*}
$$

Now, by hypothesis we have

$$
\begin{equation*}
\delta(\beta(w))+\delta(y)=\delta \alpha(w)=\alpha(\delta(w))=F \circ e^{\theta}(\delta(w))=F \circ e^{\theta}(D(w)) \tag{7}
\end{equation*}
$$

But e^{θ} is a DGL-automorphism, so

$$
\begin{align*}
F \circ e^{\theta}(D(w)) & =F \circ D\left(e^{\theta}(w)\right)=F \circ D\left(w+w^{\prime}+\sum_{n \geq 1} \frac{1}{n!}(S \circ D)^{n}(w)\right) \\
& =F(D(w))+F\left(D\left(w^{\prime}\right)\right)+F \circ D\left(\sum_{n \geq 1} \frac{1}{n!}(S \circ D)^{n}(w)\right) \\
& =F(\delta(w))+\delta \circ F\left(\sum_{n \geq 1} \frac{1}{n!}(S \circ D)^{n}(w)\right) \\
& =\beta(\delta(w))+\delta\left(\sum_{n \geq 1} \frac{1}{n!} F(S \circ D)^{n}(w)\right) \\
& =\delta(\beta(w))+\delta\left(\sum_{n \geq 1} \frac{1}{n!} F(S \circ D)^{n}(w)\right) . \tag{8}
\end{align*}
$$

Here we use the facts that $D\left(w^{\prime}\right)=0$ by (1), $F \circ D=\delta \circ F$ and $F(\delta(w))=\beta(\delta(w))$ because $\delta(w) \in \mathbb{L}\left(W_{\leq n-1}\right)$ and $F=\beta$ on $W_{\leq n-1}$ by (5). Comparing (7) and (8) we get

$$
\delta(y)=\delta\left(\sum_{n \geq 1} \frac{1}{n!} F(S \circ D)^{n}(w)\right)
$$

which implies according to (6) that $\delta\left(y^{\prime}\right)=0$.
Now define $G:\left(\mathbb{L}\left(W_{\leq n}, s W_{\leq n}, W_{\leq n}^{\prime}\right), D\right) \rightarrow\left(\mathbb{L}\left(W_{\leq n}\right), \delta\right)$ by setting

$$
\begin{aligned}
G(w) & =\alpha^{\prime}(w), & & G\left(w^{\prime}\right)=G(s w)=0,
\end{aligned} \begin{array}{ll}
\text { for } w \in W_{n} \\
G & =F,
\end{array}
$$

Let us consider the relations (1). A simple computation shows that

$$
\delta(G(w))=\delta\left(\alpha^{\prime}(w)\right), \quad G(D(w))=G(\delta(w))
$$

As $\delta(w) \in \mathbb{L}_{n}\left(W_{\leq n-1}\right)$, it follows that $G(\delta(w))=F(\delta(w))$ and by (4), (5) we get $F(\delta(w))=$ $\beta(\delta(w))=\alpha^{\prime}(\delta(w))$. As a result $\delta(G(w))=G(D(w))$. Also by taking into consideration the relations (1), we obtain

$$
\delta\left(G\left(w^{\prime}\right)\right)=G D\left(w^{\prime}\right)=0, \quad \delta(G(s w))=0, \quad G D(s w)=G\left(w^{\prime}\right)=0
$$

proving that G is a DGL-map satisfying $G(w)=\alpha^{\prime}(w)$ for all $w \in W_{\leq n}$. Moreover, we have

$$
G \circ e^{\theta}(w)=G\left(w+w^{\prime}+\sum_{n \geq 1} \frac{1}{n!}(S \circ D)^{n}(w)\right)=G(w)+G\left(\sum_{n \geq 1} \frac{1}{n!}(S \circ D)^{n}(w)\right)
$$

As $\sum_{n \geq 1} \frac{1}{n!}(S \circ D)^{n}(w) \in \mathbb{L}_{n}\left(W_{\leq n-1}\right)$ and $F=G$ on $W_{\leq n-1}$, it follows that

$$
G \circ e^{\theta}(w)=\alpha^{\prime}(w)+F\left(\sum_{n \geq 1} \frac{1}{n!}(S \circ D)^{n}(w)\right)=\left(\beta(w)+y^{\prime}\right)+\left(y-y^{\prime}\right)=\alpha(w)
$$

Here we use (6). Consequently, α and α^{\prime} are homotopic.
2.2. Whitehead exact sequence of a DGL. Let $(\mathbb{L}(W), \delta)$ be a DGL. If

$$
j_{n}: H_{n}\left(\mathbb{L}\left(W_{\leq n}\right)\right) \rightarrow W_{n}, \quad j_{n}(\{w+y\})=w
$$

where $w \in W_{n}, y \in \mathbb{L}_{n}\left(W_{\leq n-1}\right)$ and where $\{w+y\}$ denote the homology class of the cycle $w+y$, then we define the graded vector space Γ_{*} by setting

$$
\begin{equation*}
\Gamma_{n}=\operatorname{ker}\left(H_{n}\left(\mathbb{L}\left(W_{\leq n}\right)\right) \xrightarrow{j_{n}} W_{n}\right), \quad \forall n \geq 2 . \tag{9}
\end{equation*}
$$

To every DGL $(\mathbb{L}(W), \delta)$, we can assign (see $[2,3]$ for more details) the following long exact sequence

$$
\begin{equation*}
\cdots \rightarrow W_{n+1} \xrightarrow{b_{n+1}} \Gamma_{n} \rightarrow H_{n}(\mathbb{L}(W)) \rightarrow W_{n} \xrightarrow{b_{n}} \cdots \tag{10}
\end{equation*}
$$

called the Whitehead exact sequence of $(\mathbb{L}(W), \delta)$. Here $b_{n}(w)=\{\delta(w)\}$, where $\{\delta(w)\}$ denotes the homology class of $\delta(w)$ in $\mathbb{L}_{n-1}\left(W_{\leq n-1}\right)$.
2.3. Elliptic spaces. Recall that a simply connected space X is called rationally elliptic if it satisfies $\operatorname{dim}\left(\pi_{*}(X) \otimes \mathbb{Q}\right)<\infty$ and $\operatorname{dim} H^{*}(X, \mathbb{Q})<\infty([4], \S 32)$. The following result mentions some important properties of rationally elliptic spaces.

Proposition 2.4. ([4] Proposition 32.6 and 32.10$)$. If $(\mathbb{L}(W), \delta)$ is the Quillen model of a rationally elliptic space of formal dimension M, then

- $\operatorname{dim} W_{M-1}=1$ and $W_{i}=0$ for all $i \geq M$.
- $\sum_{i \geq 1}(2 i+1) \operatorname{dim} H_{2 i}(\mathbb{L}(W))-\sum_{i \geq 1}(2 i)\left(\operatorname{dim} H_{2 i-1}(\mathbb{L}(W))-1\right)=M$.

Furthermore, the following statements are equivalent
(1) X is an F_{0}-space.
(2) $\operatorname{dim} H_{\text {even }}(\mathbb{L}(W))=\operatorname{dim} H_{\text {even }}(\mathbb{L}(W))$.
(3) $W_{\text {even }}=0$.

Remark 2.5. According to Proposition 2.4, the formal dimension of an F_{0}-space must be an even integer.

3. Properties of the group $\mathcal{E}_{\#}(\mathbb{L}(W))$

The purpose of this section is to study the properties of the group $\mathcal{E}_{\#}(\mathbb{L}(W))$, introduced in definition 2.1, in the case where the DGL $(\mathbb{L}(W), \delta)$ is the Quillen model of an F_{0}-space.

As it is stated in the introduction, an F_{0}-space is an elliptic space such that its rational cohomology is a graded algebra on the form $\mathbb{Q}\left[x_{1}, \ldots, x_{n}\right] /\left(P_{1}, \ldots, P_{n}\right)$, where the polynomials P_{1}, \ldots, P_{n} form a regular sequence in $\mathbb{Q}\left[x_{1}, \ldots, x_{n}\right]$. In [5], it is shown that the Sullivan model of an F_{0}-space is given by

$$
(\Lambda V, \partial)=\left(\Lambda\left(x_{1}, \ldots, x_{n} ; y_{1}, \ldots, y_{n}\right), \partial\right), \partial\left(x_{i}\right)=0, \partial\left(y_{i}\right)=P_{i}, 1 \leq i \leq n
$$

where the generator x_{1}, \ldots, x_{n} are of even degrees and y_{1}, \ldots, y_{n} are of odd degrees.
It well-known that F_{0}-spaces are formal (see [5], theorem 5), i.e., there exists a quasiisomorphism $\mathcal{M}(X) \rightarrow\left(H_{*}(X, \mathbb{Q}), 0\right)$. As a result, the differential of the Quillen model $(\mathbb{L}(W), \delta)$ is purely quadratic, i.e., $\delta(W) \subset[W, W]$ (see [9], proposition 3.2). Moreover, taking into account that $W_{\text {even }}=0$, we deduce that $W=W_{\text {odd }}$.

Remark 3.1. Recall that we have $V^{\text {even }} \cong H_{\text {odd }}(\mathbb{L}(W))$, therefore, to each $x_{i} \in V^{\text {even }}$ corresponds a homology class $\left\{w_{i}+q_{i}\right\} \in H_{\text {odd }}(\mathbb{L}(W))$ such that w_{i} is indecomposable and q_{i} is decomposable. Since $\delta\left(w_{i}\right)=-\delta\left(q_{i}\right)$, it follows that $\delta\left(w_{i}\right)$ has bracket length greater or equal than 3 . But δ is purely quadratic, it follows that $q_{i}=0$. As a result, $H_{\text {odd }}(\mathbb{L}(W))$ is generated by w_{1}, \ldots, w_{n}.

Proposition 3.2. Let $(\mathbb{L}(W), \delta)$ be the Quillen model of an F_{0}-space X. Then the graded vector space $\Gamma_{\text {odd }}$, defined in (9), is trivial.
Proof. Assume there is $\{z\} \neq 0 \in \Gamma_{\text {odd }}$. Since $W_{\text {even }}=0$, the exact sequence (10)implies that $\{z\} \in H_{\text {odd }}(\mathbb{L}(W))$ which is impossible as z is decomposable due to Remark 3.1.

Let us consider the Quillen model $(\mathbb{L}(W), \delta)$ of an F_{0}-space X of formal dimension M. By virtue of Proposition 2.4, we can write

$$
\begin{array}{lr}
W=W_{r_{1}} \oplus \cdots \oplus W_{r_{m}} \oplus W_{M-1}, & r_{1}<\cdots<r_{m}<M-1 \\
W_{r_{i}}=\left\langle w_{\left(1, r_{i}\right)}, \ldots, w_{\left(n_{i}, r_{i}\right)}\right\rangle, & 1 \leq i \leq m, \quad W_{M-1}=\langle\mu\rangle \tag{11}
\end{array}
$$

If $[\alpha] \in \mathcal{E}(\mathbb{L}(W))$, then for every $1 \leq i \leq m$ and $1 \leq j \leq n_{i}$, let us write

$$
\begin{align*}
\alpha\left(w_{\left(j, r_{i}\right)}\right) & =\sum_{s_{i}=1}^{n_{i}} \lambda_{\left(j, r_{i}\right), s_{i}} w_{\left(j, r_{i}\right)}+A_{\left(j, r_{i}\right)}, \quad A_{\left(j, r_{i}\right)} \in \mathbb{L}^{\geq 3}\left(W_{\leq r_{i-1}}\right), \\
\alpha(\mu) & =a \mu+A_{\mu}, \quad A_{\mu} \in \mathbb{L}^{\geq 3}\left(W_{\leq M-2}\right) \tag{12}
\end{align*}
$$

where all the coefficients $\lambda_{\left(r_{i}, j\right), s_{i}}, a$ are rationals.

$$
\begin{array}{r}
\text { Set } \tilde{\alpha}\left(w_{\left(j, r_{i}\right)}\right)=\sum_{s_{i}=1}^{n_{i}} \lambda_{\left(j, r_{i}\right), s_{i}} w_{\left(j, r_{i}\right)}, \text { then (12) becomes } \\
\alpha\left(w_{\left(j, r_{i}\right)}\right)=\tilde{\alpha}\left(w_{\left(j, r_{i}\right)}\right)+A_{\left(j, r_{i}\right)}
\end{array}
$$

Note that $\tilde{\alpha}\left(w_{\left(j, r_{i}\right)}\right) \in W_{r_{i}}$. Moreover, if $l\left(A_{\left(j, r_{i}\right)}\right)$ denotes the bracket length of $A_{\left(j, r_{i}\right)}$, then $l\left(A_{\left(j, r_{i}\right)}\right) \geq 3$ because $\left|A_{\left(j, r_{i}\right)}\right|$ is odd and $W=W_{\text {odd }}$.

Theorem 3.3. Let X be an F_{0}-space and let $(\mathbb{L}(W), \delta)$ be its Quillen model. If $[\alpha] \in$ $\mathcal{E}_{\#}(\mathbb{L}(W))$, then α is homotopic to the DGL-map $\tilde{\alpha}$. Here $\mathcal{E}_{\#}(\mathbb{L}(W))$ is defined in (2.1).
Proof. Let $[\alpha] \in \mathcal{E}_{\#}(\mathbb{L}(W))$ and $\alpha_{r_{k}}:\left(\mathbb{L}\left(W_{\leq r_{k}}\right), \delta\right) \rightarrow\left(\mathbb{L}\left(W_{\leq r_{k}}\right), \delta\right)$, the restriction of α to $\mathbb{L}\left(W_{\leq r_{k}}\right)$. Since $H_{r_{1}}(\alpha)=i d_{H_{r_{1}}\left(\mathbb{L}\left(W_{\text {odd }}\right)\right)}=\bar{i} d_{W_{r_{1}}}$, we deduce that $\alpha_{r_{3}}=i d$ on $W_{r_{1}}$.

First, from the relation (12), we have

$$
\alpha_{r_{2}}\left(w_{\left(j, r_{2}\right)}\right)=\tilde{\alpha}_{r_{2}}\left(w_{\left(j, r_{2}\right)}\right)+A_{\left(j, r_{2}\right)}, \quad l\left(A_{\left(j, r_{2}\right)}\right) \geq 3, \quad \alpha_{r_{2}}=i d, \text { on } \mathbb{L}\left(W_{r_{1}}\right)
$$

implying that

$$
\delta \alpha_{r_{2}}\left(w_{\left(j, r_{2}\right)}\right)=\delta\left(\tilde{\alpha}_{r_{2}}\left(w_{\left(j, r_{2}\right)}\right)\right)+\delta\left(A_{\left(j, r_{2}\right)}\right)
$$

Next, as $\delta\left(t_{\left(j, r_{2}\right)}\right) \in \mathbb{L}\left(W_{r_{1}}\right)$, we get

$$
\alpha_{r_{2}} \delta\left(w_{\left(j, r_{2}\right)}\right)=\delta\left(w_{\left(j, r_{2}\right)}\right)
$$

Since $\delta \alpha_{r_{2}}=\alpha_{r_{2}} \delta, l\left(A_{\left(j, r_{2}\right)}\right) \geq 3$ and δ is purely quadratic, it follows that $\delta\left(A_{\left(j, r_{2}\right)}\right)=0$ for every $1 \leq j \leq n_{2}$. As a result, the homology class $\left\{A_{\left(j, r_{2}\right)}\right\}$ belongs to $\Gamma_{r_{2}}$ which is, by proposition 3.2, trivial as r_{2} is odd, therefore $A_{\left(j, r_{2}\right)}$ is a boundary. Now applying lemma 2.2 , it follows that $\alpha_{r_{2}}$ and $\tilde{\alpha}_{r_{2}}$ are homotopic on $\mathbb{L}\left(W_{\leq r_{2}}\right)$.

Assume by induction that $\alpha_{r_{k-1}}$ and $\tilde{\alpha}_{r_{k-1}}$ are homotopic on $\mathbb{L}\left(W_{\leq r_{k-1}}\right)$. Therefore using (12) we get

$$
\begin{aligned}
\alpha_{r_{k}}\left(w_{\left(j, r_{k}\right)}\right) & =\tilde{\alpha}_{r_{k}}\left(w_{\left(j, r_{k}\right)}\right)+A_{\left(j, r_{k}\right)}, & l\left(A_{\left(j, r_{k}\right)}\right) \geq 3, \\
\alpha_{r_{k-1}} & \simeq \tilde{\alpha}_{r_{k-1}}, & \text { on } \mathbb{L}\left(W_{\leq r_{k-1}}\right) .
\end{aligned}
$$

Due to lemma 2.3, we deduce that there is a cycle $A_{\left(j, r_{k}\right)}^{\prime}$ such that $l\left(A_{\left(j, r_{k}\right)}^{\prime}\right) \geq 3$ and $\alpha_{r_{k}}$ is homotopic to the DGL-map $\alpha_{r_{k}}^{\prime}$ given by

$$
\begin{aligned}
\alpha_{r_{k}}^{\prime}\left(w_{\left(j, r_{k}\right)}\right) & =\tilde{\alpha}_{r_{k}}\left(w_{\left(j, r_{k}\right)}\right)+A_{\left(j, r_{k}\right)}^{\prime}, & & l\left(A_{\left(j, r_{k}\right)}\right) \geq 3 \\
\alpha_{r_{k-1}}^{\prime} & =\tilde{\alpha}_{r_{k-1}}, & & \text { on } \mathbb{L}\left(W_{\leq r_{k-1}}\right)
\end{aligned}
$$

The cycle $A_{\left(j, r_{k}\right)}^{\prime}$ defines a homology class $\left\{A_{\left(j, r_{k}\right)}^{\prime}\right\}$ belonging to $\Gamma_{\text {odd }}$ which is trivial by 3.2 because $\left|A_{\left(j, r_{k}\right)}^{\prime}\right|=r_{k}=$ odd. Therefore, from lemma 2.2, we deduce that $\alpha_{k}^{\prime} \simeq \tilde{\alpha}_{r_{k}}$ and so are $\alpha_{r_{k}}$ and $\tilde{\alpha}_{r_{k}}$. Hence, $\alpha \simeq \tilde{\alpha}$.

As a consequence of Theorem 3.3, we deduce the following fact
Corollary 3.4. Let X be an F_{0}-space and let $(\mathbb{L}(W), \delta)$ be its Quillen model. If $[\alpha] \in$ $\mathcal{E}_{\#}(\mathbb{L}(W))$, then for every $1 \leq s \leq m$ we have $\alpha\left(W_{r_{s}}\right)=W_{r_{s}}$ and $\alpha(\mu)=a \mu$, where a is a non-zero rational.

Proof. It follows from Theorem 3.3 and the relations (12).
Corollary 3.5. Let X be an F_{0}-space and let $(\mathbb{L}(W), \delta)$ be its Quillen model. If $[\alpha] \in$ $\mathcal{E}_{\#}(\mathbb{L}(W))$, then for every indecomposable cycle $w_{\left(j, r_{s}\right)} \in W$, we have $\alpha\left(w_{\left(j, r_{s}\right)}\right)=w_{\left(j, r_{s}\right)}$.
Proof. By virtue of (2), if $[\alpha] \in \mathcal{E}_{\#}(\mathbb{L}(W))$, then $H_{*}(\alpha)=i d_{H_{*}(\mathbb{L}(W))}$. Therefore, since $w_{\left(j, r_{s}\right)}$ is a cycle we get

$$
H_{*}(\alpha)\left(\left\{w_{\left(j, r_{s}\right)}\right\}\right)=\left\{w_{\left(j, r_{s}\right)}\right\}
$$

implying $\alpha\left(w_{\left(j, r_{s}\right)}\right)-w_{\left(j, r_{s}\right)}$ is a boundary in $(\mathbb{L}(W), \delta)$. As δ is purely quadratic, it follows that $\alpha\left(w_{\left(j, r_{s}\right)}\right)=w_{\left(j, r_{s}\right)}$.

4. Properties of the Quillen model of an F_{0}-Space

Let X be an F_{0}-space of formal dimension M and let

$$
(\Lambda V, \partial)=\left(\Lambda\left(x_{1}, \ldots, x_{n} ; y_{1}, \ldots, y_{n}, \partial\right), \partial\left(x_{i}\right)=0,1 \leq i \leq n\right.
$$

be its Sullivan model and $(\mathbb{L}(W), \delta)$ its Quillen model. Assume that

$$
\left|x_{1}\right| \leq \cdots \leq\left|x_{n}\right| .
$$

Recall that a basis of $W_{r_{s}}$ is given by (see (11))

$$
W_{r_{s}}=\left\langle w_{\left(1, r_{s}\right)}, \ldots, w_{\left(n_{s}, r_{s}\right)}\right\rangle, \quad 1 \leq s \leq m, \quad W_{M-1}=\langle\mu\rangle
$$

To each generator $w_{\left(j, r_{s}\right)}$ corresponds a non-trivial cohomology class $\left\{x_{1}^{i_{1}} \ldots x_{n}^{i_{n}}\right\}$ such that

$$
\begin{equation*}
r_{s}=i_{1}\left|x_{1}\right|+\cdots+i_{n}\left|x_{n}\right|-1, \quad i_{1} \geq 0, \ldots, i_{n} \geq 0 \tag{13}
\end{equation*}
$$

The differential is given by

$$
\begin{equation*}
\delta\left(w_{\left(j, r_{s}\right)}\right)=\sum \lambda_{(i, t)}\left[w_{\left(i, r_{p}\right)}, w_{\left(t, r_{q}\right)}\right], \quad r_{p} \leq r_{q}, r_{p}+r_{q}=r_{s}-1 \tag{14}
\end{equation*}
$$

where $\lambda_{(i, t)} \in \mathbb{Q}$ and where the generators $w_{\left(i, r_{p}\right)} \in W_{r_{p}}$ and $w_{\left(t, r_{q}\right)} \in W_{r_{q}}$ correspond respectively to the non-trivial cohomology classes $\left\{x_{1}^{p_{1}} \ldots x_{n}^{p_{n}}\right\}$ and $\left\{x_{1}^{l_{1}} \ldots x_{n}^{l_{n}}\right\}$ such that

$$
\begin{gathered}
x_{1}^{i_{1}} \ldots x_{n}^{i_{n}}=\left(x_{1}^{p_{1}} \ldots x_{n}^{p_{n}}\right)\left(x_{1}^{l_{1}} \ldots x_{n}^{l_{n}}\right), \quad r_{p}=\sum_{i}^{n} p_{i}\left|x_{i}\right|-1, \quad r_{q}=\sum_{i}^{n} l_{i}\left|x_{i}\right|-1 \\
p_{1} \geq 0, \ldots, p_{n} \geq 0, \quad l_{1} \geq 0, \ldots, l_{n} \geq 0
\end{gathered}
$$

It well-known that if M is the formal dimension of the F_{0}-space X, then, thanks to the Poincaré duality ([4], §38), we have an isomorphism of vector spaces

$$
\phi: W_{r_{s}} \rightarrow W_{M-2-r_{s}} .
$$

So if $\left\{w_{\left(i, r_{s}\right)}\right\}_{1 \leq i \leq n_{s}}$ is a basis for $W_{r_{s}}$, then $\left\{\phi\left(w_{\left(i, r_{s}\right)}\right)=w_{\left(i, r_{s}\right)}^{*}\right\}_{1 \leq i \leq n_{s}}$ is a basis for $W_{M-2-r_{s}}$, called the dual basis. Consequently, we can choose a basis for W on the form

$$
\begin{equation*}
\mathcal{B}=\left\{w_{\left(1, r_{s}\right)}, \ldots, w_{\left(n_{s}, r_{s}\right)} ; w_{\left(1, r_{s}\right)}^{*}, \ldots, w_{\left(r_{s}, r_{s}\right)}^{*}, \mu\right\}_{r_{1} \leq r_{s} \leq \frac{M-2}{2}} \tag{15}
\end{equation*}
$$

where $W_{M-1}=\langle\mu\rangle$. Moreover, due to (Theorem 2, [10]), we have

$$
\begin{equation*}
\delta(\mu)=\frac{1}{2} \sum_{r_{s}, t}\left[w_{\left(t, r_{s}\right)}, w_{\left(t, r_{s}\right)}^{*}\right], \quad 1 \leq s \leq m, \quad 1 \leq t \leq n_{r_{s}} \tag{16}
\end{equation*}
$$

Note that the integer M is even (see Remark 2.5), and if $r_{p}<r_{q}$, then $\left|w_{t, r_{q}}^{*}\right|<\left|w_{t, r_{p}}^{*}\right|$.
The following result plays a crucial role afterwards.
Lemma 4.1. Let $(\mathbb{L}(W), \delta)$ be the Quillen model of an F_{0}-space X of formal dimension M. For every $w_{\left(j, r_{s}\right)}^{*} \in \mathcal{B}$, there exists $w_{\left(k, r_{\sigma}\right)}^{*} \in \mathcal{B}$ such that

$$
\begin{equation*}
\delta\left(w_{\left(k, r_{\sigma}\right)}^{*}\right)=\beta_{\left(k, r_{\sigma}\right)}\left[w_{\left(s_{1}, r_{p}\right)}, w_{\left(j, r_{s}\right)}^{*}\right]+\Theta_{\left(k, r_{\sigma}\right)} \tag{17}
\end{equation*}
$$

where $\Theta_{\left(k, r_{\sigma}\right)}$ is a linear combination of 2-brackets where $w_{\left(s_{1}, r_{p}\right)}$ and $w_{\left(j, r_{s}\right)}^{*}$ are not involved. Moreover, $w_{\left(s_{1}, r_{p}\right)}$ is a cycle.

Proof. First, recall that $\left|w_{\left(j, r_{s}\right)}\right|=r_{s}$ and $\left|w_{\left(j, r_{s}\right)}^{*}\right|=M-2-r_{s}$. Next, by (13) and (14) we know that to $w_{\left(j, r_{s}\right)}$ and $w_{\left(j, r_{s}\right)}^{*}$ correspond two non-trivial cohomology classes $\left\{x_{s_{1}}^{t_{1}} \ldots x_{s_{h}}^{t_{h}}\right\}$ and $\left\{x_{j_{1}}^{i_{1}} \ldots x_{j_{k}}^{i_{k}}\right\}$ in the Sullivan model $(\Lambda V, \partial)$, such that

$$
\begin{array}{ll}
\left|x_{s_{1}}^{t_{1}} \ldots x_{s_{h}}^{t_{h}}\right|=\left|w_{\left(j, r_{s}\right)}\right|+1=r_{s}+1, & \\
\left|x_{j_{1}}^{i_{1}} \ldots x_{j_{k}}^{i_{k}}\right|=\left|w_{\left(j, r_{s}\right)}^{*}\right|+1=M-1-r_{s}, & \left|x_{j_{1}}\right| \leq \cdots \leq\left|x_{j_{k}}\right|
\end{array}
$$

Here we can assume $t_{1} \geq 1, \ldots, t_{h} \geq 1$ and $i_{1} \geq 1, \ldots, i_{k} \geq 1$. Note that if the generator $w_{\left(j, r_{s}\right)}$ is a cycle, then the corresponding element in $(\Lambda V, \partial)$ is the cohomology class $\left\{x_{s_{1}}\right\}$.

Next, Poincaré duality implies that the multiplication

$$
H^{r_{s}+1}(\Lambda V) \times H^{M-1-r_{s}}(\Lambda V) \rightarrow H^{M}(\Lambda V)
$$

sending $\left(\left\{x_{s_{1}}^{t_{1}} \ldots x_{s_{h}}^{t_{h}}\right\} ;\left\{x_{j_{1}}^{i_{1}} \ldots x_{j_{k}}^{i_{k}}\right\}\right)$ to $\left\{x_{s_{1}}^{t_{1}} \ldots x_{s_{h}}^{t_{h}} \cdot x_{j_{1}}^{i_{1}} \ldots x_{j_{k}}^{i_{k}}\right\}$, is non-degenerate. It follows that $x_{s_{i}}\left(x_{j_{1}}^{i_{1}} \ldots x_{j_{k}}^{i_{k}}\right)$ is not a coboundary for every $1 \leq i \leq h$. As a result, we must have a generator $w_{\left(k, r_{\sigma}\right)}^{*}$ corresponding to cohomology class $\left\{x_{s_{i}}\left(x_{j_{1}}^{i_{1}} \ldots x_{j_{k}}^{i_{k}}\right)\right\}$ such that $\delta\left(w_{\left(k, r_{\sigma}\right)}^{*}\right)$ satisfies the following formula

$$
\delta\left(w_{\left(k, r_{\sigma}\right)}^{*}\right)=\beta_{\left(k, r_{\sigma}\right)}\left[w_{\left(s_{1}, r_{p}\right)}, w_{\left(j, r_{s}\right)}^{*}\right]+\Theta_{\left(k, r_{\sigma}\right)}
$$

where $w_{\left(s_{1}, r_{p}\right)}$ corresponds to $x_{s_{1}}$ which implies that $w_{\left(s_{1}, r_{p}\right)}$ is a cycle.
Finally, from the formula (14), it is clear that $\Theta_{\left(k, r_{\sigma}\right)}$ is a linear combination of 2-brackets where $w_{\left(s_{1}, r_{p}\right)}$ and $w_{\left(j, r_{s}\right)}^{*}$ are not involved.
Remark 4.2. In the cohomology class $\left\{x_{s_{1}}^{t_{1}} \ldots x_{s_{h}}^{t_{h}}\right\}$ corresponding to $w_{\left(j, r_{s}\right)}$, we might have

$$
\left|x_{s_{1}}\right|=\cdots=\left|x_{s_{\tau}}\right|, \quad 1 \leq \tau \leq h
$$

In this case, the formula (17) can be written as follows

$$
\delta\left(w_{\left(k, r_{\sigma}\right)}^{*}\right)=\beta_{1}\left[w_{\left(s_{1}, r_{p}\right)}, w_{\left(j, r_{s}\right)}^{*}\right]+\sum_{j^{\prime} \neq j, i>1}^{h} \beta_{i}\left[w_{\left(s_{i}, r_{p}\right)}, w_{\left(j^{\prime}, r_{s}\right)}^{*}\right]+\Theta_{\left(k, r_{\sigma}\right)},
$$

furthermore, we have the following facts.
(1) Since $\left|x_{s_{1}}\right| \leq \cdots \leq\left|x_{s_{h}}\right|$, we deduce that $\Theta_{\left(k, r_{\sigma}\right)}$ is a linear combination of 2brackets of the form $\left[w_{(a, b)}, w_{(c, d)}\right]$ such that

$$
r_{p}<\left|w_{(a, b)}\right| \leq\left|w_{(c, d)}\right|<M-2-r_{s}
$$

(2) All the generators $w_{\left(j, r_{s}\right)}^{*}$ and $w_{\left(j^{\prime}, r_{s}\right)}^{*}$, where $j^{\prime} \neq j$, are distinct and have the same degree $M-2-r_{s}$.
(3) All the generators $w_{\left(s_{i}, r_{p}\right)}, 1 \leq i \leq h$, are distinct cycles with $\left|w_{\left(s_{i}, r_{p}\right)}\right|=r_{p}$.
(4) All the rationals β_{i} are not zero.

Remark 4.3. A special case of Lemma 4.1 is when $r_{s}=\frac{M-2}{2}$. In this case the lemma still valid for any generator $w_{\left(j, r_{s}\right)}$ such that $\delta\left(w_{\left(j, r_{s}\right)}^{*}\right) \neq 0$ because the dual of $w_{\left(j, r_{s}\right)}^{*}$, namely $\left(w_{\left(j, r_{s}\right)}^{*}\right)^{*}$, is $w_{\left(j, r_{s}\right)}$.

5. Main Result

In all this section, let X denote an F_{0}-space of formal dimension $M,(\Lambda V, \partial)$ its Sullivan model, $(\mathbb{L}(W), \delta)$ its Quillen model and \mathcal{B} the basis of W given in (15). Recall that by Corollary (3.4) there exists a rational $a \neq 0$ such that $\alpha(\mu)=a \mu$, where $W_{M-1}=\langle\mu\rangle$.

Subsequently, we prove some important lemmas concerning the properties of $(\mathbb{L}(W), \delta)$ needed to establish the main result in this paper. Indeed, if $[\alpha] \in \mathcal{E}_{\#}(\mathbb{L}(W))$, then by considering the basis (15) and Remark 4.2, we can summarize the next steps as follows.

- In Lemma 5.1, we show that $\alpha\left(w_{j, r_{s}}^{*}\right)=a w_{j, r_{s}}^{*}$ for all j and $r_{s}<\frac{M-2}{2}$.
- In Lemma 5.2, we show that $\alpha\left(w_{j, r_{s}}\right)=w_{j, r_{s}}$ for every j and $r_{s}<\frac{M-2}{2}$.
- Lemmas 5.3 and 5.4 , show that $\alpha\left(w_{j, \xi}\right)=a w_{j, \xi}$ and $\alpha\left(w_{j, \xi}^{*}\right)=a w_{j, \xi}^{*}$ for every j, where $\xi=\frac{M-2}{2}$.
- In Proposition 5.5, we show that $a=1$.

Lemma 5.1. If $[\alpha] \in \mathcal{E}_{\#}(\mathbb{L}(W))$, then for $w_{j, r_{s}}^{*} \in \mathcal{B}$ such that $r_{s}<\frac{M-2}{2}$, we have $\alpha\left(w_{j, r_{s}}^{*}\right)=a w_{j, r_{s}}^{*}$.
Proof. First, let us prove that for every j we have

$$
\begin{equation*}
\alpha\left(w_{\left(j, r_{1}\right)}^{*}\right)=a w_{\left(j, r_{1}\right)}^{*} \tag{18}
\end{equation*}
$$

Indeed, let $w_{\left(j, r_{1}\right)}^{*} \in W_{M-2-r_{1}}=\left\langle w_{\left(1, r_{1}\right)}^{*}, w_{\left(2, r_{1}\right)}^{*}, \ldots\right\rangle$. Using Corollary 3.4, we can write

$$
\begin{equation*}
\alpha\left(w_{\left(j, r_{1}\right)}^{*}\right)=\sum_{i \geq 1} \lambda_{i} w_{\left(i, r_{1}\right)}^{*}, \quad \lambda_{i} \in \mathbb{Q} \tag{19}
\end{equation*}
$$

The formula (16) can be written as

$$
\begin{equation*}
\delta(\mu)=\frac{1}{2} \sum_{j}\left[w_{\left(j, r_{1}\right)}, w_{\left(j, r_{1}\right)}^{*}\right]+\frac{1}{2} \sum_{r_{1} \neq r_{s}}\left[w_{\left(t, r_{s}\right)}, w_{\left(t, r_{s}\right)}^{*}\right] \tag{20}
\end{equation*}
$$

Next, $w_{\left(j, r_{1}\right)}$ is obviously a cycle as $w_{\left(j, r_{1}\right)} \in W_{r_{1}}$. By Corollary 3.5, it follows that

$$
\begin{equation*}
\alpha\left(w_{\left(j, r_{1}\right)}\right)=w_{\left(j, r_{1}\right)} \tag{21}
\end{equation*}
$$

On the one hand, using (19), (20) and (21), we get

$$
\alpha(\delta(\mu))=\frac{1}{2} \sum_{j} \sum_{i \geq 1} \lambda_{i}\left[w_{\left(j, r_{1}\right)}, w_{\left(i, r_{1}\right)}^{*}\right]+\frac{1}{2} \sum_{r_{1} \neq r_{s}}\left[\alpha\left(w_{\left(t, r_{s}\right)}\right), \alpha\left(w_{\left(t, r_{s}\right)}^{*}\right)\right]
$$

On the other hand, by the relation (20) and Corollary 3.4, we have

$$
\delta(\alpha(\mu))=a \delta(\mu)=\frac{a}{2} \sum_{j}\left[w_{\left(j, r_{1}\right)}, w_{\left(j, r_{1}\right)}^{*}\right]+\frac{a}{2} \sum_{r_{1} \neq r_{s}}\left[w_{\left(t, r_{s}\right)}, w_{\left(t, r_{s}\right)}^{*}\right]
$$

Since $\alpha(\delta(\mu))=\delta(\alpha(\mu))$, and taking into account that $r_{1} \neq r_{s}$, which means that the generator $w_{\left(j, r_{1}\right)}^{*}$ cannot appear in the expression $\sum_{r_{1} \neq r_{s}}\left[\alpha\left(w_{\left(t, r_{s}\right)}\right), \alpha\left(w_{\left(t, r_{s}\right)}^{*}\right)\right]$, it follows that all the rationals λ_{i} in (19) are zero except $\lambda_{1}=a$ showing (18).

Next, assume by induction that

$$
\begin{equation*}
\alpha\left(w_{\left(j, r_{q}\right)}^{*}\right)=a w_{\left(j, r_{q}\right)}^{*}, \tag{22}
\end{equation*}
$$

for all the generators $w_{j, r_{q}}^{*}$ such that $r_{q}<r_{s}$. Let us prove it for every generator

$$
w_{\left(j, r_{s}\right)}^{*} \in W_{M-2-r_{s}}=\left\langle w_{\left(1, r_{s}\right)}^{*}, w_{\left(2, r_{s}\right)}^{*}, \ldots\right\rangle .
$$

For this purpose, write

$$
\begin{equation*}
\alpha\left(w_{\left(j, r_{s}\right)}^{*}\right)=\sum_{\tau \geq 1} \lambda_{\tau} w_{\left(\tau, r_{s}\right)}^{*}, \quad \quad \lambda_{\tau} \in \mathbb{Q} \tag{23}
\end{equation*}
$$

By virtue of Lemma 4.1 and Remark 4.2, there exists $w_{\left(k, r_{\sigma}\right)}^{*}$ such that

$$
\begin{equation*}
\delta\left(w_{\left(k, r_{\sigma}\right)}^{*}\right)=\beta_{1}\left[w_{\left(s_{1}, r_{p}\right)}, w_{\left(j, r_{s}\right)}^{*}\right]+\sum_{j^{\prime} \neq j, i>1}^{h} \beta_{i}\left[w_{\left(s_{i}, r_{p}\right)}, w_{\left(j^{\prime}, r_{s}\right)}^{*}\right]+\Theta_{\left(k, r_{\sigma}\right)} \tag{24}
\end{equation*}
$$

where $\beta_{1} \neq 0$. As a result, we obtain

$$
\begin{aligned}
\alpha\left(\delta\left(w_{\left(k, r_{\sigma}\right)}^{*}\right)\right) & =\beta_{1}\left[\alpha\left(w_{\left(s_{1}, r_{p}\right)}\right), \alpha\left(w_{\left(j, r_{s}\right)}^{*}\right)\right]+\sum_{j^{\prime} \neq j, i>1}^{h} \beta_{i}\left[\alpha\left(w_{\left(s_{i}, r_{p}\right)}\right), \alpha\left(w_{\left(j^{\prime}, r_{s}\right)}^{*}\right)\right]+\alpha\left(\Theta_{\left(k, r_{\sigma}\right)}\right) \\
& =\sum_{\tau \geq 1} \lambda_{\tau} \beta_{1}\left[w_{\left(s_{1}, r_{p}\right)}, w_{\left(\tau, r_{s}\right)}^{*}\right]+\sum_{j^{\prime} \neq j, i>1}^{h} \beta_{i}\left[w_{\left(s_{i}, r_{p}\right)}, \alpha\left(w_{\left(j^{\prime}, r_{s}\right)}^{*}\right)\right]+\alpha\left(\Theta_{\left(k, r_{\sigma}\right)}\right)
\end{aligned}
$$

Note that, according to Remark 4.2, all the generators $w_{\left(s_{i}, r_{p}\right)}$ are cycles implying that $\alpha\left(w_{\left(s_{i}, r_{p}\right)}\right)=w_{\left(s_{i}, r_{p}\right)}$ due to Corollary 3.5.
Next, as $\left|w_{\left(k, r_{\sigma}\right)}^{*}\right|>\left|w_{\left(j, r_{s}\right)}^{*}\right|$ which implies that $r_{q}<r_{s}$, using (22) and (24), we get

$$
\delta\left(\alpha\left(w_{\left(k, r_{\sigma}\right)}^{*}\right)\right)=a \delta\left(w_{\left(k, r_{\sigma}\right)}^{*}\right)=a \beta_{1}\left[w_{\left(s_{1}, r_{p}\right)}, w_{\left(j, r_{s}\right)}^{*}\right]+\sum_{j^{\prime} \neq j, i>1}^{h} a \beta_{i}\left[w_{\left(s_{i}, r_{p}\right)}, w_{\left(j^{\prime}, r_{s}\right)}^{*}\right]+a \Theta_{\left(k, r_{\sigma}\right)}
$$

Since $\alpha\left(\delta\left(w_{\left(i, r_{q}\right)}^{*}\right)\right)=\delta\left(\alpha\left(w_{\left(i, r_{q}\right)}^{*}\right)\right)$ and taking into account that the bracket $\left[w_{\left(s_{1}, r_{p}\right)}, w_{\left(j, r_{s}\right)}^{*}\right]$ does not appear in the expressions (see Remark 4.2)

$$
\sum_{j^{\prime} \neq j, i>1}^{h} a \beta_{i}\left[w_{\left(s_{i}, r_{p}\right)}, w_{\left(j^{\prime}, r_{s}\right)}^{*}\right] \quad \text { and } \quad \alpha\left(\Theta_{\left(k, r_{\sigma}\right)}\right)
$$

we deduce that all the coefficients λ_{τ} in (23) are nil except $\lambda_{1} \beta_{1}=a \beta_{1}$ and because $\beta_{1} \neq 0$, we obtain $\alpha\left(w_{\left(j, r_{s}\right)}^{*}\right)=a w_{\left(j, r_{s}\right)}^{*}$.

Lemma 5.2. If $[\alpha] \in \mathcal{E}_{\#}(\mathbb{L}(W))$, then for every $w_{j, r_{s}} \in \mathcal{B}$, where $r_{s}<\frac{M-2}{2}$, we have $\alpha\left(w_{j, r_{s}}\right)=w_{j, r_{s}}$.

Proof. First, we know from Corollary 3.5 that if $\delta\left(w_{j, r_{s}}\right)=0$, then $\alpha\left(w_{j, r_{s}}\right)=w_{j, r_{s}}$, therefore we can suppose that $\delta\left(w_{j, r_{s}}\right) \neq 0$. Secondly, recall that from the formula (16) we can write

$$
\delta(\mu)=\frac{1}{2}\left[w_{\left(j, r_{s}\right)}, w_{\left(j, r_{s}\right)}^{*}\right]+\frac{1}{2} \sum_{t \neq j}\left[w_{\left(t, r_{s}\right)}, w_{\left(t, r_{s}\right)}^{*}\right]
$$

As a result, we get

$$
\alpha(\delta(\mu))=\frac{1}{2}\left[\alpha\left(w_{\left(j, r_{s}\right)}\right), \alpha\left(w_{\left(j, r_{s}\right)}^{*}\right)\right]+\frac{1}{2} \sum_{t \neq j}\left[\alpha\left(w_{\left(t, r_{s}\right)}\right), \alpha\left(w_{\left(t, r_{s}\right)}^{*}\right)\right]
$$

and because $r_{s}<\frac{M-2}{2}$, Lemma 5.1 implies that

$$
\alpha\left(w_{\left(j, r_{s}\right)}^{*}\right)=a w_{\left(j, r_{s}\right)}^{*}, \quad \alpha\left(w_{\left(t, r_{s}\right)}^{*}\right)=a w_{\left(t, r_{s}\right)}^{*}, \quad \forall t \neq j .
$$

Next, by Corollary 3.4, we can write

$$
\alpha\left(w_{\left(j, r_{s}\right)}\right)=\sum_{i} \rho_{i} w_{\left(i, r_{s}\right)}, \quad \rho_{i} \in \mathbb{Q}
$$

implying that

$$
\begin{equation*}
\alpha(\delta(\mu))=\frac{a}{2} \rho_{j}\left[w_{\left(j, r_{s}\right)}, w_{\left(j, r_{s}\right)}^{*}\right]+\frac{a}{2} \sum_{i \neq j} \rho_{i}\left[w_{\left(i, r_{s}\right)}, w_{\left(j, r_{s}\right)}^{*}\right]+\frac{a}{2} \sum_{t \neq j}\left[\alpha\left(w_{\left(t, r_{s}\right)}\right), w_{\left(t, r_{s}\right)}^{*}\right] \tag{25}
\end{equation*}
$$

Finally, using Corollary 3.5, we obtain

$$
\begin{equation*}
\delta(\alpha(\mu))=a \delta(\mu)=\frac{a}{2}\left[w_{\left(j, r_{s}\right)}, w_{\left(j, r_{s}\right)}^{*}\right]+\frac{a}{2} \sum_{t \neq j}\left[w_{\left(t, r_{s}\right)}, w_{\left(t, r_{s}\right)}^{*}\right] \tag{26}
\end{equation*}
$$

Since $\alpha(\delta(\mu))=\delta(\alpha(\mu))$ and $w_{\left(j, r_{s}\right)}^{*} \neq w_{\left(t, r_{s}\right)}^{*}$, comparing (25) and (26), it follows that $\rho_{i}=0$ for all $i \neq j$ and $\rho_{j}=1$. Hence, $\alpha\left(w_{\left(j, r_{s}\right)}\right)=w_{\left(j, r_{s}\right)}$.
Lemma 5.3. If $[\alpha] \in \mathcal{E}_{\#}(\mathbb{L}(W))$, then $\alpha\left(w_{(j, \xi)}^{*}\right)=a w_{(j, \xi)}^{*}$, where $\xi=\frac{M-2}{2}$.
Proof. By virtue of Lemma 4.1 and Remark 4.2, there exists $w_{\left(k, r_{\sigma}\right)}^{*}$ such that

$$
\begin{equation*}
\delta\left(w_{\left(k, r_{\sigma}\right)}^{*}\right)=\beta_{1}\left[w_{\left(s_{1}, r_{p}\right)}, w_{(j, \xi)}^{*}\right]+\sum_{j^{\prime} \neq j, i>1}^{h} \beta_{i}\left[w_{\left(s_{i}, r_{p}\right)}, w_{\left(j^{\prime}, \xi\right)}^{*}\right]+\Theta_{\left(k, r_{\sigma}\right)} \tag{27}
\end{equation*}
$$

where the generators $w_{\left(s_{i}, r_{p}\right)}$ are cycles implying that $\alpha\left(w_{\left(s_{i}, r_{p}\right)}\right)=w_{\left(s_{i}, r_{p}\right)}$ for all $1 \leq i \leq h$. Next, since that a basis of W_{ξ} is formed by the generators $w_{(i, \xi)}$ and their duals $w_{(i, \xi)}^{*}$ because in this case we have $\left|w_{(i, \xi)}\right|=\left|w_{(i, \xi)}^{*}\right|=\xi=\frac{M-2}{2}$, by Corollary 3.5, we can write

$$
\begin{equation*}
\alpha\left(w_{(j, \xi)}^{*}\right)=\sum_{i \geq 1} \mu_{i} w_{(i, \xi)}^{*}+\sum_{\tau \geq 1} \gamma_{\tau} w_{(\tau, \xi)} \tag{28}
\end{equation*}
$$

As a result, we obtain

$$
\begin{aligned}
\alpha\left(\delta\left(w_{\left(k, r_{\sigma}\right)}^{*}\right)\right) & =\sum_{i} \mu_{i} \beta_{1}\left[w_{\left(s_{1}, r_{p}\right)}, w_{(i, \xi)}^{*}\right]+\sum_{\tau} \gamma_{\tau} \beta_{1}\left[w_{\left(s_{1}, r_{p}\right)}, w_{(\tau, \xi)}\right] \\
& +\sum_{j^{\prime} \neq j, i>1}^{h} \beta_{i}\left[w_{\left(s_{i}, r_{p}\right)}, \alpha\left(w_{\left(j^{\prime}, \xi\right)}^{*}\right)\right]+\alpha\left(\Theta_{\left(k, r_{\sigma}\right)}\right)
\end{aligned}
$$

Next, as $\left|w_{\left(k, r_{\sigma}\right)}^{*}\right|>\left|w_{(j, \xi)}^{*}\right|=\xi=\frac{M-2}{2}$, it follows that $r_{\sigma}<\xi$. Thus, using Lemma 5.1 and the relation (27), we get

$$
\delta\left(\alpha\left(w_{\left(i, r_{q}\right)}^{*}\right)\right)=a \delta\left(w_{\left(i, r_{q}\right)}^{*}\right)=a \beta_{1}\left[w_{\left(s_{1}, r_{p}\right)}, w_{(j, \xi)}^{*}\right]+\sum_{j^{\prime} \neq j, i>1}^{h} a \beta_{i}\left[w_{\left(s_{i}, r_{p}\right)}, w_{\left(j^{\prime}, \xi\right)}^{*}\right]+a \Theta_{\left(k, r_{\sigma}\right)}
$$

Since $\alpha\left(\delta\left(w_{\left(i, r_{q}\right)}^{*}\right)\right)=\delta\left(\alpha\left(w_{\left(i, r_{q}\right)}^{*}\right)\right)$ and taking into account that the bracket $\left[w_{\left(s_{1}, r_{p}\right)}, w_{(j, \xi)}^{*}\right]$ does not appear in the expression $\alpha\left(\Theta_{\left(i, r_{q}\right)}\right)$, according to Remark 4.2, we deduce that all the coefficients μ_{i} and γ_{τ} in (28) are nil except $\mu_{j} \beta_{1}=a \beta_{1}$ implying that $\mu_{j}=a$ because $\beta_{1} \neq 0$. Hence, $\alpha\left(w_{(j, \xi)}^{*}\right)=a w_{(j, \xi)}^{*}$

Lemma 5.4. If $[\alpha] \in \mathcal{E}_{\#}(\mathbb{L}(W))$, then for every $w_{(j, \xi)} \in \mathcal{B}$, we have $\alpha\left(w_{(j, \xi)}\right)=a w_{(j, \xi)}$.
Proof. The proof is as in Lemma 5.3 after taking into consideration Remark 4.3.
Proposition 5.5. If $(\mathbb{L}(W), \delta)$ is the Quillen model of an F_{0}-space of formal dimension M, then the group $\mathcal{E}_{\#}(\mathbb{L}(W))$ is trivial.

Proof. It suffices to prove that the rational a given in Lemmas 5.1, 5.3 and 5.4 satisfies $a=1$. Indeed, first the formula (16) can be written as

$$
\delta(\mu)=\frac{1}{2} \sum_{j}\left[w_{(j, \xi)}, w_{(j, \xi)}^{*}\right]+\frac{1}{2} \sum_{r_{p}<\xi} \sum_{t}\left[w_{\left(t, r_{p}\right)}, w_{\left(t, r_{p}\right)}^{*}\right]
$$

It follows that

$$
\alpha(\delta(\mu))=\frac{1}{2} \sum_{j}\left[\alpha\left(w_{(j, \xi)}\right), \alpha\left(w_{(j, \xi)}^{*}\right)\right]+\frac{1}{2} \sum_{r_{p}<\xi} \sum_{t}\left[\alpha\left(w_{\left(t, r_{p}\right)}\right), \alpha\left(w_{\left(t, r_{p}\right)}^{*}\right)\right] .
$$

Now, for all t and $r_{p}<\xi$, Lemmas 5.1 and 5.2 yield the following

$$
\alpha\left(w_{\left(t, r_{p}\right)}\right)=w_{\left(t, r_{p}\right)}, \quad \alpha\left(w_{\left(t, r_{p}\right)}^{*}\right)=a w_{\left(t, r_{p}\right)}^{*}
$$

and for for all t, by lemmas 5.3 and Corollary 5.4, we have

$$
\alpha\left(w_{(t, \xi)}\right)=a w_{(t, \xi)}, \quad \alpha\left(w_{(t, \xi)}^{*}\right)=a w_{(t, \xi)}^{*}
$$

Therefore, on the one hand, we have

$$
\alpha(\delta(\mu))=\frac{1}{2} \sum_{j} a^{2}\left[w_{(i, \xi)}, w_{(j, \xi)}^{*}\right]+\frac{a}{2} \sum_{r_{p}<\xi} \sum_{t}\left[w_{\left(t, r_{p}\right)}, w_{\left(t, r_{p}\right)}^{*}\right] .
$$

On the other hand, by the relation (5) and Corollary 3.4 we have

$$
\delta(\alpha(\mu))=\frac{a}{2} \sum_{j}\left[w_{(j, \xi)}, w_{(j, \xi)}^{*}\right]+\frac{a}{2} \sum_{r_{p}<\xi} \sum_{t}\left[w_{\left(t, r_{p}\right)}, w_{\left(t, r_{p}\right)}^{*}\right] .
$$

Since $\alpha(\delta(\mu))=\delta(\alpha(\mu))$, it follows that $a^{2}=a$ and as $a \neq 0$, it follows that $a=1$.
Now we are able to announce the main result in this paper.
Theorem 5.6. If X is an F_{0}-space, the $\mathcal{E}_{\#}(X)$ is finite.
Proof. It suffices to apply Proposition 5.5 and the identification (2).

References

1. Arkowitz, M., Problems on Self-homotopy equivalences, Contemporary Math., 274, (2001), 309-315.
2. M. Benkhalifa, The effect of cell-attachment on the group of self-equivalences of an elliptic space, Michigan Mathematical Journal, Vol. 71(2), 611-617, 2022.
3. M. Benkhalifa, On the group of self-homotopy equivalences of an elliptic space, Proceedings of the American Mathematical Society. Vol. 148 (6),2695-2706, 2020
4. Y. Félix, S. Halperin, and J.-C. Thomas, Rational homotopy theory, Graduate Texts in Mathematics, Vol. 205, Springer-Verlag, New York, 2001.
5. Halperin S., Finiteness in the minimal models of Sullivan, Trans. Amer. Math. Soc. 230, 269-331, 1977.
6. G. Lupton, A note on the conjecture of S. Halperin, Lectures Notes in Mathematics, vol. 1440, SpringerVerlag, 148-163, 1990.
7. K. Maruyama, Localization of a certain subgroup of self-homotopy equivalences, Pacific J. Math. 136, 293-301, 1989.
8. W. Meier, Rational universal fibrations and flag manifolds. Math. Ann., 258(3):329-340, 1981.
9. J. Neisendorfer and T. Miller, Formal and coformal spaces, Illinois J. Math. Vol. 205 (4), 565-580, 1978
10. J. Stasheff, Rational Poincaré duality spaces . Illinois J. Math. Vol. 27 (1), 104-109, 1983.

Department of Mathematics. College of Sciences, University of Sharjah. UAE
Email address: mbenkhalifa@sharjah.ac.ae

[^0]: 2000 Mathematics Subject Classification. 55P10, 55P62.
 Key words and phrases. F_{0}-spaces, Group of homotopy self-equivalences, Sullivan model, Quillen model.

