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Abstract

A system of nonlinear differential equations x1+γ dY
dx = F0(x) +

A(x)Y + F (x, Y ) (γ ≥ 1) is considered. The origin x = 0 is irregular
singular. There exist pioneering works about them. We study more
precisely than preceding works, the meaning of asymptotic expansion
of transformations and solutions by using Borel summable functions
in asymptotic analysis and construct exponential series solutions often
called transseries. 2

0 Introduction

The main purpose of the present paper is to construct solutions of the fol-
lowing system of nonlinear differential equations with irregular singularity at
x = 0  Y =t(y1, y2, . . . , yn),

x1+γ dY

dx
=F0(x) + A(x)Y + F (x, Y ) γ ≥ 1.

(0.1)

There are pioneering researches about (0.1) by Hukuhara [14], Iwano [15]
[16], Malmquist [17], Trjitzinsky [22] and many other important ones. They
constructed formal solutions and showed the existence of genuine solutions
under some conditions.

Firstly we mention a classical important result due to Malmquist [17].
Let Λ = {λ1, . . . , λn} be the set of eigenvalues of A(0) and assume they are
distinct and not zero. Let Λ′ = {λ1, . . . , λn′} and Λ′′ = {λn′+1, . . . , λn}. Λ′

and Λ′′ are separated by a straight line through the origin in the complex
plane. It is shown that there exists an n′-parameter family of solutions in
some sector corresponding to Λ′. After [17] there are fundamental works due
to Iwano [15] and [16] which are generalizations of Malmquist’s result. The
following holds for solutions of (0.1) under the condition of this paper.
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There exist polynomials {λi(x)}1≤i≤n with degree ≤ γ and λi(0) = λi.
Let hi(x) =

∫ x
λi(x)/x

1+γdx and H(x) = (h1(x), . . . , hn′(x)). Then there
exists an exponential series solution Y (x) = t(y1(x), . . . , yn(x)) of (0.1) in
some sector such that

yi(x) =
∑
k∈Nn′

ci,k(x)C
kek·H(x), k ·H(x) =

n′∑
i=1

kihi(x), (0.2)

which are convergent for small C = (C1, . . . , Cn′) ∈ Cn′
, Ck =

∏n′

i=1C
ki
i ,

N = {0, 1, 2, . . . }. The coefficients ci,k(x) of (0.2) are holomorphic in an
appropriate sector.

After the pioneering researches, the theories of multisummable functions
in asymptotic analysis and Écalle’s resurgence functions have been devel-
oped (see Balser [1] and Écalle [12]). Borel summability is a special case
of multisummability. These theories are powerful to study correspondence
between formal solutions and genuine solutions. For nonlinear equations it
is shown that formal power series solutions of ordinary differential equations
are multisummable in Braaksma [2] and those of some class of partial dif-
ferential equations are multisummable in Ōuchi [21]. There are many works
concerning Borel summability of solutions of ordinary or partial differential
equations.

Écalle’s theory can treat a broad class of problems in asymptotic analysis.
It is used for equation (0.1) with γ = 1 (rank 1) in Braaksma and Kuik
[3], Costin,O [7], [9] and Costin,O, Costin,R.D [8], where exponential series
(transseries) solutions are studied under the condition that eigenvalues are
simple. Procedure is required to apply Écalle’s theory to (0.1). Several
preparations and profound analysis are given there. The method in the
present paper is different from theirs. We remark that it is known that
(0.1) is reduced to a system with rank=1 (γ = 1) (Canalis-Durand, Mozo-
Fernades, Schäfke [6]). But its size is nγ and its eigenvalues of the linear part
are not simple and have multiplicity γ, hence we can not apply [7] and [8]
to the present case γ ≥ 1. Really we have the difference of the exponential
factor eh(x)

eh(x) =


exp(−λ

x
)xa1 γ = 1,

exp
(
− λ

γxγ
+

1

xγ

γ−1∑
ℓ=1

aℓx
ℓ
)
xaγ γ ≥ 2.

(0.3)
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It is the main purpose that we try to have another look at (0.1) for γ ≥ 1,
by applying theory of Borel summable functions. We use only the introduc-
tory properties of Borel summable functions, that is, they are represented
by Laplace integral. Instead of formal calculus, we construct analytically
transformations and solutions more precisely and clearly, by solving some
singular differential equations in function classes with some Gevrey type es-
timates. Function spaces O{1/γ}(S0 × Ω) and O{1/γ}(S0) are available for
our calculation. S0 is a sectorial region with opening angle > π/γ and
Ω = {Y ∈ Cn; |Y | < R} (see Definition 1.1). We make full use of these
function spaces. In section 1 we define O(S0(I) × Ω), Borel transform and
Laplace transform. We sum up shortly what we need about Borel summable
functions. It is known that the linear part A(x) can be transformed for-
mally to a diagonal matrix by a linear transformation with coefficients in
C[[x]] (Wasow [23]). We transform A(x) analytically to diag.(λi(x)) such
that {λi(x)}mi=1 are polynomials with degree ≤ γ and λi(0) = λi, by using
linear transformation with coefficients in O{1/γ}(S0). This process is called
diagonalization of system (Balser [1]). We start to study this system. First
we study the case F0(x) ≡ 0

x1+γ dY

dx
= A(x)Y + F (x, Y ). (0.4)

Let Z(x) = (C1e
h1(x), . . . , Cn′ehn′ (x)) be a solution of

x1+γ dzi
dx

= λi(x)zi 1 ≤ i ≤ n′. (0.5)

By using Z(x), we construct exponential series solutions. The process is
as follows. We try to find Φ(x, Z) = (ϕ1(x, Z), . . . , ϕm(x, Z)), ϕi(x, Z) ∈
O{1/γ}(S0 × Ω′), Ω′ being a domain in Cn′

, such that Y (x) = Φ(x, Z)|Z=Z(x)

is a solution of (0.4). For this purpose we introduce some system of singular
nonlinear partial equations that determines ϕi(x, Z). We give one of main
results (Theorem 2.4), construction of exponential solutions. Its proof is
given in section 3. The proof is to find a solution Φ(x, Z) of the introduced
system of partial equations. The coefficients {ci,k(x)} of the exponential
series in (0.2) are determined by Φ(x, Z), that is, by the system of partial
differential equations. Hence it gives more information about {ci,k(x)} than
classical algorithmic determination. We change the differential equations to
convolution equations and solve them. In section 4 we study the case F0(x) ̸≡
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0. By eliminating F0(x), we reduce to the former case. By this process (0.1)
changes. The reduced system has a similar form as the original one and
eigenvalues of its linear part are invariant. Hence we can apply Theorem 2.4.
In section 5 we consider a special 2× 2 system and study Painlevé IV as an
example. It has a singular point at t = x−1 = ∞. We remark that Painlevé I-
VI equations are important equations and investigated extensively. In section
6 for the readers we give a proof of the diagonalization of linear systems under
the present condition. As for more details of block diagonalization (splitting)
theorem of linear systems, we refer to [1]. We also refer the fundamental
solution of systems of equations to [4]. The main results in this paper are
obtained under the condition that the eigenvalues of matrix A(0) are distinct.
It will be studied in another paper for the case multiple eigenvalues of matrix
A(0) appear.

1 Borel summable functions with holomorphic parameters

We introduce some notations and definitions. Let I = (α, β) be an open

interval and C̃{0} be the universal covering space of C−{0}. S(I) = S(α, β) =

{x ∈ C̃{0}; arg x ∈ I}. S0(I) = S0(α, β) = {x ∈ S(I); 0 < |x| < ρ(arg x)},
where ρ(t) is some positive continuous function on I. The same notation S0(·)
is used for various ρ(·). For arbitrary small ϵ > 0, Iϵ = (α + ϵ, β − ϵ) ⊂ I.
O(U) is the set of holomorphic functions on a domain U . C[[x]] is the set
of formal power series of x. N is the set of nonnegative integers and Z is
the set of integers. Let k = (k1, . . . , kn) ∈ Nn and Y = (y1, . . . , yn) ∈ Cn.
Then we use notations k! = k1!k2! . . . kn!, |k| =

∑n
i=1 ki, Y

k = yk11 . . . yknn ,
|Y | = max1≤i≤n |yi| and ( ∂

∂Y
)k =

∏n
i=1(

∂
∂yi

)ki .

Definition 1.1. Let κ > 0, I = (α, β) with β − α > π/κ and Ω = {Y ∈
Cn; |Y | < R}. A function f(x, Y ) ∈ O(S0(I) × Ω) is said to be κ-Borel
summable with respect to x, if there exist constants M , C and {an(y)}∞n=0 ⊂
O(Ω) such that for any N ≥ 0

|f(x, Y )−
N−1∑
n=0

an(Y )xn| ≤MCN |x|NΓ(N
κ

+ 1), (x, Y ) ∈ S0(I)× Ω (1.1)

holds. The totality of κ-Borel summable functions with respect to x on S0(I)×
Ω is denoted by O{1/κ}(S0(I)× Ω).

We say that f(x, Y ) is κ-Borel summable in a direction θ, if there exists
δ > π/(2κ) such that f(x, Y ) ∈ O{1/κ}(S0(θ − δ, θ + δ)× Ω).
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The notion of Borel summability is originally used for formal power series.

Definition 1.2. Let f̃(x) =
∑∞

n=0 anx
n ∈ C[[x]] and I = (θ − δ, θ + δ) δ >

π/2κ. f̃(x) is said to be κ-Borel summable in a direction θ, if there exists
f(x) ∈ O{1/κ}(S0(I)) such that for any N ≥ 0

|f(x)−
N−1∑
n=0

anx
n| ≤MCN |x|NΓ(N

κ
+ 1) x ∈ S0(I) (1.2)

holds.

If f(x) exists, then it is unique. Hence f̃(x) and f(x) are often identified.
Let I = (α, β) with β − α > π/κ, θ = (α + β)/2 and δ = (β − α)/2.
Then I = (θ − δ, θ + δ) and δ > π/(2κ). Let ψ(x, Y ) ∈ O(S0(I) × Ω) and
|ψ(x, Y )| ≤ C|x|c(c > 0). κ-Borel transform of ψ(x, Y ) is defined by

(Bκψ)(ξ, Y ) =
1

2πi

∫
C
exp(

ξ

x
)κψ(x, Y )dx−κ, (1.3)

where C is a contour in S0(I) that starts from 0ei(θ+δ′) to r0e
i(θ+δ′) on a

segment and next on an arc |t| = r0 to r0e
i(θ−δ′′) and finally on a segment

ends at 0ei(θ−δ′′) (δ > δ′, δ′′ > π/(2κ)).

We denote (Bκψ)(ξ, Y ) by ψ̂(ξ, Y ). Let α̂(κ) = α+π/2κ, β̂(κ) = β−π/2κ
and Î(k) = (α̂(k), β̂(k)). Then ψ̂(ξ, Y ) is holomorphic in an infinite sector

S(Î(k)) with respect ξ. We can construct ψ(x, Y ) by κ-Laplace transform

Lκψ̂, that is, ψ(x, Y ) = (Lκψ̂)(x, Y )

(Lκψ̂)(x, Y ) =

∫ ∞e
√
−1θ

0

e−( ξ
x
)kψ̂(ξ, Y )dξκ θ ∈ Î(κ). (1.4)

If f(x, Y ) ∈ O{1/k}(S0(I) × Ω) with a0(Y ) = 0, then it is known that there
exists r > 0 such that

f̂(ξ, Y ) =
∞∑
n=1

an(Y )

Γ(n/κ)
ξn−κ (1.5)

holds in {0 < |ξ| < r} × Ω. ξκ−1f̂(ξ, Y ) is holomorphic in {|ξ| < r} × Ω. It
holds that for any small ϵ > 0 there exist positive constants Kϵ and cϵ such
that

|f̂(ξ, Y )| ≤ Kϵ|ξ|1−κecϵ|ξ|
κ

Γ(1/κ)
, (ξ, Y ) ∈

(
{0 < |ξ| < r} ∪ SÎϵ(κ)

)
× Ω. (1.6)
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As for the details of Borel summable functions, Borel transform and Laplace
transform we refer to Balser [1]. By expanding f̂(ξ, Y ) at Y = 0 ∈ Cn,

f̂(ξ, Y ) =
∑
k∈Nn

f̂k(ξ)Y
k, f̂k(ξ) =

1

k!
(
∂

∂Y
)kf̂(ξ, 0). (1.7)

Let f(x, Y ) ∈ O{1/κ}(S0(I)×Ω) with asymptotic expansion (1.1) and f(0, Y ) =
0 means a0(Y ) = 0. The following holds by Cauchy’s inequality.

Lemma 1.3. Let f(x, Y ) ∈ O{1/κ}(S0(I) × Ω) with f(0, Y ) = 0.Then there
exist positive constants Kϵ and cϵ such that

|f̂k(ξ)| ≤
Kϵ|ξ|1−κecϵ|ξ|

κ

R|k|Γ(1/κ)
, ξ ∈ {0 < |ξ| < r} ∪ SÎϵ(κ)

. (1.8)

Proposition 1.4. Let {fk(x)}k∈Nn ⊂ O{1/κ}(S0(I)) with fk(0) = 0. Suppose
that for any small ϵ > 0 there exist positive constants Kϵ and cϵ such that
their κ-Borel transforms {f̂k(ξ)}k∈Nn have bounds

|f̂k(ξ)| ≤
Kϵ|ξ|1−κecϵ|ξ|

κ

R|k|Γ(1/κ)
ξ ∈ {0 < |ξ| < r} ∪ SÎϵ(κ)

. (1.9)

Then f(x, Y ) =
∑

k∈Nn fk(x)Y
k ∈ O{1/κ}(S0(Iϵ)× Ω0), Ω0 = {Y ∈ Cn; |Y | <

R0} (R0 < R).

Proof. Since g∗(ξ, Y ) = ξκ−1
∑

k∈Nn f̂k(ξ)Y
k converges in ({|ξ| < r}∪SÎϵ(κ)

)×
Ω0, |g∗(ξ, Y )| ≤ Mϵe

cϵ|ξ|κ and there exist {g∗n(Y )}n≥1 ⊂ O(Ω0) such that
g∗(ξ, Y ) =

∑∞
n=1 g

∗
n(Y )ξn−1 in {|ξ| < r}. We have

∑
k∈Nn

f̂k(ξ)Y
k = ξ1−κg∗(ξ, Y ) =

∞∑
n=1

g∗n(Y )ξn−κ.

in {0 < |ξ| < r} × Ω0, Hence f̂(ξ, Y ) =
∑∞

n=1 g
∗
n(Y )ξn−κ and f(x, Y ) ∈

O{1/κ}(S0(Iϵ)× Ω0).

If f(x, Y ) =
∑

k∈Nn fk(x)Y
k satisfies the assumptions of Proposition 1.4.

then f(x, Y ) has an asymptotic expansion
∑∞

n=1 an(Y )tn in O{1/κ}(S0(Iϵ) ×
Ω0), an(Y ) = Γ(n/κ)g∗n(Y ).
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Let ϕ∗
i (ξ, Y ) ∈ O(S0(I

∗)× U) (i = 1, 2). The κ-convolution is defined by

(ϕ∗
1 ∗
κ
ϕ∗
2)(ξ, Y ) =

∫ ξ

0

ϕ∗
1((ξ

κ − ηκ)1/κ, Y )ϕ∗
2(η, Y )dηκ. (1.10)

The following lemma is used for calculations and estimates of convolution
equations later.

Lemma 1.5. Suppose that ϕ∗
i (ξ, Y ) ∈ O(S0(I

∗)× U) (i = 1, 2) satisfy

|ϕ∗
i (ξ, Y )| ≤ Ci|ξ|si−κec|ξ|

κ

Γ(si/κ)
(si > 0) for (ξ, Y ) ∈ S0(I

∗)× U. (1.11)

Then (ϕ∗
1 ∗
κ
ϕ∗
2)(ξ, Y ) ∈ O(S0(I

∗), U) and

|(ϕ∗
1 ∗
κ
ϕ∗
2)(ξ, Y )| ≤ C1C2|ξ|s1+s2−κec|ξ|

κ

Γ((s1 + s2)/κ)
. (1.12)

Proof. Let arg ξ = θ. Then it holds that

(ϕ∗
1 ∗
κ
ϕ∗
2)(ξ, Y ) =

∫ |ξ|eiθ

0

ϕ∗
1((ξ

κ − ηκ)1/κ, Y )ϕ∗
2(η, Y )dηκ

=

∫ |ξ|

0

ϕ∗
1((|ξ|κ − rκ)1/κeiθ, Y )ϕ∗

2(re
iθ, Y )eiκθdrκ

and
|ϕ∗

1((|ξ|κ − rκ)1/κeiθ, Y )ϕ∗
2(re

iθ, Y )eiκθ|

≤ C1C2

Γ(s1/κ)Γ(s2/κ)
(|ξ|κ − rκ)s1/κ−1ec(|ξ|

κ−rκ)|r|s2−κecr
κ

.

We have (1.12) from∫ |ξ|

0

(|ξ|κ − rκ)s1/κ−1|r|s2−κdrκ =
Γ(s1/κ)Γ(s2/κ)

Γ((s1 + s2)/κ)
|ξ|s1+s2−κ.

We note that Lemma 1.5 holds for an infinite S(I∗). Let ϕ̂i(ξ, Y ) be
κ-Borel transform of ϕi(x, Y ) (i = 1, 2). Then

ϕ1(x, Y )ϕ2(x, Y ) = Lκ(ϕ̂1 ∗
κ
ϕ̂2) (1.13)

holds. This means ϕ1(x, Y )ϕ2(x, Y ) is κ-Laplace transform of (ϕ̂1 ∗
κ
ϕ̂2).
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2 Nonlinear equation with irregular singularity I

First we study the case F0(x) ≡ 0. The case F0(x) ̸≡ 0 is considered in
section 4. Let

x1+γ dY

dx
= A(x)Y + F (x, Y ), Y = t(y1.y2, . . . , yn),

A(x) = (ai,j(x))1≤i,j≤n, F (x, y) =
t(f1(x, Y ), . . . , fn(x, Y )),

(2.1)

where γ is a positive integer. ai,j(x) is holomorphic in {|x| < r} and fi(x, Y )
is holomorphic in {(x, Y ) ∈ C × Cn; |x| < r, |Y | < R} with fi(x, Y ) =
O(|Y |2). If F (0, Y ) ̸= 0, let yi = xzi. Then x

−1F (x, xZ) = O(x) and

x1+γ dZ

dx
=(A(x)− xγI)Z + x−1F (x, xZ).

Hence we replace A(x)−xγI by A(x) and x−1F (x, xZ) by F (x, Z). We have
F (0, Z) = 0. Thus we study, by denoting Z by Y again, x1+γ dyi

dx
=

n∑
j=1

ai,j(x)yj + fi(x, Y ) i = 1, 2, . . . , n

A(x) = (ai,j(x)), F (x, Y ) = t(f1(x, Y ), . . . , fn(x.Y ))

(2.2)

with fi(0, Y ) = 0. Let {λi}1≤i≤n be eigenvalues of A(0) and Λ = {λi; i =
1, . . . , n}. We assume

Condition 0. Eigenvalues are distinct. λi ̸= λj for i ̸= j.
Set ωi,j = arg(λi − λj) (0 ≤ ωi,j < 2π) for i ̸= j and

Λ♯ = {λi − λj; i, j = 1, 2, . . . n, i ̸= j}
θi,j,ℓ = (ωi,j + 2πℓ)/γ, ℓ ∈ Z
Θ1 = {θi,j,ℓ; i ̸= j, ℓ ∈ Z}.

(2.3)

Let θ∗ ̸∈ Θ1. Then there exists ϵ∗ > 0 such that (θ∗ − ϵ∗, θ∗ + ϵ∗) ∩Θ1 = ∅.
Let δ∗ = π/2γ+ ϵ∗ and I = (θ∗− δ∗, θ∗+ δ∗). Then the following Proposition
holds under Condition 0.

Proposition 2.1. Let θ∗ ̸∈ Θ1 and ai,j(x) ∈ O{1/γ}(S0(I)). Then there
exists a matrix P (x) with elements in O{1/γ}(S0(Iϵ)) for any small ϵ > 0 and
P (0) = Id such that Y = P (x)Z transforms x1+γ dY

dx
= A(x)Y to

x1+γ dZ

dx
= Λ(x)Z, (2.4)
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where Λ(x) = diag.(λ1(x), λ2(x), . . . , λn(x)) is a diagonal matrix and λi(x)
is a polynomial with degree ≤ γ and λi(0) = λi.

This proposition is a special case of the splitting (block diagonalization)
of systems of equations ([1]). We give a proof of this proposition in section
6. We take θ∗ ̸∈ Θ1 later so that it satisfies other conditions.

Hence we study the following system of nonlinear differential equations:

Y =t(y1.y2, . . . , yn),

x1+γ dY

dx
=Λ(x)Y + F (x, Y ),

Λ(x) =diag.(λ1(x), . . . , λn(x)),

F (x, Y ) =t(f1(x, Y ), . . . , fn(x, Y )),

(2.5)

where
{fi(x, Y )}1≤i≤n ⊂ O{1/γ}(S0(I)× Ω) (2.6)

with F (x, Y ) = O(|Y |2) and F (0, Y ) = 0, and {λi(x)}1≤i≤n are polynomials
with degree ≤ γ and λi(0) = λi,

We proceed to give other conditions on the eigenvalues. Let ∅ ̸= Λ′ ⊂ Λ
and Λ′ = {λi; i = 1, . . . , n′}. We assume the following two conditions on Λ′.

Condition 1. Partial Poincaré condition. There exist 0 ≤ θΛ′ < 2π and
0 < δΛ′ < π/2 such that Λ′ ⊂ Σ = {η ̸= 0; | arg η − θΛ′| < δΛ′}.

Condition 2. Partial non resonance.

n′∑
j=1

λjmj − λi ̸= 0 for m ∈ Nn′
with |m| ≥ 2, 1 ≤ i ≤ n. (2.7)

Let

L =
n∪

i=1

{ n′∑
j=1

λjmj − λi; |m| ≥ 2
}
̸∋ 0. (2.8)

Function γη +
∑n′

j=1 λjmj − λi (|m| ≥ 2) does not vanish for γη ̸∈ −L. Let

L(θ) = {r ≥ 0; reiθ} be a half line in a direction θ.

Lemma 2.2. There exist an interval Ĵ = (θ̂0 − ϵ̂0, θ̂0 + ϵ̂0) (ϵ̂0 > 0) and

constants r0, CĴ > 0 such that
(
S(Ĵ) ∪ {|η| < r0}

)
∩ (−L) = ∅ and

|γη +
n′∑
j=1

λjmj − λi| ≥ CĴ(|η|+ |m|) |m| ≥ 2 1 ≤ i ≤ n (2.9)
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for η ∈ S(Ĵ) ∪ {|η| < r0}.

Proof. Let ε > 0 be a small constant with δΛ′ + ε < π/2 and Σε = {η ̸=
0; | arg η − θΛ′| < δΛ′ + ε}. Then L ∩Σc

ε and (−L) ∩ (−Σc
ε) are finite. Hence

there exists θ̂0 with L(θ̂0) ⊂ (−Σc
ε) and ϵ̂0 > 0 such that L(θ)∩ (−L) = ∅ for

θ ∈ Ĵ = (θ̂0 − ϵ̂0, θ̂0 + ϵ̂0) and

|γη +
n′∑
j=1

λjmj − λi| ≥ C ′
Ĵ
(|η|+ |m|) η ∈ S(Ĵ).

holds for some constant C ′
Ĵ
> 0. Since there exist r0, c0 > 0 such that

|γη +
∑n′

j=1 λjmj − λi| > c0(|m|+ 1) in {|η| < r0}, the assertion holds.

Under Condition 0,1,2 there exists an interval Î satisfying
Condition 3. Let Î = (θ∗ − ϵ∗, θ∗ + ϵ∗) (ϵ∗ > 0) with L(γθ) ∩Λ♯ = ∅ for

θ ∈ Î and there exist CÎ , r > 0 such that

|γξγ +
n′∑
j=1

λjmj − λi| ≥ CÎ(|ξ|
γ + |m|)

ξ ∈ S(Î) ∪ {|ξ| < r}, |m| ≥ 2 1 ≤ i ≤ n

(2.10)

holds.
The interval Î appears in Laplace integral (3.10). We show the existence

of Î satisfying Condition 3. Let Ĵ be that in Lemma 2.2. Since Λ♯ is finite,
we can take Ĵ such that S(Ĵ)∩Λ♯ = ∅. Hence S(Ĵ)∩

(
(−L)∪Λ♯

)
= ∅. Let

θ∗ = θ̂0/γ, ϵ∗ = ϵ̂0/γ and Î = (θ∗ − ϵ∗, θ∗ + ϵ∗). Then γÎ = Ĵ and this Î
satisfies the Condition 3.

Remark 2.3. We can choose θΛ′ = θ̂0, by changing δΛ′ if necessary.
L(γθ) ∩Λ♯ = ∅ is equivalent to θ ̸∈ Θ1.

Let us define an interval I for Î = (θ∗−ϵ∗, θ∗+ϵ∗) under Condition 3. Let
δ∗ = π/2γ+ ϵ∗ and I = (θ∗ − δ∗, θ∗ + δ∗). Then the angle of sectorial domain
S0(I) in x-space is more than π/γ. We get one of the main theorems.

Theorem 2.4. There exists Φ(x, Z) = (ϕ1(x, Z), . . . , ϕn(x, Z)), Z = (z1, . . . , zn′) ∈
Cn′

, such that for any small ϵ > 0 there exists rϵ > 0, ϕi(x, Z) ∈ O{1/γ}(S0(Iϵ)×
{|Z| < rϵ}) and the followings hold.
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(1) ϕi(x, Z) = zi + O(|Z|2) for 1 ≤ i ≤ n′ and ϕi(x, Z) = O(|Z|2) for
i > n′.

(2) Let S be an open set in S0(Iϵ) and Z(x) = (z1(x), . . . , zn′(x)) (x ∈
S, |Z(x)| < rϵ) be a solution of

x1+γ dzi
dx

= λi(x)zi, i = 1, 2, . . . , n′. (2.11)

Then Y (x) = Φ(x, Z(x)), yi(x) = ϕi(x, z1(x), . . . , zn′(x)) (1 ≤ i ≤ n),
satisfies (2.5) in S.

Remark 2.5. (1) Φ(x, Z) is determined by solving a system of partial dif-
ferential equations (3.2) in section 3 and depends on choice of θ∗.
(2) Theorem 2.4 means that there exist solutions of (2.5) with exponential
series, often called transseries (see also Remarks 3.4),

zi(x) = Ai exp(

∫ x λi(τ)

τ γ+1
dτ) (1 ≤ i ≤ n′),

yi = zi(x) +
∑
|p|≥2

Ci,p(x)Z(x)
p (1 ≤ i ≤ n′),

yi =
∑
|p|≥2

Ci,p(x)Z(x)
p (i > n′), Ci,p(x) ∈ O{1/γ}(S0(Iϵ)).

(2.12)

(3) If Λ′ = {λ1}, λ1 ̸= 0, then Condition 1 is obviously holds and Condition
2 is m1λ1 − λi ̸= 0 for m1 ≥ 2 and i = 2, . . . , n.
(4) Some case of (2.5) is treated in [18],[19] for n = 1 and [5] for n ≥ 2 for
the purpose of the normalization of vector fields. The following system

x1+γ dY

dx
= (Λ + zγA)Y + zγF (x, Y ) Y = t(y1. . . . , yn)

Λ = diag.(λ1, . . . , λn), A = diag.(α1, . . . , αn)
(2.13)

is studied in [5] under some diophantine condition of {λi}ni=1.

3 Proof of Theorem 2.4

Our assumptions are
{fi(x, Y )}1≤i≤n ⊂ O{1/γ}(S0(I)× {|Y | < R}),
I = (θ∗ − δ∗, θ∗ + δ∗), Î = (θ∗ − ϵ∗, θ∗ + ϵ∗) δ∗ = π/2γ + ϵ∗,

L(γθ) ∩Λ♯ = ∅ for θ ∈ Î

(3.1)
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with fi(0, Y ) = 0, fi(x, Y ) = O(|Y |2) and (2.10) holds.

3.1 Construction of Φ(x, Z)-I

In order to construct Φ(x, Z) in Theorem 2.4 we introduce an auxiliary sys-
tem of nonlinear partial differential equations

Φ(x, Z) = (ϕ1(x, Z), ϕ2(x, Z), . . . , ϕn(x, Z)),

x1+γ ∂ϕi

∂x
+

n′∑
j=1

λj(x)zj
∂ϕi

∂zj
− λi(x)ϕi = fi(x,Φ) 1 ≤ i ≤ n,

(x, Z) = (x, z1, . . . , zn′) ∈ C× Cn′
.

(3.2)

A similar type equation appeared in [20]. Assume we find a nice solution
Φ(x, Z) of (3.2). Let Z(x) = (z1(x), . . . , zn′(x)) be a solution of

x1+γ dzi
dx

= λi(x)zi 1 ≤ i ≤ n′ (3.3)

and Y (x) = Φ(x, Z(x)) (yi(z) = ϕi(x, z1(x), . . . , zn′(x))). Then we have

x1+γ dyi
dx

= x1+γ ∂ϕi

∂x
+ x1+γ

n′∑
j=1

∂ϕi

∂zj

dzj
dx

= x1+γ ∂ϕi

∂x
+

n′∑
j=1

λj(x)zj
∂ϕi

∂zj
= λi(x)ϕi + fi(x,Φ)

= λi(x)yi + fi(x, Y (x))

and Y (x) will be a solution of (2.5).
We construct Φ(x, Z) as follows. Let Ψ(Z) = (ψ1(Z), ψ2(Z), . . . , ψn(Z)) =

(z1, z2, . . . , zn′ , 0, . . . , 0) and Φ(x, Z) = U(x, Z) + Ψ(Z). We change (3.2) to
a system of equations of U(x, Z) = (u1(x, Z), . . . , un(x, Z)). By

(
λi(x) −∑n′

j=1 λj(x)zj
∂
∂zj

)
ψi(Z) = 0 we have

(
x1+γ ∂

∂x
+

n′∑
j=1

λj(x)zj
∂

∂zj
− λi(x)

)
ui = fi(x, U +Ψ(Z)). (3.4)
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Let fi(x,Φ) =
∑

m∈Nn,|m|≥2 fi,m(x)Φ
m. Then there exist gi,k,ℓ(x) ∈ O{1/γ}(S0(I))

(k, ℓ) ∈ Nn′ × Nn such that

fi(x, U +Ψ(Z)) =
∑

m∈Nn,|m|≥2

fi,m(x)(U +Ψ(Z))m

=
∑

(k,ℓ)∈Nn′×Nn,
|k|+|ℓ|≥2,ℓ̸=0

gi,k,ℓ(x)Z
kU ℓ + fi(x,Ψ(Z)).

It follows from fi(0, Y ) = 0 that gi,k,ℓ(0) = 0 and |fi(x,Ψ(Z))| ≤ M |x||Z|2.
Let

L = x1+γ ∂

∂x
+

n′∑
j=1

λjzj
∂

∂zj
− λi λi = λi(0),

λ∗i (x) = λi(x)− λi, hi(x, Z) := fi(x,Ψ(Z)) =
∑
|p|≥2

hi,p(x)Z
p.

(3.5)

Then λ∗i (0) = 0 and (3.4) is

Lui =− (
n′∑
j=1

λ∗j(x)zj
∂

∂zj
− λ∗i (x))ui

+
∑

(k,ℓ)∈Nn′×Nn,
|k|+|ℓ|≥2,ℓ̸=0

gi,k,ℓ(x)Z
kU ℓ + hi(x, Z).

(3.6)

We introduce an auxiliary parameter ε in order to show clearly successive
process of construction of a solution.

Lui =− ε(
n′∑
j=1

λ∗j(x)zj
∂

∂zj
− λ∗i (x))ui

+ ε
∑

(k,ℓ)∈Nn′×Nn,
|k|+|ℓ|≥2,ℓ̸=0

gi,k,ℓ(x)Z
kU ℓ + εhi(x, Z).

(3.7)

If ε = 1, (3.7) coincides with (3.4) and (3.6). Our process is to find a
solution U(x, Z, ε) = (u1(x, Z, ε), . . . , un(x, Z, ε)) of (3.7) and to take ε = 1.
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It is constructed as follows. Let

ui(x, Z, ε) =
∑

(p,q)∈Nn′×N
q≥1

Ci,p,q(x)Z
pεq 1 ≤ i ≤ n,

(3.8)

and note U ℓ =
∏n

s=1 u
ℓs
s , ℓ = (ℓ1, . . . , ℓs, . . . , ℓn) and

uℓss =
ℓs∏
j=1

( ∑
(ps,j ,qs,j)∈Nn′×N
qs,j≥1

Cs,ps,j ,qs,j(x)Z
ps,jεq

s,j)
.

By substituting ui(x, Z, ε) into (3.7) and comparing the coefficient of Zpεq,
we get

(x1+γ d

dx
+

n′∑
j=1

pjλj − λi)Ci,p,q(x) = −
( n′∑

j=1

pjλ
∗
j(x)− λ∗i (x)

)
Ci,p,q−1(x)

+
∑

(k,ℓ)∈Nn′×Nn

|k|+|ℓ|≥2,ℓ̸=0

gi,k,ℓ(x)
( ∑

∑n
s=1

(∑ℓs
j=1 p

s,j
)
+k=p∑n

s=1

(∑ℓs
j=1 q

s,j
)
+1=q

ℓ1∏
j=1

C1,p1,j ,q1,j(x)

×
ℓ2∏
j=1

C2,p2,j ,q2,j(x) . . . · · ·
ℓn∏
j=1

Cn,pn,j ,qn,j(x)
)
+ δq,1hi,p(x),

(3.9)
where k, ps,j, p ∈ Nn′

, q, qs,j ∈ N and δi,j is Kronecker’s delta.

3.2 Construction of Φ(x, Z)-II

We try to construct Ci,p,q(x) by Laplace integral

Ci,p,q(x) =

∫ ∞e
√

−1θ

0

e−( ξ
x
)γ Ĉi,p,q(ξ)dξ

γ θ ∈ Î . (3.10)

We use the following notation

W1(ξ) ∗
γ
W2(ξ) ∗

γ
. . . ∗

γ
WN(ξ) =

N∏
i=1

Wi(ξ)︸ ︷︷ ︸
∗γ

.
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By using (1.13), we get the following convolution equations from (3.9)

(γξγ +
n′∑
j=1

pjλj − λi)Ĉi,p,q(ξ) = −
( n′∑

j=1

pjΛ̂∗
j(ξ)− Λ̂∗

i (ξ)
)
∗
γ
Ĉi,p,q−1(ξ)

+
∑

(k,ℓ)∈Nn′×Nn

|k|+|ℓ|≥2,ℓ̸=0

ĝi,k,ℓ(ξ) ∗
γ

( ∑
∑n

s=1(
∑ℓs

j=1 p
s,j)+k=p∑n

s=1(
∑ℓs

j=1 q
s,j)+1=q

ℓ1∏
j=1

Ĉ1,p1,j ,q1,j(ξ)

ℓ2∏
j=1

Ĉ2,p2,j ,q2,j(ξ) · · · ·
ℓn∏
j=1

Ĉn,pn,j ,qn,j(ξ)︸ ︷︷ ︸
∗γ

)
+ δq,1ĥi,p(ξ).

(3.11)
The main result of this subsection is Proposition 3.1 concerning existence
and estimate of Ĉi,p,q(ξ). We proceed to solve (3.11). There are 2 steps, to

determine Ĉi,p,q(ξ) and to estimate them.

(I) Determination of Ĉi,p,q(ξ). We notice that there exists a constant

C > 0 such that for ξ ∈ S(Î) ∪ {|ξ| < r} and |p| ≥ 2

|γξγ +
n′∑
j=1

pjλj − λi| ≥ C(|ξ|γ + |p|). (3.12)

Let q = 1. Then Ĉi,p,1 = 0 for |p| ≤ 1 and

Ĉi,p,1(ξ) =
ĥi,p(ξ)

(γξγ +
∑n′

j=1 pjλj − λi)
(3.13)

for |p| ≥ 2. ξγ−1Ĉi,p,1(ξ) is holomorphic at ξ = 0. Assume {Ĉj,r,s(ξ)}nj=1

(s < q) are determined such that Ĉj,r,s(ξ) = 0 for |r| ≤ 1. We denote the
right hand side of (3.11) by

Fi,p,q

(
ξ, {Ĉj,r,s}nj=1, (r, s) ∈ Σp,q

)
Σp,q = {(r, s); 2 ≤ |r| ≤ |p|, 1 ≤ s ≤ q − 1}.

(3.14)

Then {Ĉi,p,q(ξ)}ni=1 are determined by

Ĉi,p,q(ξ) =
Fi,p,q(ξ, {Ĉj,r,s}nj=1, (r, s) ∈ Σp,q)

(γξγ +
∑n′

j=1 pjλj − λi)
(3.15)
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and Ĉi,p,q(ξ) = 0 for |p| ≤ 1. Thus Ĉi,p,q(ξ) (|p| ≥ 2, q ≥ 1) are successively

determined and they are holomorphic in ({0 < |ξ| < r} ∪ S(Î). Moreover

ξγ−1Ĉi,p,q(ξ) is holomrphic at ξ = 0.

(II) Estimate of Ĉi,p,q(ξ). Let ϵ > 0 be a small constant. We obtain

estimates of Ĉi,p,q(ξ) in a subsector S(Îϵ) ⊂ S(Î). We often apply Lemma
1.5 to estimate. We have

Proposition 3.1. Let ϵ > 0 be an arbitrary small constant. Then there exist
positive constants r,Mi,p,q and c depending on ϵ such that

|Ĉi,p,q(ξ)| ≤
Mi,p,q|ξ|q−γec|ξ|

γ

Γ(q/γ)
ξ ∈ {0 < |ξ| < r} ∪ S(Îϵ) (3.16)

and the series
∑

(p,q)∈Nn′×N
|p|≥2,q≥1

Mi,p,qZ
psq converges in a neighborhood of (Z, s) =

(0, 0) ∈ Cn′ × C.

Before the proof we note inequality (3.12) and that there exist constants
Gi,k,ℓ, Hi,p and c such that

|ĝi,k,ℓ(ξ)| ≤
Gi,k,ℓ|ξ|1−γec|ξ|

γ

Γ(1/γ)

|ĥi,p(ξ)| ≤
Hi,p|ξ|1−γec|ξ|

γ

Γ(1/γ)
ξ ∈ {0 < |ξ| < r0} ∪ S(Îϵ).

(3.17)

Here
∑

(k,ℓ)∈Nn′×Nn

|k|+|ℓ|≥2,ℓ̸=0

Gi,k,ℓZ
kU ℓ converges in a neighborhood of (Z,U) = (0, 0) ∈

Cn′ ×Cn and
∑

|p|≥2Hi,pZ
p converges in a neighborhood of Z = 0 ∈ Cn′

(see

Lemma 1.3).
Proof of Proposition 3.1. The proof consists of 2 parts, (1) determination

of Mi,p,q and (2) convergence of the series.
(1) Determination ofMi,p,q. Let r0 in (3.17) and r in (3.16) with 0 < r < r0.

First we show how to determine Mi,p,q (p ∈ Nn′ |p| ≥ 2, q ≥ 1) and study
their relations. For q = 1 and |p| ≥ 2 there exist a constant C > 0 such that

|Ĉi,p,1(ξ)| =
|ĥi,p(ξ)|

|γξγ +
∑n′

j=1 pjλj − λi|
≤ CHi,p

|ξ|1−γec|ξ|
γ

Γ(1/γ)
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and take Mi,p,1 = CHi,p. Assume {Mi,p,q′}ni=1 (q′ < q) are determined such
that

|Ĉi,p,q′(ξ)| ≤
Mi,p,q′ |ξ|q

′−γec|ξ|
γ

Γ(q′/γ)
ξ ∈ {0 < |ξ| < r} ∪ S(Îϵ). (3.18)

Let us notice relation (3.11). It follows from Lemma 1.5 and (3.12) that there
exists a constant A > 0 such that

D1 =

∣∣(∑n′

j=1 pj|Λ̂∗
j(ξ)− Λ̂∗

i (ξ)
)
∗
γ
Ĉi,p,q−1(ξ)

∣∣
|γξγ +

∑n′

j=1 pjλj − λi|
≤ AMi,p,q−1|ξ|q−γec|ξ|

γ

Γ(q/γ)
.

(3.19)
Let

D2 = |γξγ +
n′∑
j=1

pjλj − λi|−1
∣∣∣ ∑
(k,ℓ)∈Nn′×Nn

|k|+|ℓ|≥2,ℓ̸=0

ĝ∗i,k,ℓ(ξ) ∗
γ

( ∑
∑n

s=1

(∑ℓs
j=1 p

s,j
)
+k=p∑n

s=1

(∑ℓs
j=1 q

s,j
)
+1=q

ℓ1∏
j=1

Ĉ1,p1,j ,q1,j(ξ)

ℓ2∏
j=1

Ĉ2,p2,j ,q2,j(ξ) . . . · · ·
ℓn∏
j=1

Ĉn,pn,j ,qn,j(ξ)︸ ︷︷ ︸
∗γ

)∣∣∣.
Since ∣∣∣ ℓ1∏

j=1

Ĉ1,p1,j ,q1,j(ξ)

ℓ2∏
j=1

Ĉ2,p2,j ,q2,j(ξ) . . . · · ·
ℓn∏
j=1

Ĉn,pn,j ,qn,j(ξ)
∣∣∣︸ ︷︷ ︸

∗γ

≤
ℓ1∏
j=1

M1,p1,j ,q1,j

ℓ2∏
j=1

M2,p2,j ,q2,j . . . · · ·
ℓn∏
j=1

Mn,pn,j ,qn,j

×
( ℓ1∏
j=1

|ξ|q1,j−γec|ξ|
γ

Γ(q1,j/γ)

ℓ2∏
j=1

|ξ|q2,j−γec|ξ|
γ

Γ(q2,j/γ)
. . . · · ·

ℓn∏
j=1

|ξ|qn,j−γec|ξ|
γ

Γ(qn,j/γ)

)
︸ ︷︷ ︸

∗γ

,
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we have

D2 ≤C
∑

(k,ℓ)∈Nn′×Nn

|k|+|ℓ|≥2,ℓ̸=0

Gi,k,ℓ

( ∑
∑n

s=1

(∑ℓs
j=1 p

s,j
)
+k=p∑n

s=1

(∑ℓs
j=1 q

s,j
)
+1=q

ℓ1∏
j=1

M1,p1,j ,q1,j

ℓ2∏
j=1

M2,p2,j ,q2,j

. . . · · ·
ℓn∏
j=1

Mn,pn,j ,qn,j

) |ξ|q−γ

Γ(q/γ)
ec|ξ|

γ

.

(3.20)
Hence we define for q ≥ 2

Mi,p,q =AMi,p,q−1 + C
∑

(k,ℓ)∈Nn′×Nn

|k|+|ℓ|≥2,ℓ̸=0

Gi,k,ℓ

( ∑
∑n

s=1

(∑ℓs
j=1 p

s,j
)
+k=p∑n

s=1

(∑ℓs
j=1 q

s,j
)
+1=q

ℓ1∏
j=1

M1,p1,j ,q1,j

ℓ2∏
j=1

M2,p2,j ,q2,j · · ·
ℓn∏
j=1

Mn,pn,j ,qn,j

)
.

(3.21)

Thus we have

|Ci,p,q(ξ)| ≤
2∑

i=1

Di ≤
Mi,p,q|ξ|q−γec|ξ|

γ

Γ(q/γ)
. (3.22)

(2) Convergence of
∑

|p|≥2,q≥1Mi,p,qZ
psq. For this purpose we use the

method of implicit functions used in [13] and others. We introduce holomor-
phic functions

Gi(Z,U) =
∑

(k,ℓ)∈Nn′×Nn,
|k|+|ℓ|≥2,ℓ ̸=0

Gi,k,ℓZ
kU ℓ, Hi(Z) =

∑
|p|≥2

Hi,pZ
p

at (Z,U) = (0, 0) ∈ Cn′ × Cn, Z = (z1, . . . , zn′), U = (u1, . . . , un). Let

Fi(Z, s, U) = sAui + sCGi(Z,U) + sCHi(Z) (3.23)

and consider a system of functional equations with unknown functions U =
(u1, u2, . . . , un)

ui = Fi(Z, s, U) i = 1, . . . , n. (3.24)

We have
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Lemma 3.2. There exists a unique solution U(Z, s) = (u1(Z, s), . . . , un(Z, s))
of (3.24) such that it is holomorphic at (Z, s) = (0, 0) and U(0, 0) = 0 with
expansion

ui(Z, s) =
∑

|p|≥2,q≥1

ui,p,qZ
psq. (3.25)

Moreover Mi,p,q = ui,p,q.

Proposition 3.1 follows from Lemma 3.2.
Proof of Lemma 3.2. It follows from Fi(0, 0, 0) = 0 and ( ∂Fi

∂uj
) = 0 at

(Z, s, U) = (0, 0, 0) that there exists a unique solution U(Z, s) = (u1(Z, s), . . . , un(Z, s))
of (3.24) with ui(0, 0) = 0 for 1 ≤ i ≤ n. Let ui(Z, s) =

∑
|p|+q≥1 ui,p,qZ

psq.

We have from (3.23) and (3.24)

ui,p,q = Aui,p,q−1+

+ C
∑

(k,ℓ)∈Nn′×Nn

|k|+|ℓ|≥2,ℓ ̸=0

Gi,k,ℓ

( ∑
∑n

s=1(
∑ℓs

j=1 ps,j)+k=p∑n
s=1(

∑ℓs
j=1 qs,j)+1=q

ℓ1∏
j=1

u1,p1,j ,q1,j

ℓ2∏
j=1

u2,p2,j ,q2,j . . . . . .

· · ·
ℓn∏
j=1

un,pn,j ,qn,j

)
+ δq,1CHi,p.

Since δq,1Hi,p = 0 for q ̸= 1 and ui,p,0 = 0, we have ui,p,1 = CHp = Mi,p,1 for
|p| ≥ 2 and ui,p,1 = 0 for |p| ≤ 1. Assume ui,p,q′ =Mi,p,q′ for q

′ < q. Then by
(3.21) ui,p,q =Mi,p,q.

3.3 Construction of Φ(x, z)-III

Let us show
∑

|p|≥2,q≥1 Ĉi,p,q(ξ)Z
pεq is convergent. It follows from Proposition

3.1 that there exist A,B such that Mi,p,q ≤ A|p|Bq. We have∑
q≥1

|Ĉi,p,q(ξ)ε
q| ≤

∑
q≥1

Mi,p,q|ξ|q−γεq|
Γ(q/γ)

ec|ξ|
γ

≤
∑
q≥1

A|p|Bq|ξ|q−γ|ε|q

Γ(q/γ)
ec|ξ|

γ ≤ CA|p| |ξ|1−γe(c+c′ε)|ξ|γ

Γ(1/γ)
.

(3.26)
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Hence
∑

|p|≥2,q≥1 |Ĉi,p,q(ξ)Z
pεq| converges and {Ĉi,p,q(ξ)} (1 ≤ i ≤ n) satisfy

(3.11). Take ε = 1 and let Ĉi,p(ξ) =
∑

q≥1 Ĉi,p,q(ξ) and

Ci,p(x) =

∫
L(θ)

e−( ξ
x
)γ Ĉi,p(ξ)dξ

γ θ ∈ Îϵ. (3.27)

Then it follows from Proposition 1.4 that ui(x, Z) =
∑

|p|≥2Ci,p(x)Z
p ∈

O{1/γ}(S0(I) × {|Z| < rϵ} and {ui(x, Z)}ni=1 satisfy (3.6). We get a solu-
tion U(x, Z) = (u1(x, Z), . . . , un(x, Z)) of (3.4). Consequently Φ(x, Z) =
U(x, Z) + Ψ(Z) = (ϕ1(x, Z), . . . , ϕn(x, Z)) is a solution of equation (3.2)
such that ϕi(x, Z) ∈ O{1/γ}(S0(Iϵ)×{|Z| < rϵ}) with ϕi(x, Z) = zi +O(|Z|2)
for 1 ≤ i ≤ n′ and ϕi(x, z) = O(|Z|2) for i > n′. Thus we get Theorem 2.4.

3.4 Reduction to θΛ′ = 0

We can take θΛ′ = θ̂0 and θ∗ = θΛ′/γ (see Remark 3.2). By transformation
x = t exp(iθ∗),

d
dx

= exp(−iθ∗) d
dt

and x1+γ d
dx

= eiγθ∗t1+γ d
dt
,

x1+γ d

dx
− λi = eiθΛ′ (t1+γ d

dt
− e−iθΛ′λi).

We have arg(e−iθΛ′λi) = ωi − θΛ′ and |ωi − θΛ′| < δ < π/2. Hence we may
assume θΛ′ = 0 and

arg λi = ωi, |ωi| < δ <
π

2
, 1 ≤ i ≤ n′.

Then there exist δ∗ > π/2γ and r = r(δ∗) > 0 such that

ϕi(x, Z) ∈ O{1/γ}
(
S0(I)× {|Z| < r}

)
, I = (−δ∗, δ∗). (3.28)

Let

zi(x) = ehi(x) hi(x) =

∫ x λi(t)

tγ+1
dt = − λi

γxγ
+ . . . , 1 ≤ i ≤ n′ (3.29)

and ε > 0 be a small constant. If |γ arg x−ωi| < (π/2−ε), zi(x) exponetially
decreases with order γ. Let I(ε) = ∩n′

i=1{θ; |γθ − ωi| < (π/2 − ε)}. Then
{θ; |γθ| < (π/2− δ − ε)} ⊂ I(ε) and I(ε) ̸= ∅. We have from Theorem 2.4

Corollary 3.3. Let x ∈ S0(I(ε)) and yi(x) = ϕi(x,C1z1(x), . . . , Cn′zn′(x)),
where |Ckzk(x)| < r. Then Y (x) = t(y1(x), . . . , yn(x)) is a solution of (2.5).
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4 Nonlinear equation with irregular singularity II

In this section we study Y =t(y1.y2, . . . , yn)

x1+γ dY

dx
=F0(x) + A(x)Y + F (x, Y ),

(4.1)

where A(x) = (ai,j(x))1≤i,j≤n, F0(x) and ai,j(x) are holomorphic in a neigh-
borhood of x = 0 and F0(0) = 0. F (x, Y ) is holomorphic in a neighborhood
of (x, Y ) = (0, 0) and F (x, Y ) = O(|Y |2). Let {λi}1≤i≤n be eigenvalues of
A(0) and λi ̸= 0 for all i. Let ωi = arg λi (0 ≤ ωi < 2π) and

Θ0 = {(ωi + 2πℓ)/γ, 1 ≤ i ≤ n, ℓ ∈ Z}. (4.2)

There exists a unique formal solution K̃(x) ∈ C[[x]]n with K̃(0) = 0 of (4.1).
Its Borel summability follows from [2]. We have

Proposition 4.1. Suppose θ∗ ̸∈ Θ0. Then there exists a solution K(x)
of (4.1), which is γ-Borel summable in the direction θ∗ with the asymptotic

expansion K̃(x).

Put Y = xW +K(x). Then

x1+γ dW

dx
=(A(x)− xγI)W + x−1

(
F (x, xW +K(x))− F (x,K(x))

)
x1+γ dwi

dx
=

n∑
j=1

(ai,j(x)− δi,jx
γ)wj + x−1

(
fi(x, xW +K(x))− fi(x,K(x))

)
=

n∑
j=1

(ai,j(x)− δi,jx
γ)wj +

n∑
j=1

∂

∂yj
fi(x,K(x))wj + gi(x,W ).

Put A′(x) =
(
ai,j(x)− δi,jx

γ + ∂
∂yj
fi(x,K(x))

)
. Then W =t(w1.w2, . . . , wn),

x1+γ dW

dx
=A′(x)W +G(x,W ),

(4.3)

whereA′(0) = A(0) andG(x,W ) = t(g1(x,W ), . . . , gn(x,W )) withG(0,W ) =
0 and G(x,W ) = O(|W |2). Assume {λi}1≤i≤n are distinct (Condition 0) and

21



θ∗ ̸∈ Θ0 ∪ Θ1. Then by an invertible linear transformation W = P (x)U
whose elements in O{1/γ}(S0(I)) (I = (θ∗ − δ∗, θ∗ + δ∗), δ∗ > π/2γ), we have

U =t(u1.u2, . . . , un),

x1+γ dU

dx
=B(x)U +H(x, U),

B(x) =diag. (b1(x), b2(x), . . . , bn(x)),

H(x, U) =t(h1(x, U), h2(x, U), . . . , hn(x, U)),

(4.4)

where bi(x) is a polynomial with degree ≤ γ and bi(0) = λi and hi(x, U) ∈
O{1/γ}(S0(I)×Ω), Ω = {U ∈ Cn; |U | < R}, with hi(0, U) = 0 and hi(x, U) =
O(|U |2). Consequently we get (4.4) from (4.1) by a transformation Y =
K(x) + xW = K(x) + xP (x)U . We remark that B(x) depends on K(x).

Set Λ′ = {λi; 1 ≤ i ≤ n′} and assume Conditions 1 and 2. Take θ∗ so
that it satisfies the assumptions of Theorem 2.4. Consider an n′ × n′ system
of linear equations  Z =t(z1.z2, . . . , zn′),

x1+γ dzi
dx

=bi(x)zi, 1 ≤ i ≤ n′.
(4.5)

By applying Theorem 2.4, we have

Theorem 4.2. There exists Φ(x, Z) = (ϕ1(x, Z), . . . , ϕn(x, Z)) such that for
any small ϵ > 0 there exists rϵ > 0, ϕi(x, Z) ∈ O{1/γ}(S0(Iϵ)×{Z ∈ Cn′

; |Z| <
rϵ}) and the followings hold.

(1) ϕi(x, Z) = zi + O(|Z|2) for 1 ≤ i ≤ n′ and ϕi(x, Z) = O(|Z|2) for
i > n′.

(2) Let S be an open set in S0(Iϵ) and Z(x) = (z1(x), . . . , zn′(x)) (x ∈
S, |Z(x)| < rϵ) be a solution of (4.5). Then Y (x) = K(x)+xP (x)Φ(x, Z(x))
satisfies (4.1) in S.

5 Applications

5.1 A special 2× 2 system

Let us consider a special 2× 2 system as an example

x1+γ dY

dx
= F0(x) + A(x)Y + F (x, Y ) Y =

[
y1
y2

]
. (5.1)
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The assumptions for (5.1) are the same as that for (4.1). Let λ1, λ2 be
eigenvalues of A(0). Further we assume

Condition 5-1� �
λ1λ2 ̸= 0 and arg λ1 = ω, arg λ2 = ω + π.� �

Then Θ0 ∪ Θ1 = {(ω + ℓπ)/γ; ℓ ∈ Z}. If Λ′ = {λ1} (resp. Λ′ = {λ2}), then
L ⊂ L(ω) (resp. L ⊂ L(ω + π)) (see (2.8)). Let θ∗ ̸∈ Θ0 ∪ Θ1 and K(x) =
t(k1(x), k2(x)) be a solution of (5.1) with γ-Borel summable in the direction
θ∗. By eliminating F0(x) and a linear transformation of the unknowns Y =
K(x) + xP (x)U , U = t(u1, u2), we can reduce (5.1) to

x1+γ d

dx

[
u1
u2

]
=

[
λ1(x) 0
0 λ2(x)

] [
u1
u2

]
+G(x, U), G(x, U) =

[
g1(x, U)
g2(x, U)

]
.

(5.2)
λi(x) (i = 1, 2) is a polynomial with degree ≤ γ and λi(0) = λi. G(x, U) is
γ-Borel summable in the direction θ∗ with respect to x such that G(x, U) =
O(|U |2) and G(0, U) = 0.

Let hi(x) =
∫ x λi(τ)

τγ+1 dτ . Then Z = t(C1e
h1(x), C2e

h2(x)) is a solution of

x1+γ d

dx

[
z1
z2

]
=

[
λ1(x) 0
0 λ2(x)

] [
z1
z2

]
. (5.3)

Take θ∗ ∈ (ω
γ
, ω+π

γ
) and let I = (ω

γ
− π

2γ
, ω
γ
+ 3π

2γ
). Then the assumptions

of Theorem 4.2 hold for both Λ′ = {λ1} and Λ′ = {λ2}. Hence there exist
Ψ1(x, z1) =

t(ψ1,1(x, z1), ψ1,2(x, z1)) and Ψ2(x, z2) =
t(ψ2,1(x, z2), ψ2,2(x, z2))

with ψi,j(x, zi) =
∑∞

n=1 ψ
n
i,j(x)z

n
i ∈ O{1/γ}(S0(Iϵ)× {|zi| < rϵ}) for any small

ϵ > 0 and |∂ziψi,1(x, 0)|+ |∂ziψi,2(x, 0)| ̸≡ 0 such that they have the following
properties.

Theorem 5.1. Let ϵ > 0 be an arbitrary small constant.
(1) Let I

ω
γ = (ω

γ
− π

2γ
, ω
γ
+ π

2γ
). Then there exists C(ϵ) > 0 such that Y (x) =

t(y1(x), y2(x)),

yj(x) = kj(x) +
∞∑
n=1

ψn
1,j(x)C

n
1 e

nh1(x) j = 1, 2, (5.4)

with |C1| < C(ϵ) is a solution of (5.1) in S0(I
ω
γ
ϵ ).

(2) Let I
ω+π
γ = (ω

γ
+ π

2γ
, ω
γ
+ 3π

2γ
). Then there exists C(ϵ) > 0 such that
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Y (x) = t(y1(x), y2(x)),

yj(x) = kj(x) +
∞∑
n=1

ψn
2,j(x)C

n
2 e

nh2(x) j = 1, 2, (5.5)

with |C2| < C(ϵ) is a solution of (5.1) in S0(I
ω+π
γ

ϵ ).

Proof. Since eh1(x) (eh2(x)) decays exponentially in S0(Iω/γ
ϵ ) (resp.S0(I(ω+π)/γ

ϵ )).

Y (x) = t(y1(x), y2(x)) is a solution of (5.1) in S0(Iω/γ
ϵ ) (resp.S0(I(ω+π)/γ

ϵ )).

5.2 Painlevé 4

We apply Theorem 5.1 to Painlevé 4 equation as an example. Other Painlevé
equations at irregular singular points are also studied in the same way.
Transseries solutions are studied for Painlevé 1, 2, 5 equations by resur-
gence methods in [8], [9], [10] and [11].
Painlevé-4 is

(P4) : y′′ =
(y′)2

2y
+

3

2
y3 + 4ty2 + 2(t2 − α)y +

β

y
. (5.6)

Let t = 1/x. Then

x2(x2
d

dx
)2y =

1

2y
(x3

dy

dx
)2 +

3

2
x2y3 + 4xy2 + 2(1− αx2)y +

βx2

y
. (5.7)

(I) Futher by multiplying (5.7) by x, we have

x3(x2
d

dx
)2y =

x

2y
(x3

dy

dx
)2 +

3

2
x3y3 + 4x2y2 + 2(1− αx2)xy +

β

y
x3.

Let 3c2 + 8c + 4 = 0 (c = −2
3
,−2). By transformation y = 1

x
(c + z), we

obtain

x3(x2
d

dx
)2y = (x3

d

dx
)2z − 3x5

d

dx
z

=
x2

2c
(1 +

z

c
)−1(x3

d

dx

c+ z

x
)2 +

3

2
(c+ z)3 + 4(c+ z)2

+ 2(c+ z)− 2αx2(c+ z) +
βx4

c
(1 +

z

c
)−1.
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By (1 + z/c)−1 =
∑∞

n=0(−
z
c
)n we get

(x3
d

dx
)2z = 2x5

d

dx
z + a(x)z + b(x, z, x3

d

dx
z) + h(x), (5.8)

where

a(x) =
9

2
c2 + 8c+ 2− 2αx2 +O(x4), b(x, z, p) =

∑
i+j≥2

bi,j(x)z
ipj

h(x) =
3

2
c3 + 4c2 + 2c− 2αcx2 +O(x4) = −2αcx2 +O(x4).

We have a(x) = −4(c+1)+O(x2) (−4(c+1) = −4/3 or 4). Let u = z, v =
x3z′. Then we have

x3
d

dx

[
u
v

]
=

([
0 1

−4(c+ 1) 0

]
+ x2

[
0 0

−2α 2

]
+O(x4)

)[
u
v

]
+

[
0

b(x, u, v) + h(x)

]
.

. (5.9)

and γ = 2. Hence we can apply Theorem 5.1.
. (II) Let 2c2 + β = 0 (β ̸= 0) and y = x(c+ z). Then from (5.7)

x2(x2
d

dx
)2y = x(x3

d

dx
)2z + x6

dz

dx
+ 2x5z + 2cx5,

3

2
x2y3 + 4xy2 − 2αx2y = x3(b0(x) + b1(x)z + b2(x)z

2 + b3(x)z
3),

2y +
βx2

y
= 4xz +

βx

c

∞∑
n=2

(−z/c)n,

b1(x) =
9c2

2
x2 + 8c− 2α and

1

2y
(x3

dy

dx
)2 = x5(

d(xz)

dx
+ c)2(

1

2c

∞∑
n=0

(−z/c)n)

=
cx5

2
+ (O(x5))z + x6

dz

dx
+ x

∑
i+j≥2

bi,j(x)z
i(x3

dz

dx
)j.

(x3
d

dx
)2z = x2h(x) + (4 + (8c− 2α)x2 +O(x4))z + b(x, z, x3z′), (5.10)
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where h(x) is holomorphic at x = 0. Let u = z, v = x3z′. Then we have

x3
d

dx

[
u
v

]
=

([
0 1
4 0

]
+ x2

[
0 0

8c− 2α 0

]
+O(x4)

)[
u
v

]
+

[
0

b(x, u, v) + x2h(x)

] (5.11)

and we can apply Theorem 5.1 to this case.

6 Transformation of systems of linear ordinary equations with
irregular singularity

Let us return to an n× n system of linear ordinary equations

x1+γ dY

dx
= A(x)Y, A(x) = (ai,j(x)). (6.1)

We give a proof of Proposition 2.1, which is a special case of diagonalization
of systems ([1]). Let λ1, λ2, . . . , λn be the eigenvalues of A(0), λi ̸= λj (i ̸= j)
and A(0) be diagonal. Let us recall the definitions ωi,k, θi,k,ℓ and Θ1 (see

(2.3)). Let θ∗ ̸∈ Θ1 and Î = (θ∗ − ϵ∗, θ∗ + ϵ∗) (ϵ∗ > 0) be an interval such

that Î ∩ Θ1 = ∅. We assume {ai,j(x)}1≤i,j≤n are γ-Borel summable in the
direction θ∗. Hence there exists I = (θ∗ − δ∗, θ∗ + δ∗) (δ∗ > π/2γ) such that
ai,j(x) ∈ O{1/γ}(S0(I)). Firstly we have, by a transformation with polynomial
elements.

Lemma 6.1. There is a matrix P (x) (P (0) = Id) with polynomial elements
such that linear transformation Y = P (x)Z transforms (6.1) to

x1+γ dzi
dx

= λi(x)zi +
n∑

k=1

a∗i,k(x)zk (1 ≤ i ≤ n), (6.2)

where λi(x) is a polynomial with degree ≤ γ, λi(0) = λi and a
∗
i,k(x)(1 ≤ i, k ≤

n) ∈ O{1/γ}(S0(I)) with a
∗
i,k(x) = O(x1+γ).

It is known that we can take P (x) with formal power series elements so
that A∗(x) = (a∗i,k(x)) is also diagonal ([23]). We only have to stop at finite
steps.
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Proof. Let Y = P (x)Z. Then

x1+γ dY

dx
= x1+γ(

dP

dx
Z + P (x)

dZ

dx
) = A(x)P (x)Z.

Suppose x1+γ dZ

dx
= B(x)Z. Then

x1+γP ′(x) + P (x)B(x) = A(x)P (x).

Let A(x) =
∑∞

k=0Akx
k, B(x) =

∑∞
k=0Bkx

k and P (x) =
∑γ

k=0 Pkx
k. We

have ∑
k+l=m

AlPk −
∑

k+l=m

PkBl = 0 m ≤ γ,∑
k+l=m

AlPk −
∑

k+l=m

PkBl = (m− γ)Pm−γ m ≥ γ + 1.

Let P0 = Id and B0 = A0. For 1 ≤ m ≤ γ

PmB0 − A0Pm =
m−1∑
k=1

(Am−kPk − PkBm−k) + Am −Bm.

Let Pm = (pm,i,j)1≤i,j≤n and Bm = (bm,i,j)1≤i,j≤n. It follows from A0 = B0 =
diag.(λ1, . . . , λn) with λi ̸= λj(i ̸= j) that we can take pm,i,j (i ̸= j) so that
bm,i,j = 0 (i ̸= j, 0 ≤ m ≤ γ). Pm = 0 for m ≥ γ + 1.

Therefore we may study

x1+γ dyi
dx

= λi(x)yi +
n∑

j=1

ai,j(x)yj (1 ≤ i ≤ n) (6.3)

with ai,j(x) = O(x1+γ). Set n × n matrices Λ(x) = diag.(λ1(x), . . . .λn(x))
and A(x) = (ai,j(x)). Our aim is to transform (6.3) to a simpler form, that
is, to the following linear system of equations

x1+γ dzi
dx

= λi(x)zi (1 ≤ i ≤ n), (6.4)

by using γ-Borel summable functions.
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Proof of Proposition 2.1. Let Y = (Id+C(x))Z, where C(x) = (Ci,k(x))
is an n× n matrix with C(0) = 0. Then

x1+γ dY

dx
= x1+γ(Id+ C(x))

dZ

dx
+ x1+γ dC

dx
Z

= (Id+ C(x))Λ(x)Z + x1+γ dC

dx
Z = (Λ(x) + A(x))(Id+ C(x))Z.

The equation to solve is

(Id+ C(x))Λ(x) + x1+γ dC

dx
= (Λ(x) + A(x))(Id+ C(x)), (6.5)

more precisely

x1+γC ′
i,k(x) +

(
δi,k + Ci,k(x)

)
λk(x)

= λi(x)(δi,k + Ci,k(x)) +
n∑

j=1

ai,j(x)(δj,k + Cj,k(x)).

Thus we get a system of differential equations with n2 unknown functions
{Ci,k(x); 1 ≤ i, k ≤ n}

x1+γC ′
i,k(x) =(λi(x)− λk(x))Ci,k(x)

+
n∑

j=1

ai,j(x)Cj,k(x) + ai,k(x).
(6.6)

The aim is to show that {Ci,k(x)}1≤i≤n exist in some sectorial region and are
γ-Borel summable functions. We construct Ci,k(x) by γ-Laplace integral

Ci,k(x) =

∫ ∞eiθ

0

e−( ξ
x
)γ Ĉi,k(ξ)dξ

γ. (6.7)

Set λi,k = λi − λk and λ∗i,k(x) = λi(x)− λk(x)− λi,k. We have from (6.6)

x1+γC ′
i,k(x)− λi,kCi,k(x) = λ∗i,k(x)Ci,k(x) +

n∑
j=1

ai,j(x)Cj,k(x) + ai,k(x)

(6.8)
and the following system of convolution equations

(γξγ − λi,k)Ĉi,k(ξ) = λ̂∗i,k(ξ) ∗
γ
Ĉi,k(ξ) +

n∑
j=1

âi,j(ξ) ∗
γ
Ĉj,k(ξ) + âi,k(ξ). (6.9)
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Lemma 6.2. (1) There exists R > 0 such that ξγ−1λ̂∗i,k(ξ) and ξ
γ−1âi,j(ξ)

are holomorphic in Ξ = {|ξ| < R} ∪ S(Î).

(2) For arbitrary small ϵ > 0 there exist constants Mϵ and cϵ such that

|λ̂∗i,k(ξ)|, |âi,j(ξ)| ≤
Mϵ|ξ|1−γecϵ|ξ|

γ

Γ(1/γ)
, |âi,j(ξ)| ≤

Mϵ|ξ|ecϵ|ξ|
γ

Γ((1 + γ)/γ)
(6.10)

in {0 < |ξ| < R} ∪ S(Îϵ).

Proof. The statement (1) is obvious and the estimate (6.10) follows from
λ∗i,k(x) = O(x) and ai,j(x) = O(x1+γ).

Let us construct Ĉi,k(ξ) =
∑∞

m=1 Ĉ
m
i,k(ξ) as follows

(γξγ − λi,k)Ĉ
1
i,k(ξ) =âi,k(ξ),

(γξγ − λi,k)Ĉ
m
i,k(ξ) =λ̂

∗
i,k(ξ) ∗

γ
Ĉm−1

i,k (ξ) +
n∑

j=1

âi,j(ξ) ∗
γ
Ĉm−1

j,k (ξ) m ≥ 2.

(6.11)

Let ΞÎ = {0 < |ξ| < R} ∪ S(Î) (|γRγ| < min{i̸=k} |λi,k|). If i ̸= k and

ξ ∈ ΞÎ , then γξ
γ − λi,k ̸= 0 and Ĉ1

i,k(ξ) = âi,k(ξ)/(γξ
γ − λi,k). If i = k, then

λ̂∗i,k(ξ) = 0 and Ĉ1
k,k(ξ) = âk,k(ξ)/γξ

γ. The following lemma holds.

Lemma 6.3. There exist Ĉm
i,k(ξ) ∈ O(S(Î) ∪ {0 < |ξ| < R}) such that the

following holds.

(1) Let ϵ > 0 be an arbitrary small constant. Then there exist constants Aϵ

and cϵ such that

|Ĉm
i,k(ξ)| ≤

Am
ϵ |ξ|m−γ

Γ(m/γ)
ecϵ|ξ|

γ

. ξ ∈ ΞÎϵ
= {0 < |ξ| < R} ∪ S(Îϵ). (6.12)

(2) ξγ−1Ĉm
i,k(ξ) ∈ O({|ξ| < R}).

Proof. We show (6.12) by induction. Let m = 1. For i ̸= k inequality (6.12)
holds. Let i = k. (6.12) holds from the second estimate of (6.10), Assume
(6.12) holds for m− 1. Then there exists a constants Bϵ such that

|λ̂∗i,k(ξ) ∗
γ
Ĉm−1

i,k (ξ)|, |âi,j(ξ) ∗
γ
Ĉm−1

j,k (ξ)| ≤ BϵA
m−1
ϵ |ξ|m−γecϵ|ξ|

γ

Γ(m/γ)
.
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If i ̸= k, γξγ −λi,k ̸= 0. Then estimate (6.12) for m holds. If i = k, it follows

from λ̂∗i,k(ξ) = 0 and the second estimate of (6.10) that

|âk,j(ξ) ∗
γ
Ĉm−1

j,k (ξ)| ≤ BϵA
m−1
ϵ |ξ|mecϵ|ξ|γ

Γ(m/γ)

and the estimate (6.12) also holds for m. We have the statement (2) in the
same way as above.

Thus we get

Proposition 6.4. There exist {Ĉi,k(ξ)}1≤i,k≤n such that

(1) Ĉi,k(ξ) ∈ O(ΞÎ), ξ
γ−1Ĉi,k(ξ) ∈ O({|ξ| < R}) and {Ĉi,k(ξ)}1≤i,k≤n sat-

isfy convolution equations (6.9).

(2) For any small ϵ > 0 there are positive constants Mϵ and c
′
ϵ such that

|Ĉi,k(ξ)| ≤
Mϵ|ξ|1−γ

Γ(1/γ)
ec

′
ϵ|ξ|γ , ξ ∈ ΞÎϵ

= {ξ; 0 < |ξ| < R} ∪ S(Îϵ). (6.13)

Proof. We have {Ĉm
i,k(ξ)}m=1,2,... with (6.12). Then there exist constants

Mϵ, cϵ and c
′
ϵ such that

∞∑
m=1

|Ĉm
i,k(ξ)| ≤

∞∑
m=1

Am
ϵ |ξ|m−γ

Γ(m/γ)
ecϵ|ξ|

γ ≤Mϵ|ξ|1−γec
′
ϵξ|γ .

Hence Ĉi,k(ξ) =
∑∞

m=1 Ĉ
m
i,k(ξ) (1 ≤ i, k ≤ n) converge and satisfy (6.9).

Let us define for θ ∈ Iϵ = (θ∗ − ϵ, θ∗ + ϵ)

Ci,k(x) =

∫ eıθ∞

0

e−( ξ
x
)γ Ĉi,k(ξ)dξ

γ. (6.14)

Thus we obtain a linear transformation Y = (Id + C(x))Z and Proposition
2.1 is shown.
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[16] Iwano M., Intégration analytique d’un système d’équations différntielles
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