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ABSTRACT. In this paper we study a long-standing conjecture of Huneke and Wiegand which is concerned
with the torsion submodule of certain tensor products of modules over one-dimensional local domains. We
utilize Hochster’s theta invariant and show that the conjecture is true for two periodic modules. We also
make use of a result of Orlov and formulate a new condition which, if true over hypersurface rings, forces
the conjecture of Huneke and Wiegand to be true over complete intersection rings of arbitrary codimension.
Along the way we investigate the interaction between the vanishing of Tate (co)homology and torsion in
tensor products of modules, and obtain new results that are of independent interest.

1. INTRODUCTION

Throughout R denotes a commutative Noetherian local ring with unique maximal ideal m and residue
field k, and all R-modules are assumed to be finitely generated.

In commutative algebra there are several questions about tensor products of modules that are noto-
riously difficult to solve; see, for example, [26]. A fine example of such a question is the following
long-standing conjecture of Huneke and Wiegand:

Conjecture 1.1. (Huneke-Wiegand; see [34, page 473]) Assume R is one-dimensional and let M be
a nonfree and torsion-free R-module. Assume M has rank (e.g., R is a domain). Then the torsion
submodule of M⊗R M∗ is nonzero, i.e., M⊗R M∗ has (nonzero) torsion, where M∗ = HomR(M,R).

Conjecture 1.1, over Gorenstein rings, is in fact a special case of a celebrated conjecture of Auslander
and Reiten [6] and is wide open in general, even for two generated ideals over complete intersection
domains of codimension two; see Remark 3.10. On the other hand, besides some other special cases,
Conjecture 1.1 is known to be true over hypersurface rings; see [34] and [32] for the details. In fact,
since maximal Cohen-Macaulay modules (that have no free direct summand) are two-periodic over
hypersurface rings, the hypersurface case of Conjecture 1.1 is subsumed by the following result; note
that Ωn

RM denotes then nth syzygy of a given module M; see 2.2.

Theorem 1.2. ([16, 4.17]) Assume R is a one-dimensional complete intersection domain and let M be
a nonzero R-module. Assume M is two-periodic, i.e., M ∼= Ω2

RM. Then M⊗R M∗ has torsion.

In this paper we study Conjecture 1.1 for the case where R is a domain. Our aim concerning Theorem
1.2 is twofold. In section 2 we give a proof of Theorem 1.2 – which is entirely different from the one
given in [16] – by using Tate (co)homology; see Corollary 2.18. This approach motivates us to seek, and
hence obtain, new results about the vanishing of Tate (co)homology and torsion in tensor products that
are independent of Conjecture 1.1; see, for example, Corollary 2.12 and Theorem 2.14. Furthermore, we
generalize Theorem 1.2 in section 3. More precisely, we remove the complete intersection hypothesis
from Theorem 1.2 and hence prove:
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Theorem 1.3. Assume R is a one-dimensional domain and let M be a nonzero R-module that is two-
periodic. Then M⊗R M∗ has torsion.

The proof of Theorem 1.3 relies upon an invariant, referred to as the Hochster’s theta invariant, and
is established in the paragraph following Proposition 3.9. In section 3, motivated by Theorems 1.2 and
1.3, we also provide an example of a two-periodic module over a one-dimensional local ring that is not
a complete intersection; see Example 3.11.

A remarkable theorem of Orlov [38] determines an equivalence between the singularity category of
R and that of ProjA for the generic hypersurface A of R. The gist of our work in Section 4 is to exploit
Orlov’s theorem and show that Conjecture 1.1 holds over all one-dimensional complete intersection
domains in case a certain condition we formulate holds for all hypersurface domains. Our approach to
use Orlov’s theorem to attack Conjecture 1.1 seems to be new and it establishes the following theorem;
see the paragraph following Remark 4.13.

Theorem 1.4. Conjecture 1.1 is true over each one-dimensional complete intersection domain provided
that the following condition holds:

Whenever R is a hypersurface domain, c is a positive integer, M and M⊗R Extc−1
R (M,R) are Cohen-

Macaulay R-modules, both of which have codimension c−1, it follows that the projective dimension of
M is finite.

Note that the case where c = 1 of the condition stated in Theorem 1.4 is nothing but the condition
of Conjecture 1.1. We do not know whether or not each hypersurface domain satisfies the condition
stated in Theorem 1.4, but we are now able to translate the problem of Conjecture 1.1 to a problem over
hypersurface rings; the new advantage we have is that homological algebra is better understood over
hypersurface rings than over complete intersection rings.

2. A PROOF OF THEOREM 1.2 VIA TATE HOMOLOGY

In this section we use Tate (co)homology and give a proof of Theorem 1.2 that is distinct from the
one obtained in [16]. Along the way we obtain general results that should be useful to further understand
the vanishing of Tate (co)homology and torsion; see, for example, Corollary 2.11 and Theorem 2.14.

We recall several definitions and preliminary results that are necessary for our arguments (we record
some of these results within a number without labeling them as proposition or theorem). We start with
the definitions of the Gorenstein and the complete intersection dimension:

2.1. ([3, 8, 9]) Let M be an R-module. Then M is said to be totally reflexive provided that the natural
map M→M∗∗ is bijective and ExtiR(M,R) = 0 = ExtiR(M

∗,R) for all i≥ 1. The infimum of n for which
there exists an exact sequence 0→ Xn → ··· → X0 → M → 0 such that each Xi is totally reflexive is
called the Gorenstein dimension of M, and is denoted by G-dimR(M). Therefore M is totally reflexive
if and only if G-dimR(M)≤ 0, where it follows by convention that G-dimR(0) =−∞.

A diagram of local ring homomorphisms of local rings R→ R′ � S is called a quasi-deformation
if R→ R′ is flat and the kernel of the surjection S� R′ is generated by a regular sequence on S. The
complete intersection dimension of M is defined as follows

CI-dimR(M) = inf{pdS(M⊗R R′)−pdS(R
′) : R→ R′� S is a quasi-deformation},

where pdS(M) denotes the projective dimension of M over S.
In general it follows G-dimR(M)≤ CI-dimR(M)≤ pdR(M).
Also we have G-dimR(M) = CI-dimR(M) if CI-dimR(M) < ∞, and G-dimR(M) = CI-dimR(M) =

pdR(M) if pdR(M)< ∞.

2.2. Let M be an R-module and let n be an integer. If n > 0, then Ωn
RM denotes the nth syzygy of M,

that is, the image of the nth differential map in a minimal free resolution of M. Also, if M is totally
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reflexive and n < 0, then Ωn
RM denotes the nth cosyzygy of M, that is, the image of the R-dual of the nth

differential map in a minimal free resolution of M∗. Note, by convention, we have Ω0
RM = M.

2.3. Let M be an R-module. Then the Auslander transpose of M, denoted by TrRM, is the cokernel of

the map f ∗ = HomR( f ,R), where F1
f−→ F0→M→ 0 is part of the minimal free resolution of M; see

[3]. Note that M∗ ∼= Ω2
RTrRM, up to free modules. Note also that TrRM is unique, up to isomorphism,

since so are minimal free resolutions.

The following fact is used for 2.10 and Propositon 3.9,

2.4. If M is an R-module such that TorR
1 (M,TrRM) = 0, then M is free; see [5, A1] and also [41, 3.9].

Next we recall the definitions of Tate homology and cohomology. Although their definitions do not
require the ring to be local, we keep the local setting for simplicity.

2.5. Let M be an R-module. A complex T of free R-modules is said to be totally acyclic provided that
Hn(T) = 0 = Hn(HomR(T,R)) for all n ∈ Z. A complete resolution of M is a diagram T ϑ−→ P π−→M,
where P is a projective resolution, T is a totally acyclic complex, and ϑ is a morphism of complexes
such that ϑi is an isomorphism for all i� 0.

Assume T→ P→ M is a complete resolution of M. Then, for an R-module N and for i ∈ Z, the
Tate homology T̂or

R
i (M,N) and the Tate cohomology Êxt

i
R(M,N) of M and N over R are defined as

Hi(T⊗R N) and Hi(HomR(T,N)), respectively.
It is known that G-dimR(M) < ∞ if and only if M has a complete resolution; see [10, 3.1]. Hence

T̂or
R
i (M,N) and Êxt

i
R(M,N) are defined for each R-module N in case G-dimR(M)< ∞.

The following are some of the fundamental properties of Tate (co)homology modules; see, for ex-
ample [8, 10, 22] or [20, 2.11 and 2.12].

2.6. Let M and N be R-modules such that G-dimR(M)< ∞.

(i) If i > G-dimR(M), then it follows T̂or
R
i (M,N)∼= TorR

i (M,N) and Êxt
i
R(M,N)∼= ExtiR(M,N).

(ii) If 0→ M′ → M→ M′′ → 0 is a short exact sequence of R-modules, where G-dimR(M′) < ∞ or
G-dimR(M′′)< ∞, then, for each i ∈ Z, there is an exact sequence of cohomology of the form:

Êxt
i
R(M

′′,N)→ Êxt
i
R(M,N)→ Êxt

i
R(M

′,N)→ Êxt
i+1
R (M′′,N),

and also of homology of the form:

T̂or
R
i (M

′,N)→ T̂or
R
i (M,N)→ T̂or

R
i (M

′′,N)→ T̂or
R
i−1(M

′,N).

(iii) T̂or
R
i+n(M,N)∼= T̂or

R
i (Ω

n
RM,N) and Êxt

i+n
R (M,N)∼= Êxt

i
R(Ω

n
RM,N) for all i,n ∈ Z.

(iv) If pdR(M)< ∞, then Êxt
i
R(M,N) = 0 = T̂or

R
i (M,N) for all i ∈ Z.

(v) If M is totally reflexive, then T̂or
R
i (M,N)∼= Êxt

−i−1
R (M∗,N)∼= Êxt

−i+1
R (TrRM,N) for all i ∈ Z.

In the following we collect some results that are used in the proof of Proposition 2.9.

2.7. Let M and N be R-modules such that n≥ 1.
(i) If depthR(M⊗R N)≥ n, depthR(N)≥ n−1 and lengthR(ExtiR(TrRM,N))< ∞ for all i = 1, . . . ,n,

then it follows that ExtiR(TrRM,N) = 0 for all i = 1, . . . ,n; see [20, 4.2(ii)].
(ii) If ExtiR(TrRM,N)= 0 for all i= 1, . . . ,n, then it follows that depthR(M⊗R N)≥min{n,depthR(N)};

see [20, 4.2(iii)].
(iii) If pdR(M)≤ depthR(N) and lengthR(TorR

i (M,N))< ∞ for all i≥ 1, then it follows TorR
i (M,N) = 0

for all i≥ 1; see [35, 2.2].
(iv) If pdR(M) < ∞ and TorR

i (M,N) = 0 for all i ≥ 1, then the depth formula for M and N holds, that
is, depthR(M⊗R N) = depthR(N)−pdR(M); see [2, 1.2].
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The following approximation results are classical; see [4, 1.1] and also [21, 3.1 and 3.3].

2.8. Let M be an R-module such that G-dimR(M) = n < ∞.
(i) There is a short exact sequence of R-modules 0→M→ X → G→ 0, where pdR(X) = n and G is

totally reflexive. Such an exact sequence is called a finite projective hull of M.
(ii) There is a short exact sequence of R-modules 0→ Y → X →M→ 0, where pdR(Y ) = n−1 and

X is totally reflexive. Such an exact sequence is called a Cohen-Macaulay approximation of M.

The next result can be deduced from [1, 7.1(a)], which is a more general result. Here we provide a
different and self-contained proof for the convenience of the reader.

Proposition 2.9. Let M and N be R-modules. Assume n≥ 1 is an integer and the following conditions
hold:

(i) lengthR(TorR
i (M,N))< ∞ for all i≥ 1.

(ii) lengthR(T̂or
R
i (M,N))< ∞ for all i ∈ Z.

(iii) G-dimR(M)≤ depthR(N)−n.

Then T̂or
R
i (M,N) = 0 for all i =−n+1, . . . ,0 if and only if depthR(M⊗R N)≥ n.

Proof. We start by considering a finite projective hull of M, that is, a short exact sequence of R-modules

(2.9.1) 0→M→ X → G→ 0,

where pdR(X) = G-dimR(M) and G is totally reflexive; see 2.8(i). Then, by 2.6(v), the following holds
for all i ∈ Z:

(2.9.2) T̂or
R
i (G,N)∼= Êxt

−i−1
R (G∗,N)∼= Êxt

−i+1
R (TrG,N).

It follows, since pdR(X) < ∞, that T̂or
R
i (X ,N) = 0 for all i ∈ Z; see 2.6(iv). So, in view of 2.6(ii), the

short exact sequence in (2.9.1) yields the following isomorphisms for all i ∈ Z:

(2.9.3) T̂or
R
i (M,N)∼= T̂or

R
i+1(G,N).

Note that, as lengthR(T̂or
R
i (M,N)) < ∞ for all i ∈ Z, it follows from (2.9.2) and (2.9.3) that both

lengthR(T̂or
R
i (G,N)) and lengthR(Êxt

i
R(TrRG,N)) are finite for each i ∈ Z. Therefore, since G is to-

tally reflexive, 2.6(i) shows, for each i≥ 1, that:

(2.9.4) length(TorR
i (G,N))< ∞ and lengthR(ExtiR(TrRG,N))< ∞.

Recall that we assume lengthR(TorR
i (M,N)) < ∞ for all i ≥ 1. So, by (2.9.1) and (2.9.4), it follows

that lengthR(TorR
i (X ,N)) < ∞ for all i ≥ 1. As pdR(X) = G-dimR(M) ≤ depthR(N)− n < depthR(N),

we conclude by 2.7(iii) that TorR
i (X ,N) = 0 for all i≥ 1. Hence, by tensoring (2.9.1) with N, we obtain

the following exact sequence:

(2.9.5) 0→ TorR
1 (G,N)→M⊗R N→ X⊗R N→ G⊗R N→ 0.

Furthermore, the depth formula 2.7(iv), in view of the vanishing of TorR
i (X ,N) for all i≥ 1, shows:

(2.9.6) depthR(X⊗R N) = depthR(N)−G-dimR(M)≥ n.

Now we assume depthR(M⊗R N)≥ n and proceed to prove T̂or
R
i (M,N) = 0 for all i =−n+1, . . . ,0.

Note length(TorR
1 (G,N)) < ∞; see (2.9.4). Therefore, (2.9.5) shows that TorR

1 (G,N) = 0 and also
depthR(G⊗R N) ≥ n− 1 since both depthR(X ⊗R N) and depthR(M⊗R N) are at least n; see (2.9.6).
We know from (2.9.4) that lengthR(ExtiR(TrRG,N)) < ∞ for all i = 1, . . . ,n− 1. Hence 2.7(i) implies

that Êxt
i
R(TrRG,N)∼= ExtiR(TrRG,N) = 0 for all i = 1, . . . ,n−1. Consequently, (2.9.2) and (2.9.3) yield

the required vanishing of Tate Tor modules.
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Next we assume T̂or
R
i (M,N) = 0 for all i =−n+1, . . . ,0 and proceed to prove depthR(M⊗R N)≥ n.

Note TorR
1 (G,N)∼= T̂or

R
1 (G,N)∼= T̂or

R
0 (M,N) and ExtiR(TrRG,N)∼= Êxt

i
R(TrRG,N)∼= T̂or

R
−i(M,N) for

all i = 1, . . . ,n− 1; see (2.9.2) and (2.9.3). Therefore, we conclude TorR
1 (G,N) = 0 = ExtiR(TrRG,N)

for all i = 1, . . . ,n−1. Now, since depthR(N)≥ n and ExtiR(TrRG,N) = 0 for all i = 1, . . . ,n−1, we use
2.7(ii) and deduce that depthR(G⊗R N)≥min{n−1,depthR(N)}≥ n−1. Recall that depthR(X⊗R N)≥
n; see (2.9.6). Thus, since TorR

1 (G,N) = 0, we obtain, by the depth lemma applied to the exact sequence
(2.9.5), that depthR(M⊗R N)≥ n. �

2.10. Let M and N be R-modules. Assume CI-dimR(M) < ∞ or CI-dimR(N) < ∞. Then the following
conditions are equivalent; see [8, 4.9].

(i) TorR
i (M,N) = 0 for all i� 0.

(ii) TorR
i (M,N) = 0 for all i > CI-dimR(M).

(iii) T̂or
R
i (M,N) = 0 for all i ∈ Z.

Moreover, if CI-dimR(M) = 0 and N = M∗, then M is free if and only if one of the above equivalent

conditions holds: this is because, if CI-dimR(M) = 0 and T̂or
R
i (M,M∗) = 0 for all i ∈ Z, then, since

M∗ ∼= Ω2
RTrRM, it follows that TorR

1 (M,TrRM) = 0, which forces M to be free; see 2.4 and 2.6(i).
We should also note, if CI-dimR(M) < ∞, then the conditions (i), (ii) and (iii) stated above are also

equivalent for Ext and Tate cohomology modules; see [8, 4.7].

Corollary 2.11. Assume R is a d-dimensional Gorenstein ring and let M and N be maximal Cohen-
Macaulay R-modules such that pdRp

(Mp) < ∞ for all p ∈ Spec(R)−{m}. Then M⊗R N is maximal

Cohen-Macaulay if and only if T̂or
R
i (M,N) = 0 for all i =−d +1, . . . ,0.

Proof. Let p ∈ Spec(R)−{m}. Then it follows that CI-dimRp(Mp) = 0. Therefore, by 2.10, we have

TorR
i (M,N)p = 0 and T̂or

R
j (M,N)p = 0 for all i ≥ 1 and for all j ∈ Z. Now the claim follows from

Proposition 2.9. �

In passing we record an immediate consequence of Corollary 2.11; it yields a new characterization
of torsionfreeness of tensor products in terms of the vanishing of Tate homology:

Corollary 2.12. Assume R is a one-dimensional Gorenstein domain and let M and N be torsion-free
R-modules. Then M⊗R N is torsion-free if and only if T̂or

R
0 (M,N) = 0.

Let us note that, in view of Corollary 2.12, Conjecture 1.1 can be stated over Gorenstein rings as
follows: if R is a one-dimensional Gorenstein domain and M is a torsion-free R-module such that
T̂or

R
0 (M,M∗) = 0, then M is free.
Our main result in this section is Theorem 2.14 which yields a new criterion for the vanishing of

Tate (co)homology. More precisely, Theorem 2.14 is an extension of [18, 4.8], which considers the
vanishing of (absolute) cohomology under the same hypotheses. To prove the theorem, we record a few
more preliminary definitions and results.

2.13. Let M be an R-module. Then the complexity cxR(M) of M is defined as follows; see [7]:

inf{r ∈ N∪{0} : there exists A ∈ R such that dimk(ExtnR(M,k))≤ A ·nr−1 for all n� 0}.

Note, it follows from the definition that, cxR(M) = 0 if and only if pdR(M)< ∞, and cxR(M)≤ 1 if and
only if M has bounded Betti numbers. Furthermore, the following properties hold:

(i) If CI-dimR(M)< ∞, then it follows that cxR(M)≤ embdim(R)−depth(R); see [9, 5.6].
(ii) If CI-dimR(M) = 0, then it follows CI-dimR(M∗) = 0 and cxR(M) = cxR(M∗); see [11, 4.2].
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In the following G(R)Q denotes the reduced Grothendieck group with rational coefficients, that is,
G(R)Q= (G(R)/Z · [R])⊗ZQ, where G(R) is the Grothendieck group of (finitely generated) R-modules.
Also, [N] denotes the class of a given R-module N in G(R)Q.

Theorem 2.14. Let M and N be R-modules. Assume:
(i) cxR(M) = c.

(ii) CI-dimR(M)< ∞.
(iii) pdRp

(Mp)< ∞ for all p ∈ Spec(R)−{m}.
(iv) [N] = 0 in G(R)Q.

Then, given an integer n, the following hold:

(a) If Êxt
i
R(M,N) = 0 for all i = n, . . . ,n+ c−1, then Êxt

i
R(M,N) = 0 for all i ∈ Z.

(b) If T̂or
R
i (M,N) = 0 for all i = n, . . . ,n+ c−1, then T̂or

R
i (M,N) = 0 for all i ∈ Z.

Proof. We proceed and prove the statement in part (a) first. Set dim(R) = d and X = Ω
n−d−1
R Ωd

RM.
Then X is totally reflexive and 2.6(iii) yields the following isomorphisms for all i ∈ Z:

(2.14.1) Êxt
i
R(M,N)∼= Êxt

i−d
R (Ωd

RM,N)∼= Êxt
i−n+1
R (X ,N).

Therefore, for all j ≥ 1, we obtain:

(2.14.2) Ext j
R(X ,N)∼= Êxt

j
R(X ,N)∼= Êxt

j+n−1
R (M,N).

Here the first and the second isomorphisms are due to 2.6(i) and (2.14.1), respectively. Hence, (2.14.2)
and our assumption give:

(2.14.3) Ext j
R(X ,N) = 0 for all j = 1, . . . ,c.

Note that CI-dimR(X) = 0 and cxR(X) = cxR(M) = c; see [9, 1.9.1] and [40, 3.6]. As X is locally
free on the punctured spectrum of R, we use [18, 4.8] and conclude from (2.14.3) that Ext j

R(X ,N) = 0
for all j ≥ 1, that is, Ext j

R(M,N) = 0 for all j� 0. Now the required vanishing follows from 2.10.
Next we prove part (b). Note 2.6(iii) yields the following isomorphisms for all i ∈ Z:

(2.14.4) T̂or
R
i (M,N)∼= T̂or

R
i−d(Ω

d
RM,N)∼= T̂or

R
i−n+1(X ,N).

Then our assumption and (2.14.4) yield:

(2.14.5) T̂or
R
j (X ,N) = 0 for all j = 1, . . . ,c.

Note, as X is totally reflexive, 2.6(v) gives the following isomorphism for all i ∈ Z:

(2.14.6) Êxt
− j−1
R (X∗,N)∼= T̂or

R
j (X ,N).

Now (2.14.5) and (2.14.6) show that:

(2.14.7) Êxt
− j−1
R (X∗,N) = 0 for all j = 1, . . . ,c.

It follows, since CI-dimR(X) = 0, that CI-dimR(X∗) = CI-dimR(X) = 0 and cxR(X∗) = cxR(X) = c;

see 2.13(ii). Now we use part (a) of the theorem with (2.14.7) and conclude that Êxt
− j−1
R (X∗,N) = 0

for all j ∈ Z. Then (2.14.4) and (2.14.6) establish the required vanishing of Tate homology. �

We proceed and collect several examples of rings for which hypothesis (iv) of Theorem 2.14 holds;
see [18, 2.5, 2.6 and 4.11] and also Example 3.6.

2.15. Let N be an R-module. Then [N] = 0 in G(R)Q for each one of the following cases:
(i) N = Ωn

RM for some n≥ 0 and for some R-module M such that lengthR(M)< ∞.
(ii) R is Artinian.

(iii) R has dimension one and N has rank.
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(iv) R is a one-dimensional domain.
(v) R is a two-dimensional normal domain with torsion class group.

(vi) R is a two-dimensional complete rational singularity such that k is algebraically closed of char-
acteristic zero, or k is finite of positive characteristic, or k is the algebraic closure of a finite field
which has positive characteristic.

Corollary 2.16. Assume R has positive depth and let M be a nonfree R-module. Assume the following
conditions hold:

(i) CI-dimR(M) = 0 and cx(M)≤ 1.
(ii) lengthR(TorR

i (M,M∗))< ∞ for all i� 0.
(iii) [M] or [M∗] is zero in G(R)Q.

Then it follows that depthR(M⊗R M∗) = 0.

Proof. We start by noting that cxR(M) = 1: this is because we assume M is a nonfree R-module such
that depth(M) = depth(R) and cxR(M)≤ 1. Note also we have that CI-dimR(M∗) = 0 and cxR(M∗) = 1;
see 2.13(ii). Furthermore, if p ∈ Spec(R)−{m}, then our assumption (ii) and 2.10 imply that Mp is free
over Rp. In other words, M is locally free on the punctured spectrum of R.

Now suppose depthR(M⊗R M∗) ≥ 1. Then, setting n = 1, we conclude from Proposition 2.9 that

T̂or
R
0 (M,M∗) = 0. So Theorem 2.14 yields the vanishing of T̂or

R
i (M,M∗) for all i ∈ Z. As we know

CI-dimR(M) = 0, this implies that M is free; see 2.10. Therefore, the depth of M⊗R M∗ must be
zero. �

We should note that, concerning the hypothesis in part (iii) of Corollary 2.16, we are not aware of
an example of a ring R and an R-module M such that CI-dimR(M) = 0 and [M∗] 6= [M] = 0 in G(R)Q.
However, we observe next that such an example cannot occur over Gorenstein rings.

Remark 2.17. Assume R is Gorenstein. It is well-known that the Grothendieck group G(R) is generated
by maximal Cohen-Macaulay R-modules. In fact, given an R-module M with a minimal free resolution
F = (Fi), it follows that [M] = ∑

d−1
i=0 (−1)i[Fi]+ (−1)d [Ωd

RM], where d is the dimension of R.
Now we define a map Φ : G(R)→ G(R) as follows:

Φ([M]) =
d

∑
i=0

(−1)i−1[ExtiR(M,R)].

One can check that Φ is a well-defined group homomorphism. Let M be a maximal Cohen-Macaulay R-
module. As ExtiR(M,R) = 0 for all i≥ 1, it follows that Φ([M]) = [M∗] and so Φ2([M]) = [M∗∗] = [M].
This shows that Φ is an isomorphism as G(R) is generated by maximal Cohen-Macaulay R-modules.
Since Φ sends [R] to [R], it induces an isomorphism Φ : G(R)Q → G(R)Q. Hence, if M is a maximal
Cohen-Macaulay R-module, then [M] = 0 in G(R)Q if and only if Φ([M]) = [M∗] = 0 in G(R)Q.

If R is a one-dimensional ring and M is a torsion-free R-module such that CI-dimR(M) < ∞ and
cxR(M) ≤ 1 (for example, R is a hypersurface ring, or R is a complete intersection ring and M has
bounded Betti numbers), then it follows that M ∼= Ω2

RM (for our purpose we may assume M has no free
direct summand); see [9, 7.3] for the details. Hence Theorem 1.2 is subsumed by the next result which
was proved in [16] via different techniques.

Corollary 2.18. ([17, 4.10]) Assume R is one-dimensional and let M be a nonfree torsion-free R-module.
Assume M has rank (e.g., R is a domain). Assume further CI-dimR(M) < ∞ and cxR(M) ≤ 1. Then it
follows that M⊗R M∗ has torsion.

Proof. It follows, as R is a one-dimensional ring and M has rank, that [M] = 0 in G(R)Q; see 2.15.
Hence the claim follows from Corollary 2.16. �
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Note that, in the next section we will prove Theorem 1.3 and hence generalize Corollary 2.18. We
finish this section by pointing out some flexibility about the hypotheses of Corollary 2.18.

Remark 2.19. Assume R is a one-dimensional domain and let M be a nonzero torsion-free R-module.
If CI-dimR(M) < ∞ or CI-dimR(M∗) < ∞, then it follows that CI-dimR(M) = 0 = CI-dimR(M∗); see
2.13(ii) and [17, 4.5(i)]. So, if CI-dimR(M)< ∞ or CI-dimR(M∗)< ∞, and cxR(M)≤ 1 or cxR(M∗)≤ 1
(for example, if CI-dimR(M∗) < ∞ and cxR(M) ≤ 1, or CI-dimR(M) < ∞ and cxR(M∗) ≤ 1), then it
follows that CI-dimR(M)< ∞ and cxR(M)≤ 1.

3. CONJECTURE 1.1 FOR TWO-PERIODIC MODULES OVER ONE-DIMENSIONAL DOMAINS

In this section we give a proof of Theorem 1.3; see the paragraph following Proposition 3.9. The
primary result of the section is Theorem 3.2 which relies upon a slightly modified version of the theta
invariant. This invariant was initially defined by Hochster [31] to study the direct summand conjecture;
it was further developed by Dao, for example, to study the vanishing of Tor; see [23, 24, 25].

We start by recalling the definition of the theta invariant; see also [17, 2.13] and [24, section 2].

Definition 3.1. ([31]) Let M be an R-module. Assume the following hold:
(i) M ∼= Ω2

RM.
(ii) pdRp

(Mp)< ∞ for all p ∈ Spec(R)−{m}.
Then, for each i≥ 1, it follows that TorR

i (M,N)∼= TorR
i+2(M,N) and lengthR(TorR

i (M,N))< ∞. There-
fore, given an R-module N, the theta invariant for the pair (M,N) is defined as follows:

(3.1.1) θ
R(M,N) = lengthR

(
TorR

2n(M,N)
)
− lengthR

(
TorR

2n−1(M,N)
)

for some n≥ 1.

Note that θ R(M,N) is well-defined, i.e., its value is independent of the integer n used in the definition.

Next we show that the theta function is additive on short exact sequences.

Theorem 3.2. Let M be an R-module. Assume the following hold:
(i) M ∼= Ω2

RM.
(ii) pdRp

(Mp)< ∞ for all p ∈ Spec(R)−{m}.

(iii) 0→ X
f−→ Y

g−→ Z→ 0 is a short exact sequence of R-modules.
Then it follows that θ R(M,Y ) = θ R(M,X)+θ R(M,Z).

Proof. Note that, since M ∼= Ω2
RM, we can pick a minimal free resolution F• = (Fn,∂n) of M such that

Fn = Fn+2 for each n≥ 0 and ∂n = ∂n+2 for all n≥ 1.
Fix an integer n≥ 1. Then, by tensoring f with Fn, we get the following commutative diagram:

Fn⊗R X
1Fn⊗ f

// Fn⊗R Y

Fn+2⊗R X
1Fn+2⊗ f

// Fn+2⊗R Y

The diagram above yields the following commutative diagram on homologies:

TorR
n (M,X)

TorR
n (M, f )

//

∼=
��

TorR
n (M,Y )

∼=
��

TorR
n+2(M,X)

TorR
n+2(M, f )

// TorR
n+2(M,Y )

Now set Xn = ker
(

TorR
n (M, f )

)
. Then it follows, since the diagram above involving the Tor modules,

is commutative with vertical maps being isomorphisms, that Xn ∼= Xn+2.
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Note that the short exact sequence 0→X
f−→Y

g−→ Z→ 0 gives rise to the following exact sequence:

0→ Xn+2→ TorR
n+2(M,X)→ TorR

n+2(M,Y )→ TorR
n+2(M,Z)→(3.2.1)

TorR
n+1(M,X)→ TorR

n+2(M,Y )→ TorR
n+1(M,Z)→ Xn→ 0.

As we have Xn ∼= Xn+2, by taking the alternating sum of lengths of the terms in the exact sequence
(3.2.1), we conclude that θ R(M,Y ) = θ R(M,X)+θ R(M,Z). �

Recall that G(R)Q denotes the reduced Grothendieck group with rational coefficients.

Corollary 3.3. Let M be an R-module. Assume the following hold:
(i) M ∼= Ω2

RM.
(ii) pdRp

(Mp)< ∞ for all p ∈ Spec(R)−{m}.

Then θ R(M,−) : G(R)Q→Q is a well-defined function.

Proof. It is clear from Theorem 3.2 that θ R(M,−) is a well-defined function on G(R). As θ R(M,R) = 0,
the result follows; see Definition 3.1. �

3.4. If M and N are R-modules, then the pair (M,N) is said to be n-Tor-rigid for some n ≥ 1 provided
that the following condition holds: if TorR

i (M,N) = 0 for all i = r,r+ 1, . . . ,r+ n− 1 for some r ≥ 1,
then TorR

j (M,N) = 0 for all j ≥ r.
An R-module M is called Tor-rigid if (M,N) is 1-Tor-rigid for each R-module N. For example, if R

is a regular ring, or a hypersurface which is quotient of an unramified regular ring, then each R-module
of finite projective dimension is Tor-rigid; see [2, 2.2] and [36, Cor. 1 and Thm. 3].

Corollary 3.5. Let M and N be R-modules. Assume:
(i) pdRp

(Mp)< ∞ for all p ∈ Spec(R)−{m}.
(ii) [N] = 0 in G(R)Q.

(iii) M ∼= Ω
q
RM for some even integer q≥ 2.

Then the pair (M,N) is (q−1)-Tor-rigid.

Proof. Set X = M⊕Ω2
R(M)⊕·· ·⊕Ω

q−2
R (M). Then, since M ∼= Ω

q
RM, it follows that X ∼= Ω2

RX . Note
also, if r ≥ 1, then by the definition of X , we have:

(3.5.1) TorR
r (X ,N) = 0 if and only if TorR

r+2i(M,N) = 0 for all i = 0, . . . ,(q/2)−1.

Next, to show (M,N) is (q−1)-Tor-rigid, suppose TorR
i (M,N) = 0 for all i = n,n+1, . . . ,n+q−2

for some n≥ 1. Then, by (3.5.1), it follows that TorR
n (X ,N) = 0. Hence, if we show TorR

n+1(X ,N) = 0,
then, as X ∼=Ω2

RX , we conclude that TorR
i (X ,N) = 0 for all i≥ 1; this yields the vanishing of TorR

j (M,N)

for all j ≥ 1 and establishes that (M,N) is (q−1)-Tor-rigid.
Notice pdRp

(Xp) < ∞, for all p ∈ Spec(R)−{m}. So, Corollary 3.3 shows θ R(X ,−) : G(R)Q→ Q
is well-defined. Thus θ R(X ,N) = 0 because [N] = 0 in G(R)Q. Consequently, as we know TorR

n (X ,N)

vanishes, we deduce by the definition of the theta function that TorR
n+1(X ,N)= 0; see Definition 3.1. �

The following example points out that hypothesis (ii) of Corollary 3.5 is needed, even over isolated
hypersurface singularities.

Example 3.6. Let R =C[[x,y,z,w]]/(xw−yz), M = R/(x,z) and N = R/(x,y). Then one can check that
R is a three-dimensional (A1) singularity (and hence is a domain) and TorR

2 (M,N) = 0 6= TorR
3 (M,N).

Thus we have θ R(M,N) =−1. This implies that [N] 6= 0 in G(R)Q. Let us also note, since G(S)Q ∼=Q
for each one-dimensional (A1) singularity S, it follows from Knörrer periodicity that G(R)Q ∼= Q; see
[41, 12.10 and 13.10].
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As Example 3.6 shows, the conclusion of Corollary 3.5 may fail if hypothesis (ii) is not satisfied.
However, even without this assumption, the corollary can be useful to produce Tor-rigid modules:

Corollary 3.7. Let M be an R-module, and let x ∈ m be a non zero-divisor on R. Assume that the
following hold:

(i) pdRp
(Mp)< ∞ for all p ∈ Spec(R)−{m}.

(ii) M ∼= Ω2
RM.

Then the pair (M/xM,N/xN) is Tor-rigid over R/xR for each torsion-free R-module N. Therefore, the
pair (M/xM,M/xM) is Tor-rigid over R/xR.

Proof. Let N be a torsion-free R-module. As there is an exact sequence 0→ N x→ N → N/xN → 0,
it follows that [N/xN] = [N]− [N] = 0 in G(R)Q. Hence Corollary 3.5 shows that the pair (M,N/xN)

is Tor-rigid over R. Now, for an integer n ≥ 0, it follows TorR/xR
n (M/xM,N/xN) = 0 if and only if

TorR
n (M,N/xN) = 0 if and only if TorR/xR

i (M/xM,N/xN) = 0 for all i ≥ n; see [37, Lemma 2, page
140]. �

In the following we record some classes of rings over which periodic modules have certain Tor-
rigidity property; see also A.1 for a characterization of Tor-rigid modules over one-dimensional Goren-
stein domains.

Corollary 3.8. Assume that one of the following holds:
(i) R is Artinian.

(ii) R is a one-dimensional domain.
(iii) R is a two-dimensional normal domain with torsion class group.
If M is an R-module such that M ∼= Ω

q
RM for some even integer q ≥ 2, then M is (q− 1)-Tor-rigid.

Therefore, if M ∼= Ω2
RM, then M is Tor-rigid.

Proof. It is known that, if R is as in part (i), (ii) or (iii), then G(R)Q = 0; see 2.15. Therefore the result
follows from Corollary 3.5. �

Proposition 3.9. Let M be a nonzero R-module. Assume:
(i) Mp is free for each associated prime ideal of R.

(ii) M ∼= Ω
q
RM for some integer q≥ 1.

(iii) M is Tor-rigid.
Then M⊗R M∗ has torsion.

Proof. Note that M∗ 6= 0 since M is nonzero and torsion-free. Hence there exists a short exact sequence
of R-modules 0→ M∗ → F → C → 0, where F is free. Tensoring this exact sequence with M, we
see that TorR

1 (C,M) ↪→ M⊗R M∗. Note that TorR
1 (C,M) is a torsion module since Mp is free for each

associated prime ideal p of R.
Now assume M⊗R M∗ is torsion-free. Then TorR

1 (C,M), and hence TorR
i (C,M) for each i ≥ 1,

vanishes. This yields TorR
i (M,M∗) = 0 for all i ≥ 1. As M∗ ∼= Ω2

RTrRM (up to free summands), we
conclude TorR

1 (M,TrRM) ∼= TorR
1 (Ω

2q
R M,TrRM) ∼= TorR

1 (M,Ω2q
R TrRM) ∼= TorR

1+2q−2(M,M∗) = 0. This
implies M is free and hence M = 0 since M∼=Ω

q
RM; see 2.4. Therefore, M⊗R M∗ must have torsion. �

We are now ready to prove Theorem 1.3 advertised in the introduction. Recall that our argument
removes the complete intersection hypothesis from Theorem 1.2.

Proof of Theorem 1.3. Note that the module M considered in the theorem is Tor-rigid; see Corollary
3.8. Therefore, M⊗R M∗ has torsion by Proposition 3.9. �

Remark 3.10. Assume R is a one-dimensional domain and let M be a torsion-free R-module.
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(i) If R is Gorenstein, then it follows that M⊗R M∗ is torsion-free if and only if Ext1R(M,M) = 0; see
[33, 5.3]. So conjecture 1.1 predicts that the celebrated conjecture of Auslander and Reiten is true
over one-dimensional Gorenstein rings, even if only one Ext module vanishes; see [6] and [33] for
the details. However, if R is not Gorenstein, then torsion-freeness and the vanishing of Ext may
not be equivalent: for example, if R is Cohen-Macaulay with a canonical module ω � R and if R
has minimal multiplicity, then it follows that Ext1R(ω,ω) = 0, but ω ⊗R ω∗ has torsion; see [32,
3.6].

(ii) It seems interesting that, even if R is not Gorenstein, when M∼= Ω2
RM, it still follows that M⊗R M∗

is torsion-free if and only if Ext1R(M,M) = 0, since either of these two conditions forces M to be
zero; this follows from Theorem 1.3 and the fact that, when M is a Tor-rigid module over a ring R
and ExtnR(M,M) = 0 for some n≥ 0, then pdR(M)< n; see, for example, [26, 3.1.2].

In general there exist two-periodic modules that do not have finite complete intersection dimension.
We build on an example of Gasharov and Peeva and construct such a module in the next example (note
the ring considered in the example is not a complete intersection); cf. Theorems 1.2 and 1.3.

Example 3.11. ([27, 3.10]) Let k be a field and fix α ∈ k such that α4 = 1 6=α3. Let R= k[[x1,x2,x3,x4]]/Iα ,
where Iα is the ideal of R generated by the elements x2

1−x2
2, x2

3, x2
4, x3x4, x1x4 +x2x4, α ·x1x3 +x2x3.

Then the complex

· · · ∂3−→ R⊕2 ∂2−→ R⊕2 ∂1−→ R⊕2→ N→ 0
is exact, where

N = coker(∂1) and ∂n =

(
x1 αn · x3 + x4
0 x2

)
for each n≥ 1.

It follows Ω4
RN ∼= coker(∂5) = coker(∂1)∼= N and that N �Ωi

RN for each i = 1,2,3. Then, by setting
X = N⊕Ω2

RN, we see that X ∼= Ω2
RX and hence cxR(X) ≤ 1. Moreover, we have CI-dimR(X) = ∞:

otherwise we would have CI-dimR(N)< ∞ and so N ∼= Ω2
RN since cxR(N)≤ 1.

Next we set T = R[[t]] and M = X⊗R T . Then, since T is a faithfully flat extension of R, we conclude
that T is a one-dimensional Gorenstein ring, M ∼= Ω2

T M, and also CI-dimT (M) = ∞.

The ring T in Example 3.11 is not a domain and also the T -module M does not have rank. This raises
the following question which, in view of Conjecture 1.1 and Theorem 1.3, should be important:

Question 3.12. Is there a one-dimensional ring T and a T -module M such that M has rank over T (e.g.,
T is a domain), M ∼= Ω2

T M, and CI-dimT (M) = ∞?

We finish this section by recording some further observations concerning the torsion submodule
of tensor products of the form M⊗R M∗. Let us point out that the conclusion of Theorem 1.3 may
fail if the ring in question is not one-dimensional; for example, [19, 3.5] provides such an example
of a two-dimensional hypersurface domain. In the aforementioned example, the module considered is
torsion-free but it is not maximal Cohen-Macaulay. On the other hand, when maximal Cohen-Macaulay
modules are considered, there is a partial result, which we recall next:

3.13. If R is an even-dimensional hypersurface and M is a nonfree maximal Cohen-Macaulay R-module
that is locally free on the punctured spectrum of R, then M⊗R M∗ has torsion; see [19, 3.7].

Note that the module M in 3.13 is two-periodic since it is maximal Cohen-Macaulay over a hyper-
surface ring. As we are concerned with periodic modules of even period, we proceed and investigate
whether there is an extension of 3.13 for such modules over rings that are not necessarily hypersurfaces.
For that we first prove:

Proposition 3.14. Assume R is a d-dimensional Cohen-Macaulay ring with canonical module ω and
let M be a nonzero R-module that is locally free on the punctured spectrum of R. Assume d = 2nr and
M ∼= Ω2n

R M for some positive integers n and r. Then M⊗R M† has torsion, where M† = HomR(M,ω).
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Proof. Suppose M⊗R M† is torsion-free and seek a contradiction. Note that it follows:

0 = ExtdR(M⊗R M†,ω)

∼= ExtdR(M,M)

∼= Ext2n
R
(
Ω

2n(r−1)
R M,M

)
∼= Ext2n

R (M,M)

∼= Ext1R(Ω
2n−1
R M,Ω2n

R M).

Here the equality follows by [13, 3.5.11] since depthR(M⊗R M†)> 0, and the first isomorphism is due
to [28, 2.3].

As Ext1R(Ω
2n−1
R M,Ω2n

R M) = 0, the syzygy sequence 0→Ω2n
R M→ R⊕r→Ω

2n−1
R M→ 0 splits. There-

fore Ω2n
R M is free, and hence so is M since M ∼= Ω2n

R M. This implies M = 0 since a (minimal) syzygy
of a free module is zero; see 2.2. This gives the required contradiction and proves M⊗R M† must have
torsion. �

The next corollary of Proposition 3.14 yields an extension of 3.13.

Corollary 3.15. Assume R is Gorenstein and has positive even dimension. Let M be a nonzero R-module
that is locally free on the punctured spectrum of R. If M ∼= Ω2

RM, then M⊗R M∗ has torsion.

We should note that Corollary 3.15 may fail if the dimension of R is odd an at least three; see [19,
3.12].

4. A CONDITION IMPLYING CONJECTURE 1.1 OVER COMPLETE INTERSECTION RINGS

In this section throughout R denotes a complete intersection ring of codimension c which equals
S/(x) for some commutative Noetherian regular local ring (S,n) and for some S-regular sequence x =
x1, . . . ,xc ⊆ n2. Such a complete intersection ring is called a hypersurface when c = 1.

As mentioned in the introduction, although Conjecture 1.1 is true over hypersurface rings, it is wide
open for complete intersection rings that have codimension at least two. The aim of this section is
to formulate a condition over hypersurfaces, which, if true, forces Conjecture 1.1 to be true over all
complete intersection rings.

We start with a setup and then recall a theorem of Orlov [38, Section 2] which plays a key role for
our argument. For the basic definitions that are not defined in this section, we refer the reader to [30].

4.1. We let modR to denote the category of (finitely generated) R-modules. Similarly, for a scheme X ,
cohX denotes the category of coherent OX -modules. It follows that there is an equivalence of categories:
modR∼= coh(Spec(R)) given by M 7→ M̃; see, for example, [30, II 5.5].

4.2. Let X be a scheme. A perfect complex on X is a bounded complex of coherent sheaves on X which
has finite flat dimension as a complex.

The singularity category is defined as the quotient:

Dsg(X) = Db(cohX)/Dperf(X),

where Dperf(X) denotes the full subcategory of the bounded derived category Db(cohX) consisting of
all perfect complexes on X .

Note that a perfect complex on Spec(R) is isomorphic in Db(modR) to a bounded complex of finitely
generated projective modules via the equivalence modR∼= coh(Spec(R)) mentioned in 4.1. Moreover,
if R is Gorenstein, then the singularity category of R is equivalent to the stable category of maximal
Cohen-Macaulay R-modules by [14, 4.4.1].
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4.3. Recall that R = S/(x). Let t = t1, . . . , tc be indeterminates over S. Then we define the graded
hypersurface ring

A = S[t]/
( c

∑
i=1

xiti

)
,

where the grading is given by degs = 0 for all s ∈ S, and deg ti = 1 for each i.
Now we consider the natural surjections:

S[t]� A� A/(x) = R[t].

These surjections yield the following commutative diagram of schemes:

Z := Pc−1
R
� � i /

p

��

Y := Proj(A) �
� u / X := Pc−1

S

q

��

Spec(R) �
� j

/ Spec(S).

In the above diagram, the morphisms i, u, and j are closed immersions that are induced by the surjections
A� R[t], S[t]� A, S� R, respectively. Also, the morphisms p and q are canonical. We note that i is
a regular closed immersion of codimension c− 1, that is, the ideal sheaf of i is locally generated by a
regular sequence of length c−1. Furthermore, the morphism p is flat.

We consider two functors p∗ : modR→ cohZ and i∗ : cohZ→ cohY , which are defined as follows:

(i) p∗ : modR∼= coh(Spec(R))→ cohZ is the pullback along p, where p∗(M) is the OZ-module M̃[t]
associated with a graded R[t]-module M[t] = M⊗R R[t] ∼= (M⊗R A)/x(M⊗R A); see [30, p116,
Definition].

(ii) i∗ : cohZ→ cohY is the pushout along i. Note that, every object of cohZ is isomorphic to L̃ for
some graded R[t]-module L. Then i∗(L̃) is isomrphic to L̃A, where LA is the graded R[t]-module L
considered as a graded A-module via the ring map A� R[t].

Notice, since p is flat and i is closed immersion, it follows that p∗ and i∗ are exact functors, see [39,
02N4 and 01QY]. Therefore, by deriving these functors, we also obtain triangle functors:

i∗ : Db(cohZ)→ Db(cohY ) and p∗ : Db(modR)→ Db(cohZ).

Here, the functors are given by applying p∗ and i∗ component-wise.

4.4. Note that Y = ProjA is an integral scheme and hence every ring of section is an integral domain.
Indeed, since S[t1, . . . , tc] is an integral domain, we can easily check that ∑

c
i=1 xiti is an irreducible

element. Therefore, it is a prime element as S[t1, . . . , tc] is a UFD and hence A is a domain; see 4.3.

Throughout this section we keep the notations and the setting of 4.3. The following result of Orlov
[38] plays a key role in the proof Theorem 4.12.

4.5. ([38, 2.1], see also [15, A.4]) The triangle functor Φ = i∗p∗ : Db(modR)→ Db(cohY ) induces a
triangle equivalence Φ : Dsg(R)

∼=−→ Dsg(Y ).

Note, Φ(M) ∼= ˜(M⊗R A)/x(M⊗R A) for any R-module M. Moreover, by letting fdOY Φ(M) denote
the flat dimension of Φ(M), we have

pdR(M)< ∞⇐⇒M ∼= 0 in Dsg(R)⇐⇒Φ(M)∼= 0 in Dsg(Y )

⇐⇒ fdOY Φ(M)< ∞⇐⇒ pdOY,y
Φ(M)y < ∞ for all y ∈ Y.

Here, the first and third equivalences follow by the definition of singularity categories, the second equiv-
alence follows from Orlov’s theorem 4.5, and [30, III 9.2(e)] proves the last equivalence.
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4.6. Let M and N be R-modules. Then we have the following:

Φ(M)⊗OY Φ(N) = ˜(
(M⊗R A)/x(M⊗R A)

)
⊗OY

˜(
(N⊗R A)/x(N⊗R A)

)
∼=

˜([
(M⊗R A)/x(M⊗R A)

]
⊗A
[
(N⊗R A)/x(N⊗R A))

])
=

˜([
(M⊗R N)⊗R A

]
/x
[
(M⊗R N)⊗R A

])
= Φ(M⊗R N).

where the isomorphism follows from [30, Proof of II 5.12(b)].

Next we proceed to determine Φ(M∗). For this, we use the Grothendieck duality theorem [29].

Lemma 4.7. Let F ∈ cohZ and n ∈ Z. Then there is a natural isomorphism as follows:

E xtnOY
(i∗F ,OY )∼= i∗E xtn−c+1

OZ
(F ,OZ)(1).

Proof. Note, by the Grothendieck duality theorem [29, III 6.7], there is a natural isomorphism

RH omOY (i∗F ,OY )∼= i∗RH omOZ (F , i!OY ),

where i! : Db(cohY )→ Db(cohZ) denotes the right adjoint functor of i∗ : Db(cohZ)→ Db(cohY ). We
proceed to prove that i!OY is isomorphic to OZ(1)[−c+1].

Note that, by [29, III 7.3], there is an isomorphism i!OY ∼= ωZ/Y [−c+1]. Here, ωZ/Y is the relative
canonical sheaf of the regular closed immersion i : Z ↪→ Y ; see [29, III §1] for its definition. On the
other hand, by [29, III 1.5], we have an isomorphism of the form ωZ/Y

∼= ωZ/X ⊗OZ (i
∗ωY/X )

∨. The
ideal sheaves of ui : Z ↪→ X and u : Y ↪→ X are globally generated by degree 0 and 1 regular sequences,
respectively. Therefore, the following isomorphisms hold:

ωZ/X
∼= OZ and ωY/X

∼= OY (−1).

Hence we conclude that i!OY ∼= ωZ/Y [−c+1]∼= OZ⊗OZ i∗(OY (−1))∨[−c+1]∼= OZ(1)[−c+1]. �

4.8. Let M be an R-module. Then there are natural isomorphisms

E xtnOY
(Φ(M),OY ) = E xtnOY

(i∗p∗(M),OY )

∼= i∗E xtn−c+1
OZ

(p∗(M),OZ)(1)
∼= Φ(Extn−c+1

R (M,R))(1)

Here, the first isomorphism uses Lemma 4.7 and the last isomorphism is due to [30, III 6.5] together
with the following fact: p∗(P•) is a resolution of p∗(M) by locally free sheaves of finite rank for a given
resolution P• by finite free module of M.

Assume further that M is a totally reflexive R-module. Then, by definition, if n 6= 0, it follows that
ExtnR(M,R)∼= 0. Therefore, the above isomorphisms yield:

E xtiOY
(Φ(M),OY )∼=

{
0 (i 6= c−1)
Φ(M∗)(1) (i = c−1).

Next we recall the definition of the codimension of a module. From now on T denotes a commutative
Noetherian local ring and all T -modules are assumed to be finitely generated.

4.9. Let N be a T -module. Then the codimension codimT (N) of N is defined as the codimension of its
support SuppT (N) as a closed set in Spec(T ). More precisely, we have

codimT (N) = inf{heightT (p) | p ∈ SuppT (N)}.
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In the following we record some properties of the codimension that are needed for our argument; see
[13, 2.1.2 and 3.3.10]. Among those is the fact that the codimension of a module does not change when
localizing at a prime ideal in its support.

4.10. Assume T is Cohen-Macaulay and let N be a nonzero T -module.
(i) It follows that codimT (N) = dim(T )− dimT (N) = gradeT (N) = inf{i ∈ Z | ExtiT (N,T ) 6= 0},

where gradeT (N) denotes the grade of N over T .
(ii) Assume T admits a canonical module ωT .

(a) Then N is Cohen-Macaulay of codimension t if and only if ExtiT (N,ωT ) = 0 for i 6= t.
(b) If N is Cohen-Macaulay of codimension t and p ∈ SuppT (N), then Np is Cohen-Macaulay

over Tp such that codimTp(Np) = t.
(c) If N is Cohen-Macaulay of codimension t, then it follows SuppT (N) = SuppT (ExttT (N,ωT )).

4.11. Assume T is a domain and let c≥ 1 be an integer. Consider the following for T :
(i) For each T -module M, if M and M⊗T Extc−1

T (M,T ) are Cohen-Macaulay of codimension c− 1,
then pdT (M)< ∞.

(ii) For each T -module M, if M and M⊗T HomT (M,T ) are maximal Cohen-Macaulay (i.e., Cohen-
Macaulay T -modules of codimension 0), then M is free.

Next is the main result of this section.

Theorem 4.12. Let c ≥ 1 be an integer. If each hypersurface local domain satisfies condition (i) of
4.11, then each complete intersection local domain of codimension c satisfies condition (ii) of 4.11.

Remark 4.13. Prior to giving a proof for Theorem 4.12, we note that condition (ii) of 4.11, or equiv-
alently, c = 1 case of condition (i) of 4.11, is precisely the condition of Conjecture 1.1 for one-
dimensional commutative Noetherian local domains. Recall also that each hypersurface local domain
satisfies condition (ii) of 4.11; see [34, 3.1].

Proof of Theorem 4.12. We assume, for the given integer c, that each hypersurface local domain satis-
fies condition (i) of 4.11. Let R = S/(x) be a domain, where S is a regular local ring and x is an S-regular
sequence of length c. Let M be a maximal Cohen-Macaulay R-module such that M⊗R M∗ is maximal
Cohen-Macaulay. We proceed to prove that M is free.

First we prove that SuppY (Φ(M)) = SuppY (E xtc−1
OY

(Φ(M),OY )). Fix y ∈ SuppY (Φ(M)). The com-
bination of 4.8 and 4.10(ii)(a) show that Φ(M)y is a Cohen-Macaulay OY,y-module of codimension
c−1. Therefore, by 4.10(ii)(c), we conclude y ∈ SuppY (E xtc−1

OY
(Φ(M),OY )) and hence it follows that

SuppY (Φ(M)) j SuppY (E xtc−1
OY

(Φ(M),OY )). The converse inclusion is trivial. Moreover, the support
of Φ(M) equals to the support of X , where X = Φ(M)⊗OY E xtc−1

OY
(Φ(M),OY )(−1).

Note, it follows from 4.6 and 4.8 that Φ(M⊗R M∗)∼= Φ(M)⊗OY Φ(M∗)∼= X . As M and M⊗R M∗

are totally reflexive R-module, by 4.8, we obtain the following:

E xtiOY
(X ,OY )∼= E xtiOY

(Φ(M⊗R M∗),OY )∼= Φ(Exti−c+1
R (M⊗R M∗,R))(1) = 0(4.12.1)

for i 6= c−1.
Let y∈SuppY (Φ(M)). Then the module Xy =Φ(M)y⊗OY,y Extc−1

OY,y
(Φ(M)y,OY,y) is Cohen-Macaulay

of codimension c− 1 over the local hypersurface domain OY,y by 4.10(ii)(a) and (4.12.1). Now our
assumption shows that Φ(M)y has finite projective dimension over OY,y. So, by 4.5, we have that
pdR(M)< ∞ �

Now the proof of Theorem 1.4 follows as an immediate consequence of Theorem 4.12:

Proof of Theorem 1.4. Let c ≥ 1 be an integer. If each hypersurface local domain satisfies condition
(i) of 4.11 (for the given c), then Theorem 4.12 implies that Conjecture 1.1 is true over each one-
dimensional complete intersection local domain. �
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Remark 4.14. We note a fact that follows from the proof of Theorem 4.12: if each hypersurface domain
which is quotient of an equi-characteristic regular local ring satisfies condition (i) of Theorem 4.12, then
Conjecture 1.1 holds over each one-dimensional complete intersection domain which is quotient of an
equi-characteristic regular local ring.

We finish this section by noting that, if we consider Conjecture 1.1 over one-dimensional complete
intersection domains that have algebraically closed residue fields, then the proof of Theorem 4.12 is
simplified significantly due to a result in [12]:

Remark 4.15. Recall that R = S/(x) for some regular local ring (S,n) and for some S-regular sequence
x = x1, . . . ,xc ⊆ n2. Set I = (x) and assume R is a one-dimensional domain with algebraically closed
residue field. Let M be a torsion-free R-module such that I ⊆ n2 and M⊗R M∗ is torsion-free.

Let f ∈ I−nI. Then we can extend { f} to a minimal generating set { f1, . . . , fc} of I, with f = f1,
which is necessarily a regular sequence on S. Hence M⊗S/( f1) Extc−1

S/( f1)
(M,S/( f1)) ∼= M⊗R M∗ is a

Cohen-Macaulay S/( f1)-module of codimension c−1. Assuming the condition 4.11(ii), it follows that
pdS/( f1)(M)< ∞. Now [12, 3.3] implies that pdR(M)< ∞.

APPENDIX A. REMARKS ON THE RIGIDITY OF TOR

It is known that Tor-rigidity, a subtle property, is a sufficient condition for Conjecture 1.1 to hold
over one-dimensional Gorenstein domains; see 3.4 and Remark 3.10(ii). Motivated by this fact, we
examine the vanishing of Tor more closely over Gorenstein rings. The observation we aim to establish
in this appendix is the following, which may be helpful to further study Tor-rigidity. In this appendix R
denotes a d-dimensional Gorenstein local ring.

A.1. Assume R is a domain and d = 1. Let M be an R-module. Then the following conditions are
equivalent:

(i) M is Tor-rigid over R.
(ii) (M,C) is Tor-rigid for each torsion (or equivalently, finite length) R-module C.

(iii) (M,C) is Tor-rigid for each torsion-free (or equivalently, maximal Cohen-Macaulay) R-module C.

We deduce A.1 from the following more general result:

Proposition A.2. Let M be an R-module. Then the following conditions are equivalent:
(i) If C is a torsion R-module and TorR

n (M,C) = 0 for some n≥ d, then it follows TorR
i (M,C) = 0 for

all i≥ n.
(ii) If C is a maximal Cohen-Macaulay R-module that has rank and TorR

n (M,C) = 0 for some n ≥ d,
then it follows TorR

i (M,C) = 0 for all i≥ n.
(iii) If C is an R-module with rank and TorR

n (M,C) = 0 for some n≥ d, then it follows TorR
i (M,C) = 0

for all i≥ n.

Proof. First we show that parts (ii) and (iii) are equivalent, that is, part (ii) implies part (iii). For that
assume part (ii) holds. Let C be an R-module with rank such that TorR

n (M,C) = 0 for some n ≥ d. We
want to show that TorR

i (M,C) = 0 for all i≥ n.
We may assume C is not maximal Cohen-Macaulay. Then we consider a Cohen-Macaulay approxi-

mation of C, that is, a short exact sequence of R-modules 0→ L→ X →C→ 0, where pdR(L)< ∞ and
X is maximal Cohen-Macaulay; see 2.8(ii). Note pdR(L) < d so that TorR

n (M,X) = 0. Thus, as X has
rank, it follows from the hypothesis that TorR

i (M,X) = 0 for all i ≥ n. This yields TorR
i (M,C) = 0 for

all i≥ n, and hence establishes part (iii).
Next we show that part (i) implies (ii). Assume part (i) holds and let C be a maximal Cohen-Macaulay

R-module with rank such that TorR
n (M,C) = 0 for some n ≥ d. We want to show that TorR

i (M,C) = 0
for all i≥ n. As C has rank, there exists a short exact sequence 0→C→ G→ Y → 0, where G is free
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and Y is torsion; see [34, 1.3]. As TorR
n (M,C) = 0, we have that TorR

n+1(M,Y ) = 0; now the hypothesis
implies that TorR

i (M,Y ) = 0 for all i≥ n+1. Consequently, TorR
i (M,C) = 0 for all i≥ n, as required.

Finally we note a module is torsion if and only if it has rank zero. So part (iii) implies part (i). �
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