
HARMONIC MAPS INTO GRASSMANN MANIFOLDS
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Abstract. A harmonic map from a Riemannian manifold into a Grass-
mann manifold is characterized by a vector bundle, a space of sections
of this bundle and a Laplace operator. We apply our main theorem
(a generalization of Theorem of Takahashi) to generalize the theory of
do Carmo and Wallach and to describe the moduli space of harmonic
maps satisfying the gauge and the Einstein–Hermitian conditions from
a compact Riemannian manifold into a Grassmannian. The geomet-
ric meaning of the compactification of the moduli space is interpreted
and it is shown that the compactified moduli space is connected and
convex. As applications, several rigidity results are exhibited and we
also construct moduli spaces of holomorphic isometric embeddings of
the complex projective line into complex quadrics of low degree. The
compactification of the moduli space leads to classification theorems for
equivariant harmonic maps.
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1. Introduction

What this paper attempts to do is to bring ideas from the gauge theory
of vector bundles into the theory of harmonic maps.

One of our main purposes is to generalize Theorem of Takahashi [32].
Let f : M → SN−1 be a smooth map from a Riemannian manifold (M, g)
into the standard sphere SN−1, which can be considered as a unit sphere
of the Euclidean space RN . If we fix an orthonormal basis e1, · · · , eN of
RN and the associated co-ordinates are denoted by (x1, · · · , xN ), then each
co-ordinate function xA (A = 1, · · · , N) can be regarded as a function on
SN−1 by restriction. We can pull-back each xA by f :M → SN−1 to obtain
a function onM , which is also denoted by the same symbol. Then (a version
of) Theorem of Takahashi [32] states

Theorem 1.1. A map f :M → SN−1 is a harmonic map if and only if there
exists a function h : M → R such that ∆xA = hxA for all A = 1, · · · , N ,
where ∆ is the Laplace operator of (M, g). Under these conditions, we have
h = |df |2.

In the proof of Theorem 1.1, the position vector f(x) ∈ RN (x ∈ M),
considered as f :M → RN , plays a central role.

First of all, our concern is with a map from (M, g) into a real or com-
plex Grassmann manifold Grp(W ) parametrizing p-dimensional subspaces
of W with a standard metric of Fubini-Study type, where W is a real or
complex vector space with an inner product or a Hermitian inner product.
We abbreviate an inner product and a Hermitian inner product to a scalar
product denoted by (·, ·). To emphasize the role of the scalar product (·, ·),
we denote by (Grp(W ), (·, ·)) a Grassmannian with a metric of Fubini-Study
type induced by (·, ·).

Let S → Grp(W ) be the tautological vector bundle over Grp(W ). Since
S → Grp(W ) is a subbundle of a trivial bundle W = Grp(W ) × W →
Grp(W ), we have a quotient bundle Q → Grp(W ), which is called the
universal quotient bundle. The scalar product on W gives an identifica-
tion of Q → Grp(W ) with the orthogonal complement of S → Grp(W ) in
W → Grp(W ). Consequently, vector bundles S,Q→ Grp(W ) are equipped
with induced fiber metrics and connections.

When the standard sphere SN−1 is identified with the real Grassmannian
of oriented (N − 1)-planes in RN , the position vector f(x) ∈ RN can be
considered as a section of the universal quotient bundle Q → GrN−1(R

N )
which is also regarded as the normal bundle of SN−1 into RN . Then we
use the inner product on RN to recover functions x1, · · · , xN by relations
xA(x) = (eA, f(x)) and thus RN induces sections of the universal quotient
bundle as xA(x)f(x). The differential of the position vector can be recog-
nized as the second fundamental form of the subbundle Q → RN in the
sense of Griffiths [16] and Kobayashi [18] in a natural manner. Since the
bundle has a preferred connection, the Laplace operator acting on sections
of the bundle is well-defined, which is indeed a Laplace operator acting on
functions due to the trivialization by f(x) of the pull-back bundle f∗Q→M .
Hence we can reformulate Theorem 1.1 from the viewpoint of vector bundles
when these geometric structures are pulled back. Our first result is
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Main Theorem 1. (Theorem 3.5) Let (M, g) be a Riemannian manifold
and f : M → Grp(W ) a smooth map. We fix a scalar product (·, ·) on W ,
which gives a Riemannian structure on Grp(W ). We regard W as a space
of sections of the pull-back bundle f∗Q→M .

Then, the following three conditions are equivalent.

(1) f : (M, g) → (Grp(W ), (·, ·)) is a harmonic map.
(2) W has the zero property for the Laplacian acting on sections of the

pull-back bundle f∗Q→M of the universal quotient bundle.
(3) There exists an endomorphism A of the bundle f∗Q→M such that

∆t+At = 0 for an arbitrary t ∈W .

Under these conditions, a bundle endomorphism A turns out to be the mean
curvature operator of f :M → Grp(W ) and

|df |2 = −traceA (whenW = RN ), |df |2 = −2traceA (whenW = CN ).

See Definition 3.4 for the zero property for the Laplacian. The bundle
endomorphism A on f∗Q →M , called the mean curvature operator, is also
defined in §3 and plays a crucial role in the sequel.

In §4, we introduce three natural functionals and use the Gauss-Codazzi
equations for vector bundles to compute their Euler-Lagrange equations in
terms of the second fundamental forms. The first two functionals are well-
known: they are a modification of the Yang-Mills functional for the pull-back
connections of the universal quotient bundle and the energy functional of a
map. (The modification means that the Yang-Mills type functional is de-
fined on the space of mappings into Grassmannians, which is different from
the ordinary Yang-Mills functional defined on the space of connections on
the fixed bundle.) The third functional is obtained as the L2 norm of the
mean curvature operator of mappings. This functional has a lower bound
which relates to the total energy of the map. A map which minimizes the
third functional has the property that its mean curvature operator is propor-
tional to the identity of the pull-back bundle. This property shall be referred
to as the Einstein-Hermitian condition. A minimal immersion is a special
case of a harmonic map with constant energy density. In cases of isometric
minimal immersions into the sphere and holomorphic isometric immersions
into the complex projective space regarded as Grn(C

n+1) = P(Cn+1∗), the
pull-back connections are product connections and Hermitian Yang-Mills
connections on line bundles, respectively, and the mean curvature opera-
tors can be considered as constant functions. However, when the target is a
Grassmannian of higher rank, we could have various connections as the pull-
back connections and various bundle endomorphisms as the mean curvature
operators, which we call admissible connections and admissible endomor-
phisms for harmonic maps, respectively, or an admissible pair for short. To
determine admissible pairs could give us some difficulties in describing a set
of harmonic maps. Even if we could specify an admissible pair of a con-
nection ∇ and a bundle endomorphism A, we could have various harmonic
maps with (∇, A) as admissible pair, which is the subject in §5.

A vector bundle together with a finite-dimensional vector space of sections
of the bundle induces a map into a Grassmannian. Such a map is called the
induced map or classifying map in [4] (Definition 5.1). A famous example of
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induced maps is the Kodaira embedding of an algebraic manifold into the
complex projective space, which is induced by a holomorphic line bundle and
the space of holomorphic sections of it. Though it is well-known that any
holomorphic map between Kähler manifolds is a harmonic map, our Main
Theorem 1 with Lemma 4.2 yields the fact in the case where the target is
Grp(C

N ) or a complex hyperquadric QN .
In the theory of do Carmo-Wallach [7], Theorem of Takahashi with rep-

resentation theory of the special orthogonal groups is applied to classify
isometric minimal immersions of spheres into spheres. Toth and D’ambra
obtain the exact dimension of the moduli spaces of those immersions and
extend the do Carmo-Wallach theory to the case that the domain manifold
is a compact isotropy irreducible Riemannian homogeneous space [35] (see
also Wallach [36]). Section 5 is devoted to developing a generalization of
the theory of do Carmo and Wallach by Main Theorem 1. Instead of repre-
sentation theory, we make use of geometry of vector bundles. We are now
concerned with a harmonic map from a compact Riemannian manifold into
a Grassmannian, satisfying the gauge and the Einstein-Hermitian conditions
(see §§4 and 5 for the definition): by the gauge condition on a harmonic map,
we specify a vector bundle with a fiber metric and a connection obtained
as the pull-back of the universal quotient bundle. The Einstein-Hermitian
condition relates a harmonic map to an eigenspace of the Laplace operator.
After fixing a vector bundle with a metric and a connection on a compact
Riemannian manifold, a standard map is defined as the induced map by a
subspace of the space of sections on the bundle with L2 scalar product. We
show that any harmonic map with gauge and Einstein-Hermitian conditions
is realized as a deformation of a standard map and corresponds to a pair
(W,T ), where W is an eigenspace with L2 scalar product of the Laplacian
acting on sections of the vector bundle and T is a positive semi-definite Her-
mitian endomorphism on W satisfying the MC equations (Theorem 5.12).
One of the important features in our theory is that every harmonic map can
be realized as an induced map with a bundle isomorphism called the natural
identification (Definition 5.9). To establish the correspondence, we intro-
duce the notion of gauge equivalence of maps, while the equivalence relation
used in the original do Carmo-Wallach theory is called image equivalence :
the isometry (sub)group of a Grassmannian acts on the space of harmonic
maps into the Grassmannian via the composite, of which the orbits give
the image equivalence relation of maps. An isometry of Grassmannian also
induces an isomorphism of the universal quotient bundle which covers the
isometry. Since any harmonic map is realized along with the natural iden-
tification, the induced bundle isomorphism enters into our theory to define
the gauge equivalence relation of maps (Definitions 5.7 and 5.9). From the
point of view of gauge theory, even in the original do Carmo-Wallach theory,
we can find an isomorphism of the pull-back of the universal quotient bundle
and a flat line bundle preserving metrics and connections for each isometric
minimal immersion, which is fulfilled with the position vector. This means
that the gauge condition is automatically satisfied in the original theory. On
the other hand, the mean curvature operator is regarded as a function in the
case where the target is the sphere or the complex projective space, since
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the universal quotient bundle is of real or complex rank one in each case.
Thus, the Einstein-Hermitian condition is also automatically satisfied in the
original theory. These could explain why the gauge theoretic side of the
theory might have been overlooked in the literature. However the situation
changes: we could have various admissible pairs when considering harmonic
maps into Grassmannians of higher rank. For this, we adopt the gauge
and Einstein-Hermitian conditions in a generalization of do Carmo-Wallach
theory at the first stage.

Next, by relaxing the Einstein-Hermitian condition, we develop a consid-
erable generalization of do Carmo-Wallach theory which is needed in the case
where the target is a Grassmannian of higher rank. Instead of eigenspaces
of the Laplacian, we consider the solution space of the “generalized Laplace
equation” (∆ + A) t = 0 for sections t, where A is a bundle endomorphism,
which is eventually recognized as the mean curvature operator of the induced
map. In the generalization of do Carmo-Wallach theory, any harmonic map
in question is realized as an induced map with the natural identification and
parametrized in an analogous way by a pair (WA, T ) modulo gauge equiv-
alence, where WA is the solution space of the generalized Laplace equation
(Theorem 5.15).

To construct the moduli space, we need a relative version of a general-
ization of do Carmo-Wallach theorem (Theorem 5.20). Then the moduli
space M modulo gauge equivalence is described in Theorem 5.24. Using
the L2 scalar product on WA, we provide M with a natural topology and
derive topological properties of it. We will interpret the geometric meaning
of the compactification of M (see Remark after Corollary 5.25). The com-
pactification involves totally geodesic submanifolds of the target manifold
and harmonic maps into the submanifolds. Such a totally geodesic subman-
ifold emerges as the zero set of the sections of the universal quotient bundle
which belong to Ker T ⊂ WA and is thus a Grassmann manifold whose
universal quotient bundle has the same rank as that of the target. The
compactification of M leads to the notion of terminal harmonic map (Defi-
nition 5.26), which is implicit in the original theory. To proceed further, we
utilise the connectedness of the compactified moduli space to conclude that
the terminal harmonic map is rigid (Corollary 5.27). We also exploit the
connectedness of the compactified moduli space to obtain various rigidity
results (Theorems 6.24, 6.28 , 6.29, 6.30 and Corollary 6.25). In any case, it
plays a significant role that totally geodesic embeddings of low dimensional
Grassmannians are involved in our compactification of the moduli spaces.

When considering the moduli space by image equivalence, we encounter
the action on M of a Lie subgroup of the structure group of the pull-back
of the universal quotient bundle. The Lie subgroup is indeed the centralizer
of the holonomy group of the induced connection on the pull-back bundle.
In the original do Carmo-Wallach theory, both the holonomy group and the
structure group are trivial. It follows that the moduli spaces modulo image
equivalence coincide with those modulo gauge equivalence (Lemma 5.28).
After reviewing the original do Carmo-Wallach theorem briefly, we present
a direct generalization of it as Theorem 5.29. Our theory thus includes the
original theory. On the contrary, we will give an example in which the moduli

5



space by gauge equivalence is different from that by image equivalence (see
Theorems 6.21 and 6.22). This example could justify to bring a bit of
complicated gauge equivalence relation of maps into our theory, because the
moduli space M by gauge equivalence is easily described as a connected,
convex and open subset of some Euclidean space (Theorem 5.24), while the
moduli space by image equivalence might be a quotient space of M by a Lie
group (Theorem 5.32).

Next, we focus our attention on a homogeneous vector bundle with a
canonical connection over a compact reductive Riemannian homogeneous
space G/K . Then, each invariant subspace of the eigenspace of the Laplace
operator on the vector bundle induces a G-equivariant map from G/K into
a Grassmannian, which is also called a standard map. We give a suffi-
cient condition for a standard map being a harmonic map with gauge and
Einstein-Hermitian conditions (Lemma 5.36). Since the standard map is
G-equivariant, the energy density is constant, its value being expressible
through its eigenvalue. In this subsection a few examples of standard maps
are displayed, some of which are related to Kähler or quaternion-Kähler
moment maps. We shall modify the MC equations to obtain a classification
of harmonic maps in Theorem 5.37. As a result, the description of moduli
spaces is connected with the representation theory of compact Lie groups.
This gives a straightforward generalization of Toth-D’ambra theory [35] and
Wallach [36] and will be of use in §6.

In section 6, we apply our generalization of do Carmo-Wallach theory to
obtain various rigidity theorems and moduli spaces. We give an alternative
proof of the Theorem of Bando-Ohnita [2], J.Bolton-G.R.Jensen-M.Rigoli-
L.M.Woodward [3] and Ohnita [28], which states the rigidity of isometric
minimal immersions of the complex projective line CP 1 into complex projec-
tive spaces. The same method yields rigidity of holomorphic isometric em-
beddings between complex projective spaces, which is a part of well-known
theorem of Calabi [5]. Toth defines the notion of polynomial minimal im-
mersion between complex projective spaces [34]. In this notion, the gauge
condition is implicitly supposed to be satisfied. Then, we show that ev-
ery harmonic map between complex projective spaces satisfying the gauge
condition for the canonical connection on a complex line bundle is automat-
ically a polynomial map in the sense of Toth by Theorem 3.5. We give a
generalization of Calabi’s rigidity theorem on holomorphic isometric embed-
dings between complex projective spaces as Theorem 6.14, in which we show
the rigidity of Einstein-Hermitian holomorphic embeddings from irreducible
Hermitian symmetric spaces of compact type into complex Grassmannians
with the gauge condition for a direct sum of r-copies of an irreducible ho-
mogeneous bundle and the canonical connections.

Next, we use Theorems 5.15, 5.24, 5.32 and 5.37 to describe the moduli
spaces of holomorphic isometric embeddings of CP 1 into complex hyper-
quadrics QN , which are also Einstein-Hermitian holomorphic embeddings.
At this stage, these examples manifest the difference of gauge equivalence
and image equivalence. We see from the description of the compactified
moduli space that the real standard map (defined in §6) is the unique rep-
resentative in the homotopy class of maps of degree 2 of CP 1 into QN
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which is the Einstein-Hermitian holomorphic terminal map with the pull-
back connection being a Hermitian Yang-Mills connection. Finally, we give
an equivariant version of Theorem 5.20 (Theorem 6.23) to obtain classifi-
cation theorems on equivariant harmonic maps of the complex projective
spaces into Grp(C

N ) or QN . Here Theorem 5.15 is needed and we eventu-
ally meet harmonic maps into complex Grassmannians which do not satisfy
the Einstein-Hermitian condition.

In the final section, we compare the generalized do Carmo-Wallach con-
struction with the well-known ADHM-construction of instantons on S4.
Though both the harmonic map equation and the anti-self-dual equation
are non-linear, linear equations naturally emerge in our geometric setting,
which lead us to a description of moduli spaces in linear algebraic terms.

The author would like to express his gratitude to Professors O.Macia,
M.Takahashi and I.Koga for many valuable comments and discussions. He
is also very grateful to the anonymous referee for careful reading the man-
uscript and a lot of comments which led him to the essential change of the
manuscript.

This research is supported by JSPS KAKENHI Grant Number 21K03236.

2. Preliminaries

Throughout this paper, a manifold is supposed to be connected. We
review some standard material, mostly in order to fix our notation.

2.1. A harmonic map. Let M and N be Riemannian manifolds and f :
M → N be a (smooth is always understood) map. We define the energy
density e(f) :M → R of f as

e(f)(x) := |df |2 =
dimM∑
i=1

|df(ei)|2,

where we use both Riemannian metrics on M and N and e1, · · · , edimM

denotes an orthonormal basis of the tangent space TxM at x. Then, the
tension field τ(f) of f is defined to be

τ(f)x := trace∇df =

dimM∑
i=1

(∇eidf)(ei),

which is a section of the pull-back bundle f∗TN →M of the tangent bundle
TN → N . The definition of harmonic maps is due to Eells and Sampson
[11].

Definition 2.1. A map f :M → N is called a harmonic map if the tension
field vanishes (τ(f) ≡ 0).

The symmetric form ∇df with values in f∗TN →M is called the second
fundamental form. We say that a map f :M → N is a totally geodesic map
if ∇df ≡ 0. By definition, a totally geodesic map is a harmonic map.

If we suppose that f :M → N is an isometric immersion, then the tension
field is a mean curvature vector, the second fundamental form is the same as
that in submanifold geometry and a harmonic map is nothing but a minimal
immersion.
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2.2. Geometry of Grassmann manifolds. First of all, we focus our at-
tention on a real Grassmann manifold.

Let W be a real N -dimensional vector space with an orientation. Let
Grp(W ) be a Grassmann manifold of (oriented) p-planes in W and S →
Grp(W ) the tautological vector bundle. Then we have an exact sequence of
vector bundles:

0 → S
i−→W

π−→ Q→ 0,

whereW → Grp(W ) is a trivial vector bundle of fiber W , and Q→ Grp(W )
is the quotient bundle which is called the universal quotient bundle.

When W is equipped with an inner product (·, ·) on W , we can define
a homogeneous Riemannian metric gGr induced by (·, ·) such that Grp(W )
is a Riemannian symmetric space. To define gGr more precisely, we notice
that (·, ·) induces the fibre metrics gS on S → Grp(W ) and gQ on Q →
Grp(W ). Since the tangent bundle T = TGrp(W ) of Grp(W ) is identified
with S∗ ⊗Q ∼= S ⊗Q, the Riemannian metric gGr is induced as the tensor
product of gS and gQ : gGr = gS ⊗ gQ. We call gGr a Riemannian metric
of Fubini-Study type. To emphasize the role of the inner product (·, ·), we
denote by (Grp(W ), (·, ·)) a Grassmannian with a metric of Fubini-Study
type induced by (·, ·).

We fix an orthonormal basis w1, · · · , wN of W which is compatible with
its orientation. We denote by Rp the subspace spanned by w1, · · · , wp and
by Rq the orthogonal complementary subspace. The orthogonal projection
to Rp is denoted by πp and the orthogonal projection to Rq by πq. Using the
orthogonal projection πq, we can explicitly write a bundle map π :W → Q:

π[g](w) :=
[
g, πq(g

−1w)
]
∈ Q = G×K0 R

q, w ∈W, g ∈ G,

where G = SO(N) and K0 = SO(p)× SO(q). The inner product (·, ·) gives
a bundle injection π∗ : Q → W : π∗ ([g, v]) = ([g], gv), v ∈ Rq, which is
the adjoint bundle map of π. Hence, Q → Grp(W ) is also regarded as the

orthogonal complementary bundle S⊥ → Grp(W ) to S → Grp(W ). We can
define a connection ∇Q on Q → Grp(W ). If t is a section of Q → Grp(W ),
then we have

∇Qt = πd (π∗(t)) .

The connection ∇Q is called the canonical connection.
In a similar way, we can use i : S → W : i ([g, u]) = ([g], gu), u ∈ Rp and

its adjoint bundle map i∗ : W → S:i∗(w) :=
[
g, πp(g

−1w)
]
∈ G ×K0 R

p to

define the connection ∇S :

∇Ss = i∗d (i(s)) , s ∈ Γ(S),

which is also called the canonical connection. Using the identification T =
S∗⊗Q, we can see that the Levi-Civita connection coincides with one induced
by the canonical connections.

In this context, since S → Grp(W ) is a subbundle of W → Grp(W ), it is
natural to introduce the second fundamental form H (for example, see [16]
and [18]), which is a 1-form with values in Hom(S,Q) ∼= S∗ ⊗Q:

dis = i∇Ss+ π∗Hs, Hs = πd (i(s)) .
8



If s = i∗(w), then we can compute

(2.1) Hs =
[
g, πm(g

−1dg)πp(g
−1w)

]
,

where we use an orthogonal decomposition of Lie algebra g of G: g = k⊕m,
k = so(p)⊕ so(q), with respect to a G-invariant inner product on g and the
orthogonal projection πm : g → m.

Since T is identified with S∗ ⊗Q, the cotangent bundle T ∗ is considered
as T ∗ = S ⊗Q∗. Hence the second fundamental form H ∈ Ω1(S∗ ⊗Q) can
also be regarded as a section of T ∗ ⊗ T = S ⊗ S∗ ⊗Q⊗Q∗.

Lemma 2.2. The second fundamental form H can be regarded as the iden-
tity transformation of the tangent bundle T .

Proof. Since H is an invariant form, we may evaluate at the reference point
[e] of Grp(W ), where e is the unit element of G. From (2.1), using T =
G×K0 m and T[e] = m, we have for X ∈ m that HX = [e, πm (X)] = X. □

Since the canonical connections preserves the irreducible decomposition
of T ∗ ⊗ T , we can see that

Corollary 2.3. The second fundamental form H is parallel.

We can also define the second fundamental form K ∈ Ω1(Q∗ ⊗ S) of a
subbundle π∗ : Q→W :

diQt = π∗∇Qt+ iKt, Kt = i∗d (π∗(t))

For a fixed vector w ∈ W , assigning x ∈ Grp(W ) to i∗x(w) and πx(w) for
w ∈ W , we obtain two sections s = i∗(w) of S and t = π(w) of Q, each of
which is called the section corresponding to w. Thus W can be considered
as a subspace of sections of S,Q→ Grp(W ).

Proposition 2.4. If s and t are the sections corresponding to w ∈W , then

∇Ss = −Kt, ∇Qt = −Hs.

Proof. By definition, we have that w = i(s) + π∗(t). Then,

∇Ss = i∗di(s) = i∗d (w − π∗(t)) = −i∗dπ∗(t) = −Kt.
We get the other equation in a similar way. □
Lemma 2.5. The second fundamental forms H and K satisfy

gQ(Hu, v) = −gS(u,Kv), u ∈ Sx, and v ∈ Qx,

where Sx and Qx are the fibers of S and Q over x ∈ Grp(W ), respectively.

Proof. If we take sections s of S and t of Q such that s(x) = u and t(x) = v,
then gQ(Hs, t) = (di(s), π∗t)W = −(is, dπ∗t)W = −gS(s,Kt). □

The second fundamental form K ∈ Ω1(Q∗ ⊗ S) can also be regarded as a
section of Q⊗S⊗Q⊗S. Under the irreducible decomposition, K corresponds
to a constant section of R ⊂ Q⊗ S ⊗Q⊗ S. Obviously, we have

Lemma 2.6. The second fundamental form K is also parallel.

The orthonormal basis w1, · · · , wN ofW provides us with the correspond-
ing sections sA = i∗(wA) and tA = πQ(wA).
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Proposition 2.7. For arbitrary tangent vectors X and Y on a real Grass-
mannian, we have

gGr(X,Y ) =
∑
A

gS∗⊗Q(HX ,HY ) =
∑
A

gQ∗⊗S(KX ,KY )(2.2)

=
∑
A

gQ(HXsA,HY sA) =
∑
A

gS(KXtA,KY tA).

Proof. The key fact is that the second fundamental form H is considered as
an isomorphism of bundles from T to S∗⊗Q preserving the metrics and the
connections (Lemma 2.2). Consequently, (2.2) follows. □

Remark. Lemma 2.5 and Proposition 2.7 give us

gGr = −traceQHK = −traceSKH.

Next, we consider a complex Grassmann manifold. The main difference
of a complex Grassmannian from a real Grassmannian is that we can use the
Hodge decomposition, since a complex Grassmannian is a Kähler manifold.
More precisely, let W be a complex vector space with a Hermitian inner
product (·, ·)W and Grp(W ) a complex Grassmannian of p-planes in W . We
can define homogeneous vector bundles S → Grp(W ) andQ→ Grp(W ) with
induced Hermitian metrics hS and hQ by W , respectively. The canonical
connections equip S and Q → Grp(W ) with holomorphic vector bundle
structures. Then, W is regarded as the space of holomorphic sections of
Q→ Grp(W ). The holomorphic tangent bundle is identified with S∗⊗Q and
the holomorphic cotangent bundle is S⊗Q∗. The identification is compatible
with Hermitian metrics and connections. The second fundamental form
H ∈ Ω1(Hom(S,Q)) is of type (1, 0). It follows that H is considered as a
section of S ⊗Q∗ ⊗ S∗ ⊗Q and we obtain H = idS ⊗ idQ in a similar way.
The second fundamental form K ∈ Ω1(Hom(Q,S)) is of type (0, 1). Since
the Hermitian metric on the holomorphic tangent bundle is induced from
that on S∗ ⊗Q→ Grp(W ), the Riemannian metric gGr satisfies

gGr(X,Y ) =− traceQHXKY − traceSKXHY(2.3)

=− 2Re (traceQHXKY ) ,

for arbitrary real tangent vectors X and Y on the complex Grassmannian.

3. Harmonic maps into Grassmannians

In this section, we shall prove the main theorems. We denote byW →M a
trivial vector bundle overM with a vector spaceW as its fiber: M×W →M .
For a vector bundle V → M , Γ(V ) denotes the space of (smooth) sections
of V → M . Then for each x ∈ M , we have a linear map evx : Γ(V ) → Vx
called the evaluation map as assigning t ∈ Γ(V ) to t(x), where Vx is the
fiber of V → M over x ∈ M (see, for example, [4, p.298]). Thus the
evaluation map is considered as a bundle map ev : M × Γ(V ) → V defined
by ev(x, t) = evx(t) = t(x) for x ∈M and t ∈ Γ(V ). If a (finite-dimensional)
subspaceW ⊂ Γ(V ) is given, then the restriction of ev toM×W is also called
the evaluation map which is denoted by the same symbol ev :W → V and so,
we have a linear map evx :W → Vx for each x ∈M as evx(w) = ev(x,w) for

10



w ∈W . We denote by EndV the bundle of endomorphisms of V →M . For a
connection on V →M , its curvature 2-form is denoted by RV ∈ Ω2(EndV ).

Definition 3.1. Let V →M be a vector bundle and W a space of sections
of V →M . The vector bundle V →M is called to be globally generated by
W if the evaluation map ev :W → V is surjective.

Since π : W → Q provides the corresponding section of Q → Grp(W )
to each w ∈ W , π is also recognized as the evaluation map ev : W → Q :
ev(x,w) = πx(w). We always regard W as a space of sections of Q →
Grp(W ) in this way. Then Q→ Grp(W ) is globally generated by W .

Let f : M → Grp(W ) be a smooth map. We fix an inner product or a
Hermitian inner product (·, ·) on a vector space W according to a ground
field. We call (·, ·) a scalar product. Then, as explained in §2, the scalar prod-
uct on W provides the Grassmannian Grp(W ) with a Riemannian structure
and the vector bundles S → Grp(W ) and Q→ Grp(W ) can be regarded as
homogeneous vector bundles on Grp(W ) with fiber metrics and canonical
connections. Pulling back Q → Grp(W ) to M by f , we obtain a vector
bundle f∗Q→M . Since W can be regarded as a subspace of Γ(Q), we have
a linear map F :W → Γ(f∗Q) defined by

(3.1) F (w)(x) = (x, ev(f(x), w)) = (f∗tw)(x) ∈ f∗Q ⊂M ×Q,

for x ∈ M and w ∈ W , which is the pull-back of the section tw of Q →
Grp(W ) corresponding to w ∈ W . However, it might not be an injection.
Even in such a case, W is still called a space of sections of f∗Q→M and we
obtain the evaluation map denoted by the same symbol ev :M ×W → f∗Q
as

(3.2) ev(x,w) = F (w)(x),

which is the pull-back of the evaluation map ev : Grp(W )×W → Q. Then
the pull-back bundle f∗Q → M is also globally generated by W . We also
pull back a fiber metric and a connection on Q→ Grp(W ) to obtain a fiber

metric gf∗Q and a connection ∇f∗Q on f∗Q→M .
In a similar way, the pull-back bundle f∗S → M has the pull-back fiber

metric gf∗S and the pull-back connection ∇f∗S . When we fix w ∈ W and
take the sections corresponding to w denoted by s ∈ Γ(S) and t ∈ Γ(Q), the
pull-back of sections f∗s ∈ W ⊂ Γ(f∗S) and f∗t ∈ W ⊂ Γ(f∗Q) are also
called the sections corresponding to w. We abbreviate f∗s and f∗t to s and
t, respectively.

The second fundamental forms are also pulled back and denoted by the
same symbolsH ∈ Γ(f∗T ∗⊗(f∗S)∗⊗f∗Q) andK ∈ Γ(f∗T ∗⊗(f∗Q)∗⊗f∗S).
If we restrict bundle-valued linear forms H and K on the pull-back bundle
f∗T ∗ → M to linear forms on M , H and K are nothing but the second
fundamental forms of the exact sequence: 0 → f∗S →W → f∗Q→ 0.

From now on, we assume that (M, g) is a Riemannian manifold with a
metric g. Then, we use the Riemannian structure on M and the pull-back
connection on f∗Q → M to define the Laplace operator ∆f∗Q = ∆ =

−
∑n

i=1∇
f∗Q
ei

(
∇f∗Q

)
(ei) acting on sections of f∗Q → M and an endomor-

phism A of the bundle f∗Q→M is defined as the trace of the composition
11



of the second fundamental forms H and K:

Ax :=

m∑
i=1

HeiKei ,

where m is the dimension of M and {ei}i=1,2,···m is an orthonormal basis of
the tangent space to M at x. The bundle endomorphism A ∈ Γ (End f∗Q)
is called the mean curvature operator of f .

We now describe properties of A ∈ Γ (End f∗Q).

Lemma 3.2. The mean curvature operator A is a negative semi-definite
symmetric (or Hermitian) endomorphism of f∗Q→M .

Proof. It follows from Lemma 2.5 that KX
∗ = −HX . From the definition of

A, we immediately obtain the result. □

Lemma 3.3. The energy density e(f) is equal to −traceA in the case when
W is a real vector space or −2traceA in the case when W is a complex
vector space.

Proof. We use Proposition 2.7 to obtain

e(f) =
m∑
i=1

gGr(df(ei), df(ei)) = −
m∑
i=1

traceHeiKei = −traceA.

When W is a complex vector space, use (2.3). □

Definition 3.4. Let V →M be a vector bundle and t a section of V →M .
We denote by Zt the zero set of t: Zt := {x ∈M | t(x) = 0} . A space of
sections W of a vector bundle V → M is called to have the zero property
for the Laplacian if Zt ⊂ Z∆t for an arbitrary t ∈W .

Example. When W is an eigenspace for ∆, it has the zero property.

We now formulate one of main theorems in this section.

Theorem 3.5. Let (M, g) be a Riemannian manifold and f :M → Grp(W )
a smooth map. We fix a scalar product (·, ·) on W , which equips Grp(W )
with a Riemannian structure. We regard W as a space of sections of the
pull-back bundle f∗Q→M .

Then, the following three conditions are equivalent.

(1) f : (M, g) → (Grp(W ), (·, ·)) is a harmonic map.
(2) W has the zero property for the Laplacian acting on sections of the

pull-back bundle of the universal quotient bundle.
(3) There exists an endomorphism Ã of the pull-back bundle of the uni-

versal quotient bundle such that ∆t+ Ãt = 0 for an arbitrary t ∈W .

Under these conditions, Ã = A, where A is the mean curvature operator of
f :M → Grp(W ) and

e(f) = −traceA (whenW = RN ), e(f) = −2traceA (whenW = CN ).

Proof. Let X and Y be tangent vectors of M and t ∈ Γ(f∗Q). We consider
the second fundamental form K ∈ Ω1 ((f∗Q)∗ ⊗ f∗S). Since ∇K = 0 on

12



Grp(W ), we have

(∇XK)(Y ; t) = ∇f∗S
X (KY t)−K∇XY t−KY (∇f∗Q

X t)

= ∇f∗S
X (KY t)−K∇̃XY−(∇Xdf)(Y )t−KY (∇f∗Q

X t)

= K(∇Xdf)(Y )t,

where∇ is the Levi-Civita connection onM , ∇̃ is the Levi-Civita connection
on Grp(W ) and K is also regarded as a section of f∗T ∗ ⊗ (f∗Q)∗ ⊗ f∗S. In
particular, we obtain

(3.3) −δ∇K = Kτ(f),

where τ(f) is the tension field of f :M → Grp(W ).
Next we fix a vector w ∈ W and take the sections s ∈ W ⊂ Γ(f∗S) and

t ∈ W ⊂ Γ(f∗Q) corresponding to w. Then it follows from Proposition 2.4
that

∇f∗Q
X

(
∇f∗Qt

)
(Y ) =∇f∗Q

X

(
∇f∗Q

Y t
)
−∇f∗Q

∇XY t

=∇Q
df(X)

(
∇Q

df(Y )t
)
−∇Q

∇̃XY−(∇Xdf)(Y )
t

=∇Q
df(X)

(
∇Qt

)
(df(Y )) +∇Q

(∇Xdf)(Y )t

=HYKXt−H(∇Xdf)(Y )s.

In particular, we obtain

∆t−Hτ(f)s+

m∑
i=1

HeiKeit = ∆t−Hτ(f)s+At = 0.(3.4)

First, we assume that the condition (1) is satisfied. The assumption that
f :M → Grp(W ) is harmonic yields that the equation (3.4) reduces to

∆t+At = 0.(3.5)

We conclude that W has the zero property and the condition (3).
Conversely, suppose that we have the condition (2). For an arbitrary

vector u ∈ (f∗S)x, x ∈ M , we can find an element w ∈ W such that the
corresponding sections s ∈ Γ(f∗S) and t ∈ Γ(f∗Q) satisfy

s(x) = u, and t(x) = 0.

The equation (3.4) gives us

Hτ(f)s = ∆t+At.

Since W has the zero property for the Laplacian and t(x) = 0, it follows
that ∆t(x) = 0. Hence we have

Hτ(f)u = 0,

and Lemma 2.2 yields τ(f) = 0, which means that f is a harmonic map.
It is clear that (3) yields (2).
Finally, we suppose that the conditions (1), (2) and (3) are satisfied. It

follows from (3.5) that ∆t+ At = 0 for any t ∈ W . On the other hand, (3)

yields that ∆t+ Ãt = 0 for an arbitrary t ∈W . Since W globally generates
V →M , we can deduce that Ã = A. □

13



Corollary 3.6. Let f : (M, g) → (Grp(W ), (·, ·)) be a smooth map. Then f
is a totally geodesic map if and only if the second fundamental form K of
vector bundles is covariant constant.

Proof. In the proof of Theorem 3.5, we show that ∇K = K∇df . From the
definition of totally geodesic map, we get the result. □

Remark. Totally geodesic maps into Grassmannians will be discussed in
detail and Theorem of Takahashi will be generalized in the case where the
target is any symmetric space of compact type [25].

Next, suppose that f :M → Grp(W ) is an isometric immersion. Instead
of the tension field, we use the mean curvature vector to obtain a similar
result. When f is an isometric immersion, the energy density is a constant
function: e(f) = m. In particular, we can state a straightforward generaliza-
tion of Theorem of Takahashi [32] by replacing a harmonic map by minimal
immersion.

Corollary 3.7. Let (M, g) be an m-dimensional Riemannian manifold and
f : (M, g) → (Grp(W ), (·, ·)) an isometric immersion.

Then, the following three conditions are equivalent.

(1) f :M → Grp(W ) is a minimal immersion.
(2) W has the zero property for the Laplacian acting on sections of the

pull-back bundle of the universal quotient bundle.
(3) There exists a bundle endomorphism Ã of the pull-back of the uni-

versal quotient bundle such that

∆t+ Ãt = 0 for an arbitrary t ∈W.

Moreover, under the above conditions, we have Ã = A, where A is the mean
curvature operator of f and

m = −traceA (whenW = RN ), m = −2traceA (whenW = CN ).

Remark. This gives us the original form of Theorem of Takahashi [32]. To
this end, we regard the standard sphere as the Grassmannian of oriented
hyperplanes in Rn+1: Grn(R

n+1). Since Q → Grn(R
n+1) is of rank 1,

which can also be regarded as the normal bundle of the unit sphere Sn in
Rn+1, the mean curvature operator A can always be considered as a function
−e(f) from Lemma 3.3.

4. Functionals

4.1. The equations of Gauss-Codazzi. Let f : (M, g) → (Grp(W ), (·, ·))
be a smooth map. Since the connection on W → M is flat, it follows from
the Gauss-Codazzi equations [18, p.23 (6.12)] for vector bundles that

(4.1) Rf∗Q(X,Y ) = HYKX −HXKY , (∇XK)(Y ) = (∇YK)(X).

We have

(∇XR
f∗Q)(Y, Z) =H(∇Xdf)(Z)KY +HZK(∇Xdf)(Y )

−H(∇Xdf)(Y )KZ −HYK(∇Xdf)(Z).

14



In particular,

(δ∇Rf∗Q)(X) = −(∇eiR
f∗Q)(ei, X)(4.2)

=−H(∇eidf)(X)Kei −HXKτ(f) +Hτ(f)KX +HeiK(∇eidf)(X).

On the other hand, we obtain

(4.3) ∇XA = H(∇eidf)(X)Kei +HeiK(∇eidf)(X).

First of all, we have

Lemma 4.1. Let f : (M, g) → (Grp(W ), (·, ·)) be a smooth map. If f is
a totally geodesic map, then the pull-back connection on f∗Q → M is a
Yang-Mills connection and A is parallel.

Proof. The result follows from Corollary 3.6 with (4.2) and (4.3). □

We shall present another occurrence in which the pull-back connection is
a Yang-Mills connection and A is covariant constant. Let V →M be a holo-
morphic vector bundle with a Hermitian metric h over a Kähler manifoldM ,
which is denoted by (V, h) and called a Hermitian holomorphic bundle. The
unique connection on (V, h) compatible with the Hermitian metric and the
holomorphic vector bundle structure is called the Hermitian connection (we
follow Kobayashi [18]). We denote by H0(M ;V ) the space of holomorphic
sections on V →M .

Lemma 4.2. LetM be a Kähler manifold and V →M a holomorphic vector
bundle with a Hermitian metric. We take the Hermitian connection ∇ on
V →M . Then, for any holomorphic section t ∈ H0(M ;V ), we have

∆t = KEHt,

where KEH is the mean curvature in the sense of Kobayashi [18]:

(4.4) KEH =
√
−1

m∑
i=1

R(ei, Jei)

where J is the complex structure of M , e1, Je1, · · · , em, Jem is an orthonor-
mal basis and R is the curvature of the Hermitian connection.

Proof. We put Zi =
1√
2

(
ei −

√
−1Jei

)
. We can extend the vectors Zi locally

to get a local holomorphic frame field denoted by the same symbols. On the
one hand, since t is a holomorphic section, we have that

∇Zi (∇t) (Zi) = ∇Zi

(
∇Zi

t
)
−∇DZi

Zi
t = 0.

On the other hand, we get

2
m∑
i=1

∇Zi (∇t) (Zi) = −∆t+
m∑
i=1

√
−1R(ei, Jei)t,

and the result follows. □

Though it is well-known that any holomorphic map between Kähler man-
ifolds is a harmonic map, we can use Theorem 3.5 to see
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Proposition 4.3. Let M be a Kähler manifold and Grp(W ) a complex
Grassmannian or a complex quadric with the Fubini-Study metric. Suppose
that f : M → Grp(W ) is a holomorphic map. Then f is a harmonic map
and the mean curvature KEH of the pull-back bundle f∗Q → M of the
universal quotient bundle equals minus the mean curvature operator A of f .

Proof. We can regard W as a space of holomorphic sections of the pull-back
of the universal quotient bundle. It follows from Theorem 3.5 and Lemma
4.2 that f is a harmonic map and A = −KEH . □

Remark. When the target is a complex Grassmannian, the formula A =
−KEH can also be obtained as a straightforward application of the equation
of Gauss (4.1). Since the second fundamental forms H and K are of type
(1, 0) and (0, 1), respectively, (4.1) and (4.4) yield the result.

If the mean curvature KEH of (V, h) satisfies KEH = µIdV for some
constant µ, then (V, h) is called an Einstein-Hermitian vector bundle. If
(V, h) is an Einstein-Hermitian vector bundle, then the Hermitian connection
is called a Hermitian Yang-Mills connection (see, for example, [9] and [18]).

We have from Lemma 4.2 that

Corollary 4.4. Under the hypothesis of Lemma 4.2, suppose that V → M
is globally generated by H0(M ;V ). Then (V, h) is an Einstein-Hermitian
vector bundle if and only if H0(M ;V ) is an eigenspace of the Laplacian.

Corollary 4.5. LetM be a compact Kähler manifold and Grp(W ) a complex
Grassmannian or a complex quadric with the Fubini-Study metric.

If f :M → Grp(W ) is a holomorphic map such that the pull-back bundle
f∗Q → M with the induced metric is an Einstein-Hermitian vector bundle,
then the Hermitian connection on f∗Q→M is a Yang-Mills connection and
the mean curvature operator A is equal to −µIdf∗Q for some non-negative
constant µ.

Proof. Since any Hermitian Yang-Mills connection minimizes the Yang-Mills
functional, the pull-back connection is a Yang-Mills connection. Proposition
4.3 yields that A = −µIdf∗Q for some non-negative constant µ. □

4.2. Functionals. WhenM is compact, we naturally have three functionals
on the space of mappings f :M → Grp(W ):∫

M
|Rf∗Q|2dvM ,

∫
M

|H|2dvM ,
∫
M

|A|2dvM ,

where dvM is the Riemannian volume form onM . If the tangent space to the
space of mappings C∞(M,Grp(W )) at f is identified with Γ((f∗S)∗⊗f∗Q),
the Euler-Lagrange equation for the first functional takes the form:

(4.5) δ∇
(
C
(
Rf∗QH

))
= −

m∑
i=1

∇ei

(
C
(
Rf∗QH

))
(ei) = 0,
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where C is the contraction operator: C
(
Rf∗QH

)
=

∑m
i=1R

f∗Q(ei, ·)Hei ,
and e1, · · · , em is an orthonormal basis of TM . Using the equation of Co-
dazzi (4.1), we see that (4.5) is equivalent to the equation

C
(
(δ∇Rf∗Q)H

)
=

m∑
i=1

(δ∇Rf∗Q)(ei)Hei = 0.

When we define the total energy E(f) of the map f :M → Grp(W ) by

E(f) =

∫
M
e(f)dvM ,

Lemma 3.3 and the definition of A yield that∫
M

|H|2dvM =

∫
M

|K|2dvM =

{
E(f), when W = RN

1
2E(f), when W = CN ,

and we can see that δ∇H = −τ(f) from Lemma 2.5 and (3.3). Finally, we
have

δ∇ (AH) = −
m∑
i=1

∇ei(AH)(ei) = 0

as the Euler-Lagrange equation for the third functional.
If M is a Kähler manifold and f : M → Grp(W ) is a holomorphic map

into a complex Grassmannian or a complex quadric, then Proposition 4.3
yields that ∫

M
|A|2dvM =

∫
M

|KEH |2dvM .

In this case, it is the same as the Yang-Mills functional up to a topological
constant [18, p.111], (though the functional is defined on C∞(M,Grp(W ))).

Hence if f :M → Grp(W ) is a totally geodesic map or if f :M → Grp(W )
is a holomorphic map with the pull-back bundle being an Einstein-Hermitian
vector bundle, then f is an extremal of all the three functionals.

4.3. The Einstein-Hermitian condition. We consider a set of harmonic
maps f from a compact Riemannian manifold M into a real Grassmannian
Grp(R

N ) with the fixed energy E(f). Let µ be a non-negative constant
determined by qµVol (M) = E(f), where q = N −p and Vol (M) =

∫
M dvM .

Then

0 ≦ |A+ µIdf∗Q|2 = |A|2 + 2µtraceA+ µ2q = |A|2 − 2µe(f) + µ2q.

Integration and the definition of µ yield that

qµ2Vol (M) = µE(f) ≦
∫
M

|A|2dvM ,

where the equality holds if and only if A = −µIdf∗Q.

When f is a map into a complex Grassmannian Grp(C
N ), µ is defined by

2qµVol (M) = E(f). Then we have that

(4.6)
1

2
µE(f) ≦

∫
M

|A|2dvM ,

where the equality holds if and only if A = −µIdf∗Q.
17



If the mean curvature operator A of f :M → Grp(W ) is expressed as A =
−µIdf∗Q for some non-negative constant µ, then f is said to satisfy Einstein-
Hermitian condition or EH condition for short. A map which satisfies the
Einstein-Hermitian condition is called an Einstein-Hermitian (EH ) map. If
f is an Einstein-Hermitian map with A = −µIdf∗Q, then f is called to have
an Einstein-Hermitian (EH ) constant −µ.

4.4. Maps of Kähler manifolds into complex Grassmannians. Let
f : M → Grp(C

p+q) be a smooth map of compact Kähler manifold M
with the second fundamental form K of vector bundles which is a one-form
with values in Hom(f∗Q, f∗S). We denote by m the complex dimension
of M and by ωM the Kähler form on M . According to the bi-degree, the
components of K are denoted by K1,0 ∈ Ω1,0 (Hom(f∗Q, f∗S)) and K0,1 ∈
Ω0,1 (Hom(f∗Q, f∗S)), respectively. With this understood,

Lemma 4.6. Let f : M → Grp(C
p+q) be a smooth map of complex m-

dimensional Kähler manifold M . Then we have that

√
−1trRf∗Q ∧ ωm−1

M =
1

m

(
−|K1,0|2 + |K0,1|2

)
ωm
M .(4.7)

Proof. When we denote by
∧

the contraction of the curvature Rf∗Q with the
Kähler form ωM on M and e1, Je1, e2, Je2, · · · , em, Jem is an orthonormal
basis of TM , the equation of Gauss-Codazzi and Lemma 2.5 yield that

√
−1

∧
trRf∗Q =tr

m∑
i=1

Rf∗Q(Zi, Zi) =

m∑
i=1

hf∗Q

(
Rf∗Q(Zi, Zi)vα, vα

)
=

m∑
i=1

hf∗Q

(
(HZi

KZi −HZiKZi
)vα, vα

)
=−

m∑
i=1

hf∗Q (KZivα,KZivα) +

m∑
i=1

hf∗Q

(
KZi

vα,KZi
vα

)
=− |K1,0|2 + |K0,1|2,

where Zi =
1√
2

(
ei −

√
−1Jei

)
, i = 1, 2, · · · ,m and v1, · · · , vq is a unitary

basis of f∗Q. From the identity

Rf∗Q ∧ ωm−1
M =

1

m

(∧
Rf∗Q

)
ωm
M ,

(4.7) is proved. □

Corollary 4.7. If f : M → Grp(C
p+q) is a smooth map of a compact

Kähler manifold, then the first Chern class c1(f
∗Q) of f∗Q → M satisfies

the inequality :

4π

(m− 1)!

∣∣∣∣∫
M
c1(f

∗Q) ∧ ωm−1
M

∣∣∣∣ ≦ E(f).

the equality holds if and only if f is holomorphic, i.e. K1,0 = 0, or anti-
holomorphic, i.e. K0,1 = 0.
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Proof. If
∫
M c1(f

∗Q) ∧ ωm−1
M ≧ 0, then Lemma 4.6 and Chern-Weil theory

yield that

2πm

∫
M
c1(f

∗Q) ∧ ωm−1
M =

∫
M

(
−|K1,0|2 + |K0,1|2

)
ωm
M ≦

∫
M

|K0,1|2ωm
M

≦
∫
M

(
|K1,0|2 + |K0,1|2

)
ωm
M =

∫
M

|K|2ωm
M =

1

2

∫
M

|df |2ωm
M .

We use dvM = 1
m!ω

m
M to obtain the result. The equality holds if and only if

K1,0 = 0. In the other case, we use

−2πm

∫
M
c1(f

∗Q) ∧ ωm−1
M =

∫
M

(
|K1,0|2 − |K0,1|2

)
ωm
M ≦

∫
M

|K1,0|2ωm
M ,

to obtain the result. □

Theorem 4.8. If f :M → Grp(C
p+q) is a smooth map of a compact Kähler

manifold, then(
2π

(m− 1)!

∫
M
c1(f

∗Q) ∧ ωm−1
M

)2

≦ qvol(M)

∫
M

|A|2dvM .

The equality holds if and only if f is an Einstein-Hermitian holomorphic or
anti-holomorphic map with EH constant −|c|, where

c =
2π

qvol(M)(m− 1)!

∫
M
c1(f

∗Q) ∧ ωm−1
M .

Proof. The definition of µ with (4.6) yields that

1

4
E(f)2 ≦ qvol(M)

∫
M

|A|2dv.

The inequality follows from Corollary 4.7.
The equality holds if and only if A = −µId and

4π

(m− 1)!

∣∣∣∣∫
M
c1(f

∗Q) ∧ ωm−1
M

∣∣∣∣ = E(f),

in other words, f is holomorphic or anti-holomorphic.
If f is holomorphic, then Lemma 4.6 yields that

c1(f
∗Q) ∧ ωm−1

M =
1

2πm
|K0,1|2ωm

M =
(m− 1)!

2π
|K|2dvM .

It follows from Lemma 3.3 that

µ =
1

2qvol(M)
E(f) =

1

qvol(M)

∫
M

|K|2dvM = c.

When f is anti-holomorphic, we have µ = −c in a similar way. □

Notice that, by definition, the constant c depends only on the homotopy
class of f and the cohomology class of ωM .

Remark. When the target is a quadric hypersurface of the complex projective
space, we have a similar result:

8

(
π

(m− 1)!

∫
M
c1(f

∗Q) ∧ ωm−1
M

)2

≦ vol(M)

∫
M

|A|2dvM ,
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and

c =
π

vol(M)(m− 1)!

∫
M
c1(f

∗Q) ∧ ωm−1
M .

Since a complex quadric can be identified with a real Grassmann manifold
of codimension-2 oriented subspaces (see §6.3), this difference arises from
the definition of µ in §4.3.

4.5. An admissible pair. We consider the complex projective space as
Grn(C

n+1) = P(Cn+1∗). Then the universal quotient bundle is the complex
line bundle of degree 1. If f : M → Grn(C

n+1) is a holomorphic isometric
immersion, then we have KEH = µIdf∗Q for some positive constant µ from
Lemma 3.3 and Proposition 4.3. We thus have only the Hermitian Yang-
Mills connection as the pull-back connection and f is an Einstein-Hermitian
holomorphic map with EH constant −µ: A = −µIdf∗Q.

For a similar reason, if f : M → Grn(R
n+1) = Sn is an isometric mini-

mal immersion, then we have only the product connection as the pull-back
connection and a constant function as the mean curvature operator: f is an
EH harmonic map.

However, when the target is a Grassmannian of higher rank, we could
have various connections and bundle endomorphisms as the induced geo-
metric structures, which are called admissible connections and admissible
endomorphisms for harmonic maps, respectively. We abbreviate them to
an admissible pair. Hence, to describe a set of harmonic maps, we need
to detect admissible pairs as the first step. Even if we could succeed in
specifying an admissible pair (∇, A), we could have various harmonic maps
with (∇, A) as admissible pair, which is the subject of §5. Thus the set of
harmonic maps could be a singular fiber bundle over the set of admissible
pairs.

Example. For a holomorphic map, from Proposition 4.3 we may consider
only an admissible connection instead of an admissible pair. It is shown
in [20] that the set of admissible connections for equivariant holomorphic
embeddings f : CP 1 → Grn(C

n+2) coincides with the set of invariant
connections with positive semi-definite curvatures on rank 2 homogeneous
vector bundles modulo gauge equivalence (for the definition of an equivari-
ant map, see §6.4). In addition, for each admissible connection ∇ modulo
gauge equivalence, we have the unique equivariant holomorphic embedding
f : CP 1 → Grn(C

n+2) modulo congruence, which has ∇ as the admissible
connection. This sort of rigidity result on holomorphic map with a fixed
admissible connection into the complex Grassmannian could be regarded as
a generalization of the well-known Calabi’s rigidity theorem on holomorphic
isometric immersions into the complex projective space [5], which is one of
the main subjects in [26].

5. A generalization of Theory of do Carmo and Wallach

We will prove a series of main theorems in this section: a generalization of
do Carmo-Wallach theory [7]. In the original theory, the space of functions is
regarded as the representation space and they established the classification
of minimal immersions of spheres into spheres modulo congruence using
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Theorem of Takahashi and representation theory of Lie groups. Instead of
representation theory, we employ geometry of vector bundles. As already
stated, it is sufficient to consider only a product connection and a constant
function as the mean curvature operator in the original theory. We will need
to fix a connection and a bundle endomorphism in the sequel to develop a
generalization.

Definition 5.1. Let V → M be a real or complex vector bundle of rank q
which is globally generated by W ⊂ Γ(V ) of dimension N . Then Grp(W )
denotes a real or complex Grassmannian according to the coefficient field of
V , where p = N − q. We regard evx : W → Vx as a surjective linear map
for each x ∈M . Then a map f :M → Grp(W ) is defined as

f(x) := Ker evx = {t ∈W | t(x) = 0} .

We call f : M → Grp(W ) the map induced by (V → M,W ), or the map
induced by W , if the vector bundle V → M is specified. (Such an f is also
called a classifying map in [4, p.298]. As the choice of a space of sections is
crucial in our theory, we use the term a map induced by (V,W ). )

When V is a real vector bundle with an orientation, we also fix an orien-
tation on W and suppose that Grp(W ) is an oriented real Grassmannian.
To obtain a map into an oriented Grassmannian Grp(W ), we induce the
orientation of f(x) from those of V →M and W .

From the definition of the induced map f : M → Grp(W ), the vector
bundle V → M can naturally be identified with f∗Q → M . To be more
precise, let Ker ev → M be a vector bundle obtained as the kernel of ev :
W → V . Since Sf(x) = Ker evx, we get a natural identification i : Ker ev →
f∗S. Then the following diagram gives a bundle map ϕ : V → f∗Q, which
is called the natural identification of V →M with f∗Q→M .

0 −−−−→ Ker ev −−−−→ W −−−−→ V −−−−→ 0

i

y ∥∥∥ yϕ

0 −−−−→ f∗S −−−−→ W −−−−→ f∗Q −−−−→ 0.

Conversely, if f :M → Grp(W ) is a smooth map, then we obtain a vector
bundle f∗Q → M which is globally generated by W , where W is regarded
as a space of sections of the pull-back bundle. It is easily observed that the
map induced by W is the same as the original map f : M → Grp(W ). In
this way, every map f : M → Grp(W ) can be recognized as a map induced
by (f∗Q→M,W ).

Let (M, g) be a compact Riemannian manifold and V → M a vector
bundle with a fiber metric h and a compatible connection ∇. Then the
space of sections Γ(V ) of V → M has the L2 scalar product induced by g
and h. Moreover, using the Riemannian structure and ∇, we can define the
Laplace operator ∆ acting on Γ(V ). Since ∆ is an elliptic operator, we can
decompose Γ(V ) into the eigenspaces of the Laplacian in the L2-sense:

Γ(V ) = ⊕µWµ, Wµ := {t ∈ Γ(V ) |∆t = µt} .

It is well-known that Wµ is a finite-dimensional vector space equipped with
the scalar product (·, ·)µ induced from the L2 scalar product.
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5.1. Standard maps. Suppose that a rank q vector bundle V → M is
globally generated by a finite-dimensional subspace W of Γ(V ) with L2

scalar product (·, ·). Then we define the map f0 :M → Grp(W ) induced by
(V,W ), where p = dimW − q. We call f0 the standard map by W . Thus
the standard map means a map into (Grp(W ), (·, ·)) defined as Ker evx or
more precisely, the term standard amounts to fixing the scalar product on
W by L2 scalar product and a bundle map ev : M ×W → V which is the
restriction of the evaluation map ev :M × Γ(V ) → V .

When a real vector bundle V has an orientation, to define the induced
map into an oriented Grassmannian Grp(R

n), we need to fix an orientation
of Rn ⊂ Γ(V ). We denote by Rn

+ the Euclidean space with the fixed orien-
tation and by Rn

− that with the opposite orientation. Then we can consider
two standard maps: those into Grp(R

n
+) and Grp(R

n
−), respectively. To dis-

tinguish between them, we define an isometry τ : Grp(R
n) → Grp(R

n) as
the map obtained by switching the orientation of p-dimensional subspaces
of Rn and τ is called the inversion in this article. If f0 is the standard map
into Grp(R

n
+), then so is τ ◦f0 into Grp(Rn

−). Notice that τ might not be an
element of the orthogonal group O(n) (e.g. when p and n are even), while
in the original do Carmo-Wallach theory, τ does belong to O(n). This will
affect our theory through the definition of gauge and image equivalence.

5.2. A generalization of do Carmo-Wallach Theory. In this section,
K denotes R or C. When Kn is a real or complex vector space with a
scalar product (·, ·), self-adjoint endomorphisms on Kn are called Hermitian
endomorphisms, for simplicity.

Definition 5.2. Let f : M → Grp(K
n) be a smooth map and we consider

the induced linear map F : Kn → Γ(f∗Q), (see (3.1) for the definition of F ).
Then the map f :M → Grp(K

n) is called a full map if F : Kn → Γ(f∗Q) is
injective.

To understand the definition of the fullness, we give a generalization of a
result of Erbacher [12].

Let f : M → Grp(K
n) be a smooth map. Assume that Kn has a scalar

product. The pull-back bundles of S → Grp(K
n) and Q → Grp(K

n) are
denoted by U →M and V →M , respectively:

0 → U
i−→ Kn π−→ V → 0.

Define U1
x ⊂ Ux as the image of the second fundamental form at x ∈M :

U1
x := ImKx,

where K ∈ Ω1(V ∗ ⊗ U) is the second fundamental form of vector bundles.
Suppose that the dimension of U1

x is independent of x ∈M and so, we have
a subbundle U1 → U . Then we obtain an orthogonal direct sum of vector
bundles: U = U1 ⊕ U2, where U2 → M is the orthogonal complementary
bundle of U1 → M in U → M . It follows from Lemma 2.5 that U2

x is
characterized by U2

x = {u ∈ Ux |Hu = 0}, where H ∈ Ω1(U∗ ⊗ V ) is the
second fundamental form. With this understood, we have

Theorem 5.3. Let f : M → Grp(K
n) be a smooth map. If U1 → M is

a rank k vector bundle preserved by the induced connection ∇U , then we
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have a totally geodesic submanifold Grk
(
Kn−(p−k)

)
of Grp(K

n) such that

f(M) ⊂ Grk(K
n−(p−k)). The subspace Kn−(p−k) of Kn is the orthogonal

complement of the kernel of F : Kn → Γ(f∗Q).

Proof. Since ∇U is compatible with the induced metric, U2 → M is also a
vector bundle preserved by ∇U . Then the equation of Gauss (4.1) yields
that U2 →M is flat;

RU (X,Y )|U2u = KYHXu−KXHY u = 0, for u ∈ U2.

Let ξ be a (local) parallel section of U2 → M . From the definition of ∇U ,
we have that

d (i(ξ)) = i(∇Uξ) + π∗(Hξ) = 0 + 0 = 0.

Hence the W -valued function i(ξ) is constant, say w = i(ξ) ∈W . It follows
from the definition of sw ∈ Γ(U) corresponding to w that sw = i∗(w) =
i∗i(ξ) = ξ. Since w = i(sw) = i(ξ) = ii∗(w), we can see that π∗π(w) =
w − ii∗(w) = w − i(sw) = 0. Therefore tw = π(w) ∈ Γ(V ) vanishes, Thus,
for any x ∈M ,

i(U2
x) =

{
w ∈ Kn | sw(x) ∈ U2

x

}
= {w ∈ Kn | tw(x) = 0} .

Since M is connected, we obtain a subspace i(U2) of Kn, which is the
kernel of F : Kn → Γ(f∗Q). It follows that f(M) is a subset of {y ∈
Grp(K

n) | tw(y) = 0, w ∈ i(U2)}. □
In the case when p = n− 1, Theorem 5.3 is an Erbacher’s result [12].
Notice that the notion of full map is the same as one in [7], [29] and [34]

if the target space is the sphere or the complex projective space.
Let f be a full map of M into Grp(K

n) with a Fubini-Study metric.
Suppose that the pull-back of the universal quotient bundle has a decompo-
sition V0⊕V1 →M , where V0 →M is a trivial bundle with a flat connection.
Suppose that Kn has a subspace W0 which consists of parallel sections of
V0 → M and does not induce any sections of V1 → M except the zero sec-
tion. Since f is a full map, we have that dimW0 = rankV0. We take the
orthogonal complementary subspace of W0 in Kn denoted by W1. Then we
obtain a totally geodesic embedding i : Grp(W1) → Grp(K

n). Since each
element of W0 ⊂ Kn is a parallel section, we see that f is a composite of i
and the induced map f1 by (V1 → M,W1). Hence f is essentially the same
as f1 from the point of view of Riemannian geometry.

Definition 5.4. Let f be a full map ofM into Grp(K
n) with a Fubini-Study

metric.
Then f :M → Grp(K

n) is called a full map with trivial summand, if
(1) the pull-back of the universal quotient bundle is decomposed into V0 ⊕
V1 →M , where V0 →M is a trivial bundle with a flat connection, and
(2) Kn has a subspace W0 which consists of parallel sections of V0 →M and
does not induce any sections of V1 →M except the zero section, (hence we
have that dimW0 = rankV0).

We call f a full map with no trivial summand, unless f is a full map with
trivial summand.

When Kn has a scalar product (·, ·), we give two equivalence relations of
maps. We denote by Aut(Kn) the unitary group U(n) or the orthogonal
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group O(n) according to the coefficient field K. In the sequel, Aut(Kn) will
also be regarded as a subgroup of the isometry group of (Grp(K

n), (·, ·)).
Definition 5.5. Let f1 and f2 : M → (Grp(K

n), (·, ·)) be smooth maps.
Then f1 is called image equivalent to f2, if there exists an isometry ψ ∈
Aut(Kn) of (Grp(K

n), (·, ·)) such that f2 = ψ ◦ f1.
An isometry ψ ∈ Aut(Kn) induces an isomorphism of the bundle Q →

Grp(K
n) denoted by ψ̃ which covers ψ. If we have a map f :M → Grp(K

n),

then ψ ◦ f : M → Grp(K
n) is also a map and ψ̃ induces an isomorphism

of bundles denoted by the same symbol ψ̃ : f∗Q → (ψ ◦ f)∗Q = f∗ψ̃Q.

By definition, ψ̃ ((x, v)) = (x, ψ̃(v)), where x ∈ M and v ∈ Qf(x). We also

regard ψ̃ itself as an element of Aut(Kn).
From now on, we assume that a vector bundle V →M has a fiber metric

h and a connection ∇ compatible with the metric h, for which we write
(V →M,h,∇) or (V, h,∇). In this article, a vector bundle V1 →M is called
to be isomorphic to V2 → M if there exists a bundle map ϕ : V1 → V2 such
that ϕ is an isomorphism of vector bundles preserving the metrics and the
connections. In the case when each vector bundle Vi →M (i = 1, 2) defined
over R has an orientation, ϕ is also supposed to preserve the orientation.
Then ϕ is called a bundle isomorphism.

To define another equivalence relation for maps into Grassmannians with
the Fubini-Study metric, we need to fix a vector bundle over the domain
manifold.

Definition 5.6. We fix a vector bundle (V → M,h,∇) and let f be a
smooth map of M into Grp(K

n) with the Fubini-Study metric. Then f
is called to satisfy the gauge condition for (V → M,h,∇) if f∗Q → M is
isomorphic to V →M .

Remark. Let G(V ) be the group of gauge transformations on V → M i.e.
the group of automorphisms on V → M preserving the metric (and the
orientation, if the structure group of V is SO(n−p)) and covering the identity
map on M . If ϕ : (V, h,∇) → (f∗Q,hf∗Q,∇f∗Q) is a bundle isomorphism,

then so is ϕ◦g : (V, h, g∇g−1) → (f∗Q,hf∗Q,∇f∗Q) for any g ∈ G(V ), where

hf∗Q and ∇f∗Q are the pull-back metric and connection by f , respectively.
Thus the gauge condition fixes a representative of the gauge equivalence
class of connections.

Remark. The gauge condition might be close to the balanced condition (cf.
[8] and [39]). However, the gauge condition only concerns the fiber metric
and the connection induced by the scalar product on Kn, while in the bal-
anced condition we also pay attention on the L2 scalar product induced by
the fiber metric and the volume form. We will be concerned with the case
when the scalar product on Kn is not an L2 scalar product (see Theorem
5.20).

We would like to take account of bundle isomorphisms to introduce an-
other equivalence relation of maps. To do so, we take two steps.

We consider a pair (f, ϕ), where f : M → Grp(K
n) is a smooth map

satisfying gauge condition for (V → M,h,∇) and ϕ : V → f∗Q is a bundle
isomorphism. With this understood,
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Definition 5.7. Fix a vector bundle (V →M,h,∇) and let f be a map of
M into (Grp(K

n), (·, ·)) satisfying the gauge condition for (V → M,h,∇).
Then pairs (f1, ϕ1) and (f2, ϕ2) are called gauge equivalent, if there exists an

isometry ψ ∈ Aut(Kn) of Grp(K
n) such that f2 = ψ ◦ f1 and ϕ2 = ψ̃ ◦ ϕ1.

We fix (V → M,h,∇) and consider a map f of M into a Grassmannian
Grp(K

n) with the Fubini-Study metric induced by a scalar product on Kn.
Let ev : Kn → f∗Q denote the pull-back of the evaluation map (see (3.2)).
Suppose that a bundle isomorphism ϕ : (V, h,∇) →

(
f∗Q,hf∗Q,∇f∗Q

)
is

given. Then ϕ induces a linear isomorphism of Γ(V ) onto Γ(f∗Q) as assign-
ing t ∈ Γ(V ) to ϕ(t) ∈ Γ(f∗Q). Thus, ϕ−1(Kn) ⊂ Γ(V ) is a subspace of the
space of sections of V →M .

Definition 5.8. Fix a vector bundle (V →M,h,∇). When we have a linear
monomorphism i : Kn → Γ(V ), we consider a linear map evx ◦ i : Kn → Vx
for each x ∈ M . Thus we obtain a bundle map, with a slight abuse of
notation, ev ◦ i : Kn → V defined as ev ◦ i(x,w) = evx (i(w)), for w ∈ Kn. If
ev ◦ i is surjective, then it is said that Kn globally generates V →M . When
Kn globally generates V →M , then the map f :M → Grp(K

n) defined as
assigning x ∈M to a subspace Ker (evx ◦ i) of Kn:

f(x) = Ker (evx ◦ i)(⊂ Kn) = {w ∈ Kn | evx(i(w)) = 0} , x ∈M

is called the map induced by a triple (V,Kn, i).
When a real vector bundle V → M has an orientation, to determine

the map into an oriented Grassmannian induced by a triple (V,Kn, i), we
suppose that Kn has an orientation.

Remark. Using this term, we can say that (one of) the standard map is the
map induced by (V,W, IdW ) of M into (Grp(W ), (·, ·)), where W ⊂ Γ(V )
(with an orientation) and (·, ·) is the L2 scalar product.

In our theory, linear monomorphisms of Kn into Γ(V ) will parametrize
harmonic maps modulo gauge equivalence of maps.

Definition 5.9. Let (V → M,h,∇) be a vector bundle and Kn an n-
dimensional vector space with a scalar product (·, ·). Let fα (α = 1, 2) be
maps induced by (V →M,Kn, iα) from M into (Grp(K

n), (·, ·)). Then, we
have a bundle map denoted by evα := ev ◦ iα : Kn → V . We take the
adjoint bundle map ev∗α : V → Kn of evα with respect to h and (·, ·). If
f∗αQ → M are identified with the orthogonal complement of f∗αS → M in
M×Kn and we recognize ev∗α as a bundle map onto the image, then ev∗α can
be considered as a bundle map onto f∗αQ. Suppose that each ev∗α : V → f∗αQ
is a bundle isomorphism.

Then, f1 is called gauge equivalent to f2 if (f1, ev
∗
1) is gauge equivalent to

(f2, ev
∗
2). We call evα : Kn → V an evaluation map by fα and ev∗α : V → f∗αQ

a natural identification by fα.

Forgetting the bundle isomorphisms, we see that gauge equivalence yields
image equivalence of maps.

For a vector space W , End (W ) denotes the set of endomorphisms on W .

Definition 5.10. We fix a vector bundle (V → M,h,∇) over K. Suppose
thatW is a subspace of Γ(V ) with a scalar product (·, ·)W and T ∈ End (W )
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is a positive semi-definite Hermitian endomorphism on W . We denote by
KerT⊥ the orthogonal complement of Ker T in W .
(i) The MC equations for (V, h,∇) to T ∈ End (W ) is defined as:

(5.1) ev ◦ T 2 ◦ ev∗ = IdV , and ev ◦ T 2 ◦ (∇ev∗) = 0 ∈ Ω1(EndV ),

where ev∗ : V → W is the adjoint bundle map of ev : W → V and the
connection ∇ on Hom (V,W ) is induced by the product connection on W →
M and ∇ on V →M .
(ii) Let (Kn, (·, ·)) be a vector space with a scalar product (·, ·) and ι : Kn →
W a linear injection. We take the scalar product ι∗(·, ·)W on Kn induced
from (·, ·)W by ι. Then the adjoint linear map ι∗ :W → Kn is defined with
respect to (·, ·)W and ι∗(·, ·)W . Thus ι∗ : W → Kn can be regarded as the
orthogonal projection onto ι(Kn). Then (Kn, (·, ·), ι) is said to be compatible
with (W,T ), if ι(Kn) = KerT⊥ and

(5.2) (ι∗Tι·, ι∗Tι·) = ι∗(·, ·)W .
Notice that ι∗Tι is a positive Hermitian endomorphism on (Kn, ι∗(·, ·)W ).

Remark. We will not distinguish Kn from KerT⊥ by considering ι as the
inclusion. Then the induced scalar product ι∗(·, ·)W by ι : Kn →W will be
abbreviated to (·, ·)W , when no confusion may arise.

The role of the MC equations will be elucidated in Theorem 5.12, which
is related to the gauge condition: a fiber metric and a connection. First of
all, we mention consequences from the compatibility condition.

Lemma 5.11. Let (M, g) be a Riemannian manifold and V →M a rank q
vector bundle over the coefficient field K with a metric h. Suppose that W
is a subspace of Γ(V ) with a scalar product (·, ·)W and T ∈ End (W ) is a
positive semi-definite Hermitian endomorphism on W such that V → M is
globally generated by KerT⊥. When V →M is a real vector bundle with an
orientation, we fix orientations of both W and KerT .

If (Kn, (·, ·), ι) is compatible with (W,T ), then
(i) we have a unique full map f : M → Grp(K

n) (n = p + q) induced by a
triple (V,Kn, ι (ι∗Tι)) :

(5.3) f (x) = (ι∗Tι)−1Ker (evx ◦ ι) = Ker (evx ◦ ι ◦ (ι∗Tι))
such that the natural identification by f is expressed as a bundle map (ι∗Tι)◦
ι∗ ◦ ev∗ = (ev ◦ ι ◦ (ι∗Tι))∗ : V → f∗Q, when we regard Grp(K

n) as a
Riemannian manifold (Grp(K

n), (·, ·)W ) and
(ii) T and ι induce an isometry (Grp(K

n), (·, ·)) → (Grp(K
n), (·, ·)W ) and a

totally geodesic submanifold (Grp(K
n), (·, ·)W ) of

(
Grp′(W ), (·, ·)W

)
as the

common zero set of sections of KerT ⊂W , where p′ = p+ dimKerT .

Proof. Since KerT⊥ globally generates V →M by the hypothesis, the com-
patibility condition yields that we can define a map f : M → Grp(K

n) as
the map induced by (V,Kn, ι (ι∗Tι)) (Definition 5.8). When V → M is an
oriented real vector bundle, since we fix orientations of W and KerT by defi-
nition, the orientation of Rn is uniquely determined. Then f is also uniquely
defined so that the restriction of evx to Ker (evx ◦ ι)⊥ onto Vx preserves the
orientation.
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It follows from KerT ∩ ι(Kn) = {0} that f is a full map.
By Definition 5.9, we see that the natural identification by f takes the

form: (ev ◦ ι ◦ (ι∗Tι))∗ : V → f∗Q.
Since ι∗Tι is invertible, we have a map Grp(K

n) → Grp(K
n) given by

U 7→ (ι∗Tι)−1 U , where U is a p-dimensional subspace of Kn. It turns
out to be an isometry (Grp(K

n), (·, ·)) → (Grp(K
n), (·, ·)W ) from (5.2) in

Definition 5.10.
We will describe the common zero set Z of sections of KerT ⊂ W in

Grp′(W ). From definition of the corresponding section, we have that

Z =
{
U ′ ⊂W | dimU ′ = p′ and KerT ⊂ U ′}

=
{
U ⊕KerT ⊂W |U ⊂ KerT⊥ and dimU = p

}
.

Then we can define an embedding of Grp(K
n) into Grp′(W ) by identify-

ing the zero set Z with its image. (When V → M is an oriented bundle
over R, since the orientation of Ker T is fixed, we can define the embed-
ding.) It follows that (Grp(K

n), (·, ·)W ) is a totally geodesic submanifold of(
Grp′(W ), (·, ·)W

)
. □

Remark. Let iT : (Grp(K
n), (·, ·)) → (Grp(K

n), (·, ·)W ) denote the isometry
obtained in Lemma 5.11. Thus, for f : M → (Grp(K

n), (·, ·)), we can not
distinguish between the composition iT ◦ f :M → (Grp(K

n), (·, ·)W ) and f
itself from the point of view of Riemannian geometry. If f is a harmonic map
into (Grp(K

n), (·, ·)), then so is iT ◦f as a map into (Grp(K
n), (·, ·)W ). When

iT ◦ f can be expressed as the map induced by (V,Kn, ι (ι∗Tι)), f is said to
be realized as the map induced by (V,Kn, ι (ι∗Tι)) into (Grp(K

n), (·, ·)W ).

We are now in a position to state one of the main theorems in this section.

Theorem 5.12. Let (M, g) be a compact Riemannian manifold. We fix a
vector bundle (V → M,h,∇) of rank q and denote by (Wλ, (·, ·)λ) ⊂ Γ(V )
the eigenspace with eigenvalue λ of the Laplacian acting on Γ(V ) with the
L2 scalar product (·, ·)λ.

Let f : M → (Grp(K
n), (·, ·)) be a full harmonic map into a Grassman-

nian with the Fubuni-Study metric satisfying the following two properties.
(i) f satisfies the gauge condition for (V, h,∇). (Hence, q = n− p.)
(ii) f is an Einstein-Hermitian map with EH-constant −µ for some positive
real number µ, and so e(f) = µq (K = R) or e(f) = 2µq (K = C).

Then µ is an eigenvalue of the Laplacian acting on Γ(V ). If we fix a
bundle isomorphism between (V, h,∇) and (f∗Q, f∗hQ,∇f∗Q), then there
exist a unique linear injection ι : Kn → Wµ and a positive semi-definite
Hermitian endomorphism T ∈ End (Wµ) satisfying the MC equations for
(V, h,∇) such that
(a) (Kn, (·, ·), ι) is compatible with (Wµ, T ) (In particular, n ≦ dimWµ).
(b) f : M → (Grp(K

n), (·, ·)) is realized as the map induced by a triple
(V,Kn, ι (ι∗Tι)) into (Grp(K

n), (·, ·)µ).
Conversely, for any eigenvalue µ of the Laplacian acting on Γ(V ), if a

positive semi-definite Hermitian endomorphism T ∈ End (Wµ) satisfies the

MC equations for (V, h,∇) and Kn := (KerT )⊥ globally generates V →M ,
then the map induced by a triple (V,Kn, ι (ι∗Tι)) is a full harmonic map into
(Grp(K

n), (·, ·)µ) satisfying (i) and (ii), where ι : Kn →Wµ is the inclusion.
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Suppose that fi :M → (Grp(K
n), (·, ·)µ) be maps induced by those triples

(V,Kn, ι (ι∗Tiι)) with the inclusion ι : Kn →Wµ such that ι (Kn)⊥ = KerTi,
(i = 1, 2). Then, f1 and f2 are gauge equivalent (Definition 5.9) if and only
if T1 = T2.

Remark. One of the important features is the following: any harmonic map
with properties (i) and (ii) can be realized as an induced map with the
natural identification which is a bundle isomorphism.

We begin with a lemma needed for the proof of Theorem 5.12.

Lemma 5.13. Let W be a vector space with a scalar product and Kn a
subspace of W . The orthogonal projection is denoted by π : W → Kn.
Let V be a vector space with a scalar product and suppose that we have a
surjective linear map ev :W → V .

If the restriction of ev to Kn denoted by evK is also surjective, then,

π
(
Ker ev⊥

)
= (Ker evK)⊥ ,

where Ker ev⊥ (resp. (Ker evK)⊥) denotes the orthogonal complement of
Ker ev ofW ( resp. Ker evK of Kn endowed with the induced scalar product).

Proof. Using the scalar product, we have adjoint homomorphisms ev∗ and
ev∗K of ev and evK , respectively. From the hypothesis, we have ev ◦ ι = evK
on Kn, where ι : Kn →W is the inclusion map. The adjoint of ι is nothing
but the projection π. It follows that ev∗K = ι∗◦ev∗ and so, ev∗K = π◦ev∗. □
Proof of Theorem 5.12 . Let f : M → (Grp(K

n), (·, ·)) be a full harmonic
map satisfying properties (i) and (ii).

From the gauge condition (i), we fix a bundle isomorphism ϕ : (V, h,∇) →(
f∗Q, f∗hQ,∇f∗Q

)
. Then ϕ induces a linear isomorphism Γ(V ) → Γ(f∗Q)

denoted by the same symbol. It follows from Theorem 3.5 together with
the Einstein-Hermitian condition (ii) that ∆t = µt, for an arbitrary t ∈
ϕ−1(Kn) ⊂ Γ(V ). Since f is a full map, ϕ−1(Kn) is a subspace of W =Wµ

and so, n ≦ dimW . Thus the restriction of ϕ−1 : Γ(f∗Q) → Γ(V ) to Kn

provides a unique injective linear map ι : Kn → ϕ−1(Kn) ⊂ W . Since
ϕ−1(Kn) globally generates V →M , so does W . Hence we have a surjective
evaluation map evx : W → Vx for each x ∈ M , which is the restriction of
evx : Γ(V ) → Vx. Therefore the composition of ι and evx defines a surjective
bundle map ev ◦ ι : Kn → V . Then the map f is expressed as

(5.4) f(x) = Ker (evx ◦ ι) ⊂ Kn.

Alternatively, f : M → (Grp(K
n), (·, ·)) is realized as the map induced by

(V,Kn, ι). (In the case where Grp(R
n) is an oriented Grassmannian, notice

that Rn is supposed to possess an orientation from our definition.) Hence,
we need to identify the scalar product on Kn to describe a full harmonic
map f into Grp(K

n) with (i) and (ii).
To do so, we recognize Kn as a subspace of W by ι and induce another

scalar product on Kn by the restriction of (·, ·)µ by ι, which is denoted by
the same symbol. To describe the difference of two scalar products on Kn,
we use a positive Hermitian endomorphism T : Kn → Kn such that

(5.5) (T ·, T ·) = (·, ·)µ.
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As in Lemma 5.11, we have an isometry denoted by T−1 : (Grp(K
n), (·, ·)) →

(Grp(K
n), (·, ·)µ) is given by U 7→ T−1U , where U is a p-dimensional sub-

space of Kn. Then the composition T−1 ◦ f :M → (Grp(K
n), (·, ·)µ) is also

a full harmonic map satisfying properties (i) and (ii). Thus, from now on, we
consider T−1 ◦ f which is referred to simply as f : M → (Grp(K

n), (·, ·)µ).
Then we have

(5.6) f(x) = T−1Ker (evx ◦ ι) = Ker (evx ◦ ι ◦ T ) ⊂ Kn.

In this way, a full harmonic map f is specified by the positive Hermitian
endomorphism T on Kn with the fixed scalar product (·, ·)µ.

Since (
T−1Ker evx ◦ ι

)⊥
= T (Ker evx ◦ ι)⊥ ,

we apply lemma 5.13 to obtain(
T−1Ker evx ◦ ι

)⊥
= Tι∗

(
Ker ev⊥x

)
,

where ι∗ : W → Kn is the adjoint of ι with respect to (·, ·)µ on Kn and W

(i.e. ι∗ is the orthogonal projection). LetKn⊥
be the orthogonal complement

of Kn in W . We define a positive semi-definite Hermitian endomorphism

T :W →W in such a way that Kn⊥
is the kernel of T and T |Kn = T . More

precisely, the latter condition means that ι∗Tι = T . Thus the definition of
T with (5.5) yields that (Kn, (·, ·), ι) is compatible with (W,T ).

The definition of T and (5.6) yields that f is expressed as

f (x) = (ι∗Tι)−1Ker (evx ◦ ι) = Ker (evx ◦ ι (ι∗Tι)) ,
which is the map induced by a triple (V,Kn, ι (ι∗Tι)). When f∗Q → M
is identified with the orthogonal complement of f∗S → M , it follows from
Lemma 5.11 that the natural identification ϕ : V → f∗Q by f takes the
form:

(5.7) ϕx (v) = (x, (ι∗Tι) ι∗ev∗x(v)) ,

where v ∈ Vx and (ι∗Tι) ι∗ev∗x is considered as a map onto the image.
Since the metric hf∗Q on f∗Q → M is induced by the scalar product on

Kn ⊂W , it follows from the gauge condition (i) and (5.7) that

h(v, v′) =hf∗Q

(
ϕx(v), ϕx(v

′)
)
=

(
(ι∗Tι) ι∗ev∗x(v), (ι

∗Tι) ι∗ev∗x(v
′)
)
µ

=h
(
evx ◦ ι (ι∗Tι)2 ι∗ ◦ ev∗x(v), v′

)
for arbitrary v, v′ ∈ V . From the definition of T , we have that (ι∗Tι)2 =
ι∗T 2ι and ιι∗T 2ιι∗ = T 2. Hence

ev ◦ ι (ι∗Tι)2 ι∗ ◦ ev∗(v) = ev ◦ ιι∗T 2(ιι∗ev∗(v)) = ev ◦ T 2 ◦ ev∗(v)
for v ∈ V . Thus

(5.8) h(v, v′) = h
(
ev ◦ T 2 ◦ ev∗(v), v′

)
,

and we obtain

(5.9) ev ◦ T 2 ◦ ev∗ = IdV .

Next, we compare the original connection ∇ with the pull-back connection
∇f∗Q by f :M → Grp(K

n) on V →M . Using the natural identification, we
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do not distinguish V from f∗Q. Since the orthogonal projection Kn → V is
ev◦ι (ι∗Tι), which is the adjoint homomorphism of ϕ, the induced connection
is expressed as follows:

∇f∗Qt = ev ◦ ι (ι∗Tι) ◦ dϕ(t) = ev ◦ ι (ι∗Tι) (x, (ι∗Tι) ι∗d (ev∗(t)))
=ev ◦ ι (ι∗Tι) (x, (ι∗Tι) ι∗ (∇ev∗) (t)) + ev ◦ ι (ι∗Tι) (x, (ι∗Tι) ι∗ ◦ ev∗(∇t))

=ev ◦ ι (ι∗Tι)2 ι∗ ◦ (∇ev∗) (t) + ϕ∗ϕ(∇t)
=ev ◦ T 2 ◦ (∇ev∗) (t) + ϕ∗ϕ(∇t)
for an arbitrary section t ∈ Γ(V ). It follows from (5.9) that ϕ∗ϕ = IdV and
we derive

(5.10) ∇f∗Q −∇ = ev ◦ T 2 ◦ (∇ev∗) .
The gauge condition (i) with (5.9) and (5.10) yields that T satisfies the MC
equations for (V, h,∇).

Let W be an eigenspace with an eigenvalue µ and T ∈ End (W ) a pos-
itive semi-definite Hermitian endomorphism satisfying the MC equations
for (V, h,∇). Suppose that Kn := (KerT )⊥ globally generates V → M .
Then (after fixing the orientation of Kn, if necessary), we can define a
full map f : M → Grp(K

n) induced by (V,Kn, ι (ι∗Tι)). As a map into
(Grp(K

n), (·, ·)µ), we obtain property (i), because the natural identification
by f preserves the metrics and the connections from (5.8) and (5.10). There-
fore, we can apply Theorem 3.5 to conclude that f is an Einstein-Hermitian
full harmonic map with EH-constant −µ.

Let f1 and f2 be the maps induced by (V,Kn, ι (ι∗Tiι)) with the in-
clusion ι : Kn → Wµ, where Ti ∈ End (Wµ) is a positive semi-definite
Hermitian endomorphism satisfying the MC equations for (V, h,∇) and
ι (Kn) = KerT⊥

1 = KerT⊥
2 globally generates V → M , (i = 1, 2). Suppose

that f1 and f2 are gauge equivalent as induced maps into (Grp(K
n), (·, ·)µ).

By definition of gauge equivalence, we can see from (5.7) that for the natural
identification ϕi by fi, there exists a ψ ∈ Aut(Kn) such that

(5.11) ψ̃ϕ1(v) = ϕ2(v) ⇐⇒ ψ̃ (ι∗T1ι) ι
∗ev∗(v) = (ι∗T2ι) ι

∗ev∗(v),

for an arbitrary v ∈ V . Since f1 and f2 are full maps, (5.11) gives

ψ̃ι∗T1ι = ι∗T2ι.

Then the uniqueness of the polar decomposition yields that ψ̃ = IdKn and
ι∗T1ι = ι∗T2ι. Then, from KerT1 = KerT2, we obtain T1 = T2.

Conversely, suppose that T1 = T2. A problem may arise only when the
target is an oriented Grassmannian, in other words, a real vector bundle
V → M has an orientation. However, since Kn is supposed to have an
orientation from our definition of the induced map, the gauge condition (i)
yields that (V,Kn, ι (ι∗Tiι)) do induce the same maps.

Remark. When the sphere SN−1 is identified with GrN−1(R
N ) a Grass-

mannian of oriented hyperplanes of RN , the position vector gives a triv-
ialization of Q → GrN−1(R

N ) and so, a product connection. Thus, this
connection gives the usual derivative of functions. When we have a map
f : M → GrN−1(R

N ), f can also be recognized as a trivialization of
f∗Q→M . Then every section of the pull-back bundle can be recognized as

30



a function on M , and the pull-back connection gives the usual derivative of
functions. Consequently, when the target is the standard sphere, we do not
need the gauge condition (i) in Theorem 5.12.

Remark. When the target is a symmetric space of rank 1, the universal
quotient bundle is of rank 1. Hence the mean curvature operator can be
considered as a function. Thus, in this case, the EH condition in Theorem
5.12 is equivalent to the condition that f has constant energy density from
Lemma 3.3.

Hence, the properties (i) and (ii) are automatically satisfied in the original
do Carmo-Wallach theory. In addition, when the target is neither the sphere
nor the projective space, it turns out to be more involved to describe the
moduli space by do Carmo-Wallach theory from the viewpoint of the theory
of connections. To see this, we give a remark.

Remark. At the beginning of the proof of Theorem 5.12, we have fixed a
bundle isomorphism ϕ : (V, h,∇) → (f∗Q, f∗hQ,∇f∗Q) for a given f . Then
the linear injection ι : Kn → Wµ is uniquely determined as the restriction
of ϕ−1 : Γ(f∗Q) → Γ(V ) to Kn ⊂ Γ(f∗Q). We would like to discuss the
effect when we take another bundle isomorphism ϕ1 between them. To
do so, let C(∇) denote the centralizer of the holonomy group of ∇ in the
structure group of V . Since ϕ−1

1 ϕ is a gauge transformation preserving the
metric and the connection on (V, h,∇) and the base manifold is connected,
we can find c ∈ C(∇) such that ϕ = ϕ1 ◦ c, where C(∇) is now regarded
as a subgroup of G(V ) the group of gauge transformations on V → M .
Thus ϕ−1

1 (Kn) = cϕ−1(Kn). Notice that any g ∈ G(V ) induces a linear
automorphism on Γ(V ) denoted by the same symbol: (g(t)) (x) = g(t(x))
for t ∈ Γ(V ) and x ∈ M . In other words, ev ◦ g = g ◦ ev. Since c preserves
Wµ ⊂ Γ(V ), this means that f can also be realized as the map induced by
(V,Kn, cι((cι)∗(cTc∗)cι)) = (V,Kn, cι(ι∗Tι)). In the case where the target
is the sphere, C(∇) is a trivial group (cf. Lemma 5.28). When the target is
the projective space, C(∇) consists of scalars of unit length (cf. Proposition
5.30). Hence the map induced by (V,Kn, cι(ι∗Tι)) is the same induced by
(V,Kn, ι(ι∗Tι)) in those cases. On the contrary, when we consider a map
into a Grassmannian of higher rank, C(∇) might provide a non-trivial action
on the set of the map (see Proposition 6.21 for a concrete example). We
will encounter C(∇) again when considering the image equivalence relation
in the next subsection.

In order to proceed further for a generalization of do Carmo-Wallach
theory, we relax the EH condition and so, we do not need the eigenspaces of
the Laplace operator. Indeed we have examples of harmonic maps which do
not satisfy the EH condition in the case that the target is a Grassmannian
of higher rank (see Theorem 6.28).

To state the generalization, we fix (V, h,∇) over a compact Riemannian
manifold M , and let A ∈ Γ(EndV ) be a negative semi-definite Hermitian
endomorphism of V →M . Since ∆+A is an elliptic operator on a compact
manifold M , the solution space of (∆ + A) t = 0 for t ∈ Γ(V ) is a finite-
dimensional vector subspace of Γ(V ). The equation (∆ + A) t = 0 is called
the generalized Laplace equation with A and its solution space is denoted by
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WA throughout this paper. If WA is non-trivial, then WA has the induced
L2 scalar product (·, ·)WA

and the evaluation map ev : WA → V . When
WA globally generates V → M , we also have the standard map f : M →
(Grp(WA), (·, ·)WA

) defined as f(x) = Ker evx ⊂WA.

Definition 5.14. We fix a vector bundle (V → M,h,∇) and a negative
semi-definite Hermitian endomorphism A ∈ Γ(EndV ). Then a harmonic
map f : M → Grp(W ) is called to have an admissible pair ((V, h,∇), A) if
f satisfies the gauge condition for (V, h,∇) and has A ∈ Γ(EndV ) as the
mean curvature operator.

Remark. Different from the Einstein-Hermitian case, the gauge group G(V )
could act on A in a non-trivial way. Thus it acts on the set of admissible
pairs: ((V, h,∇), A) 7→

(
(V, h, g∇g−1), gAg−1

)
for any g ∈ G(V ). Hence

by fixing the admissible pair, we exclude the redundancy due to the gauge
group.

With this understood, Theorem 5.12 can be generalized.

Theorem 5.15. Let M be a compact Riemannian manifold. We fix a vec-
tor bundle (V →M,h,∇) and a negative semi-definite Hermitian endomor-
phism A ∈ Γ(EndV ). Let (WA, (·, ·)WA

) ⊂ Γ(V ) be the solution space of the
generalized Laplace equation with A with the L2 scalar product (·, ·)WA

.
If f :M → (Grp(K

n), (·, ·)) is a full harmonic map into a Grassmannian
with the Fubuni-Study metric which has an admissible pair ((V, h,∇), A)
and we fix a bundle isomorphism between (V, h,∇) and (f∗Q, f∗hQ,∇f∗Q),
then there exist a unique linear injection ι : Kn →WA and a positive semi-
definite Hermitian endomorphism T on WA satisfying the MC equations for
(V, h,∇) such that
(a) (Kn, (·, ·), ι) is compatible with (WA, T ). In particular, n ≦ dimWA.
(b) f : M → (Grp(K

n), (·, ·)) is realized as the map induced by a triple
(V,Kn, ι (ι∗Tι)) into (Grp(K

n), (·, ·)WA
).

Conversely, if a positive semi-definite Hermitian endomorphism T on WA

satisfies the MC equations for (V, h,∇) and Kn := (KerT )⊥ globally gener-
ates V →M , then the map induced by a triple (V,Kn, ι (ι∗Tι)) is a full har-
monic map into (Grp(K

n), (·, ·)WA
) with an admissible pair ((V, h,∇), A),

where ι : Kn →WA is the inclusion.
Let fi : M → (Grp(K

n), (·, ·)WA
) be the maps induced by those triples

(V,Kn, ι (ι∗Tiι)) with the inclusion ι : Kn → WA such that ι (Kn)⊥ =
KerTi, (i = 1, 2). Then, f1 and f2 are gauge equivalent if and only if
T1 = T2.

Proof. From Theorem 3.5, we may replace an eigenspace Wµ in the proof of
Theorem 5.12 by the solution space WA. □
Remark. When f is an Einstein-Hermitian harmonic map or more generally,
the mean curvature operator A is covariant constant, the centralizer C(∇)
of the holonomy group of ∇ in the structure group of V acts trivially on A.
Otherwise, viewing C(∇) as a subgroup of G(V ), we can see that c(WA) is
the solution space of the generalized Laplace equation with cAc−1. Therefore
the moduli space of harmonic maps with an admissible pair ((V, h,∇), A)
can naturally be identified with that of harmonic maps with an admissible
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pair
(
(V, h,∇), cAc−1

)
. Thus C(∇) also acts on the set of admissible pairs

for harmonic maps, even if (V, h,∇) is fixed.

Definition 5.16. Let (V →M,h,∇) be a vector bundle on a Riemmanian
manifoldM and A ∈ Γ(EndV ) a negative semi-definite Hermitian endomor-
phism. Let WA ⊂ Γ(V ) denote the solution space of the generalized Laplace
equation with A. Suppose that f :M → (Grp(K

n), (·, ·)) is a full harmonic
map with ((V, h,∇), A) as an admissible pair.

If n = dimWA, then f is called a maximal harmonic map with an admis-
sible pair ((V, h,∇), A).

Using L2 scalar product, we can show the following

Lemma 5.17. Let M be a compact Riemannian manifold. We fix a vector
bundle (V → M,h,∇) of rank q and a negative semi-definite Hermitian
endomorphism A ∈ Γ(EndV ). Let WA be the kernel of ∆+A equipped with
the L2 scalar product (·, ·)WA

.
If T is a positive semi-definite Hermitian endomorphism on WA satisfying

the MC equation, then we have that

(5.12) traceT 2 = qVol(M),

where, Vol(M) denotes the volume of M .

Proof. Let w1, · · · , wN be a unitary basis of WA. We claim that

N∑
B=1

(TwB, TwB)WA
= qVol(M).

To see this, we use the definition of L2 scalar product to get

N∑
B=1

(TwB, TwB)WA
=

N∑
B=1

∫
M
h (ev(TwB), ev(TwB)) dv(5.13)

=

∫
M

N∑
B=1

h (ev(TwB), ev(TwB)) dv,

where dv denotes the volume form on M . Fix a point x ∈ M and let
v1, · · · , vq be a unitary basis of Vx. Since T satisfies the MC equation
by assumption, we can derive that (wi, wj)WA

= h (ev(Twi), ev(Twj)), for

wi, wj ∈ f∗Qx. If w ∈W is perpendicular to f∗Qx, then

0 = (Tev∗(vi), w)WA
= (ev∗(vi), Tw)WA

= h(vi, ev(Tw)).

Hence, if necessary, we can take another unitary basis of W such that
ev(Twi) = vi for i = 1, · · · , q and ev(Twq+j) = 0 for j = 1, · · ·N − q.

However, the sum
∑N

B=1 hVx (ev(TwB), ev(TwB)) does not change, because
hx (evT, evT ) can be considered as a Hermitian form on WA. Therefore,

N∑
B=1

h (ev(TwB), ev(TwB)) =

q∑
i=1

h (vi, vi) = q.

Combining this with (5.13), we obtain the desired formula. □
Remark. Notice that we use only evT 2ev∗ = IdV in the MC equations in
the proof.
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Corollary 5.18. Under the hypothesis of Lemma 5.17, suppose that the
standard map f0(x) = Ker evx by (V → M,WA) has an admissible pair
((V, h,∇), A). If T is a positive semi-definite Hermitian endomorphism on
WA satisfying the MC equation, then we have that

(5.14) traceT 2 = dimWA.

Proof. Since the identity transformation Id on WA corresponds to the stan-
dard map in Theorem 5.15, we see that Id satisfies the MC equations. We
can apply Lemma 5.17 to Id to get

dimWA = trace Id2 = qVol(M).

The result follows from (5.12). □

5.3. The moduli spaces. Now we can discuss a topological property on
the moduli space. Before proceeding further, we give a remark.

Remark. In the sequel, when we consider a map into an oriented Grassman-
nian Grp(R

n), we will not distinguish a map f :M → Grp(R
n) from a map

τ ◦ f : M → Grp(R
n). In particular, two standard maps f0 and τ ◦ f0 are

identified. This means that τ could induce non-trivial action on the sets of
harmonic maps into Grp(R

n) modulo gauge and image equivalence. Then
we take the quotient of them which are referred to the moduli spaces.

For a vector space W with a scalar product, H(W ) denotes the set of
Hermitian endomorphisms on W . We equip H(W ) with the induced inner
product (·, ·)H ; (A,B)H := traceAB, for A,B ∈ H(W ).

Under the hypothesis in Theorem 5.15, let M be the set of gauge equiva-
lence classes of harmonic maps ofM into (Grp(WA), (·, ·)WA

) with admissible
pair ((V, h,∇), A). Theorem 5.15 yields that M is identified with a subset
of H(WA). Hence M has the topology induced from that of H(WA).

Proposition 5.19. Suppose that M is a compact Riemannian manifold,
(V → M,h,∇) is a vector bundle and A ∈ Γ(EndV ) is a negative semi-
definite Hermitian endomorphism. Let WA be the kernel of ∆+A acting on
Γ(V ) equipped with the L2 scalar product up to a positive constant multiple.

If M denotes the set of gauge equivalence classes of harmonic maps of
M into (Grp(WA), (·, ·)WA

) with ((V, h,∇), A) as admissible pairs, then M
is a bounded set in H(WA).

Proof. From Theorem 5.15, f ∈ M corresponds to T ∈ H(WA) which is
positive semi-definite and satisfies the MC equations. Then the result follows
from Lemma 5.17 by definition of the inner product on H(WA). □

To obtain more topolological properties of the moduli space, we need a
relative version of Theorem 5.15 without mentioning the L2 scalar product.
For this, we regard any harmonic map into Grassmannian as an induced
map.

When we have a positive semi-definite Hermitian endomorphism S on a
vector space W with a scalar product, we can define a unique positive semi-
definite Hermitian endomorphism T on W such that T 2 = S and the kernel

of T coincides with that of S. Then T is denoted by S
1
2 .
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Theorem 5.20. Let (V, h,∇) be a vector bundle over a compact Riemannian
manifold M and A a negative semi-definite Hermitian endomorphism on V .

Suppose that f0 is a full harmonic map of M into (Grp(K
n), (·, ·)0) with

an admissible pair ((V, h,∇), A). We realize f0 as an induced map with
ev0 : Kn → V and ev∗0 : V → f∗Q as the evaluation map and the natural
identification by f0, respectively.

If m ≦ n and f1 : M →
(
Grp′(K

m), (·, ·)1
)
is a full harmonic map with

an admissible pair ((V, h,∇), A) (hence, n − p = m − p′), then there exist
a linear injection ι : Km → Kn and a Hermitian endomorphism C on Kn

which is neither positive nor negative semi-definite (possibly C = O) such
that :
(i) C satisfies

(5.15) ev0Cev
∗
0 = 0, ev0C∇ev∗0 = 0.

(ii) Id+ C is positive semi-definite.

(iii) (Km, (·, ·)1, ι) is compatible with (Kn, T ), where T = (Id+ C)
1
2 .

(iv) f1 : M →
(
Grp′(K

m), (·, ·)1
)
is realized as the map induced by a triple

(V,Km, ι(ι∗Tι)) into (Grp(K
n), (·, ·)0).

Conversely, if a Hermitian endomorphism C on (Kn, (·, ·)0) satisfies the
conditions (i) and (ii), then
(a) Km := Ker (Id+ C)⊥ globally generates V →M , and

(b) the map f into
(
Grp′(K

m), (·, ·)0
)
induced by

(
V,Km, ιι∗(Id+ C)

1
2 ι
)

is a full harmonic map with ((V, h,∇), A) as an admissible pair, where ι :
Km → Kn is the inclusion.

Let fi : M → (Grp(K
m), (·, ·)0) be the maps induced by those triples(

V,Km, ιι∗(Id+ Ci)
1
2 ι
)
with the inclusion ι : Km → Kn such that ι (Km) =

Ker (Id+Ci)
⊥, (i = 1, 2). Then, f1 and f2 are gauge equivalent if and only

if C1 = C2.
If we can take the standard map into (Grp(WA), (·, ·)) as f0, where WA is

the solution space of the generalized Laplace equation with A and (·, ·) is the
L2 scalar product up to a positive constant multiple, then C is trace-free.

Proof. The set of scalar products on Kn is identified with the symmetric
space GL(Kn)/Aut(Kn). Now we may replace the L2 scalar product by
(·, ·)0 as a reference point of GL(Kn)/Aut(Kn). Then the proof proceeds
in almost the same way as one in the proof of Theorem 5.12 and so, we
recognize Km and Kn as subspaces of WA.

Let f1 : M →
(
Grp′(K

m), (·, ·)1
)
be a full harmonic map with an ad-

missible pair ((V, h,∇), A) for m ≦ n. Then we can find an inclusion
ι : Km → Kn and a positive semi-definite Hermitian endomorphism T on
Kn such that the kernel of T is the orthogonal complement of Km in Kn,
the restriction of T to Km is positive and (ι∗Tι·, ι∗Tι·)1 = ι∗(·, ·)0. Thus
T−1 ◦ f1 : M →

(
Grp′(K

n), (·, ·)0
)
is also a harmonic map with an admis-

sible pair ((V, h,∇), A), where the inverse of T is taken on the orthogonal
complement of KerT . Hence, we can realize f1 as the induced map:

f1(x) = Ker (ev0xιι
∗Tι) = Ker (ev0xTι) , x ∈M.
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Since f0 and f1 satisfy the gauge condition for (V, h,∇), we have that

ev0ev
∗
0 = IdV , ev0∇ev∗0 = 0,(5.16)

ev0T
2ev∗0 = IdV , ev0T

2∇ev∗0 = 0.(5.17)

Hence, if we express T 2 = Id+C, then C is a Hermitian endomorphism on
Kn satisfying (5.15) from (5.16) and (5.17). The first condition in (5.15)
yields that C is neither positive nor negative semi-definite on the image of
ev∗0Vx for each x ∈ M . Since f0 is a full map, C is neither positive nor
negative semi-definite.

Since each geometric meaning is now transparent, we can see in a similar
way in proofs of Theorems 5.12 and 5.15 that the converse holds except the

condition (a): the linear map ev0x ◦ (Id+ C)
1
2 ι : Km → Vx is surjective for

each x ∈M . This will be shown in the next proposition.
If f0 is the standard map into (Grp(WA), (·, ·)), then Corollary 5.18 gives

traceT 2 = trace I. Thus C is trace-free. □

Remark. The equation (5.15) is referred to as derived MC equations for
ev0 : K

n → V or dMC equations for short.

Compared with the conclusion of Theorems 5.12 and 5.15, the key ingre-
dient is that (a) is obtained as a consequence under the hypothsis that C
satisfies the dMC equations and Id + C is positive semi-definite. This will
clarify the geometric meaning of the compactification of the moduli spaces.

Proposition 5.21. Let (V, h,∇) be a vector bundle over a compact Rie-
mannian manifold M and A a negative semi-definite Hermitian endomor-
phism on V →M .

Suppose that f is a full harmonic map of M into (Grp(K
n), (·, ·)) with

an admissible pair ((V, h,∇), A). We realize f as an induced map with
ev0 : K

n → V as the evaluation map by f .
Suppose that there exists a Hermitian endomorphism C on (Kn, (·, ·)) such

that C satisfies dMC equations (5.15) and Id + C is positive semi-definite.
We denote by Km the orthogonal complement of the kernel of Id+ C.

Then Id+ tC for an arbitrary t ∈ [0, 1) induces a full harmonic map into
(Grp(K

n), (·, ·)) with the same admissible pair as that of f . When t = 1,
Id + C induces a full harmonic map into

(
Grp′(K

m), (·, ·)
)
, which has the

same admissible pair as that of f . Here n− p = m− p′.

Proof. We must show that Km globally generates V → M by the bundle

map ev1 := ev0(Id+ C)
1
2 : Km → V .

For an arbitrary k ∈ N, we can choose tk ∈ (1 − 1
k , 1) such that evtk :=

ev0(Id + tkC)
1
2 : Kn → V globally generates V → M . For any x ∈ M ,

fix v ∈ Vx satisfying |v| = 1. Then by the first equation of dMC equations
(5.15) for tkC we can find wk ∈ Kn such that evx(wk) = v and |wk| = 1.
Since Kn is a finite-dimensional vector space, we can choose a subsequence
which is convergent to w ∈ Kn with |w| = 1 denoted by the same symbol
{wk}k∈N. Using an operator norm || · || on a finite-dimensional vector space
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Kn∗ ⊗ Vx, we obtain the inequality:

|ev1x(w)− v| =
∣∣ev1x(w)− evtkx(w) + evtkx(w)− evtkx(wk)

∣∣
≦
∣∣∣∣ev1x − evtkx

∣∣∣∣ |w|+ ∣∣evtkx(w − wk)
∣∣ .

Then we can deduce that a unit vector w belongs to Km and ev1x(w) = v.
We can therefore define a map ft for t ∈ [0, 1] as

ft(x) = Ker
(
ev0x(Id+ tC)

1
2

)
, x ∈M.

Since dMC equations are linear in C, tC also satisfies (5.15) for t ∈ [0, 1].
Hence the pull-back bundle with the pull-back metric and the connection is
isomorphic to (V, h,∇). Theorem 3.5 yields that ft is also a harmonic map
with A as the mean curvature operator. □

The vector bundle (V, h,∇) is called holonomy irreducible if the holonomy
group of∇ acts irreducibly on the fiber Vx for each x ∈M . When (V, h,∇) is
holonomy irreducible in Theorem 5.15, then the MC equations (5.1) reduce
to a single equation, which will be useful to describe moduli spaces in later
chapter (in particular, see the proof of Theorems 6.20 and 6.21).

Proposition 5.22. Let (V, h,∇) be a rank q vector bundle over a compact
Riemannian manifold M and A ∈ Γ(EndV ) a negative semi-definite Her-
mitian endomorphism. Suppose that (V, h,∇) is holonomy irreducible. We
denote byWA ⊂ Γ(V ) the kernel of ∆+A equipped with the L2 scalar product
(·, ·)WA

and by ev :WA → V the evaluation map.
If T ∈ H(WA) is positive semi-definite and satisfies the equation

(5.18) ev ◦ T 2 ◦ (∇ev∗) = 0 ∈ Ω1(EndV ),

and Kn := KerT⊥ globally generates V → M , then we have a positive
number s such that the map induced by (V,Kn, sιι∗Tι) is a full harmonic
map into (Grp(K

n), (·, ·)WA
) with an admissible pair ((V, h,∇), A), where

ι : Kn →WA is the inclusion.

Proof. Since T is a Hermitian endomorphism on WA, it follows from (5.18)

0 =h
(
ev ◦ T 2 ◦ (∇ev∗) (v1), v2

)
=

(
T 2 ◦ (∇ev∗) (v1), ev∗(v2)

)
WA

=
(
(∇ev∗) (v1), T 2 ◦ ev∗(v2)

)
WA

= h
(
v1, (∇ev) ◦ T 2 ◦ ev∗(v2)

)
,

for arbitrary v1, v2 ∈ V . Hence an endomorphism of the bundle V → M
defined by ev ◦ T 2 ◦ ev∗ is covariant constant with respect to the induced
connection on EndV → M from ∇. From the assumption that (V, h,∇) is
holonomy irreducible, there exists a real number s̃ such that

ev ◦ T 2 ◦ ev∗ = s̃IdV .

Since Kn globally generates V →M and T is positive on Kn, s̃ is a positive

number. When we put s = s̃−
1
2 and T̃ := sT , T̃ satisfies the MC equations,

since (5.18) also holds for T̃ . We may apply Theorem 5.15 for T̃ to obtain
the result. □
Remark. This proposition interprets the role of a fiber metric in the defini-
tion of the gauge condition. Indeed, we can naturally identify the moduli
space of harmonic maps with an admissible pair ((V, h,∇), A) with that of
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harmonic maps with an admissible pair ((V, sh,∇), A) for s > 0. Fixing the
fiber metric removes an ambiguity of R>0 in the choice of a triple in the
gauge condition.

Corollary 5.23. Let (V, h,∇) be a vector bundle over a compact Riemann-
ian manifold M and A ∈ Γ(EndV ) a negative semi-definite Hermitian en-
domorphism. Suppose that (V, h,∇) is holonomy irreducible. Let WA be the
kernel of ∆+A equipped with the L2 scalar product (·, ·)WA

and ev :WA → V
the evaluation map. Suppose that the standard map by (V →M,WA) is a
harmonic map with an admissible pair ((V, h,∇), A).

If a trace-free Hermitian endomorphism C on WA satisfies the equation

(5.19) ev ◦ C ◦ (∇ev∗) = 0 ∈ Ω1(EndV ),

and Id+C is positive semi-definite, then Kn := Ker (Id+ C)⊥ globally gen-

erates V →M and the map induced by
(
V,Kn, ιι∗(Id+ C)

1
2 ι
)
is a full har-

monic map into (Grp(K
n), (·, ·)WA

) with an admissible pair ((V, h,∇), A),
where ι : Kn →WA is the inclusion.

Proof. Define a positive semi-definite Hermitian endomorphism T on WA

as T := (Id + C)
1
2 . Since the standard map is a harmonic map with an

admissible pair ((V, h,∇), A) by hypothesis, Theorem 5.15 implies that Id
satisfies the MC equations:

ev ◦ Id ◦ ev∗ = IdV , and ev ◦ Id ◦ ∇ (ev∗) = 0.

Then Proposition 5.22 and (5.19) yield that there exists a positive number s

such that T̃ := s−
1
2T satisfies the MC equations and is positive semi-definite.

By definition of T , we get

T̃ 2 = s−1Id+ s−1C.

Since traceC = 0, we can derive from Corollary 5.18 that

dimWA = trace T̃ 2 = s−1dimWA,

and so, s = 1. Hence C satisfies the dMC equations (5.15) for ev :WA → V .
Theorem 5.20 yields the result. □

For a vector space W with a scalar product and T ∈ H(W ), we write
T > 0 to indicate that T is positive definite and T ≧ 0 means that T is
positive semi-definite.

5.3.1. Gauge equivalence relation. We will describe the moduli space.

Theorem 5.24. Let (V, h,∇) be a vector bundle over a compact Riemannian
manifold M and A a negative semi-definite Hermitian endomorphism on V .

Suppose that f0 is a full harmonic map of M into (Grp(K
n), (·, ·)0) with

((V, h,∇), A) as an admissible pair and is realized as an induced map with its
evaluation map ev0 : K

n → V and its natural identification ev∗0 : V → f∗Q.
Then we can define a subspace M(Kn) of H(Kn) as :

M(Kn) = {C ∈ H(Kn) | ev0Cev∗0 = 0, and ev0C (∇ev∗0) = 0}.
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Let M denote the set of gauge equivalence classes of full harmonic maps
of M into (Grp(K

n), (·, ·)0) with ((V, h,∇), A) as admissible pairs. Then M
is identified with a subset of M(Kn) :

M = {C ∈ M(Kn) | Id+ C > 0}.

If M is equipped with the relative topology from that on H(Kn) induced
by (·, ·)0, then it is a bounded connected convex open set in M(Kn). The
harmonic map parametrized by C ∈ M is expressed as T−1f0(x) for x ∈M ,

where f0(x) stands for a p-dimensional subspace of Kn and T = (Id+C)
1
2 .

Under the topology of H(Kn), the natural compactification of the moduli
space is provided by taking the closure of M :

M = {C ∈ M(Kn) | Id+ C ≧ 0},

which is a compact connected convex body in M(Kn).

Proof. From Theorem 5.15, Kn is regarded as a subspace of WA and f0 is
realized as the induced map with ev0 : Kn → V . Since both equations in
the dMC equations for ev0 : Kn → V are linear in C, M(Kn) is a subspace
of H(Kn). Then Theorem 5.20 implies the desired identification.

We denote by (·, ·) the induced scalar product on Kn from the L2 scalar

product. If M̃ denotes the set of gauge equivalence classes of harmonic maps
of M into (Grp(WA), (·, ·)) with the same admissible pairs, then Theorem

5.15 yields that M can be regarded as a subset of M̃. Since H(Kn) is
finite-dimensional, the norm of H(Kn) induced by (·, ·)0 is equivalent to
one induced by (·, ·) as a subset of End (Kn). Thus the topology of M is

the same as that induced from M̃. Poposition 5.19 yields that M itself is
bounded.

If M(Kn) is non-trivial and C ∈ M, then Id + C + C1 is positive for
C1 ∈ M(Kn) small enough. Hence, we can deduce that the moduli space M
is open set in M(Kn).

It follows from Theorem 5.20 that M is connected and convex.
Thus M is a compact connected convex body in M(Kn), which is consid-

ered as a compactification of M. □

Remark. If M(Kn) = {0}, then f0 is the unique full harmonic map into
Grp(K

n) which has an admissible pair ((V, h,∇), A) up to gauge equivalence.
This motivates Definition 5.26 below.

Let us discuss the moduli space M modulo gauge equivalence when (one
of) the standard map is in M. This is relevant in the original do Carmo-
Wallach theory and in later chapter. To do so, for a vector space W with
a scalar product, we denote by H0(W ) the set of trace-free Hermitian endo-
morphisms on W .

Corollary 5.25. Under the same hypothesis as in Theorem 5.24, suppose
further that f0 is the standard map, (·, ·) is the L2 scalar product up to a
constant multiple on WA and ev : WA → V is the evaluation map. We
identify f0 with τ ◦ f0 when V →M is an oriented real bundle.

We define a subspace M0(WA) of H0(WA) as :

M0(WA) = {C ∈ H0(WA) | evCev∗ = 0, and evC (∇ev∗) = 0}.
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When M denotes the moduli space modulo gauge equivalence of full har-
monic maps of M into (Grp(WA), (·, ·)) with ((V, h,∇), A) as admissible
pairs, M is identified with a bounded connected open convex set in M0(WA) :

M = {C ∈ M0(WA) | Id+ C > 0},
and the compactified moduli space M is a compact connected convex body in
M0(WA) :

M = {C ∈ M0(WA) | Id+ C ≧ 0}.

Proof. Theorem 5.24 yields the description of M and M. Since traceC = 0
from Theorem 5.20, C is in H0(WA) by definition. □
Remark. We can interpret the geometric meaning of the compactification of
the moduli space.

Since f1 is realized as a map induced by a triple (V,Km, ι∗Tι), where

T = (Id+C)
1
2 , in Theorem 5.20, Lemma 5.11 yields that we have a totally

geodesic embedding of Grp′(K
m) into Grp(K

n) by Km = KerT⊥, where
n − p = m − p′, and a bundle isomorphism (ev0ιι

∗Tι)∗ : V → f∗Q as the
natural identification by f1. Thus each boundary point C ∈ M (where,
Id+ C is not positive, but positive semi-definite,) determines a triplet:
(1) a totally geodesic embedding of Grp′(Ker (Id + C)⊥) into Grp(K

n) as
the zero set of sections of the universal quotient bundle which belong to
Ker (Id+ C) ⊂ Γ(Q) (p = p′ + dimKer (Id+ C)),
(2) a full harmonic map into the zero set with an admissible pair ((V, h,∇), A)
and
(3) a distinguished bundle isomorphism of V → M to the pull-back of the
universal quotient bundle as the natural identification.

Thus some maps represented as points of the boundary of the compactified
moduli space could be identical.

When f0 is a map into an oriented Grassmannian Grp(R
n), though the

orientation of Rn is fixed by our definition, we need an orientation of Ker T
to determine (1) and (2) uniquely. Viewing the induced maps as maps into
an oriented Grassmannian Grp′(Ker (Id+C)⊥), we easily see that one is the
composition of the inversion τ and the other. However, from our convention,
we disregard an orientation. Hence we can still say that a point of the
boundary represents a totally geodesic embedding of Grp′(Ker (Id + C)⊥)

into Grp(R
n) and an induced map into Grp′(Ker (Id+ C)⊥).

However, in the case where the target is the sphere, since the antipodal
map τ belongs to the orthogonal group, f and τ ◦ f are gauge equivalent
as maps. Thus in the original do Carmo-Wallach theory, we do not need to
take account of the orientation of Ker T and f can be identified with τ ◦ f
without our convention.

In any case, the moduli space could be regarded as a subset of the sym-
metric space GL(Kn)/Aut(Kn).

We can characterize the case when the moduli space modulo gauge equiv-
alence consists of a one point as in the Remark after Theorem 5.24. To state
the result, we need

Definition 5.26. We fix (V → M,h,∇). Let f : M → Grp(W ) be a
harmonic map satisfying the gauge condition for (V, h,∇). Then f is called
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terminal if there does not exist any harmonic map f ′ :M → Grp′(W
′) which

has the same admissible pair as that of f with dimW ′ < dimW .

Corollary 5.27. Let (V, h,∇) be a vector bundle over a compact Riemann-
ian manifold M and f : M → Grp(W ) a full harmonic map satisfying the
gauge condition for (V, h,∇) with A ∈ Γ(EndV ) as the mean curvature
operator.

Then f is terminal if and only if an arbitrary harmonic map into Grp(W )
with ((V, h,∇), A) as the admissible pair is gauge equivalent to f as maps.

Proof. We realize f as an induced map with ev :W → V and ev∗ : V → f∗Q
as the evaluation map and the natural identification by f , respectively.

Suppose that f : M → Grp(W ) is a terminal map and there exists an-
other terminal harmonic map f1 : M → Grp(W ) with an admissible pair
((V, h,∇), A) which is not gauge equivalent to f . Theorem 5.20 yields that
there exists a non-trivial Hermitian endomorphism C which is neither pos-
itive nor negative semi-definite on W such that C satisfies dMC equations
for ev :W → V :

(5.20) evCev∗ = 0, evC∇ev∗ = 0,

Id+ C is positive and f1 is expressed as the induced map:

f1(x) = Ker
(
ev0x(Id+ C)

1
2

)
, x ∈M.

Let U ⊂ W be the eigenspace of C corresponding to the smallest eigen-
value, say −λ, λ > 0. The orthogonal complement of U in W is denoted
by U⊥. Then we have a positive semi-definite Hermitian endomorphism
Id + λ−1C with Ker

(
Id+ λ−1C

)
= U . Theorem 5.20 with (5.20) implies

that Id + λ−1C corresponds to a harmonic map fλ−1 : M → Grp′(U
⊥)

with ((V, h,∇), A) as an admissible pair, which is a contradiction to the
assumption that f is terminal.

Suppose that an arbitrary harmonic map into Grp(W ) with an admissi-
ble pair ((V, h,∇), A) is gauge equivalent to f . If f is not terminal, then
by definition we have a terminal harmonic map f ′ : M → Grp′(W

′) with
((V, h,∇), A) as an admissible pair. Hence we can regard Grp′(W

′) as to-
tally geodesic submanifold of Grp(W ) and denote by ι the inclusion of W ′

in W . From Theorem 5.20 and Proposition 5.21, we have a Hermitian en-
domorphism C on W such that C satisfies dMC equations (5.20), Id + C
is positive on W ′ = Ker (Id + C)⊥ and f ′ is realized as a map induced by

(V,W ′, ιι∗(Id+ C)
1
2 ι).

Since Id + tC is positive for small t > 0, it follows from (5.20) that
Id+ tC induces a full harmonic map ft :M → Grp(W ) with an admissible
pair ((V, h,∇), A), which is not gauge equivalent to f . This contradicts our
hypothesis. □

5.3.2. Image equivalence relation. Suppose that two full harmonic maps f1
and f2 are image equivalent as maps into (Grp(K

n), (·, ·)) with a fixed ad-
missible pair ((V, h,∇), A). By definition of image equivalence, we have an
isometry ψ ∈ Aut(Kn) such that f2 = ψ ◦ f1. We realize f1 as an in-
duced map into (Grp(K

n), (·, ·)) with ev1 : Kn → V and ev∗1 : V → f∗1Q
as the evaluation map and the natural identification by f1, respectively.
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From Theorem 5.20, we can find a positive Hermitian endomorphism T2
on Kn such that f2 : M → (Grp(K

n), (·, ·)) is realized as the map in-

duced by (V,Kn, T2): f2 (x) = T−1
2 Ker ev1x . The bundle isomorphism ψ̃

gives f∗2Q = f∗1 ψ̃Q. Using the natural identifications ϕ1 := ev∗1 by f1 and
ϕ2 := T2ev

∗
1 by f2 obtained in Theorem 5.11, we get two bundle isomor-

phisms ψ̃ ◦ ϕ1 and ϕ2 : V → f∗2Q. Hence, as in the third remark after
Theorem 5.12, there exists c ∈ C(∇) ⊂ AutV such that

(5.21) ϕ−1
2 ψ̃ϕ1(v) = cv, v ∈ V.

Then (5.11) and (5.21) yield that

(5.22) ψ̃ev∗1(v) = T2ev
∗
1(cv).

Therefore, to obtain the moduli space modulo image equivalence, we need
to take the action of C(∇) on the moduli space modulo gauge equivalence
into account.

Lemma 5.28. Let f1 and f2 be full harmonic maps from a compact Rie-
mannian manifold (M, g) into the sphere Grn(R

n+1). If f1 and f2 are image
equivalent, then both are gauge equivalent as maps.

Proof. When the target is the sphere, the universal quotient bundle is a
trivial bundle of real rank one with an orientation and so, the structure
group is trivial. Thus the centralizer of the holonomy group is also trivial.
It follows from (5.22) that

ψ̃ev∗1(v) = T2ev
∗
1(cv) = T2ev

∗
1(v).

The fullness of fi implies that ψ̃ = T2. Uniqueness of the polar decomposi-
tion yields that ψ̃ = T2 = IdRn+1 . □

As we have already pointed out, f and τ ◦f are image equivalent as maps
in this case. Therefore in the original do Carmo-Wallach theory, we do not
need to bear the inversion τ in mind and can consider that the standard
map is unique when describing the moduli space. Furthermore, though
our theory adopt the gauge equivalence relation of maps instead of image
equivalence for a generalization of do Carmo-Wallach theoy, we can conclude
that Theorem 5.12 and Theorem 5.20 include the original do Carmo-Wallach
theory from Lemma 5.28 with the Remarks after Theorem 5.12.

To make this point clarify, we review their theory briefly on isometric
minimal immersions of the sphere into spheres. More generally, we will
construct the moduli space of harmonic maps with constant energy density
µ. First of all, those maps are Einstein-Hermitian harmonic maps from the
second Remark after Theorem 5.12. LetWµ be the eigenspace corresponding
to µ with the L2 inner product in the function space on the sphere. Then
we can show that the standard map is an Einstein-Hermitian harmonic map
(see Lemma 5.36 below). We define

L = {C ∈ H0(Wµ) | ev ◦ C ◦ ev∗ = 0, I + C > 0}.
(We do not need the equation ev ◦ C ◦ ∇ev∗ = 0 in this case from the first
Remark after Theorem 5.12. Or differentiating both sides of ev◦C ◦ev∗ = 0,
we obtain gf∗Q (ev ◦ C ◦ ∇ev∗(v), v) = 0 for any v ∈ f∗Q. Since f∗Q is of
rank one, we can deduce that ev ◦ C ◦ ∇ev∗ = 0.) Hence Corollary 5.25
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yields that L is the moduli space of those maps modulo gauge equivalence
and so, modulo image equivalence by Lemma 5.28. In this argument, we
used the hypothesis that the the domain manifold is the sphere only once to
deduce that the standard map is an EH-map. Since we can replace Wµ by
the solution space of the generalized Laplace equation, we have established
a direct generalization of do Carmo-Wallach theorem:

Theorem 5.29. Let M be a compact Riemannian manifold. For a non-
positive function A on M , we denote by WA the kernel of ∆ + A with the
L2 inner product in the function space on M . Using the evaluation map
ev :WA →M ×R, we define a subspace M0(WA) of H0(WA) as :

M0(WA) = {C ∈ H0(WA) | ev ◦ C ◦ ev∗ = 0}.

Let M be the set of image equivalence classes of full harmonic maps from
M into the hypersphere in WA with energy density −A. If the standard map
induced by (M ×R →M,WA) is a harmonic map with energy density −A,
then M is identified with M+ defined as :

M+ = {C ∈ M0(WA) | I + C > 0}.

Remark. Let f0 denote the standard map. In our theory, f0 is considered
as a map into a Grassmannian of oriented hyperplanes of WA. When we
take the orthogonal unit vector w ∈ WA for each oriented hyperplane S of
WA such that the orientation given by w and S is compatible with that
of WA, f0 can be regarded as a map into the hypersphere of WA. Then
C ∈M+ corresponds to a map Tf0(x) for x ∈M , where f0(x) represents a

unit vector in WA and T = (Id+ C)
1
2 (see [7]).

The compactification of M+ has the same geometric meaning as in Re-
mark after Corollary 5.25:

M+ = {C ∈ M0(WA) | I + C ≧ 0}.

Though this is a generalization of do Carmo-Wallach [7] and Toth-D’ambra’s
result [35], the geometric meaning of M+ is more clarified.

Proposition 5.30. Let f1 and f2 be full harmonic maps from a com-
pact Riemannian manifold (M, g) into the complex Grassmannian Grp(C

n)
which satisfy the gauge conditions for (V, h,∇) and have the same mean
curvature operators. Suppose that (V, h,∇) is holonomy irreducible.

If f1 and f2 are image equivalent, then both are gauge equivalent as maps.

Proof. Since the holonomy group acts irreducibly, Schur’s lemma yields that
c in (5.22) is regarded as a scalar multiplication. Since c gives a unitary
transformation on V →M , c is regarded as complex number a with |a| = 1.
Then (5.22) yields that

ψ̃ev∗1(v) = T2ev
∗
1(cv) = aT2ev

∗
1(v),

and so, ψ̃ = aT2 by fullness of maps. The polar decomposition yields that
ψ̃ = aIdCn and T2 = IdCn . Thus we obtain the desired result. □

When the target is the complex projective space, we can show the follow-
ing theorem in the same spirit of Theorem 5.29 with Corollary 5.23.
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Theorem 5.31. Suppose that M is a compact Riemannian manifold and
(L → M,h,∇) is a complex line bundle. For a non-positive function A on
M , we denote by WA ⊂ Γ(L) the kernel of ∆ + A with the L2 Hermitian
inner product. Using the evaluation map ev :WA → L, we define a subspace
M0(WA) of H0(WA) as :

M0(WA) = {C ∈ H0(WA) | ev ◦ C ◦ (∇ev∗) = 0}.

Let M be the set of image equivalence classes of full harmonic maps from
M into the complex projective space P(W ∗

A) with ((L, h,∇), A) as their ad-
missible pair. If the standard map induced by (L,WA) is a harmonic map
with an admissible pair ((L, h,∇), A), then M is identified with M+ defined
as :

M+ = {C ∈ M0(WA) | I + C > 0}.

Suppose that the scalar product on Kn ⊂ Γ(V ) is induced from the L2

scalar product up to a positive constant multiple. When C(∇) is regarded
as a subgroup of G(V ), c ∈ C(∇) induces a unitary transformation on Γ(V ),
which is denoted by the same symbol. Thus we have ev ◦ c = c ◦ ev.

Theorem 5.32. Let M be a compact Riemannian manifold. Fix a vector
bundle (V → M,h,∇) and a negative semi-definite Hermitian endomor-
phism A ∈ Γ(EndV ). Let WA be the solution space of the generalized
Laplace equation with A equipped with the L2 scalar product (·, ·) up to a
positive constant multiple. We take a subspace W1 of WA, For W1, we de-
fine a subgroup CW1(∇) of C(∇) as :

CW1(∇) =
{
c ∈ C(∇) | c(W1) =W1 and cAc−1 = A

}
.

Suppose that there exists a full harmonic map f : M → (Grp(W1), (·, ·))
with an admissible pair ((V, h,∇), A) and ev : W1 → V as its evaluation
map.

Let M be the set of gauge equivalence classes of full harmonic maps of
M into (Grp(W1), (·, ·)) with ((V, h,∇), A) as their admissible pairs. When

M is identified with :

M = {C ∈ H(W1) | evCev∗ = 0, evC∇ev∗ = 0, Id+ C ≧ 0},

as in Theorem 5.24 and we put T = (Id+ C)
1
2 , CW1(∇) acts on M as

T 7→ cTc−1, c ∈ CW1(∇).

Let M be the moduli space modulo image equivalence of those full har-
monic maps into (Grp(W1), (·, ·)). Then M is identified with the space of
orbits of CW1(∇) in M :

M = M/CW1(∇).

Proof. If a triple (V,W1, T ) induces a harmonic map f1 into Grp(W1) with
an admissible pair ((V, h,∇), A), then for any c ∈ CW1(∇),

(
V,W1, cT c

−1
)

induces a map f2 into Grp(W1). Then f2 is also a harmonic map with the
same admissible pair. To see this, we show that cTc−1 satisfies the MC
equations. It follows from evT 2ev∗ = IdV and ev ◦ c = c ◦ ev that

ev ◦ cT 2c∗ ◦ ev∗ = cev ◦ T 2 ◦ ev∗c∗ = cIdV c
∗ = IdV .
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Since c is covariant constant and ev ◦ T 2(∇ev∗) = 0, we obtain

ev ◦ cT 2c∗ ◦ (∇ev∗) = cev ◦ T 2∇ (c∗ ◦ ev∗) = cev ◦ T 2∇ (ev∗c∗)

=cev ◦ T 2 {(∇ev∗) c∗ + ev∗ (∇c∗)} = 0.

Using cAc−1 = A, we can deduce from Theorem 5.15 and Theorem 5.20 that
f2 has the desired properties. We thus conclude that CW1(∇) acts on M.

To describeM, suppose further that f1 and f2 are full maps into Grp(W1).
By definition of the induced map, f2 is expressed as

f2(x) = Ker
(
evx ◦ cTc−1)

)
.

Since any c ∈ CW1(∇) is a unitary transformation on V → M and ev ◦ c =
c ◦ ev, we have that

f2(x) = Ker
(
cevx ◦ Tc−1)

)
= Ker

(
(evx ◦ T )c−1

)
= cKer (evx ◦ T ) .

By definition, CW1(∇) preserves W1 ⊂ Γ(V ) and so, f2(x) = cf1(x) for any
x ∈ M , where fi(x) represent subspaces of W1 (i = 1, 2). Since CW1(∇)
can be considered as a subgroup of the isometry group of (Grp(W1), (·, ·)),
f2 is image equivalent to f1. Thus all points in any orbit of CW1(∇) in M
represent image equivalent maps as maps into (Grp(W1), (·, ·)).

Next, we assume that the maps fi induced by (V,W1, Ti) for some Ti ∈
H(W1) with Ti > 0 (i = 1, 2) are image equivalent harmonic maps into
(Grp(W1), (·, ·)) with the same admissible pair ((V, h,∇), A). By definition,
we have an isometry ψ ∈ Aut (W1) of Grp(W1) such that f2 = ψ ◦ f1.

Let ϕi be the corresponding natural identifications by fi. Since ϕ
−1
2 ψ̃ϕ1 ∈

G(V ) preserves the connection, viewing C(∇) as a subgroup of G(V ), we
have c ∈ C(∇) satisfying

(5.23) ϕ−1
2 ψ̃ϕ1 = c.

It follows that

(5.24) c(W1) =W1.

Then, from Theorem 3.5, (∆ + A)c−1(t) = 0 for any t ∈W1. Hence we get

0 = c(∆ +A)c−1(t) = (c∆c−1 + cAc−1)t = (∆+ cAc−1)t,

and so, we can deduce from Theorem 3.5 that cAc−1 = A. Together with
(5.24), this yields that c ∈ CW1(∇).

Since ev ◦ c = c ◦ ev and so, ψ̃T1ev
∗ = T2ev

∗c = T2cev
∗ from (5.11) and

(5.23), using fullness of fi, we obtain

(5.25) ψ̃T1 = T2c ⇐⇒ ψ̃T1ψ̃
−1ψ̃ = T2c⇐⇒ ψ̃T1ψ̃

−1ψ̃c−1 = T2.

The polar decomposition yields that

ψ̃T1ψ̃
−1 = T2, ψ̃ = c.

Thus we can take c ∈ CW1(∇) as ψ, in other words, f2 = cf1 and the
Proposition is proved. □

Remark. We consider the compactification of M by taking the quotient
topology. Thus it should be the closure of M denoted by M:

M = M/CW1(∇).
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Hence each boundary point C ∈ M (where, Id + C is not positive, but
positive semi-definite,) determines a pair:
(1) a totally geodesic embedding of Grp′(Ker (Id+C)⊥) into Grp(W1) modulo
CW1(∇)-action.
(2) a full harmonic map into Grp′(Ker (Id + C)⊥) with an admissible pair
((V, h,∇), A). In the case when the target is an oriented Grassmannian, C
defines two maps, say f and τ ◦f . These two maps should be identified from
our convention.

Corollary 5.33. Under the same hypothesis as in Theorem 5.32, suppose
further that the standard map f0 into (Grp(WA), (·, ·)) is a full harmonic
map with an admissible pair ((V, h,∇), A).

We define a subgroup CA(∇) of C(∇) as :

CA(∇) =
{
c ∈ C(∇) | cAc−1 = A

}
.

Let M be the set of gauge equivalence classes of full harmonic maps of
M into (Grp(WA), (·, ·)) with ((V, h,∇), A) as their admissible pair. As in

Corollary 5.25, we identify M with :

M = {C ∈ M0(WA) | Id+ C ≧ 0}.

When we put T = (Id+ C)
1
2 , CA(∇) acts on M as

T 7→ cTc−1, c ∈ CA(∇).

Let M be the moduli space modulo image equivalence of those full har-
monic maps into (Grp(WA), (·, ·)). Then

M = M/CA(∇).

Proof. Since cAc−1 = A for any c ∈ CA(∇) by definition, we obtain (∆ +
A)c(t) = c∆c−1c(t) + cAc−1c(t) = c(∆ + A)t = 0, for any t ∈ WA. Thus
c(WA) =WA. The result follows from Theorem 5.32. □
Remark. Notice that Corollary 5.33 is a direct generalization of Theorems
5.29 and 5.31.

5.4. Homogeneous cases: a generalization of Toth-D’ambra theory.
Let M = G/K0 be a compact reductive Riemannian homogeneous space
with K0-invariant decomposition g = k⊕m, where G is a compact Lie group,
K0 is a closed subgroup of G and g and k are the corresponding Lie algebras,
respectively (see, for example, [19, p.190]). By Riemannian homogeneous
space, we indicate that a G-invariant metric on G/K0 is fixed.

Let V0 be a q-dimensional orthogonal or unitary K0-representation space
with a K0-invariant scalar product. We can construct a homogeneous vector
bundle V → M , V := G ×K0 V0 with an invariant fiber metric gV induced
by the scalar product on V0. Moreover V → M has a canonical connection
∇ with respect to the decomposition g = k ⊕ m. (This means that the
horizontal distribution is defined as {Lgm ⊂ TGg | g ∈ G} on the principal
fiber bundle π : G→M , where Lg denotes the left translation on G.)

The Lie group G naturally acts on the space of sections Γ(V ) of V →M ,
which has a G-invariant L2 scalar product.

Using the Levi-Civita connection and ∇, we can decompose the space of
sections of V → M into the eigenspaces of the Laplacian: Γ(V ) = ⊕µWµ.
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It is well-known that Wµ is a finite-dimensional G-module equipped with a
G-invariant scalar product induced from the L2 scalar product.

Lemma 5.34. Let V = G×K0 V0 → G/K0 be a homogeneous vector bundle
andW a G-subspace of Γ(V ). By the restriction of the action to the subgroup
K0, we also consider W as a K0-module. If W globally generates V →
G/K0, then V0 can be realized as a K0-invariant subspace of W .

Proof. We identify V0 with the fiber V[e] of V → M at [e] ∈ M , where e
is the unit element of G. Since the evaluation map ev : W → V is G-
equivariant and the scalar product and the fiber metric are G-invariant, the
adjoint bundle map ev∗ : V → W is also G-equivariant. Thus the image
of ev∗[e] is a subspace of W equivalent to V0 as K0-representation, since W

globally generates V →M . □

From Lemma 5.34, when we consider a homogeneous vector bundle V =
G ×K0 V0 → G/K0 and a G-subspace W ⊂ Γ(V ) which globally generates
V → G/K, K0-module V0 is supposed to be realized as a K0-invariant
subspace of W by ev∗.

5.4.1. Standard maps. Suppose that an eigenspace Wµ globally generates
V →M . Then we have the standard map f0 :M → Grp(Wµ) by Wµ, where
p = dimWµ − q. In general, Wµ is not irreducible as G-representation.

More generally, let W be a G-subspace of Γ(V ) and suppose that W
globally generates V → M . Then the map induced by W is also called the
standard map byW . Since V0 can be realized as a subspace ofW by Lemma
5.34, we have the orthogonal complement of V0 denoted by U0. Then the
standard map f0 :M → Grp(W ) is expressed as

f0([g]) = gU0 ⊂W,

which is G-equivariant. When we regard f∗Q → M as a subbundle of
W →M , the adjoint of the evaluation map ev∗ : V → f∗Q is given by

(5.26) ev∗ ([g, v]) = ([g], gv) ,

where g ∈ G and v ∈ V0 ⊂W .
Next, we consider the pull-back connection ∇V and the gauge condition

for the standard map byW . We denote by mV0 the subspace ofW generated
by ξv ∈W , where ξ ∈ m and v ∈ V0 ⊂W .

Lemma 5.35. Let V = G×K0 V0 → G/K0 be a homogeneous vector bundle
and W a G-subspace of Γ(V ) which globally generates V → G/K. Let
f0 : M → Gr(W ) be the map induced by W . From Lemma 5.34, we realize
V0 as a subspace ofW . Then the pull-back connection ∇V is gauge equivalent
to the canonical connection if and only if mV0 ⊂ U0.

Proof. We use sections t[g] =
[
g, π0(g

−1w)
]
∈ Γ(V ) corresponding to w ∈

W , where π0 : W → V0 denotes the orthogonal projection. The canonical
connection ∇0 is computed as follows:

∇0
dπLgξt =

[
g,−π0

(
ξg−1w

)]
.
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Next, we use the adjoint of the evaluation map to compute the pull-back
connection:

∇V
dπLgξt = πV ddπLgξev

∗(t) =
[
g, π0

(
ξπ0(g

−1w)
)
− π0

(
ξg−1w

)]
.

Since W globally generates V →M , the result follows. □

Lemma 5.36. Let V = G×K0 V0 → G/K0 be a homogeneous vector bundle
and W a G-subspace of Wµ ⊂ Γ(V ). Suppose that W globally generates
V → G/K0. We use Lemma 5.34 to realize V0 as a subspace of W . If
mV0 is orthogonal to V0, then the standard map f0 : M → Grp(W ) is an
Einstein-Hermitian harmonic map with

e(f0) = qµ, (or 2qµ), A = −µIdV .

Proof. Since Lemma 5.35 yields that the pull-back connection is the canon-
ical connection, W is also a subspace of the eigenspace of the Laplacian
induced by the pull-back connection. Then we apply Theorem 3.5 to get the
result. □

Example. Let CP 1 = SU(2)/U(1) be a complex projective line and O(1) →
CP 1 a holomorphic line bundle of degree 1 with the canonical connection.
The symmetric power SnC2 (n ∈ Z≧0) of the standard representation C2

is an irreducible representation of SU(2) denoted by (ϱn, S
nC2). Frobe-

nius reciprocity yields that S2n+1C2 (n ∈ Z≧0) is an SU(2)-invariant space

of sections of O(1) → CP 1. Moreover, S2n+1C2 is an eigenspace of the
Laplacian (see [37]). We denote by Ck (k ∈ Z) an irreducible U(1)-module
with weight k. As homogeneous vector bundle, O(1) → CP 1 is regarded as
SU(2) ×U(1) C−1. Then we can realize C−1 as a subspace of S2n+1C2 by
Lemma 5.34. Since the complexification of m is identified with C2 ⊕ C−2,
we have that

ϱ2n+1(m)C−1 ⊂ C−3 ⊕C1.

Consequently, the standard map f0 : CP 1 → CP 2n = P(S2n+1C2) is an
Einstein-Hermitian harmonic map from Lemma 5.36.

See also Ohnita [29] about an equivariant harmonic map into a complex
projective space (see §6.4 for the definition of an equivariant map and The-
orem 6.28 for a generalization of this example).

Example. LetM = HP 1 = Sp(2)/Sp(1)×Sp(1) be the quaternion projective
line. To distinguish two copies of Sp(1) in the isotropy subgroup, we write
the isotropy subgroup as Sp+(1) × Sp−(1). Let H ∼= C2 be the standard
representation of Sp+(1) and E the standard representation of Sp−(1). Then
the associated complex homogeneous vector bundles are denoted by the same
symbols H →M and E →M , respectively. We suppose that H →M is the
tautological vector bundle and E → M is the orthogonal complement in a
trivial bundle H2 ∼= C4 →M .

We take the symmetric power SkH → M of H → M and SlE → M of
E → M . When k (resp.l) is even, SkH (resp.SlE) has a real structure,
which is a conjugate-linear involution. If k+ l are even, then SkH⊗SlE has
a real structure. In those cases, for example, SkH is supposed to represent
a real representation or the associated real vector bundle.
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Since the Lie algebra sp(2) has the standard decomposition as the sym-
metric pair (Sp(2), Sp(1)× Sp(1)):

sp(2) = S2H⊕ S2E⊕ (H⊗E),

sp(2) can be regarded as an eigenspace of the Laplacian acting on sections
of S2H →M . Using again that (Sp(2), Sp(1)× Sp(1)) is a symmetric pair,
we have

[H⊗E, S2H] ⊂ H⊗E.

Lemma 5.36 implies that the standard map f0 : HP 1 → Gr7(sp(2)) =
Gr7(R

10) is an Einstein-Hermitian harmonic map.
Now the standard map has another interpretation (see also Swann [31]

and Gambioli [15]). Let µ : HP 1 → sp(2)∗ ⊗ S2H be a quaternion moment
map [14]. By definition of a moment map, for an arbitrary X ∈ sp(2), we
have

µX([g]) =
[
g, πS2H(g−1Xg)

]
, g ∈ Sp(2),

where πS2H : sp(2) → S2H is the orthogonal projection. It follows that
sp(2) is a subspace of sections of S2H → M by the moment map µ. It is
clear that sp(2) globally generates S2H → M . We can define the induced
map fµ : HP 1 → Gr7(R

10). By definition of the induced map, we have

fµ([g]) =
{
X ∈ sp(2) |Ad(g−1)X ∈ S2E⊕ (H⊗E)

}
=Ad(g)

(
S2E⊕ (H⊗E)

)
⊂ sp(2),

which is the same as the standard map f0.
The standard map induced by the pair

(
S2H → HP 1, sp(2)

)
can be gen-

eralized on any compact quaternion symmetric space. It is induced by a
quaternion moment map for an isometry group in the same way.

Using a moment map, we obtain a result of Takeuchi-Kobayashi [33]:

Example. Let (G,K) be an irreducible Hermitian symmetric pair of compact
type and consider a moment map µ : G/K → g∗. In this situation, µX :
G/K → R for an arbitrary X ∈ g is an eigenfunction of the Laplacian. Then
Theorem of Takahashi [32] yields that the induced map f : G/K → SN ⊂ g
is a harmonic map, where SN is a hypersphere of g.

5.4.2. A generalization of do Carmo-Wallach Theory in homogeneous cases.
Let G be a compact Lie group and W an orthogonal or a unitary repre-
sentation of G with an invariant scalar product (·, ·)W . Then G naturally
acts on H(W ). If we equip H(W ) with an inner product (·, ·)H , then it is
easily seen that (·, ·)H is G-invariant. We define a symmetric or Hermitian
operator H(u, v) for u, v ∈W as

H(u, v) :=
1

2
{u⊗ (·, v)W + v ⊗ (·, u)W } .

Then it follows that for an arbitrary B ∈ H(W )

(5.27) (B,H(u, v))H =
1

2
{(Bu, v)W + (Bv, u)W } .

If U and V are subspaces of W , we define a real subspace H(U, V ) ⊂ H(W )
spanned by H(u, v) where u ∈ U and v ∈ V . In a similar fashion, GH(U, V )
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denotes the subspace of H(W ) spanned by gH(u, v), where g ∈ G, and so
GH(U, V ) is a G-submodule of H(W ).

We can now formulate a generalization of do Carmo-Wallach theory in
homogeneous cases. Though the difference from Theorem 5.15 is only the
condition imposed on T , we state the theorem in its complete form for
readers’ convenience.

Theorem 5.37. Let G/K0 be a compact reductive Riemannian homoge-
neous space with K0-invariant decomposition g = k⊕m. Fix a rank q homo-
geneous vector bundle

(
V = G×K0 V0, h,∇0

)
with an invariant metric h and

the canonical connection ∇0 and a G-invariant negative semi-definite Her-
mitian endomorphism A ∈ Γ(EndV ). Let WA ⊂ Γ(V ) be the solution space
of the generalized Laplace equation with A with the L2 scalar product (·, ·)WA

.
Since ∇0 and A are G-invariant, WA can be regarded as g-representation
ϱ : g → End (WA). By Lemma 5.34, we realize V0 as a subspace of WA.

If f : G/K0 → (Grp(K
n), (·, ·)) (n = p + q) is a full harmonic map with

an admissible pair
(
(V, h,∇0), A

)
and we fix a bundle isomorphism between

(V, h,∇0) and (f∗Q, f∗hQ,∇f∗Q), then there exist a unique linear injection
ι : Kn → WA and a positive semi-definite Hermitian endomorphism T on
WA such that
(a) T satisfies

(5.28)
(
T 2 − IdW , GH(V0, V0)

)
H

= 0,
(
T 2, GH(ϱ(m)V0, V0)

)
H

= 0,

(b) (Kn, (·, ·), ι) is compatible with (WA, T ). In particular, n ≦ dimWA,
(c) f : G/K0 → (Grp(K

n), (·, ·)) is realized as the map induced by a triple
(V,Kn, ι (ι∗Tι)) into (Grp(K

n), (·, ·)WA
).

Conversely, if a positive semi-definite Hermitian endomorphism T on
WA satisfies condition (a) and Kn := (KerT )⊥ globally generates V →
M , then the map induced by (V,Kn, ι (ι∗Tι)) is a full harmonic map into
(Grp(K

n), (·, ·)WA
) with an admissible pair

(
(V, h,∇0), A

)
, where ι : Kn →

WA is the inclusion.
Let fi : M → (Grp(K

n), (·, ·)WA
) be the maps induced by those triples

(V,Kn, ι (ι∗Tiι)) such that ι (Kn)⊥ = KerT1 = KerT2, where ι : K
n → WA

is the inclusion. Then, f1 and f2 are gauge equivalent if and only if T1 = T2.

Proof. We follow the notation in the proof of Theorem 5.12 and only pay
attention to the role played by the condition (a), which is the substitution
for the MC equations.

When f∗Q→M is identified with the orthogonal complement of f∗S →
M , it follows from (5.7) and (5.26) that the natural identification ϕ : V →
f∗Q is expressed as

(5.29) ϕ ([g, v]) = ([g], T gv) ,

where g ∈ G and v ∈ V0 ⊂W .
Since the metric on f∗Q→M is induced by the scalar product on W , it

follows from the gauge condition and (5.29) that

(5.30) (Tgv, Tgv′)W = (v, v′)W ,
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for arbitrary v, v′ ∈ V0. From the definition of the scalar product on H(W ),
we have

Re(Tgv, Tgv′)W =(T 2, gH(v, v′))H and(5.31)

Im(Tgv, Tgv′)W =(T 2, gH(v,
√
−1v′))H .

Together with (Id,H(v, v′))H = Re(v, v′)W , (5.30) and (5.31) yield that

(T 2 − Id, gH(v, v′))H = 0

for an arbitrary g ∈ G and arbitrary v, v′ ∈ V0, which is equivalent to

(5.32) (T 2 − Id,GH(V0, V0))H = 0.

Since the equation (5.30) is equivalent to

(g−1T 2gv, v′)W = (v, v′)W ,

we obtain

π0(g
−1T 2g)i0 = IdV0 ,(5.33)

where i0 : V0 →W is the natural inclusion and π0 :W → V0 is the orthogo-
nal projection to V0.

Next, we compare the canonical connection ∇0 with the induced connec-
tion ∇ on V → M by f : M → Grp(K

n). To describe the orthogonal
projection πV : W → V , notice that πV is recognized as the adjoint of ϕ.
Thus πV :W → V is expressed as:

πV ([g], w) =
[
g, π0(g

−1Tw)
]
.

If we use a section t[g] =
[
g, π0(g

−1w)
]
corresponding to w ∈ W , then the

canonical connection is calculated as follows:

(5.34) ∇0
dπLgξt =

[
g,−π0

(
ϱ(ξ)g−1w

)]
.

Next the induced connection is calculated as follows:

∇dπLgξt =πV ddπLgξϕ(t) = πV ddπLgξ

(
[g], T gπ0(g

−1w)
)

=πV
(
[g], T gϱ(ξ)π0(g

−1w)− Tgπ0(ϱ(ξ)g
−1w)

)
=
[
g, π0

(
g−1T 2gϱ(ξ)π0(g

−1w)
)
− π0

(
g−1T 2gπ0(ϱ(ξ)g

−1w)
)]
.

It follows from (5.33) and (5.34) that

∇dπLgξt−∇0
dπLgξt =

[
g, π0

(
g−1T 2gϱ(ξ)π0(g

−1w)
)]
.

Since W globally generates V →M , the gauge condition yields that

π0(g
−1T 2gϱ(ξ))i0 = 0,(5.35)

for an arbitrary g ∈ G and ξ ∈ m, which is equivalent to

(5.36) (T 2, GH(ϱ(m)V0, V0))H = 0.

It follows from (5.32) and (5.36) that condition (a) holds. □
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6. Applications

6.1. Algebraic preliminaries. First of all, we shall give an algebraic result
which is a slight modification of do Carmo and Wallach [7].

Let G/K0 be a compact reductive Riemannian homogeneous space with
K0-invariant decomposition g = k ⊕ m, where G is a compact Lie group.
Let V0 be a K0-representation with an invariant scalar product and V =
G ×K0 V0 → G/K0 an associated homogeneous vector bundle with the in-
duced invariant metric. Let W be a G-submodule of Γ(V ) endowed with a
G-invariant scalar product induced by L2 scalar product. If W globally gen-
erates V → G/K0, then we realize V0 as a subspace of W as in Lemma 5.34.
We denote by π0 :W → V0 the orthogonal projection. Let U0 be the orthog-
onal complement of V0 in W with the orthogonal projection π1 :W → U0.

We would like to describe the decomposition of W as K0-module when
regarding W as K0-module by restriction of the representation. We follow
an idea of do Carmo and Wallach [7].

Definition 6.1. A linear map B1 : m⊗ V0 → U0 is defined as:

B1 (ξ ⊗ v) = π1 (ξv) , for ξ ∈ m, v ∈ V0.

Then we also define

N2 := (V0 ⊕ ImB1)
⊥ ⊂W,

and the orthogonal projection π2 : W → N2. For simplicity, U0 is also
denoted by N1.

Since π1 is K0-equivariant, we have

Lemma 6.2. A linear map B1 : m⊗ V0 → U0 is K0-equivariant.

Corollary 6.3. ImB1 is a K0-module.

The n-th symmetric power of m is denoted by Snm. Let Sn denote the
permutation group of order n and define an element of Snm as

ξ1ξ2 · · · ξn :=
1

n!

∑
σ∈Sn

ξσ(1) ⊗ · · · ⊗ ξσ(n),

for ξ1, ξ2, · · · , ξn ∈ m.

Definition 6.4. Inductively, we define the subspace
(
V0

⊕
⊕n−1

p=1 ImBp

)⊥

of W denoted by Nn with the orthogonal projection πn :W → Nn. Then a
linear map Bn : Snm⊗ V0 → Nn is defined as

Bn ((ξ1 · · · ξn)⊗ v) = πn ((ξ1 · · · ξn)v) ,

where (ξ1 · · · ξn)v = 1
n!

∑
σ∈Sn

(
ξσ(1)

(
ξσ(2) · · ·

(
ξσ(n−1)

(
ξσ(n)v

))
· · ·

))
.

Since Bn : Snm⊗ V0 → Nn is K0-equivariant, ImBn is a K0-module.

Lemma 6.5. If (G,K0) is a symmetric pair with the corresponding orthog-
onal decomposition of the Lie algebra g = k⊕m, then

Bn ((ξ1 · · · ξn)⊗ v) = πn (ξ1 (ξ2 (· · · (ξnv) · · · ))) .
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Proof. For ξ1, · · · , ξn ∈ m and v ∈ V0 ⊂W , we have

ξ1 (ξ2 (ξ3 · · · ξn) v)− ξ2 (ξ1 (ξ3 · · · ξn) v) = [ξ1, ξ2] ((ξ3ξ4 · · · ξn) v) .
By definition, it follows that (ξ3 · · · ξn) v ∈ V0⊕ ImB1⊕· · ·⊕ ImBn−2. From
the hypothesis that (G,K0) is a symmetric pair, we get [ξ1, ξ2] ∈ k. Since
V0 ⊕ ImB1 ⊕ · · · ⊕ ImBn−2 is a K0-module, we have

[ξ1, ξ2] ((ξ3ξ4 · · · ξn) v) ∈ V0 ⊕ ImB1 ⊕ · · · ⊕ ImBn−2,

and so,

πn (ξ1ξ2 (ξ3 · · · ξn) v) = πn (ξ2ξ1 (ξ3 · · · ξn) v) .
In a similar way, we obtain

πn ((ξ1 · · · ξi−1) (ξi (ξi+1 (ξi+2 · · · ξn) v)))
=πn ((ξ1 · · · ξi−1) (ξi+1 (ξi (ξi+2 · · · ξn) v))) ,

and the result follows. □
Definition 6.6. Let W be a G-module with an invariant scalar product
and V0 ⊂ W a K0-module when we regard W as K0-module by restriction
of the representation. If we can decompose W as

(6.1) W = V0 ⊕ ImB1 ⊕ · · · ⊕ ImBn,

then (W,V0) is said to have a normal decomposition (into K0-modules). We
sometimes denote V0 by ImB0 in the normal decomposition.

Proposition 6.7. If W is an irreducible G-module, then for any K0-module
V0 ⊂W there exists a positive integer n such that

W = V0 ⊕ ImB1 ⊕ · · · ⊕ ImBn,

which is a normal decomposition of (W,V0).

Proof. Since W is irreducible, the result follows. □
We have a modification of Lemma 4.2 in [7].

Proposition 6.8. Let W be a G-module with an invariant scalar prod-
uct (·, ·) and V0 a K0-subspace of W when W is regarded as K0-module by
restriction of the representation. Suppose that (W,V0) has a normal decom-
position (6.1). Consider a K0-irreducible decomposition of ImBi for each
i = 0, · · · , n. Assume that ImBi and ImBj have no common irreducible K0-
submodules in the K0-irreducible decomposition of them, if i 6= j = 0, · · · , n.

If T is a K0-equivariant positive semi-definite Hermitian endomorphism
on W satisfying (Tgv1, T gv2) = (v1, v2) for arbitrary g ∈ G and v1, v2 ∈ V0,
then T = IdW .

Proof. Since ImBi and ImBj has no common irreducible K0-submodules
when i 6= j, Schur’s lemma yields that only the zero map is a K0-equivariant
linear map from ImBi to ImBj . Hence we have that T ImBi ⊂ ImBi, where
i = 0, · · · , n.

Combining T ImB0 ⊂ ImB0 with the assumption (Tgv1, T gv2) = (v1, v2),
we can recognize T |V0 as a positive semi-definite Hermitian endomorphism
preserving the induced scalar product on V0. We thus deduce that T |V0 =
IdV0 .
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From the hypothesis, it follows that for an arbitrary ξ ∈ m

(Tgetξv1, T ge
tξv2) = (v1, v2),

where t ∈ R and v1, v2 ∈ V0. Then we get

0 =
d2p

dt2p

∣∣∣
t=0

(Tetξv1, T e
tξv2) =

2p∑
r=0

(
2p

r

)
(Tξrv1, T ξ

2p−rv2),

and so, (
2p

p

)
(Tξpv1, T ξ

pv2)(6.2)

=−
p−1∑
r=0

(
2p

r

)
(Tξrv1, T ξ

2p−rv2)−
2p∑

r=p+1

(
2p

r

)
(Tξrv1, T ξ

2p−rv2)

=−
p−1∑
r=0

(
2p

r

)
(Tξrv1, T ξ

2p−rv2)−
p−1∑
r=0

(
2p

r

)
(Tξ2p−rv1, T ξ

rv2).

Suppose that T is the identity on V0 ⊕ ImB1 ⊕ · · · ⊕ ImBp−1. From the
inductive hypothesis and the condition that T is a Hermitian endomorphism,
when r < p, we can deduce that

(Tξrv1, T ξ
2p−rv2) = (ξrv1, T ξ

2p−rv2) = (Tξrv1, ξ
2p−rv2) = (ξrv1, ξ

2p−rv2).

Consequently, it follows from (6.2) that (Tξpv1, T ξ
pv2) = (ξpv1, ξ

pv2). Hence
T |ImBp is a positive semi-definite Hermitian endomorphism preserving the
scalar product and we can derive T |ImBp = IdImBp . □

Since we would like to consider an orthogonal direct sum of r-copies of
irreducible module, let W̃ denote a G-module and Ṽ0 ⊂ W̃ a K0-module,
respectively. Suppose that the K0-module H(Ṽ0, Ṽ0) is decomposed into
K0-irreducible modules of the form:

H(Ṽ0, Ṽ0) = ⊕l
i=1Hi,

where H0 denotes the one-dimensional trivial representation corresponding
to the identity transformation of Ṽ0. Let GH0 be the subspace of H(W̃ )
generated by G and H0.

A G-irreducible representation is said to be a class one representation of
(G,K0), if it contains non-zero K0-invariant elements. In a similar way to
the proof of Lemma 4.4 in [7], we can show

Proposition 6.9. Let W be an irreducible G-module and V0 ⊂ W a K0-
submodule. Suppose that ImBi and ImBj in the normal decomposition (6.1)
of (W,V0) have no common K0-irreducible submodules, if i 6= j.

Let W̃ be an orthogonal direct sum of r-copies of W and Ṽ0 an orthogonal
direct sum of r-copies of V0 which is regarded as a subspace of W̃ in a natural
way.

Then GH0 ⊂ H(W̃ ) consists of class one submodules of (G,K0). An

arbitrary class one representations of (G,K0) in H(W̃ ) is a submodule of

GH(Ṽ0, Ṽ0).
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Proof. First of all, we take an orthogonal decomposition of GH0 into G-
irreducible modules:

GH0 = ⊕pWp.

The orthogonal projection is denoted by πp : GH0 →Wp, for each p, which
is a G-equivariant map. Then πp(H0) 6= {0} for an arbitrary p, by definition
of GH0 and so, Wp is a class one representation since πp : GH0 → Wp is
also K0-equivariant.

Next, suppose that H is a class one subrepresentation of (G,K0) in H(W̃ )

such that H ∩ GH(Ṽ0, Ṽ0) = {0}. Then, by standard arguments, we can

assume that H⊥GH(Ṽ0, Ṽ0) without loss of generality.
Since H is a class one representation, there exists a non-zero C ∈ H such

that kCk−1 = C for any k ∈ K0. It follows from H⊥GH(Ṽ0, Ṽ0) that

0 = (C, gH(v1, v2))H = (C,H(gv1, gv2))H =
1

2
{(Cgv1, gv2) + (Cgv2, gv1)} ,

for arbitrary g ∈ G and v1, v2 ∈ V0. Thus we get

0 = (Cgv1, gv2), g ∈ G, v1, v2 ∈ V0.

If C is sufficiently small, then Id + C > 0 and so, we can define a positive
Hermitian endomorphism T satisfying T 2 = Id+ C. Then we have

(Tgv1, T gv2) = (v1, v2) g ∈ G, v1, v2 ∈ V0.

Since C is K0-equivariant, so is T . Since (W̃ , Ṽ0) has the normal decompo-

sition W̃ = Ṽ0 ⊕ Im B̃1 ⊕ · · · ⊕ Im B̃n induced from that of (W,V0) and T

satisfies T Im B̃i ⊂ Im B̃i for each i from the hypothesis, Lemma 6.8 yields
that T = Id and so, C = 0, which is a contradiction. □

We use Proposition 6.9 to obtain a rigidity result on harmonic maps.
To do so, let ⊕rV → G/K0 be the orthogonal direct sum of r-copies of
the homogeneous vector bundle V → G/K0 with the canonical connection.
Then we can induce an invariant connection on ⊕rV → G/K0 from the
canonical connection, which is also called the canonical connection.

Theorem 6.10. Let G/K0 be a compact reductive Riemannian homoge-
neous space and V = G ×K0 V0 a homogeneous vector bundle with an in-
variant metric and the canonical connection, where V0 is an irreducible K0-
module.

Suppose that the eigenspace W with an eigenvalue µ of the Laplacian
acting on Γ(V ) is an irreducible representation of G. We realize V0 as a
subspace of W as in Lemma 5.34. Furthermore, W is supposed to satisfy
(1) ImBi and ImBj in the normal decomposition (6.1) of (W,V0) has no
common K0-irreducible submodules, if i 6= j, and
(2) any G-irreducible submodule of H(W ) is a class one representation of
(G,K0).

We denote by W̃ the orthogonal direct sum of r-copies of W and by Ṽ =
⊕rV → G/K0 the orthogonal direct sum of r-copies of vector bundle V with
the induced invariant metric h and the canonical connection ∇.

Then the standard map by (Ṽ , W̃ ) is the unique Einstein-Hermitian full
harmonic map with an EH constant −µ satisfying the gauge condition for
(Ṽ , h,∇) up to gauge equivalence.
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Proof. It follows from Frobenius reciprocity and irreducibility of V0 that
W globally generates V and so, W̃ does Ṽ . From condition (1) and the
definition of the normal decomposition, Lemma 5.36 yields that the standard
map is the desired map.

If f is not the standard map, from Theorems 5.12 and 5.37, we have a
positive semi-definite endomorphism T of W̃ satisfying(

T 2 − IdW̃ , GH(⊕rV0,⊕rV0)
)
H

= 0.

On the other hand, by Proposition 6.9, the conditions (1) and (2) imply

that H(W̃ ) = GH(⊕rV0,⊕rV0). Thus T
2 = IdW̃ , which means that f is the

standard map. Hence we have a contradiction. □
6.2. Complex projective spaces. We introduce two theorems which are
proved in independent ways. A unified proof can be given in the light of
Theorems 5.37 and 6.10.

The following theorem is shown independently by S.Bando-Y.Ohnita [2],
J.Bolton-G.R.Jensen-M.Rigoli-L.M.Woodward [3] and Y.Ohnita [28].

Theorem 6.11. Let f : CP 1 → CPn be a full harmonic map with constant
energy density and a constant Kähler angle. Then f is the standard map up
to gauge equivalence.

We have a rigidity theorem of holomorphic isometric embeddings between
complex projective spaces by Calabi [5].

Theorem 6.12. Let f : CPm → CPn be a full holomorphic map with con-
stant energy density. Then f is the standard map up to gauge equivalence.

Remark. Since we can classify those maps up to gauge equivalence, our
results are slightly stronger than the previous results. However our claims
are essentially the same as theirs by Proposition 5.30. Notice that Theorem
6.12 is indeed slightly stronger than the Calabi’s rigidity on holomorphic
isometric embeddings of CPm into CPn.

Before giving a proof, we fix notation used throughout this section. First
of all, we begin with standard representation theory of SU(2) treated in the
Remark after Lemma 5.36. For an irreducible representation SkC2 of SU(2),
let

(6.3) SkC2 = Ck ⊕Ck−2 ⊕ · · · ⊕C−(k−2) ⊕C−k

be a weight decomposition with respect to a standard diagonal subgroup
U(1), where Cl is an irreducible representation of U(1) with weight l. We
consider a symmetric pair (SU(2),U(1)) and the holomorphic line bundle
O(k) → CP 1 with the canonical connection, which is regarded as a homo-
geneous bundle SU(2) ×U(1) C−k. Using the theory of spherical harmonics,

we have a decomposition of Γ(O(k)) in the L2-sense:

(6.4) Γ(O(k)) =
∞∑
l=0

S|k|+2lC2.

Moreover, S|k|+2lC2 is an eigenspace of the Laplacian induced by the canoni-
cal connection. The Bott-Borel-Weil theorem yields that H0

(
CP 1;O(k)

) ∼=
SkC2, if k ≧ 0.
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We have an analogous theory for a symmetric pair (SU(m+ 1),U(m)),
where an element in the isotropy subgroup U(m) is of the form:(

|A| O
O A−1

)
, A ∈ U(m).

Let Hk,l
n be the complex vector space of harmonic polynomials on Cn of bi-

degree (k, l) which is an irreducible representation of SU(n). In particular,

the space Hk,0
m+1 of holomorphic polynomials has the following irreducible

decomposition as U(m)-module:

(6.5) Hk,0
m+1 =

k⊕
p=0

C−k+p ⊗Hp,0
m .

Here Cl denotes an irreducible one-dimensional representation (the deter-
minant representation) of U(m) with weight l. Let O(k) → CPm be a
holomorphic line bundle of degree k, which is regarded as a homogeneous
bundle SU(m + 1) ×U(m) C−k with the canonical connection. Analogously,

we have an irreducible decomposition of Γ(O(k)) in the L2-sense:

(6.6) Γ(O(k)) =

{∑∞
l=0H

k+l,l
m+1 , k ≧ 0,∑∞

l=0H
l,|k|+l
m+1 , k ≦ 0.

Furthermore, each representation space appeared in the decomposition is an
eigenspace of the Laplacian induced by the canonical connection. It follows

from Bott-Borel-Weil that H0 (CPm;O(k)) ∼= Hk,0
m+1, if k ≧ 0.

We can easily see from (2.3) and (4.1) that the curvature of the canonical
connection on O(k) → CPm is the Kähler form on CPm up to a constant
multiple and so, it is a Hermitian Yang-Mills connection. Since any line bun-
dle over a compact Kähler manifold is a stable vector bundle, the canonical
connection on O(k) → CPm is the unique Hermitian Yang-Mills connection
modulo gauge equivalence.

Proof of Theorems 6.11 and 6.12 . We regard CPn as a complex Grassman-
nian Grn(C

n+1) = P(Cn+1∗) in both cases. Then the universal quotient
bundle Q→ Grn(C

n+1) is of rank 1.
Let f be a harmonic map from CP 1 to Grn(C

n+1) with constant energy
density and constant Kähler angle or a holomorphic map from CPm →
Grn(C

n+1) with constant energy density. Since f∗Q → CPm is of rank 1
and f has constant energy density, f is an Einstein-Hermitian map (see the
second Remark after the proof of Theorem 5.12).

In case of f : CP 1 → Grn(C
n+1), since every harmonic map of CP 1 is

conformal (see, for example, [10]) and f has a constant energy density, we
can deduce that f is a homothety. Combining this with the assumption that
f has a constant Kähler angle, we see that the pull-back of the Kähler form
on Grn(C

n+1) is a constant multiple of the Kähler form on CP 1. Thus the
pull-back connection on f∗Q→ CP 1 is the canonical connection.

When f : CPm → Grn(C
n+1) is an EH holomorphic map, Proposition 4.3

yields that f∗Q → CPm is an Einstein-Hermitian vector bundle. We thus
have the canonical connection as the induced connection on the pull-back of
the universal quotient bundle.
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Therefore each f is an Einstein-Hermitian harmonic or holomorphic map
with the gauge condition for the canonical connection on a line bundle.

Suppose that the pull-back bundle is a holomorphic line bundle O(k) →
CPm with the canonical connection. It follows from (6.4) and (6.6) that

Cn+1 ⊂ S|k|+2lC2 for some non-negative integer l in the former case and
Cn+1 ⊂ Hk,0 in the latter case. The relevant representation space is denoted
byW . In each case, the U(m)-decomposition ofW is regarded as the normal
decomposition of (W,C−k) from Proposition 6.7. Then, it follows from (6.3)
and (6.5) that ImBi and ImBj in the normal decomposition of (W,V0) has
no common K0-irreducible submodules, if i 6= j.

The representation H(W ) has an irreducible decomposition as follows:

H(W ) =

{
⊕2|k|+4l

i=0 S2|k|+4l−2iC2

⊕k
l=0H

k−l,k−l
n+1

.

(Though we must take an invariant real vector space in the decomposition,
we omit it.) Since all representations appeared in the decomposition of
H(W ) are class one representations, Theorem 6.10 implies that the standard
maps by (O(k) → CPm,W ) are the desired maps and f itself is the standard
map up to gauge equivalence of maps. □

As a result, those maps are isometric immersions up to a constant multiple
of the metric.

Remark. Using a technique of [2] and [3], we can conclude that any harmonic
map from CP 1 → Grn(C

n+1) = P(Cn+1∗) with constant energy density has
a constant Kähler angle.

Remark. We can see from Theorems 6.11 and 6.12 that the standard map is
the unique representative in each indicated homotopy class of maps into com-
plex projective spaces, which is the Einstein-Hermitian harmonic or holo-
morphic map with the pull-back connection being a Hermitian Yang-Mills
connection.

Toth gives a conception of polynomial minimal immersion between com-
plex projective spaces [34]. In the definition of polynomial minimal immer-

sions, Toth makes use of Hk,l
n+1 to define polynomial maps between spheres

and uses the Hopf fibration to get a map between complex projective spaces.
This enables us to apply U(n+1)-representation theory instead of SO(2n+2)-
representation theory in the original do Carmo-Wallach theory. In addition,
Toth implicitly requires the gauge condition for the canonical connection
on a line bundle as horizontality. Theorem 3.5 implies that the notion of
polynomial maps is unnecessary to develop the theory. We replace a polyno-
mial minimal immersion by polynomial harmonic map with constant energy
density.

Lemma 6.13. Let f : CPm → CPn (m ≧ 2) be a full harmonic map
with constant energy density. Then f is a polynomial harmonic map in the
sense of Toth if and only if f satisfies the gauge condition for a complex line
bundle with the canonical connection.
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Proof. Since the universal quotient bundle is of rank 1 and f has constant
energy density, the mean curvature operator is proportional to the identity
up to constant (see the second Remark after the proof of Theorem 5.12).

The sufficient condition holds by definition of polynomial harmonic map
(see condition (3) (horizontality) in [34]).

Suppose that the pull-back bundle of the universal quotient bundle with
the induced connection is isomorphic to a complex line bundle with the
canonical connection. Then Theorem 3.5 and the decomposition (6.6) imply

that Cn+1 ⊂ Hk,l
m+1 for some non-negative integers k and l. This yields that

f is a polynomial harmonic map. □

Toth also gives an estimate of the dimension of the moduli space by the
image equivalence relation in [34]. Lemma 5.36 and the weight decomposi-
tion yields that the standard map is a harmonic map with a constant energy
density. Then Theorem 5.31 provides the description of the moduli space,
in which M is CPm, A is a constant function and ∇ is the canonical con-

nection on a line bundle. Toth estimates the dimension of M0(Hk,l
m+1) using

representation theory of U(m+ 1).
As a generalization of Theorem 6.12, we will have the rigidity of a special

class of Einstein-Hermitian holomorphic embeddings of a compact Hermitian
symmetric space.

Let (G,K0) be an irreducible Hermitian symmetric pair of compact type
with the corresponding orthogonal decomposition of Lie algebra g = k⊕m.
Moreover, since k has a center u(1), k is decomposed into k = u(1)⊕ k1. The
Lie subgroups corresponding to u(1) and k1 are denoted by U(1) and K1,
respectively.

Any irreducible homogeneous vector bundle on M := G/K0 is expressed
as V := G ×K0 (V1 ⊗Ck) → M , where V1 is an irreducible representation
of k1 and Ck is a one-dimensional representation of u(1) with weight k.
Then mC, which is the complexification of m, is regarded as (C−l ⊗ T ∗

1 ) ⊕
(Cl ⊗ T1). Here l is a positive integer and T1 is an appropriate non-trivial
irreducible representation space of k1, if k1 6= {0}. If we denote by m(0,1) the
set of tangent vectors of type (0, 1), then we have m(0,1) = Cl ⊗ T1 in the
decomposition.

It follows from [18, p.121 Proposition (6.2)] and the uniqueness of the
Einstein-Hermitian structure that the canonical connection is the unique
Hermitian Yang-Mills connection on any irreducible homogeneous vector
bundle V → G/K0.

Theorem 6.14. Let (G,K0) be an irreducible Hermitian symmetric pair
of compact type and V → G/K0 an irreducible holomorphic homogeneous
vector bundle. We denote by W the space of holomorphic sections of V →
G/K0 with the L2 Hermitian inner product up to constant multiple. Assume
that any G-irreducible submodule of H(W ) is a class one representation of
(G,K0).

We denote by ⊕rV the orthogonal direct sum of r-copies of the bundle
V → G/K0 and by ⊕rW the orthogonal direct sum of r-copies of W .

If f is an Einstein-Hermitian full holomorphic embedding of G/K0 into
a complex Grassmannian with the pull-back bundle of the universal quotient
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bundle being holomorphically isomorphic to a direct sum of r-copies of V →
G/K0, then f is the standard map by (⊕rV,⊕rW ) up to gauge equivalence.

Proof. Let V0 = C−m ⊗ V1 be an irreducible complex module of K0 as-
sociated with V → G/K0, where m is an integer and V1 is an irreducible
representation of k1. If f is an embedding into Grp(C

N ), Theorem 3.5 yields
that CN is a subspace of a direct sum of r-copies ofW and V has non-trivial
holomorphic sections. Then Bott-Borel-Weil theorem implies that m is posi-
tive and (ϱ,W ) is an irreducible G-representation. By Frobenius reciprocity
and Lemma 5.34, V0 is realized as a subspace of W . Then Proposition 6.7
yields that (W,V0) has a normal decomposition (6.1).

Since the second fundamental form K is of type (0, 1), we get ϱ(m)V0 =
ϱ(m(0,1))V0 and

(6.7) ϱ(m(1,0))V0 = {0}.
From lemma 6.5 and (6.7), Bn can be regarded as a map from Snm(0,1)⊗V0
to Nn (see Definition 6.4). Since m(0,1) = Cl ⊗ T1, we see that Snm(0,1) =
Cnl ⊗ SnT1. Then we deduce that ImBi is a submodule of C−m+il ⊗ Ui,
where Ui is a representation of k1 (i ≧ 1). It follows that ImBi and ImBj

has no common K0-irreducible submodules, if i 6= j.
Since f is an EH holomorphic embedding, Proposition 4.3 yields that

f∗Q → G/K0, the pull-back bundle of the universal quotient bundle, is an
Einstein-Hermitian vector bundle. From [18, p.177 Theorem (8.3)], we can
see that f∗Q → G/K0 is an orthogonal direct sum of holonomy irreducible
Einstein-Hermitian vector bundles, say ⊕i(Ei, hi). By the assumption that
f∗Q→ G/K0 is holomorphically isomorphic to a direct sum ⊕rV → G/K0,
we have a non-trivial bundle map Ei → V for each i. Since V and Ei are
holonomy irreducible, we can deduce from [18, p.101 Proposition (1.7)] that
V is holomorphically isomorphic to Ei. Thus the induced connection on V
is the Hermitian Yang-Mills connection. As we already stated, the canonical
connection is the unique Hermitian Yang-Mills connection on V → G/K0.
Consequently, we can conclude that f satisfies the gauge condition for an
orthogonal direct sum ⊕rV → G/K0 with the induced invariant metric and
the canonical connection.

Hence, Theorem 6.10 with the assumption on H(W ) having only class one
submodules yields the result. □

We give examples of pairs (G,K0) and G-representation spaces W such
that H(W ) consists of class one representations.

Theorem 6.15. Let G/K0 be a compact simply-connected homogeneous
Kähler manifold, where G is a compact connected semisimple Lie group,
and L → G/K0 a holomorphic line bundle. We denote by W the space of
holomorphic sections of L→ G/K0. If L→ G/K0 is a positive line bundle,
then End (W ) consists of class one representations of (G,K0).

Proof. It is well-known that every holomorphic line bundle on G/K0 is a
homogeneous vector bundle. Then, by Bott-Borel-Weil theorem, W is an
irreducible representation space of G. The Kähler form may be chosen in
2πc1(L) from the positivity of the line bundle. Since L → G/K0 is a line
bundle on a Kähler manifold, L → G/K0 has a unique Einstein-Hermitian
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connection ∇. We adopt the curvature form Ω of ∇ as the Kähler form ω
on G/K0: ω =

√
−1Ω.

Let f0 : G/K0 → P(W ∗) be the standard map. We fix a G-invariant
Hermitian structure h on L→ G/K0 and equip W with a G-invariant Her-
mitian inner product (·, ·)W . Since f0 is G-equivariant holomorphic map and
L → G/K0 is of rank one, the mean curvature operator A can be regarded
as a negative constant from Lemma 3.3. Then Proposition 4.3 yields that
the pull-back connection on f∗O(1) → G/K0 is the Hermitian Yang-Mills
connection ∇ on L → G/K0. In particular, since the pull-back metric is a
G-invariant metric on L → G/K0 by G-equivariance of f0, we can assume
that h coincides with the pull-back metric. Thus f0 can be regarded as a
holomorphic isometric embedding.

Let V0 be a complex 1-dimensional representation of K0 to which the
associated bundle is L→ G/K0. By Lemma 5.34, we realize V0 as a subspace
of W and take a unit vector v0 ∈ V0 ⊂ W . Let H0(W ) denote the set of
trace-free Hermitian endomorphisms onW . Then, for C ∈ H0(W ), we define
a real valued function fC : G/K0 → R as

(6.8) fC([g]) := (Cgv0, gv0)W .

It follows that the correspondence C 7→ fC gives a G-equivariant homo-
morphism F : H0(W ) → C∞(G/K0), where C

∞(G/K0) is the space of real
valued smooth functions on G/K0.

Suppose that F (C) = 0. If C is small enough, Id + C is positive. Con-
sequently, we can use Id+C to define a full holomorphic map f : G/K0 →
P(W ∗) as (Id+ C)−

1
2 f0. Then (6.8) gives ((Id+ C)gv0, gv0)W = 1 and so,

the pull-back metric by f coincides with h. Since the pull-back bundle by
f is holomorphically isomorphic to L → G/K0, the uniqueness of the Her-
mitian connection implies that the pull-back connection also coincides with
∇. From the definition of the Kähler form, f also turns out to be a holo-
morphic isometric embedding. From Calabi’s rigidity theorem [5], f must
be image equivalent to f0. Proposition 5.30 implies that f and f0 are also
gauge equivalent. It follows from Theorem 5.12 that C = 0. Thus H0(W )
can be regarded as G-submodule of C∞(G/K0).

Since every irreducible submodule of C∞(G/K0) is a class one represen-
tation of (G,K0) and End(W ) is the complexification of H(W ), we obtain
the desired result. □

Theorems 6.14 and 6.15 yield

Corollary 6.16. Let (G,K0) be an irreducible Hermitian symmetric pair
of compact type, L → G/K0 a positive holomorphic line bundle and W
the space of holomorphic sections of L → G/K0. We denote by ⊕rL the
orthogonal direct sum of r-copies of the line bundle L→ G/K0 and by ⊕rW
the orthogonal direct sum of r-copies of W .

If f is an Einstein-Hermitian full holomorphic embedding of G/K0 into
a complex Grassmannian with the pull-back bundle of the universal quotient
bundle being holomorphically isomorphic to a direct sum of r-copies of the
line bundle L → G/K0, then f is the standard map by (⊕rL,⊕Wr) up to
gauge equivalence.
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6.3. Complex quadrics. We consider Einstein-Hermitian holomorphic em-
beddings of the projective line into complex quadrics Grn(R

n+2). Such em-
beddings turn out to be holomorphic isometric embeddings up to constant
multiples of the metrics. Though research on harmonic maps from the pro-
jective line into quadrics has been approached from various viewpoints (for
example, [6], [13], [21], [38] and [40]), we would like to describe the moduli
space by a generalization of do Carmo-Wallach theory (Corollaries 5.25 and
5.33 and Theorem 5.37).

Remark. We need to fix an orientation of Rn+2 to define a complex structure
ofGrn(R

n+2). When we use notation in §5.1, the inversion τ : Grn(R
n+2
+ ) →

Grn(R
n+2
− ) is a holomorphic isometry. In addition, τ does not belong to

O(n), if n is even. Following our convention, we do not distinguish a map
f : M → Grn(R

n+2) from a map τ ◦ f : M → Grn(R
n+2). In particular,

two standard maps f0 and τ ◦ f0 are identified.

The curvature form R of the canonical connection on the universal quo-
tient bundle is related to the fundamental 2-form ωQ on Grn(R

n+2) in such a

way that R = −
√
−1ωQ. Denote by ω0 the fundamental 2-form on CP 1 sat-

isfying RO(1) = −
√
−1ω0, where RO(1) is the curvature form of the canonical

connection on the hyperplane bundle over CP 1.

Definition 6.17. Let f : CP 1 → Grn(R
n+2) be a holomorphic embedding.

Then f is called an isometric embedding of degree k if f∗ωQ = kω0 (and so,
k must be a positive integer).

Lemma 6.18. Let f : CP 1 → Grn(R
n+2) be a holomorphic embedding.

Then f is an isometric embedding of degree k if and only if the induced con-
nection on the pull-back of the universal quotient bundle is gauge equivalent
to the canonical connection on O(k) → CP 1. Under these conditions, f is
an Einstein-Hermitian map.

Proof. Since the holomorphic bundle structure of any line bundle on CP 1

is unique, there exists a non-negative integer k such that f∗Q → CP 1 is
holomorphically isomorphic to O(k) → CP 1.

Since f∗ωQ is the curvature form of the pull-back connection and kω0 is
that of the canonical connection on O(k) → CP 1, it follows that f is an
isometric embedding of degree k and so, f∗ωQ = kω0, if and only if the
pull-back connection is the canonical connection on O(k) → CP 1.

Under these conditions, Proposition 4.3 yields that the mean curvature
operator is considered as a complex endomorphism of O(k) → CP 1. Since
the canonical connection is the unique Hermitian Yang-Mills connection, the
mean curvature operator is proportional to the identity on O(k) → CP 1 and
the same is true as a real endomorphism of O(k) → CP 1. □

Since the holonomy group of the canonical connection on any (positive)
line bundle is irreducible, the pull-back fiber metric also coincides with the
invariant fiber metric up to a positive constant multiple. If we change the
inner product on Rn+2 or the invariant metric on the line bundle by a
positive constant multiple, then we can assume that the pull-back metric
also coincides with the invariant metric from the beginning.
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From this observation with Lemma 6.18, we can apply Theorem 5.37 to
obtain the moduli space Mk of holomorphic isometric embeddings of degree
k modulo gauge equivalence of maps. We also use the Hermitian Yang-Mills
connection to obtain that any holomorphic section of O(k) → CP 1 is an
eigensection (Lemma 4.2).

Let (SU(2),U(1)) be the symmetric pair corresponding to CP 1 and g =
k ⊕ m the corresponding orthogonal decomposition of the Lie algebra g =
su(2), where k = u(1). We notice that mC = C2 ⊕C−2.

When considering the standard map by
(
O(k),H0

(
CP 1;O(k)

))
into a

quadric, we recognize H0
(
CP 1;O(k)

)
as a real vector space with the in-

duced orientation by the complex structure. In general, by regarding a com-
plex vector space CN with a Hermitian inner product as a real vector space
R2N with the induced orientation and inner product, we obtain a totally geo-
desic embedding into an oriented Grassmannian i : Grp(C

N ) → Gr2p(R
2N ).

Lemma 6.19. The standard map by
(
O(k),H0

(
CP 1,O(k)

) ∼= SkC2
)
is a

holomorphic isometric embedding of degree k from the complex projective
line into Gr2k(R

2k+2).

Proof. Since i : Grk
(
SkC2

)
→ Gr2k(R

2k+2) is a holomorphic totally geo-
desic embedding and the standard map in question is the composition of the
standard map into Grk

(
SkC2

)
and i, Theorem 6.12 yields the result. □

Notice that the L2 inner product on R2k+2 is an SU(2)-invariant inner
product. Thus, for the description of the moduli space, Corollary 5.25 is
available. First of all, we consider the case that k = 1.

Theorem 6.20. If f is a holomorphic isometric embedding of degree 1 from
the complex projective line into a complex quadric, then f is the standard
map by

(
O(1) → CP 1,H0

(
CP 1;O(1)

))
up to gauge equivalence.

Proof. Let f be a holomorphic isometric embedding into Grn(R
n+2) of de-

gree 1. Then, Lemma 6.18 yields that f is an Einstein-Hermitian holomor-
phic embedding. Since f is of degree one and H0

(
CP 1;O(1)

)
is equivalent

to the standard representation C2 as SU(2)-module by Bott-Borel-Weil the-
orem, Theorem 5.37 implies that n+2 ≦ 4. Hence we consider an Einstein-
Hermitian holomorphic embedding f : CP 1 → Gr2(R

4): the maximal case.
Since the Hermitian Yang-Mills connection is the canonical connection on
O(1) → CP 1, we can apply Theorem 5.37 to describe the moduli space.

Since Gr2(R
4) is a real Grassmannian, we must regard C2 as a real vector

space R4 with the complex structure J when applying Theorem 5.37. Con-
sequently, H(R4) denotes the set of symmetric endomorphism on R4 in our
convention. Since the standard map is an Einstein-Hermitian holomorphic
map from Lemma 6.19, we only need to consider the equation

(6.9) ev ◦ C ◦ ∇ev∗ = 0

by Corollary 5.23, where C ∈ H0(R
4) which denotes the set of trace-free

symmetric endomorphisms on R4.
Let C2 = C1 ⊕ C−1 be the weight decomposition as U(1)-module. The

line bundle O(1) → CP 1 is expressed as SU(2)×U(1)C−1 and we can identify
the representation space C−1 of U(1) with the subspace denoted by the same
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symbol of the weight decomposition of C2 by Lemma 5.34. Then we can see
from mC−1 = C1 and Theorem 5.37 that (6.9) is equivalent to the condition
that

(C,GH(mC−1,C−1)) = (C,GH(C1,C−1)) = 0,

where (·, ·) is the induced SU(2)-invariant inner product on H0(R
4).

We can irreducibly decompose an SU(2)-module H(R4) as:

(6.10) H(R4) = 3R3 ⊕R,

and so H0(R
4) = 3R3.

To apply Corollary 5.25, we need to understand the decomposition (6.10)
in detail. To do so, let j be an SU(2)-invariant quaternion structure on C2,
which is a conjugate-linear map such that j2 = −Id. Then,

R3 =
√
−1ρ(g), R3 = j

√
−1ρ(g), R3 = Jj

√
−1ρ(g),

where ρ : su(2) → End(C2) denotes the standard representation. Notice
that

√
−1ρ(g) is the set of Hermitian endomorphisms on (R4, J).

We take an orthonormal basis {v1, Jv1, v−1, Jv−1} of R4 as v1, Jv1 ∈ C1,
v−1, Jv−1 ∈ C−1 and jv1 = v−1. Then, H(C1,C−1) is spanned by

H(v1, v−1),H(Jv1, v−1),H(v1, Jv−1) andH(Jv1, Jv−1).

In general, we have H(Ju, Jv) = −JH(u, v)J for arbitrary u, v ∈ R4.
Hence H(u, v) + H(Ju, Jv) is a Hermitian endomorphism on (R4, J), be-
cause it commutes with J . In particular, H(v1, v−1) + H(Jv1, Jv−1) and
H(v1, Jv−1)−H(Jv1, v−1) are Hermitian endomorphisms on (R4, J). Thus

√
−1ρ(g) ⊂ GH(C1,C−1).

Next, we see that

2H(v1, v−1)− 2H(Jv1, Jv−1)(6.11)

=j {H(v1, v1)−H(v−1, v−1) +H(Jv1, Jv1)−H(Jv−1, Jv−1)} ,

and so,

j
√
−1ρ(g) ⊂ GH(C1,C−1).

Finally, we get

H(v1, Jv−1) +H(Jv1, v−1) = J {H(v1, v−1)−H(Jv1, Jv−1)} .

It follows from (6.11) that

Jj
√
−1ρ(g) ⊂ GH(C1,C−1).

Therefore, H0(R
4) = GH(C1,C−1). Corollary 5.25 yields the result. □

Next, we consider holomorphic isometric embeddings of degree 2. When
the degree is even, say 2l, H0

(
CP 1;O(2l)

)
has an invariant real subspace

denoted by W l
R of real dimension 2l + 1. Since W l

R also globally generates

O(2l) → CP 1, we have a standard map by W l
R which turns out to be a

holomorphic isometric embedding of degree 2l by Lemma 5.36 and weight
decomposition. We call the standard map by

(
O(2l) → CP 1,W l

R

)
the real

standard map, which is a map into Gr2l−1(R
2l+1).
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Theorem 6.21. If f : CP 1 → Grn(R
n+2) is a full holomorphic isometric

embedding of degree 2 into a complex quadric, then n ≦ 4.
When M2 denotes the moduli space of full holomorphic isometric embed-

dings of the complex projective line into Gr4(R
6) of degree 2 modulo the

gauge equivalence of maps, M2 is identified with an open unit disk in C.
If we take M2 as the compactification of M2 by the topology induced by

L2 scalar product on Γ(O(2)), each boundary point of M2 corresponds to a
real standard map whose image is included in a totally geodesic submanifold
Gr1(R

3) of Gr4(R
6). Each totally geodesic submanifold Gr1(R

3) is specified
as the common zero set of sections of the universal quotient bundle Q →
Gr4(R

6), where these sections belong to the orthogonal complement of R3

in R6. The real standard map is a terminal harmonic map.

Proof. We use the same notation as in the proof of Theorem 6.20 and begin
with a representation theory of SU(2) and U(1). Let S2C2 be the com-
plexification of the Lie algebra of SU(2) with a real structure σ which is
an SU(2)-invariant conjugate-linear involution. A weight decomposition of
S2C2 is C2 ⊕C0 ⊕C−2. The associated line bundle SU(2) ×U(1) C−2 is a

holomorphic line bundle O(2) → CP 1 and H0
(
CP 1;O(2)

)
is identified with

S2C2 by Bott-Borel-Weil theorem. From Lemma 5.34, the representation
space C−2 of U(1) is realized as a subspace of S2C2 denoted by the same
symbol. We can see that mC−2 = C0.

Let f : CP 1 → Grn(R
n+2) be a holomorphic isometric embedding of

degree 2. Then Lemma 6.18 implies that f is an Einstein-Hermitian holo-
morphic embedding and so, n ≦ 4 by Theorem 5.37.

To apply Theorem 5.37, S2C2 must be regarded as a real vector space R6

with the complex structure J . Let H(R6) be the set of symmetric endomor-
phisms on R6. Notice that H(R6, J), the set of Hermitian endomorphisms
on (R6, J), is a real subspace of H(R6). The Clebsh-Gordan formula yields
that the complexification of H(R6, J) is decomposed as S4C2 ⊕ S2C2 ⊕C.
Since these three spaces have invariant real structures, we denote by D4, D2

and R the corresponding real subspaces of H(R6, J), respectively. We claim
that

(6.12) H(R6) = (D4 ⊕ σD4 ⊕ JσD4)⊕D2 ⊕ (R⊕Rσ ⊕RJσ) .

We fix an orthonormal basis {v2, v0, v−2, Jv2, Jv0, Jv−2} of R6 in such a
way that vi ∈ Ci and σ(vi) = v−i (i = 2, 0,−2). Using matrix represen-
tation and the block decomposition according to R6 = Span(v2, v0, v−2) ⊕
Span(Jv2, Jv0, Jv−2), we have

D4 =

{(
D O
O D

) ∣∣∣ tD = D, traceD = 0

}
,

and so,

σD4 =

{(
D O
O −D

) ∣∣∣ tD = D, traceD = 0

}
,

and

JσD4 =

{(
O D
D O

) ∣∣∣ tD = D, traceD = 0

}
.
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Moreover, we have

D2 =

{(
O −C
C O

) ∣∣∣ tC = −C
}
.

By the same reason (Corollary 5.23 and Lemma 6.19) as in the proof of
Theorem 6.20, we need to specify GH(C0,C−2) as a subspace of H0(R

6)
which is the set of trace-free symmetric endomorphisms on R6. From the
definition, H(C0,C−2) is spanned by

H(v0, v−2),H(Jv0, v−2),H(v0, Jv−2) andH(Jv0, Jv−2).

The characterization of the decomposition of H0(R
6) yields that

H(v0, v−2) +H(Jv0, Jv−2) ∈ D4, H(Jv0, v−2)−H(v0, Jv−2) ∈ D2,

H(v0, v−2)−H(Jv0, Jv−2) ∈ σD4, H(Jv0, v−2) +H(v0, Jv−2) ∈ JσD4.

Thus Rσ⊕RJσ is the orthogonal complement of GH(C0,C−2) in H0(R
6).

Notice that the complex structure J on R6 gives a complex structure on
Rσ ⊕RJσ. From Corollary 5.25, the moduli space M2 can be regarded as
a bounded connected convex open set in Rσ ⊕RJσ. Indeed, a symmetric
transformation Id + (aσ + bJσ) is positive, where a, b ∈ R if and only if
a2 + b2 < 1. Thus M2 =

{
z ∈ C | |z|2 < 1

}
.

Next we consider a natural compactification M2 of M2. Suppose that
a2 + b2 = 1. Then (a + bJ)σ is also an invariant real structure on S2C2.
Hence we may consider only the case that a = 1 and b = 0. Since the kernel
of Id+σ is Span(Jv2, Jv0, Jv−2), Lemma 5.11 and Theorem 5.12 imply that
Id+σ determines a totally geodesic submanifold Gr1(R

3) of Gr4(R
6) and a

holomorphic isometric embedding into the submanifold Gr1(R
3) represented

by 2Id3. This map is nothing but a real standard map by R3 =
(
S2C2

)
R

which is an invariant real subspace of S2C2. Finally, since the standard
map corresponding to Id is a maximal holomorphic map, M2 parametrizes
all holomorphic isometric embeddings of degree 2 (see Corollary 5.25 and
the Remark after it). Therefore Corollary 5.27 yields that the real standard
map is a terminal harmonic map. □

Since Id+(aσ + bJσ) is invariant under the SU(2)-action, we can deduce
that all holomorphic isometric embeddings of CP 1 into Gr4(R

6) of degree
2 are SU(2)-equivariant. This is a result of [13].

Next, we consider the image equivalence of maps. The holonomy group
of the canonical connection on O(2) → CP 1 is the structure group U(1)
of the bundle. Therefore the centralizer of the holonomy group is also the
structure group S1 = U(1). Then Theorem 6.21 with Corollary 5.33 yields
the result by [6] and [21].

Theorem 6.22. Let M2 be the moduli space of holomorphic isometric em-
beddings of degree 2 from the complex projective line into Gr4(R

6) modulo
the image equivalence. Then M2 = M2/S

1 = [0, 1]; 0 (resp. 1) represents
the standard map (resp. the real standard map ).

Proof. From Lemma 6.18, the centralizer S1 of the holonomy group of ∇
preserves the mean curvature operator of any holomorphic isometric em-
bedding. From Lemma 6.19, we can apply Corollary 5.33 to conclude that
S1 acts on M2 and M2 = M2/S

1.
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To be more precise, let JL be the complex structure of O(2) → CP 1 and
J the induced holomorphic structure of H0

(
CP 1;O(2)

)
. This means that

JLev = evJ . By Corollary 5.33, the S1-action on M2 takes C = aσ + bJσ
to eiθCe−iθ = C(cos 2θId+ sin 2θJ) = (cos 2θId− sin 2θJ)C. We thus have
the standard action of S1 with weight 2 on the unit disk in C as the S1

action on M2.
At the boundary of M2, the S1-action takes an invariant subspace of

aσ+bJσ (a2+b2 = 1) to another invariant subspace. Accordingly, we obtain
a totally geodesic submanifold Gr1(R

3) and the real standard map into
Gr1(R

3). Since the S1 acts transitively on the boundary, we can conclude
that M2 = M2/S

1. □

Remark. We can derive from Theorem 6.22 that the real standard map is
the unique representative in the homotopy class of maps of degree 2 from
the complex projective line into complex quadrics, which is the Einstein-
Hermitian terminal holomorphic map with the pull-back connection being a
Hermitian Yang-Mills connection.

We have a geometric interpretation of the existence of the complex struc-
ture on the moduli space M2. Let (f, ϕ) be a full holomorphic isometric
embedding f of CP 1 into Gr4(R

6) of degree 2 with a natural identification
ϕ : O(2) ∼= f∗Q, which corresponds to C ∈ M2. Then, a tangent vector to
M2 at (f, ϕ) may be identified with D ∈ Rσ ⊕ RJσ. As we have already
seen, the complex structure JL on the bundle induces a complex structure
J on the space of the sections and H0(CP 1;O(2)) is a complex subspace of
Γ(O(2)). Then JD is a tangent vector to the curve (ft, ϕt) in M2 defined
by

ft = Ker ev(Id+ C + tJD)
1
2 , and ϕt = (Id+ C + tJD)

1
2 ev∗

from Theorem 6.21, where ev : H0(CP 1;O(2)) → O(2) is the evaluation

map. Thus we obtain a complex structure on M2 (see [26] for more general
argument of the existence of the complex structure of the moduli space
modulo gauge equivalence of maps).

In [30], Suyama obtains an analogous description of moduli spaces by
image equivalence of holomorphic isometric immersions into quadrics using
diastasis of Calabi [5] and establishes that the moduli space is the quotient of
a subset of complex Euclidean space by the S1-action. Our theory interprets
the geometric meaning of M and the reason that the complex structure and
the S1-action on M emerge in the description of the moduli space modulo
image equivalence from the point of view of differential geometry of vector
bundles and connections.

The moduli space of holomorphic isometric embeddings of the complex
projective line into quadrics of higher degree can be described by the same
method. To do so, more detailed analysis of SU(2)-representations is re-
quired. This subject is discussed in [22]. Furthermore, when the domain
manifold is the complex projective space, or the complex Grassmannian, all
holomorphic isometric embeddings into quadrics will be completely classified
in the framework of our theory ([24] and [27]).
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6.4. Equivariant harmonic maps. In this subsection, our main task will
be to classify equivariant harmonic maps of the complex projective spaces
into complex Grassmannians of low rank and quadrics.

Let G/K0 be a compact reductive Riemannian homogeneous space, where
G is a compact Lie group. Then f : G/K0 → Grp(K

n) is an equivariant map
if we have a unitary (or an orthogonal) representation ϱ : G → Aut(Kn)
such that f(gx) = ϱ(g)f(x), where g ∈ G, x ∈ G/K0. Here, the image
f(x) of x ∈ G/K0 is considered to represent a subspace of Kn and Aut(Kn)
denotes U(n) or O(n) depending on K.

Let f : G/K0 → Grp(K
n) be an equivariant harmonic map. Then f∗Q→

G/K0 is a homogeneous vector bundle with an invariant metric and an
invariant connection under the action of G. The mean curvature operator
is an equivariant endomorphism of f∗Q→ G/K0.

Let V → G/K0 be a homogeneous vector bundle with an invariant fiber
metric h and an invariant connection ∇ preserving h. Then an equivari-
ant map f : G/K0 → Grp(K

n) is called to satisfy the gauge condition for
(V, h,∇) as homogeneous bundles if there exists a G-equivariant bundle iso-
morphism ϕ : V → f∗Q. In this case, the induced linear map Γ(V ) →
Γ (f∗Q) by ϕ is also G-equivariant. In addition, suppose that we have an
equivariant negative semi-definite Hermitian endomorphism A ∈ Γ(EndV ).
An equivariant map f : G/K0 → Grp(K

n) is said to have an admissible
pair ((V, h,∇), A) as homogeneous bundles, if f satisfies the gauge condition
for (V, h,∇) as homogeneous bundles and has A ∈ Γ(EndV ) as its mean
curvature operator. When WA denotes the solution space of the generalized
Laplace equation with A, WA is a G-representation induced from that on
Γ(V ). Since the action on Kn can also be considered to be induced from
that on Γ(V ) by Theorem 3.5, Kn is a G-submodule of WA.

With this understood, we have an equivariant version of Theorem 5.20.

Theorem 6.23. Let (V → G/K0, h,∇) be a homogeneous vector bun-
dle with an invariant metric h and an invariant connection ∇ and A ∈
Γ(EndV ) an equivariant negative semi-definite Hermitian endomorphism.
Let f0 : G/K0 → (Grp(K

n), (·, ·)0) be an equivariant full harmonic map into
Grp(K

n) with an admissible pair ((V, h,∇), A) as homogeneous bundles. We
realize f0 as an induced map into (Grp(K

n), (·, ·)0) with ev0 : Kn → V as
its evaluation map and ev∗0 : V → f∗Q as its natural identification, both of
which are equivariant maps.

If there exists a G-equivariant linear injection ι : Km → Kn and f1 :
G/K0 →

(
Grp′(K

m), (·, ·)1
)
is an equivariant full harmonic map with an

admissible pair ((V, h,∇), A) as homogeneous bundles (hence, n− p = m−
p′), then we have an equivariant Hermitian endomorphism C on Kn which
is neither positive nor negative semi-definite (possibly C = O) such that
(i) C satisfies derived MC equations for ev0 : K

n → V .
(ii) Id+ C is positive semi-definite,

(iii) (Km, (·, ·)1, ι) is compatible with (W,T ), where T = (Id+ C)
1
2 and

(iv) f1 : M →
(
Grp′(K

m), (·, ·)1
)
is realized as the map induced by a triple

(V,Km, ι(ι∗Tι)) into (Grp(K
n), (·, ·)0).
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Conversely, if an equivariant Hermitian endomorphism C on (Kn, (·, ·)0)
satisfies the conditions (i) and (ii), then Km := Ker (Id+C)⊥ globally gen-
erates V → G/K0 and the map f : G/K0 →

(
Grp′(K

m), (·, ·)0
)
induced by

a triple
(
V,Km, ιι∗(Id+ C)

1
2 ι
)
, where ι : Km ⊂ Kn is the inclusion, is

an equivariant full harmonic map with an admissible pair ((V, h,∇), A) as
homogeneous bundles.

Let fi : M → (Grp(K
m), (·, ·)0) be the maps induced by those triples(

V,Km, ιι∗(Id+ Ci)
1
2 ι
)
with the inclusion ι : Km → Kn such that ι (Km) =

Ker (Id+Ci)
⊥, (i = 1, 2). Then, f1 and f2 are gauge equivalent if and only

if C1 = C2.
If we can take the standard map into (Grp(WA), (·, ·)) as f0, where (·, ·)

is the L2 scalar product on WA up to a positive constant multiple, then C is
trace-free.

Proof. The key issue is a fact that C is G-equivariant.
We take a positive semi-definite Hermitian endomorphism T on Kn such

that (T ·, T ·)1 = ι∗(·, ·)0 and the kernel of T is Km⊥
. Since both of the scalar

products are invariant under the action of G and ι is an equivariant linear
map, T 2 is an equivariant linear map:

(Tgw1, T gw2)1 = (gw1, gw2)0 = (w1, w2)0 = (Tw1, Tw2)1.

Hence, C = Id− T 2 is also an equivariant map. Then the proof proceeds in
the same way as in Theorem 5.20. □

From our convention, a map f is identified with τ ◦ f , when V → M is
an oriented real vector bundle and the target is an oriented Grassmannian
in the following theorems.

Theorem 6.24. Let (V → G/K0, h,∇) be a homogeneous vector bundle
with an invariant metric and an invariant connection and A ∈ Γ(EndV )
an equivariant negative semi-definite Hermitian endomorphism. We denote
by WA the solution space of the generalized Laplace equation with A. Let
f0 : G/K0 → Grp(K

n) be an equivariant full harmonic map into Grp(K
n)

with an admissible pair ((V, h,∇), A) as homogeneous bundles.
If WA is an irreducible representation of G, then Kn =WA as G-module

and f0 is the unique equivariant full harmonic map into Grp(WA) with an
admissible pair ((V, h,∇), A) as homogeneous bundles modulo gauge equiva-
lence.

Proof. Since the induced linear map Γ(V ) → Γ(f∗Q) is G-equivariant for
any equivariant full harmonic map f of G/K0 into Grp(K

n) with an admis-
sible pair ((V, h,∇), A) as homogeneous bundles, Theorem 3.5 implies that
Kn is a non-trivial G-subspace of WA. The irreducibility of WA yields that
Kn =WA and so, f is a maximal map.

Let f1 : G/K0 → Grp(WA) be an equivariant full harmonic map with an
admissible pair ((V, h,∇), A) as homogeneous bundles. Since f0 is a maximal
map, from Theorem 6.23, we have an equivariant Hermitian endomorphism
C on WA which is neither positive nor negative semi-definite on WA such

that f1 is realized as a map induced by
(
V,WA, (Id+ C)

1
2

)
. Schur’s lemma
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yields that C = λIdWA
, where λ ∈ R. Since C is neither positive nor

negative semi-definite, λ = 0. □
Corollary 6.25. Let G/K0 be a compact simply-connected homogeneous
Kähler manifold, where G is a compact connected semisimple Lie group.
Suppose that (V → G/K0, h) is an irreducible homogeneous holomorphic
vector bundle with an invariant Hermitian metric. Then its Hermitian con-
nection ∇ is G-invariant.

If f0 : G/K0 → Grp(C
n) is an equivariant full holomorphic map with

the gauge condition for (V, h,∇) as homogeneous bundles, then f0 is the
unique Einstein-Hermitian equivariant full holomorphic map into Grp(C

n)
with the gauge condition for (V, h,∇) as homogeneous bundles up to gauge
equivalence.

Proof. It follows from Bott-Borel-Weil theorem that H0(G/K0;V ) is an ir-
reducible unitary G-module. From [18, p.121 Theorem 6.4], we see that
(V, h) is an Einstein-Hermitian vector bundle. From Lemma 4.3, f0 is an
EH map and any equivariant holomorphic map with the gauge condition for
(V, h,∇) as homogeneous bundles has the same mean curvature operator as
that of f0. Theorem 6.24 yields the result. □

Let (G,K0) be an irreducible Hermitian symmetric pair of compact type.
Notice that any line bundle over G/K0 is a homogeneous vector bundle and
so, G acts on any orthogonal direct sum of line bundles ⊕i=1Li. Then using
the canonical connection on each line bundle, we can induce an invariant
connection on ⊕i=1Li, which is also called the canonical connection. We use
the same notation as in §6.2.

Theorem 6.26. Let (G,K0) be an irreducible Hermitian symmetric pair of
compact type except (SU(2),U(1)) and V → G/K0 an orthogonal direct sum
of line bundles. Then the canonical connection on V is the unique invariant
connection.

Proof. Suppose that we have another invariant connection on V → G/K0.
Then the difference of the two connections denoted by α can be regarded as
an invariant 1-form with values in End V → G/K0. Thus α is an invariant
section of homogeneous vector bundle T ∗MC ⊗ V ∗ ⊗ V → G/K0, where
T ∗MC is the complexification of the cotangent bundle of G/K0

Since V → G/K0 is an orthogonal direct sum of line bundles, so is End V .
Then the fiber of T ∗MC ⊗ EndV →M at o can be decomposed into⊕

i=1

(T1 ⊗Cli ⊕ T ∗
1 ⊗Cli) ,

where T1 is a non-trivial irreducible representation of K1, since the pair
(G,K0) is not (SU(2),U(1)). Thus the fiber has no trivial summand. By
Frobenius reciprocity, T ∗MC ⊗ EndV → G/K0 has no invariant section
except the zero section. It follows that the canonical connection is the
unique invariant connection on V → G/K0. □

We apply our results to obtain the rigidity theorems on equivariant holo-
morphic maps of the complex projective spaces. The corresponding sym-
metric pair is denoted by (SU(m+ 1),U(m)) as in §6.2.
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Theorem 6.27. Let V → CPm be a complex homogeneous vector bundle
of rank q < m and ∇ an invariant connection on V → CPm.

Then V → CPm is isomorphic to an orthogonal direct sum of line bundles
as homogeneous vector bundle and ∇ is the canonical connection.

Proof. We denote by ϱ the action of SU(m+1) on V → CPm. Since U(m) is
the stabiliser subgroup at the reference point o ∈ CPm, ϱ restricted to U(m)
is a representation of U(m) to the fiber Vo. It follows from the classification
of U(m)-representations and dimensional reason that Vo is an orthogonal
direct sum of one-dimensional representations Ck1 ⊕Ck2 ⊕ · · · ⊕Ckq . Then
we have a bundle isomorphism of SU(m+1)×U(m) Vo to V as homogeneous
vector bundles:

[g, v] 7→ ϱ(g)(v).

Thus V → CPm is isomorphic to an orthogonal direct sum of line bundles.
Then Theorem 6.26 yields the result. □

To classify equivariant harmonic maps, we need the irreducible decompo-

sition of Hk+l,l
m+1 (k ≧ 0) as U(m)-module:

(6.13) Hk+l,l
m+1 =

⊕
0≦p≦k+l,0≦q≦l

Hp,q
m ⊗C−k+(p−q).

If m ≧ 2, then C−k is the only one-dimensional representation of U(m) in

the decomposition (6.13). In the case of Hl,|k|+l
m+1 (k ≦ 0), we have a similar

decomposition.

Theorem 6.28. We denote by ⊕q
i=1O(ki) the orthogonal direct sum of line

bundles O(ki) → CPm and by ⊕Wi the orthogonal direct sum of vector
spaces Wi.

If f : CPm → Grp(C
p+q) is an equivariant full harmonic map with q <

m, then f is the standard map by (⊕q
i=1O(ki),⊕q

i=1Wi) (ki ∈ Z) up to gauge

equivalence, where Wi = Hki+li,li
m+1 (ki ≧ 0), or Hli,|ki|+li

m+1 (ki ≦ 0), is one of
the eigenspaces of the Laplace operator induced by the canonical connection
on O(ki) for each i = 1, · · · , q.

Proof. Let f be an equivariant full harmonic map of CPm into Grp(C
p+q)

(q < m). Then the pull-back bundle of the universal quotient bundle is
homogeneous and the pull-back connection is an invariant connection. The-
orem 6.27 yields that the pull-back bundle is ⊕q

i=1O(ki) with the canonical
connection. Since the canonical connection reduces to U(1)-connection on
the direct sum of line bundles and the mean curvature operator A is an
equivariant endomorphism of ⊕q

i=1O(ki), A is covariant constant and we
can deduce that A is of the form diag(−λ1, · · · ,−λq) according to the de-
composition of the line bundles, where λi ≧ 0. From Theorem 3.5, λi is the
eigenvalue of the Laplace operator acting on sections of O(ki) → CPm and
together with fullness of f , we can see that Cp+q is a SU(m + 1)-subspace
of ⊕q

i=1Wi, where each Wi is the eigenspace corresponding to λi. Since we
have a unique one-dimensional representation space C−k of U(m) in the
decomposition (6.13) of Wi, Lemma 5.34 with Frobenius reciprocity yields
that ⊕q

i=1Wi ⊂ Cp+q and so, we conclude that Cp+q = ⊕q
i=1Wi.
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It follows from Lemma 5.36 and (6.13) that the standard map f0 is an
equivariant full harmonic map with ev : CPm ×⊕q

i=1Wi → ⊕q
i=1O(ki).

Suppose that f is not the standard map. Since f0 is a maximal map, from
Theorem 6.23, there exists a non-trivial equivariant trace-free Hermitian
endomorphism C on ⊕q

i=1Wi satisfying dMC equations for ev. Let µ < 0 be
the smallest eigenvalue of C. Thus Id−µ−1C has the non-trivial kernel which
is an SU(m+1)-module and so, the orthogonal complement of the kernel in
⊕q

i=1Wi is a proper invariant subspace denoted by CN . Since −µ−1C also
satisfies the dMC equations, Theorem 6.23 implies that Id− µ−1C induces
an equivariant full harmonic map into GrN−q(C

N ), which is a contradiction

to the fact that CNmust be equal to ⊕q
i=1Wi. We thus conclude that C = O

and f is the standard map. □

Remark. If (ki, li) = (0, 0), then f has a trivial summand and the image of
f is a subset of a totally geodesic submanifold Grp(C

p+q−1) of Grp(C
p+q).

In the case where the target is a quadric, we need to consider real repre-

sentations. If m ≧ 2, then Hk+l,l
m+1 (k > 0) and Hl,|k|+l

m+1 (k < 0) are irreducible

as real modules. Since Hl,l
m+1 has a real structure, Hl,l

m+1 is decomposed into
two equivalent irreducible real representation spaces. As usual, we do not
distinguish two standard maps.

Theorem 6.29. Let f : CPm → Grn(R
n+2) (m ≧ 2) be an equivariant

full harmonic map which is not totally real. Then f is the standard map by

(O(k),H) for some k ∈ Z\{0} modulo gauge equivalence, where H = Hk+l,l
m+1

(k > 0), or Hl,|k|+l
m+1 (k < 0), is one of the eigenspaces of the Laplace operator

induced by the canonical connection on O(k).

Proof. Theorem 6.27 yields that the pull-back of the universal quotient bun-
dle is a homogeneous vector bundle O(k) with the canonical connection.
Since f is not totally real, we have k 6= 0. Since the mean curvature oper-
ator A is equivariant, A = −λId (λ ≧ 0). Theorem 3.5 implies that λ is
the eigenvalue of the Laplace operator. The fullness of the map and irre-
ducibility of H (m ≧ 2) yield that Rn+2 = H. It follows from Lemma 5.36
and (6.13) that the standard map f0 is an equivariant full harmonic map.
Theorem 6.24 yields the result. □

Theorem 6.30. Let f : CPm → Grn(R
n+2) be an Einstein-Hermitian

equivariant full totally real harmonic map. Then f is the standard map by(
O,Hl,l

m+1

)
(l ∈ Z≧0) up to gauge equivalence , where Hl,l

m+1 is one of the

eigenspaces of the Laplace operator acting on C∞(CPm).

Proof. Since f is totally real, Theorem 6.27 yields that the pull-back of
the universal quotient bundle is a real trivial bundle O of rank 2 with the
canonical connection (the product connection). The EH condition yields
that A = −λId (λ ≧ 0). Theorem 3.5 implies that λ is the eigenvalue of the
Laplace operator. By the fullness of the map, we see that Rn+2 = Hl,l or
a real invariant subspace K of Hl,l. However, in the latter case, it follows
from (6.13) that the trivial module in the irreducible decomposition of K
as U(m)-module is a real one-dimensional subspace. Frobenius reciprocity
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yields that K does not globally generate O → CPm. Thus we deduce that
Rn+2 = Hl,l. It follows from Lemma 5.36 and (6.13) that the standard map
f0 is an EH equivariant full harmonic map. We finally get the result from
Theorem 6.23 in a similar way to a proof of Theorem 6.28. □
Remark. The classification of the Einstein-Hermitian harmonic maps of CP 1

into quadrics is the subject of [23]. We have an equivariant full totally real
harmonic map of CP 1 into quadrics which does not satisfy the EH-condition
(see also [38]).

6.5. Comparison with the ADHM-construction. We denote by S4 =
HP 1 the 4-dimensional sphere. We follow the notation of the Example after
Lemma 5.36.

Let H → HP 1 be the tautological (complex) vector bundle with the
canonical connection which is a self-dual connection. The Penrose transform
implies that the solution space of the twistor equation of H → HP 1 is
naturally identified with H0

(
CP 3;O(1)

)
, where CP 3 is the twistor space of

S4. The Bott-Borel-Weil theorem yields that H0
(
CP 3;O(1)

)
is regarded as

the standard representation C4∗ ∼= C4 of Sp(2) with an invariant symplectic
form ω on C4. Thus C4 is the solution space of the twistor equation and
so, the eigenspace of the Laplace operator. Since C4 globally generates
H → HP 1, we can consider the induced map f0 : HP

1 → Gr2(C
4). This is

nothing but a standard map by (H → HP 1,C4).
To apply Theorem 5.37, we observe an irreducible decomposition of the

representation space End (C4) as Sp(2)-module:

End (C4) = S2C4 ⊕ ∧2
0C

4 ⊕C,

where, ∧2
0C

4 is the orthogonal complement to Cω in ∧2C4. As Sp+(1) ×
Sp−(1)-module, we have that

(6.14) C4 = H⊕E,

S2C4 = S2H⊕H⊗E⊕ S2E,

and

(6.15) ∧2C4 = C⊕H⊗E⊕C.

The complexification of the tangent bundle TC of HP 1 is identified with
H ⊗ E. From H ⊗ E ⊗ H ∼= (S2H ⊕ C) ⊗ E, Lemma 5.36 yields that
f0 is an EH harmonic map. Since (6.14) is the normal decomposition
of (C4,H) by Proposition 6.7 and ∧2

0C
4 is a class one representation of

(Sp(2), Sp(1)× Sp(1)) from (6.15), Proposition 6.9 yields that ∧2C4 is in-
cluded in the Sp(2)-submodule GH(H,H) of H(C4) generated by H(H,H)
and Sp(2). SinceH(h, h)−H(jh, jh) is in S2H for an arbitrary h ∈ H, where
j is an invariant quaternion structure, GH(H,H) includes S2C4. It follows
from Theorem 5.37 that f0 can not be deformed as a harmonic map satisfy-
ing the gauge condition for the canonical connection and the EH condition.
Corollary 5.27 implies that f0 is the terminal harmonic map. Since f0 is an
equivariant map, the second fundamental forms of 0 → E → C4 → H → 0
are Sp(2)-equivariant. Replacing the role of H → HP 1 by E → HP 1, we can
see that the induced connection on E → HP 1 by f0 is also the canonical con-
nection. Since the canonical connections reduce to Sp(1)×Sp(1)-connection,
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we deduce that the second fundamental forms are covariant constant. Corol-
lary 3.6 yields that f0 is a totally geodesic map. As a conclusion, f0 is the
Einstein-Hermitian terminal totally geodesic map with the gauge condition
for the canonical connection on H → HP 1.

Next we consider the ADHM-construction of instantons [1]. For simplic-
ity, we focus our attention on 1-instantons. Let α : C4 → H be a surjective
bundle map satisfying the twistor equation [17]:

Dα = 0,

where α is regarded as a section of C4∗ ⊗H → HP 1. Suppose that C4 has
an invariant Hermitian inner product and an invariant quaternion structure
j under the action of Sp(2). Then we have the induced real structure of
C4∗ ⊗H ∼= C4 ⊗H. Then α is required to be a real section of C4∗ ⊗H.

Using the twistor space and the Bott-Borel-Weil theorem, we know that
α can be expressed as

α[g](w) =
[
g, π(g−1Tw)

]
, g ∈ Sp(2),

where T is a positive Hermitian endomorphism of C4, and π : C4 → H
is the orthogonal projection. Since ∧2

0C
4 has an invariant real structure

induced by j, we can take a real representation (∧2
0C

4)R. Then, the ADHM-
construction requires that T should satisfy

T 2 = Id+ C, C ∈ (∧2
0C

4)R.

If C is small enough, then Id+C is positive, and so, Kerα ⊂ C4 is an SU(2)-
bundle with the metric and an anti-self-dual connection induced from those
on C4.

If we regard α as an evaluation homomorphism, then we obtain the in-
duced map f : HP 1 → Gr2(C

4):

f ([g]) = TgE.

When T is the identity or equivalently, C = O, we recover the standard
map f0. In the case that C 6= O, the pull-back connection on the pull-back
bundle f∗Q → M is not gauge equivalent to the canonical connection on
H → HP 1.

In both cases of the generalization of the do Carmo-Wallach construction
and the ADHM-construction, the emergence of linear equations ((∆+A)t =
0 and Dα = 0, respectively) makes it possible to describe moduli spaces in
linear algebraic terms.
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