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Abstract A stochastic fractionally dissipative quasi-geostrophic equation with stochastic

damping is considered in this paper. First, we show that the null solution is exponentially

stable in the sense of q−-th moment of ‖ · ‖Lq , where q > 2/(2α − 1) and q− denotes the

number strictly less than q but close to it, and from this fact we further prove that the

sample paths of solutions converge to zero almost surely in Lq as time goes to infinity. In

particular, a simple example is used to interpret the intuition. Then the uniform bound-

edness of pathwise solutions in Hs with s ≥ 2− 2α and α ∈ (1/2, 1) is established, which

implies the existence of non-trivial invariant measures of the quasi-geostrophic equation

driven by nonlinear multiplicative noise.
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1 Introduction

The quasi-geostrophic equation is an important model in geophysical sciences which de-

scribes a kind of dynamics of large-scale phenomena in the atmosphere and ocean, see [38]

for more details. The mathematical study of the quasi-geostrophic equation was initiat-

ed by Constantin, Majda and Tabak in [7], where they pointed out that it shared many

features with 3D Euler equations.

The quasi-geostrophic equation has attracted much attention from both scientists and

mathematicians because of its mathematical importance and potential applications in
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meteorology and oceanography. The existence, uniqueness and regularity of solutions to

the quasi-geostrophic equation have been considered in [1, 9, 22, 26, 28, 47], and the

asymptotic behavior of the quasi-geostrophic equation has been studied in [8, 10, 13, 14,

15, 23, 41, 44]. The result of [11] has shown the nonlinear stability of steady states in

L2(R2) for the quasi-geostrophic equation. In [18], the existence of steady states to the

quasi-geostrophic equation has been proved, where the global solution were showed to

converge to the steady states in Lp(R2), 1 ≤ p ≤ 2, as time goes to infinity. Recently, we

established the existence and uniqueness of the stationary solution to the quasi-geostrophic

equation with infinite delay, and used several different methods to analyze its stability in

[30]. For other interesting results on the steady state to the quasi-geostrophic equation,

we refer the reader to [4] and the references therein. See also the work [32] where the

existence and nonuniqueness of steady-state weak solutions to the Navier-Stokes equation

have been investigated in dimensions d ≥ 4.

Despite an extensive literature on the quasi-geostrophic equation, the most results are

obtained in the deterministic case. This paper is devoted to the study of a class of s-

tochastic quasi-geostrophic equations with stochastic damping. The damping stems from

the resistance to the motion of the flow, it describes various physical situations such as

friction effects and some dissipative mechanisms [21]. Thanks to the surrounding environ-

ment and intrinsic uncertainties, the damping may be associated with hidden unresolved

processes. It may be positive or negative (for example, cyclones and anticyclones). Such

problem is very important in climate modeling and physical fluid dynamics; see, e.g. [17].

Consider the following quasi-geostrophic equation with stochastic damping on the pe-

riodic domain T2 = R2/(2πZ)2: dθ(t) + (κ(−∆)αθ(t) + u(t) · ∇θ(t) + ζ(w(t))θ(t))dt = G(t, θ(t))dW (t),

dw(t) = h(w(t))dt+ dB(t),
(1.1)

where α ∈ (12 , 1), κ > 0 is a diffusivity coefficient, θ represents the potential temperature,

W (t) is a Wiener process on a suitable probability space which will be given below, B(t) is

an n-dimensional Wiener process independent of W (t), ζ : Rn → R denotes the damping

rate, h : Rn → Rn is a vector-valued function, and the velocity u = (u1, u2) is determined

by θ via the formula

u = (u1, u2) = (− ∂ψ
∂x2

,
∂ψ

∂x1
), where (−∆)

1
2ψ = −θ, (1.2)

or, in a more explicit way

u = (−R2θ,R1θ) ≡ R⊥θ, (1.3)
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where Rj , j = 1, 2, denote the standard 2D Riesz transforms (see, e.g. [35, p.299]).

Clearly, the velocity u = (u1, u2) is divergence-free. Without loss of generality we may

restrict the discussion to flows which have zero average, i.e.,∫
T2

θ(t, x)dx = 0, ∀t ≥ 0.

This formulation can be found in many nonlinear models, such as stochastic parame-

terization Kalman filter, Lagrangian floater and turbulent passive tracer [2, 3, 33]. We also

refer to [43] for the two-dimensional advection-diffusion equation with random transport

velocity, and [19, 45] for the stochastic lattice model with random viscosity.

Stochastic stability has been one of the most active areas in stochastic analysis and

many mathematicians have devoted their interests to it. The reader may find a system-

atic presentation in the books [20, 31]. First we aim to analyze the exponential stability

of solutions to Eq. (1.1). In general, dissipative mechanisms may affect the asymptotic

behavior as well as the smoothness of solutions. For instance, the positive damping may

produce a stabilization effect on unstable systems. While we wonder how the stochas-

tic damping affects the stability of the system. The main difficulty lies in dealing with

the stochastic damping in Eq. (1.1) since some of standard techniques for verifying the

exponential stability of the system can not be directly applied to this type of equation.

Following the idea of [34], we construct a Lyapunov function that is the product of two

parts, one part is a potential that depends on w, the other part is roughly the moment of

θ. Here we succeed in generalizing the analysis framework related to stochastic ordinary

differential equations to stochastic partial differential equations, which can be regarded as

an extension of [34].

From the fact that the solution to Eq. (1.1) converges to the null solution exponentially,

it is easy to obtain that the system (1.1) has an invariant measure degenerate at zero.

Another purpose of this work is to show the existence of non-trivial invariant measures

of the system (1.1). The invariant measure of the quasi-geostrophic equation has been

investigated; see, e.g. [40] for the case of non-degenerate additive noise and [6, 46] for the

case of degenerate additive noise. However, the invariant measure of the quasi-geostrophic

equation driven by multiplicative noise as in (1.1) has never been studied before. This

paper contributes to this issue by establishing a close relationship between the uniform

boundedness of pathwise solutions and the existence of non-trivial invariant measures.

The rest of paper is organized as follows. In Section 2, we introduce some notations,

and briefly recall some necessary estimates and preliminaries related to functional analysis

and probability theory. The moment exponential stability and almost sure exponential

stability of solutions to Eq. (1.1) is established in Section 3. In Section 4, we first show the
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uniform boundedness of pathwise solutions in Hs with s ≥ 2− 2α and α ∈ (1/2, 1). Then

we study the Feller property of solutions, and prove the existence of non-trivial invariant

measures for the corresponding Feller semigroup.

2 Preliminaries and notations

2.1 The functional framework

Denote Λ ≡ (−∆)
1
2 . The fractional Laplacian Λs can be defined for s ∈ R by

Λ̂sf(k) = |k|sf̂(k),

where f̂ denotes the Fourier transform of f . Let Lp denote the Banach space of Lebesgue

integrable functions and lp denote the space of sequences. The following standard notations

are used:

‖f‖pLp =

∫
T2

|f(x)|pdx, ‖f‖L∞ = ess sup
x∈T2

|f(x)|,

‖x‖plp =
∞∑
j=1

|xj |p, ‖x‖l∞ = sup
j∈Z+

|xj |.

For any tempered distribution f on T2 and s ∈ R, we define

‖f‖2Hs = ‖Λsf‖2L2 =
∑
k∈Z2

|k|2s|f̂(k)|2,

and Hs denotes the Sobolev space of all f for which ‖f‖Hs is finite. For 1 ≤ p ≤ ∞ and

s ∈ R, the space Hs,p is a subspace of Lp, consisting of all f which can be written in the

form f = Λ−sg, g ∈ Lp, and the Hs,p norm of f is defined by

‖f‖pHs,p = ‖Λsf‖pLp .

In a similar way, we can define these kinds of spaces for vector functions. For convenience,

we will use the same notation to denote the norms for vector and scalar functions. For

example, if v(x) = (v1(x), v2(x), . . .) is an l2-valued measurable function on T2, then

‖v‖pLp =

∫
T2

‖v(x)‖p
l2
dx =

∫
T2

( ∞∑
k=1

|vk(x)|2
) p

2

dx.

We denote by 〈·, ·〉 and (·, ·) the inner products of L2 and l2 respectively. Given a Banach

space X and its dual X ′, we also denote the dual pairing between X and X ′ by 〈·, ·〉,
unless noted otherwise.
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The following result can be obtained by the fact that the Riesz transforms commute

with (−∆)l and the boundedness of the Riesz transforms in Lp; see [42, Chapter III] for

more details.

Lemma 2.1. Let 1 < p <∞ and l ≥ 0. Then there exists a constant C(l, p) such that

‖(−∆)lu‖Lp ≤ C(l, p)‖(−∆)lθ‖Lp . (2.1)

If p = 2, the inequality (2.1) can be strengthened to

‖(−∆)lu‖L2 = ‖(−∆)lθ‖L2 . (2.2)

We recall some important estimates which will be used frequently in the sections below.

Lemma 2.2. Suppose that s > 0 and 1 < p <∞. If f, g ∈ S, the Schwartz class, then

‖Λs(fg)− fΛsg‖Lp ≤ C1 (‖∇f‖Lp1‖g‖Hs−1,p2 + ‖f‖Hs,p3‖g‖Lp4 )

and

‖Λs(fg)‖Lp ≤ C2 (‖f‖Lp1‖g‖Hs,p2 + ‖f‖Hs,p3‖g‖Lp4 ) ,

with p2, p3 ∈ (1,∞) such that

1

p
=

1

p1
+

1

p2
=

1

p3
+

1

p4
.

Lemma 2.3. Suppose that s ∈ [0, 2], θ,Λsθ ∈ Lp, where p ≥ 2. Then∫
T2

|θ|p−2θΛsθdx ≥ 2

p

∫
T2

(
Λ
s
2 |θ|

p
2

)2
dx. (2.3)

Lemma 2.2 is the famous commutator estimates which have been proved in [24, 25],

and Lemma 2.3 is an improved version of the positivity lemma presented in [23]. When p

is even, we can also refer to [9].

Let Y be a Banach space with the norm ‖ · ‖. Next we introduce the notions of the

exponential stability.

Definition 2.4. The null solution to Eq. (1.1) is said to be exponentially stable in p-th

moment with p ≥ 2, if there exist some constants a > 0 and M > 0 such that

E‖θ(t)‖pY ≤Me−at, t ≥ 0.

Definition 2.5. The null solution to Eq. (1.1) is said to be almost surely exponentially

stable in Y , if there exists τ > 0 such that

lim
t→∞

1

t
log ‖θ(t)‖Y ≤ −τ, almost surely.
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2.2 The stochastic framework

Given a filtered probability space (ΩW ,FW , {FWt}t≥0, PW , {Wk}k≥1), where {Wk}k≥1 is

a sequence of mutually independent standard one dimensional Brownian motions adapted

to a complete and right continuous filtration {FWt}t≥0. Let (ΩB,FB, {FBt}t≥0, PB, B) be

another filtered probability space, where B is an n-dimensional Wiener process indepen-

dent of {Wk}k≥1. Define the product probability space by

(Ω,F , P ) := (ΩW × ΩB,FW ×FB, PW × PB).

Let E denote the expectation under the probability measure P . We denote by X a Hilbert

space with the inner product 〈·, ·〉X and norm ‖ · ‖X . Let U be a separable Hilbert space

with an orthonormal basis {ek}k≥1. Define W by taking

W (t) =
∞∑
k=1

Wk(t)ek, t ≥ 0.

Such W (t) is a cylindrical Wiener process evolving over U . Let L2(U , X) be the collection

of all Hilbert-Schmidt operators from U to X, endowed with the norm

‖φ‖2L2(U ,X) =
∞∑
k=1

‖φek‖2X .

Similarly we adopt for any p ≥ 2,

‖φ‖pLp(U ,Lp) =

∫
T2

( ∞∑
k=1

|φ(x)ek|2
) p

2

dx.

For any T > 0, given an X-valued adapted process G ∈ L2(ΩW × [0, T ];L2(U , X)), we can

define the Itô stochastic integral

Mt :=

∫ t

0
GdW =

∞∑
k=1

∫ t

0
GkdWk, where Gk = Gek, t ∈ [0, T ].

Clearly {Mt}t≥0 is an X-valued square integrable martingale (cf. [39]). Particularly, the

Burkholder-Davis-Gundy inequality holds which in the present context takes the form

E
(

sup
t∈[0,T ]

∥∥∥∥∫ t

0
GdW

∥∥∥∥r
X

)
≤ CE

(∫ T

0
‖G‖2L2(U ,X)dt

) r
2

, (2.4)

where r ≥ 1 and C is a positive constant depending only on r.

In the following lemma, we present a general integration by parts formula [37, p.55]

and the general Itô formula [37, p.48].
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Lemma 2.6. Let X(t) and Y (t) be Itô processes in R. Then

d(X(t)Y (t)) = X(t)dY (t) + Y (t)dX(t) + dX(t) · dY (t). (2.5)

In order to study the stability of the system (1.1), we shall also need the notion of

asymptotical contraction.

Definition 2.7. Given two probability measures µ and ν on Rn, we use d(µ, ν) to denote

the Wasserstein-1 distance between µ and ν, generated by the Rn norm. Let Pwt denote

the distribution of w(t) with initial value w. We say w(t) is asymptotically contractive if

there are constants Cγ , γ > 0 such that

d(Pw1
t ,Pw2

t ) ≤ Cγe−γt‖w1 − w2‖Rn

holds for all w1, w2 and t ≥ 0.

The following lemma will provide an example to show that a stable OU process is

asymptotically contractive.

Lemma 2.8. Consider the one-dimensional OU process dwt = −γwtdt + dBt with ini-

tial datum w0 = w, where Bt is one-dimensional Wiener process. If γ > 0, then wt is

asymptotically contractive.

Proof. Consider another one-dimensional OU process dvt = −γvtdt + dBt with initial

datum v0 = v, where Bt is the same as the one in the SDE of wt. We observe that

d(wt − vt) = −γ(wt − vt)dt⇒ |wt − vt| = e−γt|w − v|.

We denote by Pwt and Pvt the distributions of wt and vt, respectively. Then

d(Pwt ,Pvt ) ≤ e−γt|w − v|,

which implies that wt is asymptotically contractive.

To describe the conditions imposed for the systems in this paper, we introduce some

notations. For any pair of Banach spaces X , Y , we denote by Bndu(X ,Y ) the collection

of all mappings g = g(t, x) : [0,∞) × X → Y which are essentially bounded in time,

continuous in x and {Ft}t≥0 adapted such that

‖g(t, x)‖Y ≤ ‖g‖Bnd(1 + ‖x‖X ), for any t ≥ 0 and all x ∈X ,

where ‖g‖Bnd is a positive constant, which is independent of t so that g is uniformly

bounded in t. If, in addition, g ∈ Bndu(X ,Y ) satisfies

‖g(t, x)− g(t, y)‖Y ≤ ‖g‖Lip‖x− y‖X , for any t ≥ 0 and all x, y ∈X ,
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we say that g is in Lipu(X ,Y ). Here and below, ‖g‖Lip denotes the Lipschitz constant

of any function g ∈ Lipu(X ,Y ).

Let C denote a real positive constant which can vary from a line to another and even

in the same line. If the constant C depends on some variable x, we denote it by Cx. For

r ∈ R, we denote by r− the number strictly less than r but close to it.

3 Exponential stability of the solution

The global existence of pathwise solutions to Eq. (1.1) can be established by a similar

method to the one in the proof of [29, Theorem 3.4].

Theorem 3.1. Fix α ∈ (12 , 1), s ≥ 2 − 2α and a stochastic basis (Ω,F , {Ft}t≥0, P,W ).

Suppose that G ∈ Bndu(Lq, Lq(U , Lq)) ∩ Lipu(Hs, L2(U , Hs)) with q > 2
2α−1 , and ζ(w) ∈

[−L,L] for some positive constant L. Then for any initial valve θ(0) ∈ Hs ∩ Lq, there

exists a unique global pathwise solution θ to Eq. (1.1) such that for any T > 0,

θ(t) ∈ L2(Ω;C(0, T ;Hs)) ∩ L2(Ω;L2(0, T ;Hs+α)). (3.1)

It is clear that the null solution is a stationary solution to Eq. (1.1). In the following,

we analyze the exponential stability of the null solution to Eq. (1.1). Hence in the rest

of this work, we assume that the conditions in Theorem 3.1 are always satisfied, and let θ

be the unique global pathwise solution to Eq. (1.1).

First we present a result on the stability of the system (1.1) when the damping term

is a positive constant, i.e., the stability of the following equation

dθ(t) + (κ(−∆)αθ(t) + u(t) · ∇θ(t) + ζ0θ(t))dt = G(t, θ)dW (t), (3.2)

with the initial datum θ(0), where ζ0 is a positive constant.

Lemma 3.2. Let q > 2
2α−1 with α ∈ (12 , 1). Assume G ∈ Lipu(Lq, Lq(U , Lq)) satisfying

G(t, 0) = 0 for all t ≥ 0. If

2ζ0 > (q − 1)‖G‖2Lip, (3.3)

then the solution θ to Eq. (3.2) converges to zero exponentially in q-th moment, namely,

there exists a constant a0 > 0 such that

E‖θ(t)‖qLq ≤ e
−a0tE‖θ(0)‖qLq , t ≥ 0.

Proof. Let φ ≥ 0 be a smooth function with suppφ ⊂ [1, 2] and
∫∞
0 φ(t)dt = 1. For ε > 0,

define

Uε[θ](t) :=

∫ ∞
0

φ(τ)(ρε ∗ R⊥θ)(t− ετ)dτ,
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where ρε is the periodic Poisson kernel in T2 given by ρ̂ε(ξ) = e−ε|ξ|, ξ ∈ Z2, and we set

θ(t) = 0 for t < 0. Take a sequence εn → 0 and consider the equation

dθn(t) + (κ(−∆)αθn(t) + un(t) · ∇θn(t) + ζ0θn(t))dt = ρεn ∗G(t, θn)dW (t), (3.4)

with initial data θn(0) = ρεn ∗ θ(0) and un = Uεn [θn], where ρεn ∗ G(t, θn) means for

y ∈ U , ρεn ∗ G(t, θn)(y) := ρεn ∗ (G(t, θn)(y)). Let a0 > 0 be a fixed constant which will

be determined later on. By Lemma 5.1 in [27], we have

ea0t‖θn(t)‖qLq = ‖ρεn ∗ θ(0)‖qLq + (a0 − qζ0)
∫ t

0
ea0r‖θn(r)‖qLqdr

− qκ
∫ t

0

∫
T2

ea0r|θn(r)|q−2θn(r)(−∆)αθn(r)dxdr

− q
∫ t

0

∫
T2

ea0r|θn(r)|q−2θn(r)(un(r) · ∇θn(r))dxdr

+
q(q − 1)

2

∫ t

0

∫
T2

ea0r|θn(r)|q−2
∞∑
k=1

|ρεn ∗G(r, θn)(ek)|2dxdr

+ q

∫ t

0

∫
T2

ea0r|θn(r)|q−2θn(r)ρεn ∗G(r, θn)dxdW (r). (3.5)

For the third term on the right-hand side of (3.5), it can be deduced from Lemma 2.3 that

− qκ
∫ t

0

∫
T2

ea0r|θn(r)|q−2θn(r)(−∆)αθn(r)dxdr

≤ −2κ

∫ t

0

∫
T2

ea0r
(

(−∆)
α
2 |θn(r)|

q
2

)2
dxdr ≤ 0. (3.6)

Note that ∇ · un = 0. Then we infer that

q

∫
T2

|θn(r)|q−2θn(r)(un(r) · ∇θn(r))dx = q

∫
T2

|θn(r)|q−2θn(r)
2∑
i=1

un,i(r)
∂θn
∂xi

(r)dx

=

∫
T2

2∑
i=1

un,i(r)
∂|θn|q

∂xi
(r)dx

= −
∫
T2

|θn(r)|q
2∑
i=1

∂un,i
∂xi

(r)dx = 0, (3.7)

where un,i denotes the i-th component of un, i = 1, 2. Combining (3.5)-(3.7) and taking

expectation, we obtain

ea0tE‖θn(t)‖qLq ≤ E‖ρεn ∗ θ(0)‖qLq + (a0 − qζ0)E
∫ t

0
ea0r‖θn(r)‖qLqdr
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+
q(q − 1)

2
E
∫ t

0

∫
T2

ea0r|θn(r)|q−2
∞∑
k=1

|ρεn ∗G(r, θn)(ek)|2dxdr. (3.8)

By the Hölder inequality, the last term on the right-hand side of (3.8) is bounded by

q(q − 1)

2
E
∫ t

0

∫
T2

ea0r|θn(r)|q−2
∞∑
k=1

|ρεn ∗G(r, θn)(ek)|2dxdr

≤ 1

2
q(q − 1)E

∫ t

0
ea0r‖θn(r)‖q−2Lq ‖G(r, θn)‖2Lq(U ,Lq)dr

≤ 1

2
q(q − 1)‖G‖2LipE

∫ t

0
ea0r‖θn(r)‖qLqdr. (3.9)

It follows from (3.8) and (3.9) that

ea0tE‖θn(t)‖qLq ≤ E‖ρεn ∗ θ(0)‖qLq +

(
a0 − qζ0 +

1

2
q(q − 1)‖G‖2Lip

)
E
∫ t

0
ea0r‖θn(r)‖qLqdr

≤ E‖θ(0)‖qLq +

(
a0 − qζ0 +

1

2
q(q − 1)‖G‖2Lip

)
E
∫ t

0
ea0r‖θn(r)‖qLqdr.

In view of the condition (3.3), we choose a0 > 0 sufficiently small such that

a0 − qζ0 +
1

2
q(q − 1)‖G‖2Lip < 0.

Then we obtain that

E‖θn(t)‖qLq ≤ e
−a0tE‖θ(0)‖qLq , t ≥ 0.

Arguing as in the proof of [40, Theorem 3.3], we conclude that θn converge to the solution

θ of Eq. (3.2). Thus we further obtain that

E‖θ(t)‖qLq ≤ e
−a0tE‖θ(0)‖qLq , t ≥ 0.

The proof is therefore complete.

Remark 3.3. In the following estimates concerning the Krylov’s Lq Itô formula, we use

the same idea of approximation as in the proof of Lemma 3.2, since the solution θn to

Eq. (3.4) satisfy the conditions of Lemma 5.1 in [27]. But for simplicity, we consider the

solution θ to Eq. (1.1) instead of θn directly.

It can be seen from the above lemma that the system (1.1) with ζ(w(t)) ≡ ζ0 is stable

if the damping coefficient ζ0 is sufficiently large. In the following, we investigate how the

damping function affects the stability of the system if the damping function is considered

as a random variable. Arguing as in the proof of Lemma 3.2, we obtain

ea0tE‖θ(t)‖qLq ≤ E‖θ(0)‖qLq + E
∫ t

0
ea0r

(
a0 − qζ(w(r)) +

1

2
q(q − 1)‖G‖2Lip

)
‖θ(r)‖qLqdr.
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Due to the appearance of ζ(w(r)), the same method as in Lemma 3.2 can not be used to

analyze the stability of Eq. (1.1). Inspired by [34], we shall look for a Lyapunov function

that is the product of two parts, one part is a potential that depends on w, the other

part is roughly the moment of θ. Before proceeding to this issue, we consider a function

ξ : Rn → R as follows

ξ(w) = −
∫ ∞
0

(Ewζ(w(t))− 〈ζ, π〉) dt, (3.10)

where 〈ζ, π〉 =
∫
Rn ζ(w)π(dw) is the average of ζ under the equilibrium distribution π.

It follows from Lemma A.2 in [34] that the function defined in (3.10) is well defined for

any Lipschitz function ζ when w(t) is asymptotically contractive. Moreover, the following

properties hold.

Lemma 3.4. Let L denote a differential operator on C2(Rn) of the form

L =
n∑
i=1

hi(w)
∂

∂wi
+

1

2

n∑
i,j=1

∂2

∂wi∂wj
.

Assume that w(t) is asymptotically contractive and ζ : Rn → R is Lipschitz. Then ξ(w)

defined in (3.10) satisfies

Lξ(w) = ζ(w)− 〈ζ, π〉, (3.11)

and the gradient of ξ(w) with respect to w is bounded, more precisely,

‖∇wξ(w)‖l2 ≤
Cγ
γ
‖ζ‖Lip. (3.12)

Proof. Note that

ξ(w) = −
∫ ∞
0

∫
Rn

(ζ(z)− 〈ζ, π〉)pwt (z)dzdt,

where pwt is the density of Pwt . By the Kolmogorov backward equation

∂

∂t
pwt = Lpwt ,

we obtain ξ ∈ C2(Rn). Thus the operator L can be applied to ξ, and the remaining results

follow from a combination of Lemma A.2 and Lemma 2.7 in [34].

Theorem 3.5. Let q > 2
2α−1 with α ∈ (12 , 1). Consider ζ ∈ Lipu(Rn,R) and G ∈

Lipu(Lq, Lq(U , Lq)) with G(t, 0) = 0 for all t ≥ 0. In addition to the assumptions

(A1) w(t) is asymptotically contractive,

(A2) w(t) is ergodic and π is its equilibrium distribution,

11



(A3) h dissipates the energy, that is for some constants λ and Mλ,

(h(w), w) ≤ −λ‖w‖2l2 +Mλ, (3.13)

we assume that

2〈ζ, π〉 > (q − 1)‖G‖2Lip + q
C2
γ

γ2
‖ζ‖2Lip. (3.14)

Then there exist some constants a1 > 0 and M1 = M1(θ(0), w(0)) > 0 such that

E‖θ(t)‖q
−

Lq ≤M1e
−a1t, t ≥ 0. (3.15)

Proof. Applying the Itô formula to the function Fq(θ) = ‖θ‖qLq gives

dFq(θ(t)) = −qκ
∫
T2

|θ(t)|q−2θ(t)(−∆)αθ(t)dxdt− qζ(w(t))‖θ(t)‖qLqdt

+
q(q − 1)

2

∫
T2

|θ(t)|q−2
∞∑
k=1

|G(t, θ(t))ek|2dxdt

+ q

∫
T2

|θ(t)|q−2θ(t)G(t, θ(t))dxdW (t), (3.16)

where we have used (3.7). With the aid of the Itô formula for ξ(w) ∈ C2(Rn) defined in

(3.10) and Lemma 3.4, we find that

dξ(w(t)) =
n∑
i=1

hi(w(t))
∂ξ

∂wi
(w(t))dt+

n∑
i=1

∂ξ

∂wi
(w(t))dBi(t) +

1

2

n∑
i,j=1

∂2ξ

∂wi∂wj
(w(t))dt

= (ζ(w(t))− 〈ζ, π〉)dt+ (∇wξ(w(t)), dB(t)). (3.17)

Applying the Itô formula to g(w) = eqξ(w) again yields

dg(w(t)) = qg(w(t))dξ(w(t)) +
1

2
q2g(w(t))dξ(w(t))dξ(w(t))

=

(
q(ζ(w(t))− 〈ζ, π〉) +

1

2
q2‖∇wξ(w(t))‖2l2

)
g(w(t))dt

+ qg(w(t))(∇wξ(w(t)), dB(t)). (3.18)

Take a constant σ > 0 and let U1(t, θ, w) = eσtFq(θ)g(w). Since W (t) and B(t) are

mutually independent, in view of Lemma 2.6, it follows from (3.16) and (3.18) that

dU1(t, θ(t), w(t)) = σU1(t, θ(t), w(t))dt+ eσtg(w(t))dFq(θ(t))

+ eσtFq(θ(t))dg(w(t)) + eσtdFq(θ(t))dg(w(t))

= σU1(t, θ(t), w(t))dt− qκeσtg(w(t))

∫
T2

|θ(t)|q−2θ(t)(−∆)αθ(t)dxdt

12



+
q(q − 1)

2
eσtg(w(t))

∫
T2

|θ(t)|q−2
∞∑
k=1

|G(t, θ(t))ek|2dxdt

− q〈ζ, π〉U1(t, θ(t), w(t))dt+
1

2
q2‖∇wξ(w(t))‖2l2U1(t, θ(t), w(t))dt

+ qeσtg(w(t))

∫
T2

|θ(t)|q−2θ(t)G(t, θ(t))dxdW (t)

+ qU1(t, θ(t), w(t))(∇wξ(w(t)), dB(t)). (3.19)

Similar to the arguments of (3.6), the second term on the right-hand side of the above

inequality is bounded by

−qκeσtg(w(t))

∫
T2

|θ(t)|q−2θ(t)(−∆)αθ(t)dx ≤ 0. (3.20)

For the third term on the right-hand side of (3.19), we make use of the Hölder inequality

and the conditions imposed on G to obtain

q(q − 1)

2
eσtg(w(t))

∫
T2

|θ(t)|q−2
∞∑
k=1

|G(t, θ(t))ek|2dx

≤ 1

2
q(q − 1)eσtg(w(t))‖θ(t)‖q−2Lq ‖G(t, θ(t))‖2Lq(U ,Lq)

≤ 1

2
q(q − 1)‖G‖2LipU1(t, θ(t), w(t)). (3.21)

Then integrating the equality (3.19) over [0, t] and taking expectation result in

EU1(t, θ(t), w(t)) ≤ EU1(0, θ(0), w(0)) +

(
σ +

1

2
q(q − 1)‖G‖2Lip

− q〈ζ, π〉+
1

2
q2
C2
γ

γ2
‖ζ‖2Lip

)
E
∫ t

0
U1(r, θ(r), w(r))dr, (3.22)

where we have used (3.12), (3.20) and (3.21). By the condition (3.14), we choose σ

sufficiently small such that

σ +
1

2
q(q − 1)‖G‖2Lip − q〈ζ, π〉+

1

2
q2
C2
γ

γ2
‖ζ‖2Lip < 0.

Therefore,

E
(
‖θ(t)‖qLqe

qξ(w(t))
)
≤ e−σtE

(
‖θ(0)‖qLqe

qξ(w(0))
)
. (3.23)

In order to remove g(w(t)) inside the expectation, we need an estimate of g(w(t)).

Applying the Itô formula to eβ‖w‖
2
l2 with β < λ, we obtain

eβ‖w(t)‖
2
l2 = eβ‖w(0)‖

2
l2 + 2

∫ t

0
β(w(r), h(w(r)))eβ‖w(r)‖

2
l2dr

13



+

∫ t

0

(
nβ + 2β2‖w(r)‖2l2

)
eβ‖w(r)‖

2
l2dr

+ 2β

∫ t

0
eβ‖w(r)‖

2
l2 (w(r), dB(r)).

Set H(t) = Eeβ‖w(t)‖
2
l2 . Then

H′(t) ≤ β
(
−2(λ− β)‖w(t)‖2l2 + n+ 2Mλ

)
H(t), (3.24)

thanks to the condition (3.13). When (λ− β)‖w(t)‖2l2 ≤ n+ 2Mλ,

H(t) ≤ e
β(n+2Mλ)

λ−β , (3.25)

otherwise,

H′(t) ≤ −β(n+ 2Mλ)H(t). (3.26)

Combining (3.24)-(3.26) gives

H′(t) ≤ −β(n+ 2Mλ)H(t) + β(n+ 2Mλ)e
β(n+2Mλ)

λ−β .

Applying the Gronwall lemma results in

H(t) ≤ e−β(n+2Mλ)tH(0) + e
β(n+2Mλ)

λ−β ,

which implies that Eeβ‖w(t)‖
2
l2 is uniformly bounded in time t. By the Young inequality,

for any constant k ∈ R,

Eg(w(t))k = Eekqξ(w(t)) ≤ Ee|kq|(‖ξ‖Lip‖w(t)‖l2+|ξ(0)|)

≤ Eeβ‖w(t)‖
2
l2
+C ≤ CEH(w(t)) <∞, (3.27)

where we have used the fact that ξ is Lipschitz from (3.12).

Finally, using the Hölder inequality, it follows from (3.23) and (3.27) that there exists

a real number M1 = M1(θ(0), w(0)) such that

E‖θ(t)‖q
−

Lq ≤
(
E
(
‖θ(t)‖qLqe

qξ(w(t))
)) q−

q

(
Eg(w(t))

− q−

q−q−

) q−q−
q

≤M1e
− q
−
q
σt
,

which completes the proof.

The above theorem indicates that wether ζ(w(t)) is positive or not, the null solution

to Eq. (1.1) is stable in the sense of moments of order q− as long as the average damping

〈ζ, π〉 > 0 is sufficiently large. Here we use some simple example to explain the intuition.
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Example 3.6. Consider the affine function ζ(w(t)) = aw(t) + b and the one-dimensional

stochastic process

dw(t) = −γw(t)dt+ dB(t),

where a ∈ R, b, γ > 0 are constants and the initial datum w follows the equilibrium

distribution π which is a normal distribution with zero mean.

By the Duhamel formula, its solution is given by

w(t) = e−γtw +

∫ t

0
e−(t−r)γdB(r).

Therefore, ξ(w) can be written explicitly as below

ξ(w) = −a
∫ ∞
0

Eww(t)dt = −aw
∫ ∞
0

e−γtdt = −aw
γ
.

Thanks to Lemma 2.8, we obtain that w(t) is asymptotically contractive with Cγ = 1.

Moreover, it is easy to see that w(t) is geometrically ergodic (see more details in [34,

Theorem 2.3] and [36, Theorem 2.5]) and dissipative. Applying the Itô formula to g(w) =

eqξ(w) = e
− qaw

γ results in

dg(w(t)) =

(
qaw(t) +

q2a2

2γ2

)
g(w(t))dt− qa

γ
g(w(t))dB(t).

Let U0(t, θ, w) = eσt‖θ‖qLqe
− qaw

γ . Similar to the arguments of (3.19) and (3.22), we have

EU0(t, θ(t), w(t)) ≤ EU0(0, θ(0), w(0))

+

(
σ +

1

2
q(q − 1)‖G‖2Lip − qb+

q2a2

2γ2

)∫ t

0
EU0(r, θ(r), w(r))dr.

If we take b > 0 sufficiently large such that

b >
1

2
(q − 1)‖G‖2Lip +

qa2

2γ2
,

then by a similar method to the one in the proof of Theorem 3.5, we can obtain that the

null solution to Eq. (1.1) is stable in the sense of moments of order q−.

Based on the result in Theorem 3.5, we further show that the sample paths of solutions

converge to the null solution almost surely as time goes to infinity.

Theorem 3.7. Let the assumptions in Theorem 3.5 be satisfied. Then any pathwise

solution θ(t) to Eq. (1.1) converges to the null solution almost surely exponentially in Lq,

i.e., there exists Ω0 ⊂ Ω with P (Ω0) = 0, such that for ω /∈ Ω0 there exists a random

variable T (ω) > 0 such that

‖θ(t)‖Lq ≤M2e
−a2t, ∀t ≥ T (ω),

for some positive constants M2 = M2(θ(0), w(0)) > 0 and a2 > 0.
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Proof. Applying the Itô formula to U2(θ, w) = Fq(θ)g(w) and arguing as in (3.19), we

obtain that for any natural number N and t ≥ N ,

U2(θ(t), w(t)) = U2(θ(N), w(N))− qκ
∫ t

N
g(w(r))

∫
T2

|θ(r)|q−2θ(r)(−∆)αθ(r)dxdr

+
q(q − 1)

2

∫ t

N
g(w(r))

∫
T2

|θ(r)|q−2
∞∑
k=1

|G(r, θ(r))ek|2dxdr

− q
∫ t

N
〈ζ, π〉U2(θ(r), w(r))dr +

1

2
q2
∫ t

N
‖∇wξ(w(r))‖2l2U2(θ(r), w(r))dr

+ q

∫ t

N
g(w(r))

∫
T2

|θ(r)|q−2θ(r)G(r, θ(r))dxdW (r)

+ q

∫ t

N
U2(θ(r), w(r))(∇wξ(w(r)), dB(r)). (3.28)

By the Burkholder-Davis-Gundy inequality, the Hölder inequality and the Young inequal-

ity, in view of the conditions on G, we deduce that

qE sup
N≤t≤N+1

∣∣∣∣ ∫ t

N
g(w(r))

∫
T2

|θ(r)|q−2θ(r)G(r, θ(r))dxdW (r)

∣∣∣∣
≤ CqE

(∫ N+1

N

(
g(w(r))

∫
T2

|θ(r)|q−1
( ∞∑
k=1

|G(r, θ(r))ek|2
) 1

2

dx

)2

dr

) 1
2

≤ CqE
(∫ N+1

N
g(w(r))2‖θ(r)‖2(q−1)Lq ‖G(r, θ(r))‖2Lq(U ,Lq)dr

) 1
2

≤ CqE
(

sup
N≤r≤N+1

(
g(w(r))‖θ(r)‖qLq

) ∫ N+1

N
g(w(r))‖θ(r)‖qLqdr

) 1
2

≤ 1

4
E
(

sup
N≤r≤N+1

U2(θ(r), w(r))

)
+ CqE

∫ N+1

N
U2(θ(r), w(r))dr, (3.29)

and

qE sup
N≤t≤N+1

∣∣∣∣ ∫ t

N
U2(θ(r), w(r))(∇wξ(w(r)), dB(r))

∣∣∣∣
≤ CqE

(∫ N+1

N
U2(θ(r), w(r))2‖∇wξ(w(r))‖2l2dr

) 1
2

≤ CqE
(

sup
N≤r≤N+1

U2(θ(r), w(r))

∫ N+1

N
U2(θ(r), w(r))dr

) 1
2

≤ 1

4
E
(

sup
N≤r≤N+1

U2(θ(r), w(r))

)
+ CqE

∫ N+1

N
U2(θ(r), w(r))dr, (3.30)
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where we have used the estimate (3.12) in (3.30). Combining (3.28)-(3.30) and arguing as

in (3.22), we have

E
(

sup
N≤r≤N+1

U2(θ(r), w(r))

)
≤ EU2(θ(N), w(N))

+

(
1

2
q(q − 1)‖G‖2Lip − q〈ζ, π〉+

1

2
q2
C2
γ

γ2
‖ζ‖2Lip

)
E
∫ N+1

N
U2(θ(r), w(r))dr

+
1

2
E
(

sup
N≤r≤N+1

U2(θ(r), w(r))

)
+ CqE

∫ N+1

N
U2(θ(r), w(r))dr.

Thanks to the condition (3.14), it can be deduced that

1

2
E
(

sup
N≤r≤N+1

U2(θ(r), w(r))

)
≤ EU2(θ(N), w(N)) + CqE

∫ N+1

N
U2(θ(r), w(r))dr.

Then by the Markov inequality, the Hölder inequality and the estimate (3.27), we infer

that for any εN > 0,

P

(
sup

N≤r≤N+1
‖θ(r)‖q

−

Lq ≥ εN
)
≤ ε−1N E

(
sup

N≤r≤N+1
‖θ(r)‖q

−

Lq

)

≤ ε−1N

(
E
(

sup
N≤r≤N+1

‖θ(r)‖q
−

Lq e
q−ξ(w(r))

) q

q−
) q−

q
(
E
(

sup
N≤r≤N+1

e−q
−ξ(w(r))

) q

q−q−
) q−q−

q

≤ Cε−1N

(
E
(

sup
N≤r≤N+1

U2(θ(r), w(r))

)) q−
q

≤ Cqε−1N

(
EU2(θ(N), w(N)) + E

∫ N+1

N
U2(θ(r), w(r))dr

) q−
q

.

Therefore, it follows from (3.23) that there exists a constant M2 = M2(θ(0), w(0)) > 0

such that

P

(
sup

N≤r≤N+1
‖θ(r)‖q

−

Lq ≥ εN
)
≤M2ε

−1
N e
− q
−
q
σN
.

Let εN = M2e
− q
−
2q
σN

. We find that

P

(
sup

N≤r≤N+1
‖θ(r)‖q

−

Lq ≥M2e
− q
−
2q
σN
)
≤ e−

q−
2q
σN
.

Using the Borel-Cantelli lemma, we conclude that there exists Ω0 ⊂ Ω with P (Ω0) = 0,

such that for ω /∈ Ω0 there exists a random variable N0(ω) > 0 such that if N ≥ N0(ω),

sup
N≤r≤N+1

‖θ(r)‖q
−

Lq ≤M2e
− q
−
2q
σN
.

Thus the proof is complete.
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The Lipschitz requirement of G in Theorem 3.5 can be relaxed to include all the

functions satisfying (3.31). The more general result is stated in the following theorem.

Theorem 3.8. Fix q > 2
2α−1 with α ∈ (12 , 1). Let the conditions (A1)-(A3) be satisfied

and ζ ∈ Lipu(Rn,R). Assume that G satisfies

‖G(t, θ)‖2Lq(U ,Lq) ≤ `1(t) + (`0 + `2(t))‖θ‖2Lq , (3.31)

where `0 > 0 is a constant and `1(t), `2(t) are nonnegative integrable functions such that

there exist real number δ > 0 such that∫ ∞
0

`1(t)e
δtdt <∞,

∫ ∞
0

`2(t)dt <∞. (3.32)

If it holds that

q〈ζ, π〉 ≥ δ +
1

2
q(q − 1)`0 +

1

2
q2
C2
γ

γ2
‖ζ‖2Lip, (3.33)

there exist some positive constants a3 and M3 = M3(θ(0), w(0)) such that

E‖θ(t)‖q
−

Lq ≤M3e
−a3t, t ≥ 0.

Furthermore, almost sure exponential stability of the null solution also holds true.

Proof. Let U3(t, θ, w) = eδtFq(θ)g(w). Similar to the arguments of (3.19), then taking

expectation yields

EU3(t, θ(t), w(t)) = EU3(0, θ(0), w(0)) + δE
∫ t

0
U3(r, θ(r), w(r))dr

− qκE
∫ t

0
eδreqξ(w(r))

∫
T2

|θ(r)|q−2θ(r)(−∆)αθ(r)dxdr

+
q(q − 1)

2
E
∫ t

0
eδreqξ(w(r))

∫
T2

|θ(r)|q−2
∞∑
k=1

|G(r, θ(r))ek|2dxdr

− q〈ζ, π〉E
∫ t

0
U3(r, θ(r), w(r))dr

+
1

2
q2E

∫ t

0
‖∇wξ(w(r))‖2l2U3(r, θ(r), w(r))dr. (3.34)

By the Hölder inequality, the Young inequality and the condition (3.31), we have

q(q − 1)

2
E
∫ t

0
eδreqξ(w(r))

∫
T2

|θ(r)|q−2
∞∑
k=1

|G(r, θ(r))ek|2dxdr

≤ 1

2
q(q − 1)E

∫ t

0
eδreqξ(w(r))‖θ(r)‖q−2Lq ‖G(r, θ(r))‖2Lq(U ,Lq)dr
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≤ 1

2
q(q − 1)E

∫ t

0
eδreqξ(w(r))‖θ(r)‖q−2Lq

(
`1(r) + (`0 + `2(r))‖θ(r)‖2Lq

)
dr

≤ 1

2
q(q − 1)`0E

∫ t

0
U3(r, θ(r), w(r))dr + CqE

∫ t

0
`1(r)e

δreqξ(w(r))dr

+ CqE
∫ t

0
(`1(r) + `2(r))U3(r, θ(r), w(r))dr. (3.35)

Inserting (3.35) into (3.34) results in

EU3(t, θ(t), w(t)) ≤ EU3(0, θ(0), w(0))

+

(
δ +

1

2
q(q − 1)`0 − q〈ζ, π〉+

1

2
q2
C2
γ

γ2
‖ζ‖2Lip

)
E
∫ t

0
U3(r, θ(r), w(r))dr

+ CqE
∫ t

0
`1(r)e

δreqξ(w(r))dr + CqE
∫ t

0
(`1(r) + `2(r))U3(r, θ(r), w(r))dr, (3.36)

where we have used (3.6) and (3.12). In view of the condition (3.33), the second term

on the right-hand side of (3.36) is negative. Then the inequality (3.36), combined with

(3.27), can be transformed as follows

EU3(t, θ(t), w(t)) ≤ EU3(0, θ(0), w(0)) + Cq

∫ t

0
`1(r)e

δrdr

+ CqE
∫ t

0
(`1(r) + `2(r))U3(r, θ(r), w(r))dr.

By the Gronwall lemma, we arrive at

EU3(t, θ(t), w(t)) ≤ EU3(0, θ(0), w(0)) exp

(
Cq

∫ t

0
`1(r) + `2(r)dr

)
+ Cq

∫ t

0
exp

(
Cq

∫ t

r
`1(τ) + `2(τ)dτ

)
`1(r)e

σrdr.

This together with the condition (3.32) implies that there exists a positive constant M̃ =

M̃(θ(0), w(0)) such that

E
(
‖θ(t)‖qLqe

qξ(w(t))
)
≤ M̃e−δt.

Using the Hölder inequality and (3.27), we deduce that there exists a real number M3 =

M3(θ(0), w(0)) such that

E‖θ(t)‖q
−

Lq ≤
(
E
(
‖θ(t)‖qLqe

qξ(w(t))
)) q−

q

(
Ee−

qq−

q−q− ξ(w(t))
) q−q−

q

≤M3e
− q
−
q
δt
.

This completes the proof of the first part of the theorem. The rest of the theorem can be

proved by the same way as in the proof of Theorem 3.7, and thus we omit it here.
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Remark 3.9. It is easy to find two functions such that (3.32) holds true. For example, if

`1(t) = M`1e
−δ̂t, `2(t) = M`2e

−δ̂t,

with δ̂ > δ, then the condition (3.32) will be satisfied.

4 Feller properties and invariant measures

We have shown that the null solution to Eq. (1.1) is stable in Lq. However, it is impossible

to obtain the stability of the null solution in Hs because of the quadratic nonlinear term.

In this section, we shall establish the uniform boundedness of pathwise solutions in Hs

with s ≥ 2− 2α, which implies the existence of non-trivial invariant measures. From now

on, we assume that G is independent of time t. Hence the solution to Eq. (1.1) is a

time-homogeneous Markov process with the state space Hs.

4.1 Uniform boundedness of solutions

In this subsection, we prove that the solution to Eq. (1.1) is uniformly bounded in Hs

provided that the average damping 〈ζ, π〉 is sufficiently large.

Lemma 4.1. Let G ∈ Bndu(Lp, Lp(U , Lp)) and ζ ∈ Lipu(Rn,R), with 2 ≤ p < ∞.

Assume that the assumptions (A1)-(A3) and

〈ζ, π〉 > 1

2
(p− 1)‖G‖2Bnd +

1

2
p
C2
γ

γ2
‖ζ‖2Lip (4.1)

hold true. Then for any initial valve θ(0) ∈ Lp, there exists a positive constant C =

C(θ(0), w(0)) such that

E
(
‖θ(t)‖pLpe

pξ(w(t))
)
≤ C, t ≥ 0, (4.2)

where θ is the solution to Eq. (1.1) and ξ(w) is defined as in (3.10).

Proof. The same arguments as in (3.19) leads to

‖θ(t)‖pLpe
pξ(w(t)) = ‖θ(0)‖pLpe

pξ(w(0)) − pκ
∫ t

0
epξ(w(r))

∫
T2

|θ(r)|p−2θ(r)(−∆)αθ(r)dxdr

+
p(p− 1)

2

∫ t

0
epξ(w(r))

∫
T2

|θ(r)|p−2
∞∑
k=1

|G(θ(r))ek|2dxdr

− p〈ζ, π〉
∫ t

0
‖θ(r)‖pLpe

pξ(w(r))dr
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+
1

2
p2
∫ t

0
‖∇wξ(w(r))‖2l2‖θ(r)‖

p
Lpe

pξ(w(r))dr

+ p

∫ t

0
epξ(w(r))

∫
T2

|θ(r)|p−2θ(r)G(θ(r))dxdW (r)

+ p

∫ t

0
‖θ(r)‖pLpe

pξ(w(r))(∇wξ(w(r)), dB(r)).

Let Z(t) = E
(
‖θ(t)‖pLpepξ(w(t))

)
. Then the above inequality can be transformed as follows

Z ′(t) = −pκE
(
epξ(w(t))

∫
T2

|θ(t)|p−2θ(t)(−∆)αθ(t)dx

)
+
p(p− 1)

2
E

(
epξ(w(t))

∫
T2

|θ(t)|p−2
∞∑
k=1

|G(θ(t))ek|2dx

)

− p〈ζ, π〉Z(t) +
1

2
p2E

(
‖∇wξ(w(t))‖2l2‖θ(t)‖

p
Lpe

pξ(w(t))
)
. (4.3)

By the condition (4.1), there exists a constant ε0 > 0 sufficiently small such that

2ε0 +
1

2
p(p− 1)‖G‖2Bnd − p〈ζ, π〉+

1

2
p2
C2
γ

γ2
‖ζ‖2Lip ≤ 0. (4.4)

For this ε0 > 0, taking into account that G ∈ Bndu(Lp, Lp(U , Lp)), we make use of the

Hölder inequality and the Young inequality to obtain that

p(p− 1)

2
E

(
epξ(w(t))

∫
T2

|θ(t)|p−2
∞∑
k=1

|G(θ(t))ek|2dx

)

≤ 1

2
p(p− 1)E

(
epξ(w(t))‖θ(t)‖p−2Lp ‖G(θ(t))‖2Lp(U ,Lp)

)
≤ 1

2
p(p− 1)‖G‖2BndE

(
epξ(w(t))‖θ(t)‖p−2Lp (1 + ‖θ(t)‖Lp)2

)
≤ 1

2
p(p− 1)‖G‖2BndZ(t) + ε0Z(t) + CpEepξ(w(t)). (4.5)

Using (3.6) and (3.12), we conclude from (4.3) and (4.5) that

Z ′(t) + ε0Z(t) ≤
(

2ε0 +
1

2
p(p− 1)‖G‖2Bnd − p〈ζ, π〉+

1

2
p2
C2
γ

γ2
‖ζ‖2Lip

)
Z(t) + CpEepξ(w(t)).

Furthermore, it follows from (4.4) that

Z ′(t) + ε0Z(t) ≤ CpEepξ(w(t)).

Applying the Gronwall lemma gives

Z(t) ≤ e−ε0tZ(0) + Cp

∫ t

0
e−ε0(t−r)Eepξ(w(r))dr,

which, together with the estimate (3.27), completes the proof.
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Lemma 4.2. Let α ∈ (12 , 1) and s ≥ 2 − 2α. Assume that, in addition to the as-

sumptions imposed in Lemma 4.1 for p = 2η∗ := 22(2−η0)
1−η0 , ζ ∈ Lipu(Rn,R) and G ∈

Lipu(Hs, L2(U , Hs)) with G(0) = 0, where η0 =
s+2−α− 2

q0
s+α , q0 = 1

1−α− and α− ∈ (12 , α).

If the assumptions (A1)-(A3) and

2κλα1 + 2〈ζ, π〉 > ‖G‖2Lip + 2
C2
γ

γ2
‖ζ‖2Lip (4.6)

hold true, then for any initial valve θ(0) ∈ Lp ∩Hs, the solution to Eq. (1.1) is uniformly

bounded in the sense of 1-th moment of ‖ · ‖Hs.

Proof. Applying Λs to Eq. (1.1) and using the Itô formula to the function ‖Λsθ‖2L2 , we

deduce that

d‖θ(t)‖2Hs = −2κ‖θ(t)‖2Hs+αdt− 2ζ(w(t))‖θ(t)‖2Hsdt− 2〈Λsθ(t),Λs(u(t) · ∇θ(t))〉dt

+ tr

(
ΛsG(θ(t))(ΛsG(θ(t)))∗

)
dt+ 2〈Λsθ(t),ΛsG(θ(t))dW (t)〉.

Since B(t) is independent of W (t), by Lemma 2.6 and (3.18) for the case q = 2, we have

‖θ(t)‖2Hse2ξ(w(t)) + 2κ

∫ t

0
e2ξ(w(r))‖θ(r)‖2Hs+αdr

= ‖θ(0)‖2Hse2ξ(w(0)) − 2

∫ t

0
e2ξ(w(r))〈Λsθ(r),Λs(u(r) · ∇θ(r))〉dr

+

∫ t

0
e2ξ(w(r))tr

(
ΛsG(θ(r))(ΛsG(θ(r)))∗

)
dr

− 2〈ζ, π〉
∫ t

0
e2ξ(w(r))‖θ(r)‖2Hsdr + 2

∫ t

0
‖∇wξ(w(r))‖2l2‖θ(r)‖

2
Hse2ξ(w(r))dr

+ 2

∫ t

0
e2ξ(w(r))〈Λsθ(r),ΛsG(θ(r))dW (r)〉

+ 2

∫ t

0
‖θ(r)‖2Hse2ξ(w(r))(∇wξ(w(r)), dB(r)).

Let V(t) = E
(
‖θ(t)‖2Hse2ξ(w(t))

)
. Then it follows that

V ′(t) + 2κE
(
e2ξ(w(t))‖θ(t)‖2Hs+α

)
= −2E

(
e2ξ(w(t))〈Λsθ(t),Λs(u(t) · ∇θ(t))〉

)
+ E

(
e2ξ(w(t))tr

(
ΛsG(θ(t))(ΛsG(θ(t)))∗

))
− 2〈ζ, π〉V(t) + pE

(
‖∇wξ(w(t))‖2l2‖θ(t)‖

2
Hse2ξ(w(t))

)
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:= I1 + I2 + I3 + I4. (4.7)

By the condition (4.6), we choose ε0 > 0 sufficient small such that

2ε0 − 2κλα1 + ‖G‖2Lip − 2〈ζ, π〉 > +2
C2
γ

γ2
‖ζ‖2Lip ≤ 0. (4.8)

Note that ∇ · u = 0. Making use of the Schwarz inequality and Lemmas 2.1-2.2 yields

I1 ≤ 2E
(
e2ξ(w(t))‖Λs+1−α(u(t)θ(t))‖L2‖Λs+αθ(t)‖L2

)
≤ CE

(
e2ξ(w(t))(‖u(t)‖Lp0‖θ(t)‖Hs+1−α,q0 + ‖u(t)‖Hs+1−α,q0‖θ(t)‖Lp0 )‖θ(t)‖Hs+α

)
≤ CE

(
e2ξ(w(t))‖θ(t)‖Lp0‖θ(t)‖Hs+1−α,q0‖θ(t)‖Hs+α

)
, (4.9)

where p0 = 2
2α−−1 , q0 = 1

1−α− and α− denotes a number strictly less than α but close to

it. With the Sobolev embedding H
s+2−α− 2

q0 ⊂ Hs+1−α,q0 and the following Nirenberg-

Gagliardo inequality (cf. [5]):

‖θ‖
H
s+2−α− 2

q0
≤ C‖θ‖η0

Hs+α‖θ‖1−η0L2 ,

where 0 < η0 =
s+2−α− 2

q0
s+α < 1, in view of the Young inequality and the Sobolev embedding

Lp0 ⊂ L2, the first term on the right-hand side of (4.7) can be further bounded by

I1 ≤ CE
(
e2ξ(w(t))‖θ(t)‖1+η0

Hs+α‖θ(t)‖2−η0Lp0

)
≤ ε0

2λα1
E
(
e2ξ(w(t))‖θ(t)‖2Hs+α

)
+ CE

(
e2ξ(w(t))‖θ(t)‖

2(2−η0)
1−η0

Lp0

)
≤ ε0

2λα1
E
(
e2ξ(w(t))‖θ(t)‖2Hs+α

)
+
ε0
2
V(t) + CE

(
e2ξ(w(t))‖θ(t)‖

2(2−η0)
1−η0

Lp0

)
. (4.10)

Recall that G ∈ Lipu(Hs, L2(U , Hs)) with G(0) = 0. We estimate the second term on the

right-hand side of (4.7) as follows

I2 ≤ E
(
e2ξ(w(t))‖G(θ(t))‖2L2(U ,Hs)

)
≤ ‖G‖2LipV(t). (4.11)

Inserting (4.10)-(4.11) into (4.7) results in

V ′(t) + ε0V(t) ≤ CE
(
e2ξ(w(t))‖θ(t)‖

2(2−η0)
1−η0

Lp0

)
+

(
2ε0 − 2κλα1 + ‖G‖2Lip − 2〈ζ, π〉+ 2

C2
γ

γ2
‖ζ‖2Lip

)
V(t), (4.12)

where we have used (3.12) and the following inequality:

λα1 ‖θ‖2Hs ≤ ‖θ‖2Hs+α . (4.13)
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Due to (4.8), we leave out the last term on the right-hand side of (4.12) and apply the

Gronwall lemma to obtain that

V(t) ≤ e−ε0tV(0) + C

∫ t

0
e−ε0(t−r)E

(
e2ξ(w(r))‖θ(r)‖

2(2−η0)
1−η0

Lp0

)
dr. (4.14)

Note that

E
(
e2ξ(w(r))‖θ(r)‖η

∗

Lp0

)
≤ 1

2
E
(
‖θ(r)‖2η

∗

L2η∗e
2η∗ξ(w(r))

)
+

1

2
Ee−2(η

∗−2)ξ(w(r)) <∞, (4.15)

where η∗ := 2(2−η0)
1−η0 and we have used (4.2), (3.27) and the embedding L2η∗ ⊂ Lp0 . Then

we conclude from (4.14) and (4.15) that

V(t) is uniformly bounded. (4.16)

Using the Hölder inequality and (3.27), we find that

E‖θ(t)‖Hs ≤
(
E
(
‖θ(t)‖2Hse2ξ(w(t))

)) 1
2
(
Ee−2ξ(w(t))

) 1
2
<∞,

which completes the proof.

4.2 Feller property of solutions

To mark the dependence of the solution θ(t) to Eq. (1.1) on each fixed initial value

θ0 = x ∈ Hs with s ≥ 2 − 2α and α ∈ (12 , 1), we denote it by θ(t;x) (whose existence is

guaranteed by Theorem 3.1). Next we present a continuous dependence estimate.

Lemma 4.3. Let the conditions of Lemma 4.2 be satisfied. Then for any fixed T ≥ 0 and

x1, x2 ∈ Hs,

E
(

sup
t∈[0,T ]

‖θ(t;x1)− θ(t;x2)‖2Hs

)
≤ CT ‖x1 − x2‖2Hs . (4.17)

Proof. Let θ1(t) := θ(t;x1) and θ2(t) := θ(t;x2) be global solutions to Eq. (1.1) with

initial values x1 and x2, respectively. Define the stopping time

τn = inf
t≥0

{∫ t

0
‖θ1(r)‖2Hs+α + ‖θ2(r)‖2Hs+α + 1dr ≥ n

}
.

Clearly this is an increasing sequence. Furthermore, since θ1 and θ2 are global solutions,

we may infer from (3.1) that limn→∞ τn = ∞ a.s. Set %(t) = θ1(t) − θ2(t). Applying the

Itô formula to the function ‖%‖2Hs yields

d‖%(t)‖2Hs + 2κ‖%(t)‖2Hs+αdt
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= −2〈Λs(u1(t) · ∇θ1(t)− u2(t) · ∇θ2(t)),Λs%(t)〉dt

− 2ζ(w(t))‖%(t)‖2Hsdt+ ‖G(θ1(t))−G(θ2(t))‖2L2(U ,Hs)dt

+ 2〈Λs(G(θ1(t))−G(θ2(t)))dW (t),Λs%(t)〉. (4.18)

Fix n and stopping times τa, τb such that 0 ≤ τa ≤ τb ≤ τn ∧T . Integrating (4.18) in time

and taking supremum, finally taking expectation we arrive at

E
(

sup
t∈[τa,τb]

‖%(t)‖2Hs + 2κ

∫ τb

τa

‖%‖2Hs+αdt

)
≤ E‖%(τa)‖2Hs + 2E

∫ τb

τa

|〈Λs(u1(t) · ∇%(t)),Λs%(t)〉|dt

+ 2E
∫ τb

τa

|〈Λs((u1(t)− u2(t)) · ∇θ2(t)),Λs%(t)〉|dt

+ 2E
∫ τb

τa

ζ(w(t))‖%(t)‖2Hsdt+ E
∫ τb

τa

‖G(θ1(t))−G(θ2(t))‖2L2(U ,Hs)dt

+ 2E sup
t∈[τa,τb]

∣∣∣∣ ∫ t

τa

〈Λs (G(θ1(t))−G(θ2(t))) dW (t),Λs%(t)〉
∣∣∣∣

:= E‖%(τa)‖2Hs + I1 + I2 + I3 + I4 + I5, (4.19)

where u1 = R⊥θ1, u2 = R⊥θ2 and we have used the bilinearity of the nonlinear term.

Note that

〈u1 · ∇(Λs%),Λs%〉 = 0.

Since ∇ and Λs are commutable [22], we make use of Lemmas 2.1 and 2.2 to obtain

I1 = 2E
∫ τb

τa

|〈Λs(u1(t) · ∇%(t))− u1(t) · ∇(Λs%(t)),Λs%(t)〉|dt

≤ 2E
∫ τb

τa

‖Λs(u1(t) · ∇%(t))− u1(t) · Λs(∇%(t))‖L2‖Λs%(t)‖L2dt

≤ CE
∫ τb

τa

(‖u1(t)‖H1,p3‖%(t)‖Hs,p4 + ‖u1(t)‖Hs,p4‖%(t)‖H1,p3 )‖%(t)‖Hsdt

≤ CE
∫ τb

τa

‖θ1(t)‖Hs+α‖%(t)‖Hs+α‖%(t)‖Hsdt, (4.20)

where p3 = 2
α , p4 = 2

1−α and we have used the Sobolev embeddings Hs+α ⊂ H1,p3 and

Hs+α ⊂ Hs,p4 . We estimate the term I2 as follows

I2 ≤ 2E
∫ τb

τa

|〈Λs((u1(t)− u2(t)) · ∇θ2(t))− (u1(t)− u2(t)) · ∇(Λsθ2(t)),Λ
s%(t)〉|dt

+ 2E
∫ τb

τa

|〈(u1(t)− u2(t)) · ∇(Λsθ2(t)),Λ
s%(t)〉|dt
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:= I2,1 + I2,2. (4.21)

For I2,1, arguing as in (4.20), we deduce that

I2,1 ≤ CE
∫ τb

τa

‖θ2(t)‖Hs+α‖%(t)‖Hs+α‖%(t)‖Hsdt. (4.22)

By the Hölder inequality and Lemmas 2.1 and 2.2, in view of the fact that ∇·u1 = ∇·u2 =

0, I2,2 is bounded by

I2,2 ≤ 2E
∫ τb

τa

‖Λ1−α((u1(t)− u2(t))Λsθ2(t))‖L2‖Λs+α%(t)‖L2dt

≤ CE
∫ τb

τa

(‖u1(t)− u2(t)‖Lp1‖θ2(t)‖Hs+1−α,p2

+ ‖u1(t)− u2(t)‖H1−α,p3‖θ2(t)‖Hs,p4 )‖%(t)‖Hs+αdt

≤ CE
∫ τb

τa

‖%(t)‖Hs‖θ2(t)‖Hs+α‖%(t)‖Hs+αdt, (4.23)

where p1 = 2
2α−1 , p2 = 1

1−α , p3 = 2
α , p4 = 2

1−α , and we have used the Sobolev embeddings

Hs ⊂ Lp1 , Hs+α ⊂ Hs+1−α,p1 , Hs ⊂ H1−α,p3 , Hs+α ⊂ Hs,p4 . Inserting (4.22) and (4.23)

into (4.21) gives

I2 ≤ CE
∫ τb

τa

‖θ2(t)‖Hs+α‖%(t)‖Hs+α‖%(t)‖Hsdt. (4.24)

Taking into account that G ∈ Lipu(Hs, L2(U , Hs)) and |ζ(w)| ≤ L, we find that

I3 + I4 ≤ CE
∫ τb

τa

‖%(t)‖2Hsdt. (4.25)

For the last term on the right-hand side of (4.19), using the Burkholder-Davis-Gundy

inequality and the Young inequality, in view of the assumptions on G, we have

I5 ≤ CE
(∫ τb

τa

‖G(θ1(t))−G(θ2(t))‖2L2(U ,Hs)‖%(t)‖2Hsdt

) 1
2

≤ CE

((
sup

t∈[τa,τb]
‖%(t)‖2Hs

) 1
2
(∫ τb

τa

‖G(θ1(t))−G(θ2(t))‖2L2(U ,Hs)dt

) 1
2

)

≤ 1

2
E
(

sup
t∈[τa,τb]

‖%(t)‖2Hs

)
+ CE

∫ τb

τa

‖%(t)‖2Hsdt. (4.26)

Combining (4.20) and (4.24)-(4.26), by the Young inequality, it follows from (4.19) that

E
(

sup
t∈[τa,τb]

‖%(t)‖2Hs + κ

∫ τb

τa

‖%(t)‖2Hs+αdt

)
≤ 2E‖%(τa)‖2Hs + CE

∫ τb

τa

(‖θ1(t)‖2Hs+α + ‖θ2(t)‖2Hs+α + 1)‖%(t)‖2Hsdt.

Then we apply the stochastic Gronwall lemma, as in [16], to complete the proof.
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Let Pt(x,A) be the corresponding transition function defined by

Pt(x,A) = P (θ(t;x) ∈ A), t ≥ 0, x ∈ Hs, A ∈ B(Hs).

This defines the transition semigroup, also denoted by {Pt}t≥0,

Ptϕ(x) = E(ϕ(θ(t;x))) =

∫
Hs

ϕ(y)Pt(x, dy), t ≥ 0, x ∈ Hs, ϕ ∈ C locb (Hs),

where C locb (Hs) denotes the Banach space of all real valued, bounded, locally uniformly

continuous functions, endowed with the sup norm

‖ϕ‖∞ := sup
θ∈Hs

|ϕ(θ)|.

We will show below that {Pt}t≥0 is Feller, meaning that Pt maps C locb (Hs) into C locb (Hs)

for every t ≥ 0.

Theorem 4.4. Under the assumptions of Lemma 4.2, the transition semigroup is Feller

on Hs with s ≥ 1
2−η0 , where η0 is given in Lemma 4.2, i.e.,

Pt : C locb (Hs)→ C locb (Hs), for any t ≥ 0.

Remark 4.5. It is worth mentioning that

Hs ⊂ L
2(2−η0)
1−η0 , for s ≥ 1

2− η0
.

Recall that η0, given in Lemma 4.2, belongs to (0, 1). Hence s ≥ 1
2−η0 follows immediately

as long as we assume that s ≥ 1 in Lemma 4.2.

Proof. Let ϕ ∈ C locb (Hs) be given arbitrarily. Now it suffices to prove that for any t ≥ 0

and m ∈ N,

lim
δ→0

sup
x,x0∈Bm,‖x−x0‖Hs≤δ

|Ptϕ(x)− Ptϕ(x0)| = 0, (4.27)

where Bm denotes a closed ball in Hs centered at zero with radius m.

Thanks to Lemma 4.2, there exists a constant R > m sufficiently large such that for

any x ∈ Bm,

E‖θ(t;x)‖Hs ≤ R.

For this R, since ϕ is uniformly continuous on BR, we choose η > 0 such that for any

ε > 0 and any θ1, θ2 ∈ BR with ‖θ1 − θ2‖Hs ≤ η,

|ϕ(θ1)− ϕ(θ2)| ≤
ε

2
.
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Let

δ =

√
εη√

4‖ϕ‖L∞Ct
,

where Ct is the constant appearing in (4.17). Using the Chebyshev inequality and Lemma

4.3, we obtain that for any x, x0 ∈ Bm with ‖x− x0‖Hs < δ,

|Ptϕ(x)− Ptϕ(x0)| = |E(ϕ(θ(t;x)))− E(ϕ(θ(t;x0)))|

≤ ε

2
+ 2‖ϕ‖L∞P (‖θ(t;x)− θ(t;x0)‖Hs > η)

≤ ε

2
+

2‖ϕ‖L∞
η2

E
(

sup
r∈[0,t]

‖θ(r;x)− θ(r;x0)‖2Hs

)
≤ ε, (4.28)

which implies (4.27) as desired. Thus the proof is complete.

4.3 Existence of invariant measures

For any Borel probability measure µ and t ≥ 0, we define the dual semigroup P∗t by

P∗t µ(A) =

∫
Hs

Pt(x,A)µ(dx), A ∈ B(Hs).

Then µ is an invariant measure for {Pt}t≥0 if P∗t µ = µ for all t ≥ 0. In the following

theorem, we establish the existence of non-trivial invariant measures.

Theorem 4.6. Under the assumptions of Lemma 4.2, there exists an invariant measure

associated with {Pt}t≥0 on Hs with s ≥ 2− 2α.

Proof. Let us return to the proof of Lemma 4.2. Putting (4.7), (4.10) and (4.11) together,

in view of (3.12) and (4.13), we have

V(t) +
ε0
λα1

E
∫ t

0
e2ξ(w(r))‖θ(r)‖2Hs+αdt

≤ V(0) + CE
∫ t

0
e2ξ(w(r))‖θ(r)‖

2(2−η0)
1−η0

Lp0 dr

+

(
2ε0 − 2κλα1 + ‖G‖2Lip − 2〈ζ, π〉+ 2

C2
γ

γ2
‖ζ‖2Lip

)∫ t

0
V(r)dr.

By (4.15) and (4.8), we obtain that there exists a positive constant C0 = C0(θ(0), w(0))

such that

ε0
λα1

E
∫ t

0
e2ξ(w(r))‖θ(r)‖2Hs+αdt ≤ V(0) + C0t.
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Then using the Young inequality and (3.27), we deduce that

E
∫ T

0
‖θ(t)‖Hs+αdt ≤ E

∫ T

0
e2ξ(w(t))‖θ(t)‖2Hs+αdt+

1

4
E
∫ T

0
e−2ξ(w(t))dt

≤ λα1
ε0

(V(0) + C0T ) + CT, (4.29)

which, by the Markov inequality, implies that

lim
R→∞

lim inf
T→∞

1

T

∫ T

0
P (‖θ(t)‖Hs+α > R) dt

≤ lim
R→∞

lim inf
T→∞

1

RT
E
∫ T

0
‖θ(t)‖Hs+αdt

≤ lim
R→∞

lim inf
T→∞

1

R

(
λα1
ε0T
V(0) +

λα1C0

ε0
+ C

)
= 0. (4.30)

Consider the sequence of time average measures

µn(Γ) :=
1

Tn

∫ Tn

0
Pt(x,Γ)dt =

1

Tn

∫ Tn

0
P (θ(t) ∈ Γ)dt, Γ ∈ B(Hs).

To obtain the existence of invariant measures, it suffices to show that µn is weakly compact,

due to the classical Krylov-Bogoliubov method (cf. [12, Theorem 11.7]). For any R > 0,

let BR = {θ ∈ Hs+α : ‖θ‖Hs+α ≤ R} and BcHs
R = {θ ∈ Hs : θ /∈ BR}. It is clear that

BR is compact in Hs and therefore by (4.30), for any ε > 0, there exists a compact set

BR ⊂ Hs such that

µn(Hs\BR) = µn(BcHs
R ) < ε, for all n ≥ 1.

By the well-known Prokhorov theorem (see, e.g. [12, Theorem 2.3]), the family {µn}n≥1
is weakly compact as desired.
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