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Abstract. In this paper, we study the parabolic BGG categories for graded Lie super-
algebras of Cartan type over the field of complex numbers. The gradation of such a Lie
superalgebra g naturally arises, with the zero component g0 being a reductive Lie algebra.
We first show that there are only two proper parabolic subalgebras containing Levi subalge-
bra g0: the “maximal one” Pmax and the “minimal one” Pmin. Furthermore, the parabolic
BGG category arising from Pmax essentially turns out to be a subcategory of the one arising
from Pmin. Such a priority of Pmin in the sense of representation theory reduces the question
to the study of the “minimal parabolic” BGG category Omin associated with Pmin. We prove
the existence of projective covers of simple objects in these categories, which enables us to
establish a satisfactory block theory. Most notably, our main results are as follows.

(1) We classify and obtain a precise description of the blocks of Omin.
(2) We investigate indecomposable tilting and indecomposable projective modules in

Omin, and compute their character formulas.
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Introduction

0.1. By Kac’s classification theorem ([13]), finite-dimensional simple Lie superalgebras over
the field of complex numbers are either of classical type or of Cartan type, with the latter
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consisting of infinite series of the four types W (n), S(n), S̃(n) and H(n). The simple Lie
superalgebra W (n) (n ≥ 3) is the derivation algebra of the Grassmann superalgebra Λ(n) on
n generators. Arising from the natural Z-grading on Λ(n), W (n) is also naturally Z-graded.
The Lie superalgebras S(n) (n ≥ 4), S̃(n) (n ≥ 4) and H(n) (n ≥ 5) are Lie subalgebras
of W (n). The superalgebra S̃(n) is not Z-graded, but carries a filtration induced by the
filtration of W (n).

Irreducible finite-dimensional representations of Lie superalgebras of Cartan type were
studied earlier ([6], [19], etc.), motivated by Rudakov’s work on irreducible representations
of infinite-dimensional Lie algebras of Cartan type ([16] and [17]). In [18], Serganova con-
sidered the category of Z-graded irreducible representations of graded Lie superalgebras of
Cartan type, determined the character formulas of their Z-graded irreducible highest weight
modules. After that, there were a few papers on finite-dimensional representations over
W (n). For example, in [3] the authors computed the cohomological support varieties of irre-
ducible W (n)-modules in a certain category, the objects of which are finite-dimensional and
completely reducible over the zero component W (n)0. In [20] Shomron studied the blocks
of a certain category whose objects are finite-dimensional W (n)-modules by constructing
extensions between irreducible modules. However, when considering categories containing
infinite-dimensional objects, the situation becomes very complicated.

0.2. Let g be a Lie superalgebra of Cartan type X(n), where X ∈ {W,S,H}. Then g
is naturally endowed with a Z-graded structure, i.e., g =

∑
i≥−1 gi. In addition, g0 is a

reductive Lie algebra. When X ∈ {S,H}, it will be convenient to study, in place of X(n),
the representation category of the one-dimensional toral extension X̄(n) determined by the
following exact sequence

X(n) ↪→ X̄(n) � Cd,
where d is a canonical toral element measuring degrees in W (n) (see §1.2 for details).

In the present paper, we introduce and study a parabolic BGG category for X(n) with
X ∈ {W, S̄, H̄}, in analogy to the Bernstein-Gelfand-Gelfand category of complex semisimple
Lie algebras (see [5] and [12]). Our purpose is to investigate blocks in this category, develop
a tilting module theory, and give character formulas of indecomposable tilting and inde-
composable projective modules. Recall that a Lie superalgebra of Cartan type admits many
mutually non-conjugate Borel subalgebras ([18, §4]), also many mutually non-conjugate Borel
subalgebras containing the standard Borel subalgebra of the core reductive Lie subalgebra
g0 (see §2.2), and hence possibly admits many “parabolic” subalgebras. An important in-
gredient in our work is to discriminate these parabolic subalgebras, and choose a suitable
“parabolic subalgebra”. Surprisingly, there are only two such parabolic (proper) subalgebras,
the maximal one Pmax which is actually

∑
i≥0 gi, and the minimal one Pmin which is equal to∑

i≤0 gi (see Proposition 2.3). Furthermore, the “parabolic BGG category” associated with
Pmax turns out to be less interesting (see §2.4) since whose U(g)-finitely-generated object-
s are finite-dimensional. Actually, the parabolic BGG category associated with Pmax is a
subcategory of the parabolic BGG category associated with Pmin if only considering objects
finitely generated over U(g).

Based on the above analysis, we only need to focus on Pmin = g−1⊕ g0. In this article, we
simply write it as P which is naturally regarded as a “minimal parabolic” subalgebra of g
containing the reductive Lie algebra g0. We then introduce the parabolic BGG category Omin
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associated with P. This category is by definition a subcategory of the Z-graded U(g)-module
category, satisfying some standard axioms (see Definition 3.1). What is completely different
from [18] is that all standard modules have infinite composition factors. Nevertheless, we
can prove the following fundamental result.

Theorem 0.1. (See Theorem 4.2) Any simple object in Omin has a projective cover which
admits a flag of standard modules.

0.3. Along the direction just mentioned above, we can define blocks of Omin via projective
covers of irreducible modules, and get into the next topic—to classify and describe all blocks
of Omin.

It can be proven that all simple objects in Omin are parameterized by what we denote
here by E, that is, a combination of finite-dimensional irreducible modules over g0 and their
so-called “depths” associated with the Z-gradation. We give one of our main results in the
following.

Theorem 0.2. (See Theorems 6.15, 6.17 and 6.19) Let g = X(n), X ∈ {W, S̄, H̄}. For any
given L(λ), L(µ) ∈ E, L(λ) and L(µ) lie in the same block if and only if the following three
conditions are satisfied.

(1) µ ∈ λ+Q;
(2) dpt(L(µ)) = dpt(L(λ)) + `(λ− µ);

(3) pty(L(µ)) = pty(L(λ)) + `(λ− µ),

where dpt(L(λ)) denotes the depth of L(λ) associated with its Z-graded structure; pty(L(λ))
is the parity of the “maximal vector” v0

λ of L(λ); and for each α ∈ Q we write `(α) for the

length of α (see (6.12) for the definition) and `(α) for the parity of `(α).

A more precise structural description of blocks can be found in Theorems 6.15, 6.17 and
6.19. Below, we will give an outline of the proof of Theorem 0.2.

While establishing the existence of the projective cover P (λ) of an irreducible module
L(λ) in Omin, we consider an “enveloping” projective module I(λ), which is induced from
irreducible modules L0(λ) over the graded-zero component g0, endowed with a flag of stan-
dard modules. Then we can prove that I(λ) lies in the same block B(λ) as P (λ). Based
on the construction of I(λ), we use various strategies to read off information about B(λ).
In particular, we examine maximal vectors. Along this way, the block decomposition be-
comes easy for W (n) and S̄(n). However, it does not work well for H̄(n). The solution is to
establish the relations between the standard modules of CH(n) and the standard modules
of H̄(n). (Here CH(n) is a Lie subalgebra of W (n) while H̄(n) is the derived subalgebra
of CH(n) with codimension one in CH(n)). The most important step in this approach is
the non-trivial observation that all standard modules for CH(n) are indecomposable over
H̄(n) (see Corollary 6.10). Another thing to notice is that the behavior of H̄(2r + 1) at the
root lattice is critically different from that of H̄(2r), which is ultimately a consequence of
the difference of orthogonal classical Lie algebras of types Br and Dr. So proving the final
results on blocks for H̄(2r + 1) and H̄(2r) will require separate arguments (see Theorems
6.17 and 6.19).
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The above block theorem actually reveals a somewhat degenerate behavior of blocks for
algebraic models of Cartan series, in comparison with the classical theory of complex semi-
simple Lie algebras and basic classical Lie superalgebras (see [12] and [10]). The intrinsic
mechanism should be further investigated.

0.4. Another important ingredient in our arguments is to prove that each of W (n), S̄(n)
and H̄(n) admits a semi-infinite character. The notation of semi-infinite character put
forward by Soergel was derived from the work on semi-cohomology by Feigin, Voronov and
Arkhipov (cf. [2], [11] and [22]). For Z-graded Lie algebras admitting semi-infinite characters,
Soergel established in [21] a framework for some Z-graded representation category. Following
Soergel’s work [21], Brundan investigated some general theory of category O for a general
Z-graded Lie superalgebra in [7], which can be used to study representations of classical Lie
superalgebras, and especially to deal with gl(m,n) and q(n). Fortunately, the general theory
of Brundan’s work is available to the case of Z-graded Lie superalgebras of Cartan type, so
we have the category Omin in the present paper. Especially, a BGG reciprocity for truncated
categories in [7] is true for Omin. Furthermore, we can investigate tilting modules in Omin on
the basis of Soergel’s and Brundan’s work. Most notably, we establish Soergel’s reciprocity
for tilting modules in our Omin.

Recall that our category Omin is associated with the “minimal parabolic” subalgebra P,
which enables us to obtain a realization of co-standard modules in Omin via Kac modules.
This is very important for us to go further, and in particular it leads to the following
reciprocities.

Theorem 0.3. (See Theorem 5.6, Propositions 7.5) Let P (λ)(resp. T (λ)) be the indecom-
posable projective (resp. tilting) module in Omin corresponding to the simple object L(λ) ∈ E,
and K(λ) be the corresponding Kac module. Let [P (λ) : ∆(µ)] (resp. [T (λ) : ∆(µ)]) denote
the multiplicity of the standard module ∆(µ) in P (λ) (resp. T (λ)). Then the following
statements hold.

(1) If g = W (n), then

[P (µ) : ∆(λ)] = (K(λ+ Ξ) : L(µ));
[T (µ) : ∆(λ)] = (K(−w0λ+ 2Ξ) : L(−w0µ+ Ξ)).

(2) If g = S̄(n), then

[P (µ) : ∆(λ)] = (K(λ+ Ξ) : L(µ));
[T (µ) : ∆(λ)] = (K(−w0λ+ Ξ) : L(−w0µ)).

(3) If g = H̄(n), then

[P (µ) : ∆(λ)] = (K(λ+ nδ) : L(µ));
[T (µ) : ∆(λ)] = (K(−w0λ+ nδ) : L(−w0µ)).

Here w0 is the longest element of the Weyl group of g0, δ is the linear dual of extended toral
element d, Ξ = ε1 + ε2 + · · ·+ εn and (K(·) : L(·)) denotes the multiplicity of a composition
factor in certain Kac module.

From the above theorem, Serganova’s character formulas on Kac modules in [18] allow us
finally to obtain the character formulas of both indecomposable projective and indecompos-
able tilting modules in Omin.
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0.5. This paper is organized as follows. In Section 1, we introduce some basic notions and
notations for Lie superalgebras of Cartan type. Most notably, we show in §1.3 that the Z-
graded Cartan type Lie superalgebras admit semi-infinite characters. In Section 2, we make
a precisely construction of adjacent Borel subalgebras, and then show the surprising result
that any parabolic subalgebra containing g0 is either the maximal one or the minimal one.
Then the BGG category arising from any parabolic subalgebra is essentially the subcategory
of the one arising from the minimal. In Section 3, we introduce the category Omin, investigate
some natural representations and list some properties of their weights. These arguments are
very important to the study of blocks. In Section 4, we consider the projective modules
in Omin. In particular, we establish that all simple objects in Omin have projective covers,
and every indecomposable projective module admits a flag of standard modules (Theorem
4.2). In Section 5, we obtain a degenerate BGG reciprocity (Theorem 5.3). In Section
6, we investigate and describe the blocks in Omin, see Theorems 6.15, 6.17 and 6.19. In
Section 7, we obtain a version of Soergel’s reciprocity for indecomposable tilting modules via
a realization of co-standard modules in terms of Kac modules. Then we apply the degenerate
BGG reciprocity and Soergel’s reciprocity to give character formulas of the indecomposable
projective and the indecomposable tilting modules. The last two sections are appendixes,
where we give a detailed computation for semi-infinite characters (Appendix A) and character
formulas of tilting modules (Appendix B).

In the same spirit, it is also possible to extend parts of the theory of the category Omin

(including tilting modules and their character theory) to infinite-dimensional Lie algebras of
Cartan type (see [8]).

Acknowledgement. B.S. is deeply indebted to Shun-Jen Cheng and Toshiyuki Tanisaki
for stimulating and helpful discussions, and to the Institute of Mathematics at Academia
Sinica for their hospitality during his visit in the winter of 2018 when this work was partially
done. The authors are also thankful to Salvatore Tringali (Hebei Normal University, School
of Mathematics) for an attentive reading of the introduction of this paper.

1. Preliminaries

In this paper, we always assume that the base field is the complex field C. All vector
superspaces (resp. supermodules, superalgebras) are over C, and will be simply called spaces
(resp. modules, algebras).

1.1. The Lie superalgebras of Cartan type. In this subsection, we recall the definitions
of finite-dimensional Lie superalgebras of Cartan type (see [13] for details).

Let Λ(n) be the Grassmann superalgebra on n odd generators ξ1, . . . , ξn (n ≥ 2). Let
deg(ξi) = 1 for 1 ≤ i ≤ n. Then Λ(n) has a natural Z-grading with Λ(n)j = spanC{ξk1 ∧
· · · ∧ ξkj | 1 ≤ k1 < · · · < kj ≤ n}. The Witt type Lie superalgebra W (n) is defined to be
the set of all superderivations of Λ(n). Then

W (n) =

{
n∑
i=1

fiDi | fi ∈ Λ(n)

}
,
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where Di is the superderivation of Λ(n) defined through Di(ξj) = δij for 1 ≤ i, j ≤ n. The
Witt type Lie superalgebra W (n) has a natural Z-grading with

W (n)j =

{
n∑
i=1

fiDi | fi ∈ Λ(n)j+1

}
. (1.1)

Let div be the divergence mapping from the Witt type Lie superalgebra W (n) to the Grass-
mann superalgebra Λ(n) defined as:

div : W (n) → Λ(n)
n∑
i=1

fiDi 7→
n∑
i=1

Di(fi).

The special Lie superalgebra S(n) is defined as the Lie subalgebra of W (n), consisting of all
elements x ∈ W (n) such that div(x) = 0. Since the divergence mapping is a homogeneous
operator of degree 0, the special Lie superalgebra S(n) inherits the Z-gradation of W (n),

i.e., S(n) =
n−2⊕
i=−1

S(n)i, where S(n)i = W (n)i ∩ S(n). Now we introduce the mapping Dij :

Dij : Λ(n) → W (n)
f 7→ Di(f)Dj +Dj(f)Di.

We can check that S(n) is the C-linear span of the elements belonging to {Dij(f) | f ∈
Λ(n), 1 ≤ i, j ≤ n}.

Up to isomorphism, there is a different class of simple Lie superalgebras of another special
type S̃(n). The Lie superalgebra S̃(n) is defined only for even n, and it consists of all
x ∈ W (n) such that

(1 + ξ1 · · · ξn)div(x) + x(ξ1 · · · ξn) = 0.

It is not a Z-graded subalgebra of W (n) as the defining condition is not homogeneous. Hence
we ignore S̃(n) in this paper.

Next, we introduce the Hamiltonian Lie superalgebra H(n) with n ≥ 5 (Note that H(4) ∼=
A(1, 1). We do not care about this case in the present paper. So we assume n ≥ 5 for type
H). Assume that n = 2r or n = 2r + 1, set

i′ =


i+ r, if 1 ≤ i ≤ r;

i− r, if r + 1 ≤ i ≤ 2r;

i, if i = 2r + 1.

The Hamiltonian operator DH from the Grassmann superalgebra Λ(n) to the Witt Lie
superalgebra W (n) is defined as:

DH : Λ(n) → W (n)

f 7→ DH(f) =
∑n

i=1(−1)f̄Di(f)Di′ ,

where f is a homogeneous element in Λ(n) and f̄ denotes the parity of f. Set CH(n) =
{DH(f) | f ∈ Λ(n)}. Then the Hamiltonian Lie superalgebra H(n) is by definition, the
derived algebra of CH(n), i.e.,

H(n) = [CH(n), CH(n))]; CH(n) = H(n) + CDH(ξ1 · · · ξn), (1.2)
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which can be further described as follows

H(n) =

{
DH(f) | f ∈

n−1∑
i=0

Λ(n)i

}
.

Moreover, H(n) is a Z-graded subalgebra of W (n) with H(n) =
n−3⊕
i=−1

H(n)i, where H(n)i =

W (n)i ∩ H(n). Generally, for a graded subalgebra L =
∑∞

i=−1 Li of W (n), we set L≥j :=∑
i≥j Li. Especially, we have the following structure

L−1 =
n∑
i=1

CDi for L = X(n), X ∈ {W,S,H}. (1.3)

Let L = W (n), S(n) or H(n). By the following canonical map

L0 → gl(n)∑
1≤i,j≤n kijξiDj 7→

∑
1≤i,j≤n kijEij,

we get

L0
∼=


gl(n), if g = W (n);

sl(n), if g = S(n);

so(n), if g = H(n),

(1.4)

and correspondingly have the standard triangular decomposition L0 = n− ⊕ h⊕ n+.

1.2. Toral extension S̄(n), H̄(n) and CH(n). Set d =
∑n

i=1 ξiDi. Then d is a canonical
toral element of W (n). The element d measures the degrees of homogenous spaces of W (n),
thereby it normalizes any graded subalgebra s of W (n), i.e., [d, s] ⊆ s. Set

S̄(n) = S(n)⊕ Cd,
H̄(n) = H(n)⊕ Cd,
CH(n) = CH(n)⊕ Cd,

and h̄ := h ⊕ Cd for g = S̄(n), H̄(n) or CH(n), h̄ := h for g = W (n). We then have the
following standard basis of h̄:{

{ξiDi | 1 ≤ i ≤ n}, if g = W (n), S̄(n);

{ξiDi − ξi+rDi+r, d | 1 ≤ i ≤ r}, if g = H̄(2r), CH(2r), H̄(2r + 1), CH(2r + 1),
(1.5)

whose dual basis can be described as follows:{
{εi | 1 ≤ i ≤ n}, if g = W (n), S̄(n);

{εi, δ | 1 ≤ i ≤ r}, if g = H̄(2r), CH(2r), H̄(2r + 1), CH(2r + 1).

This means εi(ξjDj) = δij when g = W (n) or S̄(n); and εi(ξjDj − ξj+rDj+r) = δij, εi(d) = 0,
δ(ξjDj − ξj+rDj+r) = 0 for 1 ≤ i, j ≤ r, and δ(d) = 1 when g = H̄(2r), CH(2r), H̄(2r +
1), CH(2r + 1).
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Set V =
∑n

i=1Cξi. We can further regard

g0 =

{
gl(V ), if g = W (n), S̄(n);

so(V ) + Cd, if g = H̄(n), CH(n).
(1.6)

Convention 1.1. In the sequel, whenever the context is clear, we don’t distinguish εi and
εi|h for 1 ≤ i ≤ m. Here, m = n when g = W (n) or S̄(n); m = r when g = H̄(n), CH(n).

1.3. Root systems and closed subalgebras. Note that the Cartan subalgebras of g
coincide with the Cartan subalgebras of g0. Associated with the Cartan subalgebra h̄, there
is a root system Φ(g) and the corresponding root space decomposition g = h̄ +

∑
α∈Φ(g) gα

for g = X(n) (X ∈ {W, S̄, H̄, CH}). The root system Φ(g) can be described as below.

(1) For g = W (n), Φ(g) = {εi1 + · · ·+ εik − εj | 1 ≤ i1 < · · · < ik ≤ n; k = 0, 1, ..., n; 1 ≤
j ≤ n}.

(2) For g = S̄(n), Φ(g) = Φ(W (n))\{(
∑n

i=1 εi)− εj | j = 1, ..., n}.
(3) For g = H̄(2r),

Φ(g) = {±εi1 ± · · · ± εik + lδ | 1 ≤ i1 < i2 < · · · < ik ≤ r;

k − 2 ≤ l < n− 2, l − k ∈ 2Z}.

(4) For g = H̄(2r + 1),

Φ(g) = {±εi1 ± · · · ± εik + lδ | 1 ≤ i1 < i2 < · · · < ik ≤ r;

k − 2 ≤ l < n− 2}.

(5) For g = CH(n), Φ(g) = Φ(H̄(n)) ∪ {(n− 2)δ}.
In particular, Φ0 (resp. Φ+

0 ) will denote the root system of g0 (resp. n+). Correspondingly,
we have the Borel subalgebra b = h̄⊕ n+.

A subset Ψ of Φ is called a closed one if for any α, β ∈ Ψ, we always have α + β ∈ Ψ
provided that α+ β ∈ Φ. We say a subalgebra q of g to be closed if there is a closed subset
Ψ of Φ such that q = h +

∑
α∈Ψ gα.

We also need a convention Ξ ∈ h∗ for g = W (n) or S̄(n) which means
∑n

i=1 εi.

1.4. Semi-infinite characters.

Definition 1.2. Let g =
∑

i∈Z gi be a Z-graded Lie superalgebra with dim gi < ∞ for all
i ∈ Z. A character γ : g0 → C is called a semi-infinite character for g if the following items
are satisfied.

(SI-1) As a Lie superalgebra, g is generated by g1, g0 and g−1;
(SI-2) γ([x, y]) = str

(
(adx ◦ ady)|g0

)
, ∀x ∈ g1 and y ∈ g−1.

Now we turn to g = X(n) for X ∈ {W, S̄, H̄, CH}. We define EW : g0 −→ F to be a
linear map with EW (ξiDj) = −δij for 1 ≤ i, j ≤ n. Set ES̄ = EH̄ = ECH = 0. By a direct
computation, it is not hard (but tedious) to verify the following fact.

Lemma 1.3. The linear map EX is a semi-infinite character for X(n), where X ∈ {W, S̄, H̄, CH}.

Proof. The proof is left in Appendix A. �
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2. Borel subalgebras and parabolic subalgebras

In the following we denote Φ := Φ(g) if the context is clear. Following Serganova ([18]),
we call a root α ∈ Φ nonessential if −α /∈ Φ(g), and essential if −α ∈ Φ(g). By (1.5), we
have h̄ = C⊗Z Z-span{standard basis}. Define

h̄R = R⊗Z Z-span{standard basis}.
Call h ∈ h̄R regular if α(h) 6= 0 for all α ∈ Φ(g). According to [18], any regular h deduces
a subdivision Φ = Φ+

h ∪ Φ−h , where Φ±h = {α ∈ Φ | α(h) ∈ R±}. That defines a triangular
decomposition g = N+

h ⊕ h̄ ⊕ N−h for N±h =
∑

α∈Φ±h
gα, where gα is the corresponding root

space. A Borel subalgebra B := Bh is defined as h̄⊕N+
h . Sometimes, we write Φ+

h as Φ(B)
if without any confusion. There are only finitely many Borel subalgebras (containing the
given h̄). An α ∈ Φ+

h is called simple for the Borel subalgebra B if after removing α from
Φ+
h and adding −α (if it does exist) we obtain a set of positive roots for some other Borel

subalgebra B′. In this case, we call B and B′ are adjacent, and related by even reflection
if α is even essential, by odd reflection if α is odd essential, by nonessential reflection if α
is nonessential. Denote B′ = rα(B). For any two Borel subalgebras (containing h̄), one is
linked to the other one by a chain of reflections (see [18]).

2.1. Borel subalgebras containing b and strongly regular toral elements. In the
following, what we are interested in are Borel subalgebras B containing b. Among such
Borel subalgebras we distinguish Bmax = b+

∑
i>0 gi and Bmin = b+g−1, whose dimensions

are of maximal and minimal respectively.
A defining toral element h ∈ hR of a Borel subalgebra containing b is said to be strongly

regular. We will denote by diag(a1, . . . , an) the diagonal matrix of size n×n with the entries
ai on the ith diagonal positions. The toral element h can be identified with diag(a1, . . . , an).
The following facts are clear.

Lemma 2.1. Let g = W (n) or S̄(n). Suppose that h = diag(a1, . . . , an) ∈ h̄R is strongly
regular. The following statements hold.

(1) The toral element h satisfies ai > aj for 1 ≤ i < j ≤ n.
(2) If Bh = Bmax, then ai + aj > ak for any different i, j, k ∈ {1, 2, . . . n}.
(3) If Bh # Bmin, then ε1 ∈ Φ+

h .

Proof. (1) It follows from the fact Φ+
0 = {εi − εj | 1 ≤ i < j ≤ n}.

(2) This is due to the fact that εi + εj − εk ∈ Φ+.
(3) Suppose ε1 /∈ Φ+

h . Then a1 < 0. By (1), we have all ai < 0, 1 ≤ i ≤ n. Correspondingly,
Bh contains g−1. Hence Bh ⊃ Bmin. �

Before the arguments on g = H̄(n), we need the following information on the root set
Φ(g−1) of g−1.

Φ(g−1) =

{
{±εi − δ | i = 1, . . . , r}, for H̄(2r);

{±εi − δ | i = 1, . . . , r} ∪ {−δ}, for H̄(2r + 1).
(2.1)

Lemma 2.2. Let g = H̄(n) with n = 2r or n = 2r + 1. Suppose that h is strongly regular
with h = diag(a + a1, . . . , a + ar; a − a1, . . . , a − ar) ∈ h̄R when n = 2r, or h = diag(a +
a1, . . . , a+ ar; a− a1, . . . , a− ar, a) ∈ h̄R when n = 2r + 1. The following statements hold.
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(1) The toral element h satisfies ai > aj, ai + aj > 0 for 1 ≤ i < j ≤ r. Additionally,
ar > 0 for g = H̄(2r + 1).

(2) If Bh = Bmax, (n− 3)a > a1.
(3) If n = 2r and Bh does not contain g−1, then ε1 + δ ∈ Φ+

h , or −εr + δ ∈ Φ+
h .

(4) If n = 2r + 1 and Bh does not contain g−1, then one of the following items occurs.
(i) δ ∈ Φ+

h .
(ii) −δ ∈ Φ+

h , and either ε1 + δ ∈ Φ+
h or −εr + δ ∈ Φ+

h .

Proof. (1), (2) By the same reason as in the proof of Lemma 2.1, the first two statements
are clear.

(3) Suppose ε1 + δ /∈ Φ+
h and −εr + δ /∈ Φ+

h , then −ε1 − δ ∈ Φ+
h and εr − δ ∈ Φ+

h .
This implies that −a1 − a = (−ε1 − δ)(h) > 0 and ar − a = (εr − δ)(h) > 0. Hence,
a1 − a > a2 − a > · · · > ar − a > 0 and −ar − a > −ar−1 − a > · · · > −a1 − a > 0 by (1).
Consequently, Φ(g−1) ⊆ Φ+

h by (2.1), and g−1 ⊆ Bh, a contradiction.
(4) Suppose δ /∈ Φ+

h , then −δ ∈ Φ+
h . Assume in contrary that ε1+δ /∈ Φ+

h and −εr+δ /∈ Φ+
h .

Similar arguments as in (3) yield that {±εi− δ | i = 1, . . . , r} ⊆ Φ+
h . Hence Φ(g−1) ⊆ Φ+

h by
(2.1), and g−1 ⊆ Bh, a contradiction. �

2.2. Variation of Borel subalgebras from Bmax to Bmin for g = W (n) or S̄(n).
Certainly, it is interesting and nontrivial to construct an adjacent chain of Borel subalgebras.
It is a good way to do that via strongly regular toral elements. Here, we list them for
g = W (n) and S̄(n).

2.2.1. Set

hmax = diag(
n

n+ 1
,
n− 1

n
,
n− 2

n− 1
, . . . ,

2

3
,
1

2
),

hmin = diag(−1

2
,−2

3
,−3

4
, . . . ,−n− 1

n
,− n

n+ 1
).

By a straightforward computation, hmax and hmin are exactly the defining strongly regular
toral elements in h̄R for Bmax and Bmin respectively. Now we can show that there are a
sequence of reflections rα, . . . , rγ such that Bmin = rα(· · · (rγ(Bmax))). Actually, we take a
sequence of regular toral elements in hR as below. Set h0 = hmax, and consider

hr = diag(
n

n+ 1
,
n− 1

n
,
n− 2

n− 1
, . . . ,

r + 1

r + 2
;−1

2
,−2

3
,−3

4
, . . . ,− r

r + 1
),

r = 1, . . . , n. Naturally hn = hmin. Readers can verify that each hr is strongly regular and
the corresponding positive root set is

Φ+
hr

= Φ+
0 ∪ Φ+ ∪ (−Πr)\Xr (2.2)
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where

Πr ={εn−r+j | j = 1, . . . , r},
−Πr ={−εn−r+j | j = 1, . . . , r},

Xr ={
k∑
q=1

εiq +
l∑

q=1

εn−r+jq − εd | (∗)r < 0 for 2 ≤ l + k ≤ n,

1 ≤ i1 < · · · < ik ≤ n− r; 1 ≤ j1 < · · · < jl ≤ r; 1 ≤ d ≤ n}.
with

(∗)r =

{∑k
q=1

n−iq+1

n−iq+2
−
∑l

q=1
jq
jq+1
− d

d+1
if 1 ≤ d ≤ n− r;∑k

q=1
n−iq+1

n−iq+2
−
∑l

q=1
jq
jq+1

+ d′

d′+1
if d = n− r + d′ with 1 ≤ d′ ≤ r.

Obviously, Xr ⊃ Πr.

2.2.2. Now we continue to refine the above process. Recall h1 = diag( n
n+1

, n−1
n
, n−1
n−3

, . . . , 2
3
;−1

2
).

Set h
(1)
1 := h1 and for q = 2, . . . , n,

h
(q)
1 := diag(

n

n+ 1
, . . . ,

q

q + 1
,
qn− 1

2qn
, . . . ,

n− 1

2n
;−1

2
).

Note that from the beginning, we have set an appointment n > 2. So it is easily known that

h
(q)
1 is strongly regular. Inductively, for a given r > 1 set h

(r)
r := hr and

h(q)
r := diag(

n

n+ 1
, . . . ,

q

q + 1
,
rqn− 1

(r + 1)qn
, . . . ,

r(r + 1)n− 1

(r + 1)(r + 2)n
;−1

2
,−2

3
,−3

4
, . . . ,− r

r + 1
)

for q = r + 1, . . . , n. All of h
(q)
r ’s are strongly regular. The corresponding Borel subalgebra

of h
(q)
r is denoted by B

(q)
r , r = 0, 1, . . . , n, q = r, r + 1, . . . , n. In particular, B0 = Bmax and

Bn = Bmin (here set Br = B
(r)
r ).

2.3. Parabolic subalgebras containing g0. For a given strongly regular element h, we
have Φ = Φ+

h ∪ Φ−h and the corresponding Borel subalgebra

Bh = b⊕
∑

α∈Φ+
h \Φ

+
0

gα.

We define a parabolic subalgebra Ph associated with h (and then with Bh) as the closed
subalgebra generated by g0 and Bh.

Associated with the maximal Borel subalgebra Bmax = b+
∑

i>0 gi, and the minimal Borel
subalgebra Bmin = b+g−1, it is readily known that the corresponding parabolic subalgebras
are, respectively,

Pmax = g0 +
∑
i>0

gi and Pmin = g0 + g−1.

The minimal parabolic subalgebra will be the most interesting, playing a crucial role in the
theory of parabolic BGG categories. The following basic observation preliminarily reveals
its importance.

Proposition 2.3. Let g = X(n), X ∈ {W, S̄, H̄, CH}. Then any proper parabolic subalgebra
coincides with either Pmax or Pmin.
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Proof. Let P be an arbitrarily given parabolic subalgebra generated by g0 and Bh, where

h =


diag(a1, . . . , an), if g = W (n), S̄(n);

diag(a+ a1, . . . , a+ ar; a− a1, . . . , a− ar), if g = H(2r);

diag(a+ a1, . . . , a+ ar; a− a1, . . . , a− ar, a), if g = H(2r + 1)

is a defining strongly regular toral element of Bh. Then a1 > a2 > · · · > an for g =
W (n), S̄(n), and a1 > a2 > · · · > ar for g = H(n) with n = 2r, 2r + 1. Denote by Ψh the
root set of P. Then Ψh is a closed root subsystem of Φ.

Firstly we assume that P does not contain Pmin. In this situation, we will show P = Pmax.
We proceed it case by case.

Case 1: g = W (n), S̄(n).
By Lemma 2.1(3), Ψh contains the root ε1. Note that by definition, Φ−0 ⊆ Ψh. Hence,

Ψh contains all εk = (εk − ε1) + ε1 for k = 2, . . . , n. Correspondingly, Ψh contains all εk for
k = 1, . . . , n. Hence Ψh contains all Φ+ because Ψh is a closed root subsystem, containing
Φ0 and all εk, k = 1, . . . , n. This means that the parabolic subalgebra associated with Bh

contains Pmax. On the other hand, a parabolic subalgebra containing Pmax is either g itself
or equal to Pmax. We are done.

Case 2: g = H(2r).
By Lemma 2.2(3), Ψh contains the root −εr + δ or the root ε1 + δ. If ε1 + δ ∈ Ψh, then
−εr + δ = (−εr − ε1) + (ε1 + δ) ∈ Ψh, because −εr − ε1 ∈ Φ0 ⊆ Ψh and Ψh is closed.
Consequently, we see that Ψh always contains the root −εr + δ. Since Φ0 = {±εi ± εj | 1 ≤
i 6= j ≤ n} ⊆ Ψh and Ψh is closed, we have ±εi + δ = (±εi + εr) + (−εr + δ) ∈ Ψh for
1 ≤ i ≤ r− 1. In addition, εr + δ = (εr + ε1) + (−ε1 + δ) ∈ Ψh. Hence, ±εj + δ ∈ Ψh for any
1 ≤ j ≤ n. In particular, 2δ = (ε1 + δ) + (−ε1 + δ) ∈ Ψh, so that 2mδ ∈ Ψh for any m ∈ Z+.
Now let α = ±εi1 ± · · · ± εik + lδ be an arbitrary root in g≥1, where k − 2 ≤ l ≤ n− 2 and
l − k is even. Since α can be written as

α = (±εi1 ± εi2) + (±εi3 + δ) + · · ·+ (±εik + δ) + (l − k + 2)δ,

we get that α ∈ Ψh by induction on k. This implies Pmax ⊆ P. On the other hand, a
parabolic subalgebra containing Pmax is either g itself or equal to Pmax. We are done.

Case 3: g = H(2r + 1).
By Lemma 2.2(4), if −δ ∈ Ψh, Ψh contains the root −εr + δ or the root ε1 + δ. While if

δ ∈ Ψh, then ε1 + δ ∈ Ψh, because ε1 ∈ Ψh and Ψh is closed. Similar arguments as in Case 2
yield the desired assertion in this case.

Secondly we assume that P contains Pmin. In this case, it suffices to show that P must
coincide with g itself as long as P properly contains Pmin. We also proceed it case by case.

Case 1: g = W (n), S̄(n).
In this case, under the assumption P % Pmin, the root set Ψh of P contains Φ(Pmin)∪{εi1 +

εi2 + · · ·+ εit − εk} for some sequence (1 ≤ i1 < i2 < · · · < it ≤ n) and k ∈ {1, 2, . . . , n} with
t > 1. By definition, Ψh is closed. Note that Φ(Pmin) = {−εi | i = 1, . . . , n} ∪ {εi − εj | 1 ≤
i 6= j ≤ n} is already contained in Ψh. So it is easily deduced that all εi, i = 1, . . . , n, are
contained in Ψ(P). Consequently, it is further deduced that Ψ(P) = Φ and then P = g.

Case 2: g = H(n).
In this case, under the assumption P % Pmin, the root set Ψh of P contains Φ(Pmin) ∪
{±εi1 + · · · +±εik + lδ} for some k ≥ 1 and k − 2 ≤ l ≤ n− 2. By definition, Ψh is closed.
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Note that

Φ(Pmin) =

{
{±εi − δ | i = 1, . . . , n} ∪ {±εi ± εj | 1 ≤ i 6= j ≤ n}, if n = 2r;

{±εi − δ,−δ | i = 1, . . . , n} ∪ {±εi ± εj,±εi | 1 ≤ i 6= j ≤ n}, if n = 2r + 1

is already contained in Ψh. So it is easily deduced that all roots in g≥1 are contained in Ψh.
Consequently, Ψh = Φ, and then P = g.

The proof is completed. �

Remark 2.4. There is a natural question when it is true that the subalgebra generated by g0

and a Borel subalgebra Bh is closed, i.e. it coincides with Ph. This question can be positively
answered for g = S̄n because in this case, all gi (i 6= 0) are irreducible g0-modules (see [13,
Proposition 3.3.1]).

2.4. Parabolic categories. In general, we can consider a parabolic BGG category Oh of
g associated with Ph, whose objects are super g-modules endowed with an admissible Z-
graded structure, locally finite over Ph and semisimple over h̄. The morphisms in Oh are
even homomorphisms of Z-graded g-modules.

By Proposition 2.3, there are only two possibilities for a proper parabolic subalgebra Ph,
that is, it coincides with either Pmax or Pmin. If the objects of Oh are additionally required to
be finitely generated over U(g), then it is readily seen that any objects in the BGG category
arising from Pmax is finite-dimensional. All such objects belong to the other BGG category
Omin arising from Pmin.

3. The category Omin

3.1. From now on we always assume that g = X(n) with X ∈ {W, S̄, H̄, CH}. Keeping in
mind, we have g0 = n+⊕ h̄⊕n− with h̄ defined in §1.2, and the minimal parabolic subalgebra
Pmin defined in §2. From now on, we simply write P = Pmin.

Definition 3.1. We define a category Omin whose objects are Z2-graded vector spaces M =
M0̄ ⊕M1̄ satisfying the following axioms:

(1) M is an admissible Z-graded g-module, i.e., M =
⊕

i∈ZMi with Mi = (Mi ∩M0̄) ⊕
(Mi ∩M1̄), dimMi <∞, and giMj ⊆Mi+j,∀ i, j ∈ Z.

(2) M is locally finite as a P-module.
(3) M is semisimple over h̄.

The morphisms in Omin are always assumed to be even (see Remark 3.2(4) below), and they
are g-module morphisms compatible with the Z-gradation, i.e., for any M,N ∈ Omin,

HomOmin(M,N) = {f ∈ HomU(g)(M,N) | f(Mi) ⊆ Ni,∀ i ∈ Z}.

Remark 3.2. (1) Since U(P) ∼=
∧

(g−1)⊗U(g0) and dim
∧

(g−1) = 2n. The condition being
locally finite-dimensional over P is equivalent to being locally finite-dimensional over g0.

(2) The isomorphism classes of irreducible finite-dimensional g0-modules are parameterized
by Λ+, the set of the weights whose restriction to [g0, g0] are dominant and integral. Denote
by L0(λ) the finite-dimensional irreducible g0-module corresponding to λ ∈ Λ+, which is a
highest weight module associated with the Borel subalgebra b = h̄ + n+.

(3) The Z-graded module category of X̄(n) can be naturally identified with the Z-graded
module category of X(n) (X ∈ {S,H,CH}).
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(4) Recall that the Lie superalgebra g is equal to g0̄ ⊕ g1̄ with g0̄ =
∑

all even i gi, and
g1̄ =

∑
all odd i gi. For any two g-modules M,N , we say a homomorphism ϕ : M → N is of

parity |ϕ| if ϕ(xm) = (−1)|ϕ||x|xϕ(m) for any Z2-homogeneous element x ∈ g|x|, and m ∈M .
In this paper we always assume that the homomorphism ϕ in Omin is of even parity, i.e.,
ϕ(xm) = xϕ(m) for any x ∈ g and m ∈M . So Omin is an abelian category.

(5) If forgetting the Z-graded structure of Omin, then we have the category Omin. A U(g)-

module M belongs to Omin if and only if it is a weight module and locally P-finite. Denote
by F the natural forgetful functor from Omin to Omin.

Let E be a complete set of pairwise non-isomorphic irreducible Z-graded modules of g0.
Each E ∈ E is necessarily concentrated in a single degree bEc ∈ Z, which means that
E = EbEc. So, E can be parameterized by Λ+ × Z.

Denote by Omin
≥d the full subcategory of Omin consisting of all objects that are zero in

degrees less than d (called a truncated subcategory by d).

3.2. Standard and co-standard modules. For a given (λ, d) ∈ E = Λ+ × Z, we have a
Z-graded (finite-dimensional) irreducible g0-module L0(λ) whose degree bL0(λ)c is equal to
d. Let us introduce the standard modules ∆(λ) and co-standard modules ∇(λ) in Omin as
below:

∆(λ) = U(g)⊗U(P) L
0(λ) (3.1)

and
∇(λ) = Homg≥0

(U(g), L0(λ)). (3.2)

with trivial g−1(resp. g≥1)-action on L0(λ) in ∆(λ) (resp. ∇(λ)). Once the parity |v0
λ| of

a maximal vector v0
λ in L0(λ) is given1, say ε ∈ Z2 = {0̄, 1̄}, the super-structure of ∆(λ) is

determined by the super structure of U(g≥1) = U(g≥1)0̄⊕U(g≥1)1̄ together with ε as follows

∆(λ) = ∆(λ)0̄ ⊕∆(λ)1̄, where ∆(λ)δ+ε = U(g≥1)δ ⊗ L0(λ) for δ ∈ Z2.

Obviously, U(g) has a Z-grading induced by the Z-grading of g. So for ∆(λ), we have the
following decomposition as a g0-module

∆(λ) ∼=
⊕
i≥1

U(g≥1)i ⊗C L0(λ)

where U(g≥1)i denotes the ith homogeneous part of U(g≥1). Because U(g≥1)i, i ≥ 0, is finite-
dimensional, U(g≥1)i⊗CL0(λ) is a finite-dimensional g0-module. Hence, ∆(λ) is locally finite
over g0. Consequently, ∆(λ) is an object in Omin. As to the co-standard module, we have
the following isomorphisms over g≤0:

∇(λ) ∼= Homg0(U(g≤0), L0(λ))

∼= Homg0(U(g≤0),C)⊗C L0(λ)

∼= HomC(
∧

(g−1),C)⊗C L0(λ),

where
∧

(g−1) denotes the exterior product space on the abelian Lie (super)algebra g−1, and
the last isomorphism above is due to the fact that by definition U(g−1) =

∧
(g−1). Hence

dim∇(λ) = 2ndimL0(λ), and ∇(λ) is an object in Omin. Especially, ∇(λ) admits a simple

1For Omin, one can give parities for weight spaces similar to [9, §6].



REPRESENTATIONS OF LIE SUPERALGEBRAS OF CARTAN TYPE (I) 15

socle L0(λ) over g≤0. For the detailed description of ∇(λ), readers can refer to Proposition
5.5 later.

Furthermore, both ∆(λ) and ∇(λ) belong to Omin
≥d′ as long as bL0(λ)c = d ≥ d′. In this

case, we say that both of them have depth d. Generally, for M ∈ Omin
≥d , define the depth of

M to be the least number t with Mt 6= 0 for the gradation M =
∑∞

i=dMi. Denote by dpt(M)
the depth of M . By definition, dpt(M) ≥ d for M ∈ Omin

≥d . The following basic observation
is clear.

Lemma 3.3. Both ∆(λ) and ∇(λ) are indecomposable.

Actually, it is readily known that ∆(λ) (resp. ∇(λ)) has a unique maximal submodule.
Hence, ∆(λ) (resp. ∇(λ)) has a unique simple quotient, which is denoted by L(λ) (resp.
L̃(λ)).

Lemma 3.4. Maintain the notations as above. Then {L(λ)}(λ,d)∈E and {L̃(λ)}(λ,d)∈E are
two complete sets of pairwise non-isomorphic irreducibles in Omin respectively. Hence every
simple object in Omin is finite-dimensional.

Proof. Let E be any simple object of Omin and v be a non-zero weight vector belonging to
E. Consider the finite-dimensional U(P)-module U(P).v. Obviously, U(P).v has a non-zero
U(P)-irreducible submodule E0. Assume that E0 is isomorphic to L0(λ) for some λ ∈ Λ+,
then we have a non-zero homomorphism from ∆(λ) to E. Hence E is isomorphic to L(λ),
with the depth of E equal to bE0c.

On the other hand, assume that L(λ) and L(µ) are two irreducible modules with depths dλ
and dµ respectively. By the construction, L0(λ) is the unique simple socle of L(λ) over g≤0.
If L(λ) and L(µ) are isomorphic, then L0(λ) and L0(µ) must be isomorphic as g≤0-modules.
Hence λ = µ. Naturally, dλ = dµ. Thus, we already prove that the set {L(λ)}(λ,d)∈E forms
a complete set of pairwise non-isomorphic simple objects in Omin.

By the same arguments, one can similarly prove the statement for {L̃(λ)}(λ,d)∈E. Since
∇(λ) is finite-dimensional, any simple object of Omin is finite-dimensional. �

Remark 3.5. (1) By the above lemma, we can see that for any λ ∈ Λ+ (modulo the depths),

there is a unique λ̃ ∈ Λ+ such that L(λ) ∼= L̃(λ̃). Thus, the correspondence sending λ to λ̃
gives rise to a permutation on Λ+. The precise description can be given in §9 with aid of
Proposition 5.5.

(2) For M ∈ Omin, we write (M : L(λ)) for the multiplicity of the simple object L(λ) in
M , i.e., the supremum of #{i | M i/M i−1 ∼= L(λ)} over all finite filtration {M = Mk ⊃
... ⊃ M i ⊃ M i−1 ⊃ ... ⊃ M1 ⊃ M0 = 0 | i ∈ Z>0}. Suppose M = ⊕k∈ZMk. Note that
dimMd < ∞ for d = bL(λ)c. So (M : L(λ)) is finite. Especially, we will call L(λ) a
composition factor of M if (M : L(λ)) is nonzero.

3.3. Some natural representations and related notations. We collect some basic facts
on natural representations of g = X(n) for X ∈ {W, S̄, H̄, CH}, which will be used later for
the study of blocks of Omin.

Recall that for g =
∑

i≥−1 gi, the graded subspaces g−1 =
∑n

i=1CDi and

g0 =

{
gl(V ), if g = W (n), S̄(n);

so(V ) + Cd, if g = H̄(n), CH(n)
(3.3)
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for V =
∑n

i=1Cξi. Especially, g−1 becomes the contragredient module V ∗ of V over g0 with
the weight set

Wt(g−1) =


{−ε1, ...,−εn}, for X(n), X ∈ {W, S̄};
{−ε1 − δ, ...,−εr − δ, ε1 − δ, ..., εr − δ}, for H̄(2r) or CH(2r);

{−ε1 − δ, ...,−εr − δ, ε1 − δ, ..., εr − δ,−δ}, for H̄(2r + 1) or CH(2r + 1).

Furthermore,
∧n(g−1) is a one-dimensional g0-module generated by D1 ∧ · · · ∧Dn, of weight

−
∑n

i=1 εi when g = X(n) for X ∈ {W, S̄}, or of weight −nδ when g = H̄(n). Furthermore,∧
(g−1) =

∑n
i=0

∧i(g−1) admits a weight set

Wt
(∧

(g−1)
)

= {−(εi1 + · · ·+ εik) | 1 ≤ i1 < · · · < ik ≤ n, k = 0, 1, ..., n} (3.4)

for X(n), X ∈ {W, S̄}.
From now on, we set

εr+k := −εk (k = 1, ..., r) for g = H̄(n) or CH(n). (3.5)

Let ℵ be 0 or 1 in the following. Then we can write

Wt
(∧

(g−1)
)

(3.6)

=

{
{−(εi1 + · · ·+ εik)− kδ | 1 ≤ i1 < · · · < ik ≤ n, k = 0, 1, ..., n}, for H̄(2r);

{−(εi1 + · · ·+ εik)− (k + ℵ)δ | 1 ≤ i1 < · · · < ik ≤ n− 1, k = 0, 1, ..., n}, for H̄(2r + 1).

(3.7)

The above is also true for CH(n).
We always set g′0 = [g0, g0] throughout the paper. Then g′0 is a semisimple Lie algebra.

Lemma 3.6. Let g = W (n). The following statements hold.

(1) Set M :=
∑n

i=1Cmi ∈ g1 with mi = ξid ∈ g1 for d =
∑n

j=1 ξjDj. Then both g−1 and

M are not only abelian subalgebras but also g0-modules. Especially U(g−1) =
∧
g−1

and U(M) =
∧
M . Here and after,

∧
L denotes the exterior-product space of a vector

space L.
(2) Under the identification between g0 and gl(V ) for V =

∑n
i=1Cξi, the g0-module M

is isomorphic to V while g−1 is isomorphic to its linear dual V ∗ (as g0-modules).
(3) Consider the following tensor products

M−(λ) :=
∧

g−1 ⊗C L0(λ)

and
M+(µ) :=

∧
M ⊗C L0(µ)

in the category of g0-modules, where λ, µ ∈ Λ+. If L0(µ) is a composition factor of the
g0-module M−(λ), then L0(λ) must be a composition factor of the g0-module M+(µ).

Proof. By a straightforward computation, the statements in (1) and (2) can be easily verified.
(3) Note that g0

∼= gl(V ). The statement follows from (2) and the following isomorphism

Homg0(L0(µ),
∧

V ∗ ⊗C L0(λ)) ∼= Homg0(L0(µ)⊗C
∧

V, L0(λ)). (3.8)

�
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In the following, we will generalize Lemma 3.6(3) to the situation when g = CH(n).
Set L := g≥1 ⊆ U(g). Consider the g0-modules M+(µ) := L ⊗C L0(µ) and M−(λ) :=∑n

i=0 M
−(λ)−i with M−(λ)−i =

∧i(g−1) ⊗C L0(λ). The following lemma is somewhat a

bridge to understand the block structure of Omin for the case CH(n) (see Proposition 6.11).

Lemma 3.7. Let g = CH(n) and L0(µ) be an irreducible composition factor of the g0-module
M−(λ)i, λ, µ ∈ Λ+. The following statements hold.

(1) If i ≤ −3, then L0(λ− 2δ) is a composition factor of the g0-module M+(µ).
(2) If i = −1, then L0(λ−2δ) is a composition factor of the g0-module M+(µ−(n−2)δ).
(3) If i = −2, then L0(λ−2δ) is a composition factor of the g0-module M+(µ−(n−4)δ).

Proof. (1) Recall that g =
∑n−2

i=−1 gi with gi = W (n)i ∩ g for g = CH(n). We still set
V =

∑n
i=1Cξi. Then we can identify g′0 with so(V ), which admits a natural representation

on V . The g′0-module g−1 =
∑n

i=1CDi is isomorphic to the contragredient g′0-module V ∗ of

V . Furthermore, for i ∈ {1, 2, · · · , n−2}, gi is isomorphic to
∧i+2(V ) and admits eigenvalue

i for the action of d. Actually, we can identify gi with the space spanned by DH(ξj1 · · · ξji+2
)

for all (j1, ..., ji+2) satisfying 1 ≤ j1 < · · · < ji+2 ≤ n, the latter of which is isomorphic

to
∧i+2 V as vector spaces. We can further say that gi is isomorphic to

∧i+2 V as so(V )-
modules. This is ensured by the definition of DH and the fact that for the basis elements
X = DH(ξsξt) ∈ g′0 (1 ≤ s < t ≤ n), the following identity holds.

adX.DH(ξj1 · · · ξji+2
) =

i+2∑
k=1

DH(ξj1 · · · ξjk−1
·X(ξjk) · ξjk+1

· · · ξji+2
).

We continue to apply the isomorphism presented in (3.8) for g′0-modules in the current
case. For i ∈ {1, ..., n− 2}, we further have the following identity

Homg′0
(L0(µ),

i+2∧
V ∗ ⊗C L0(λ)) ∼= Homg′0

(L0(µ)⊗C gi, L0(λ)).

Or to say, for i ∈ {1, ..., n− 2},
Homg′0

(L0(µ),M−(λ)−(i+2)) ∼= Homg′0
(L0(µ)⊗C gi, L0(λ)).

Taking the eigenvalues of d into account, we get the first statement.
(2) Recall that as g′0-modules,

∧n−1 V ∗ ∼= V ∗ and
∧n−2 V ∗ ∼=

∧2 V ∗. Taking the eigen-
values of d into account, the second and the third statements follow from the first one.
�

Remark 3.8. The g0-module M+(µ) in the arguments of Lemmas 3.6 and 3.7 can be re-
garded as a U(g0)-submodule in U(g≥0) ⊗U(g0) L

0(µ). In general, for a g0-submodule L of
U(g≥0) by adjoint action, the tensor product module M+(µ) = L ⊗C L0(µ) can be regard-
ed as LU(g0) ⊗U(g0) L

0(µ), the latter of which is a g0-submodule of the induced module
U(g≥0) ⊗U(g0) L

0(µ). Similarly, M−(λ) can be regarded as a g0-submodule of the induced
module U(P)⊗U(g0) L

0(λ).

4. Projective covers

Keep the notations as the previous sections.
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4.1. Projective covers in Omin. By Lemma 3.4, {L(λ)}(λ,d)∈E form a complete set of
pairwise non-isomorphic simple objects in Omin. By abuse of notations, we don’t distinguish
E and the set of iso-classes of irreducible modules in Omin from now on. Especially, we make
an appointment that the simple object L(λ) with depth d will be written as L(λ) = L(λ)d.
We first have the following basic observations.

Lemma 4.1. (1) Suppose that M is a h̄-semisimple and locally finite U(g0)-module.
Then M is semisimple over g0.

(2) Suppose that M is a finite-dimensional U(P)-module generated by a maximal λ-
weighted vector v. Then M admits a unique irreducible quotient module, which is
isomorphic to L0(λ) as a g0-module, endowed with trivial g−1-action.

(3) Denote by O0
fin the category of h̄-semisimple and locally finite g0-modules. If V ∈ O0

fin

is a highest weight module, i.e., generated by a maximal vector of weight λ, then
V ∼= L0(λ).

(4) Any finite-dimensional irreducible g0-module L0(λ) for λ ∈ Λ+ is projective in O0
fin.

Proof. (1) For any nonzero v ∈M , V := U(g0)v is finite-dimensional. As M is h̄-semisimple,
so is V . We write V =

∑
λ∈h̄∗ Vλ. The finite-dimensionality of V entails, by some routine

arguments, that V can be decomposed into a direct sum of irreducible g0-modules which are
generated by maximal (weighted-) vectors in V =

∑
Vλ. Therefore, M is semisimple over

g0.
(2) Recall for µ, τ ∈ h̄∗, µ � τ means that µ− τ lies in Z≥0-span of Φ≥1 ∪Φ+

0 . Clearly M
admits one-dimensional weight space M ′

λ of the highest weight λ. Furthermore, any proper
submodule of M admits weight spaces less than λ. Hence M admits a unique maximal
submodule, thereby M as a U(P)-module, has a quotient isomorphic to L0(λ), which can be
viewed as an irreducible g0-module, endowed with a trivial g−1-action.

(3) This is a direct consequence of (1). Otherwise, V = V1 ⊕ V2 ⊕ · · · ⊕ Vs, s ≥ 2, and
V ′i s are all finite-dimensional simple g0-modules. Then V can not be generated by a single
maximal vector of weight λ.

(4) It follows from the statements (1). �

The following result asserts the existence of projective covers of simple modules in Omin.

Theorem 4.2. Each simple object L(λ) in Omin has a projective cover P (λ). Furthermore,
P (λ) admits a flag of standard modules, i.e., there is a sequence of submodules of P (λ)

P (λ) = P0 ⊃ P1 ⊃ · · · ⊃ Pl ⊃ Pl+1 = 0

such that Pi/Pi+1
∼= ∆(λi) for some λi, i = 0, 1, · · · , l.

Proof. Set I(λ) = U(g) ⊗U(g0) L
0(λ). Then I(λ) lies in Omin (see Definition 3.1). Our

arguments are divided into different steps.
(i) We first claim that I(λ) is a projective object in Omin.
Indeed, thanks to Lemma 4.1, L0(λ) is a projective g0-module in O0

fin. Note that the
induction functor U(g)⊗U(g0) − is left adjoint to the restriction functor. The claim follows.

(ii) We next show that I(λ) has a finite filtration such that each sub-quotient is isomorphic
to a standard module.

Note that I(λ) = U(g) ⊗U(P) (U(P) ⊗U(g0) L
0(λ)). Now we consider the U(P)-module

U(P)⊗U(g0)L
0(λ). As a vector space, U(P)⊗U(g0)L

0(λ) ∼=
∧

(g−1)⊗CL0(λ). Denote L j(λ) :=
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⊕n

i=j L i(λ), 0 ≤ j ≤ n. By a simple calculation, we can

check that each L ≥j(λ), 0 ≤ j ≤ n, is a U(P)-submodule of U(P)⊗U(g0)L
0(λ). In particular,

L ≥0(λ) = U(P)⊗U(g0) L
0(λ). Then we have the following subsequence of U(P)-modules.

U(P)⊗U(g0) L
0(λ) = L ≥0(λ) ⊇ L ≥1(λ) ⊇ · · · ⊇ L ≥(n−1)(λ) ⊇ L ≥n(λ) ⊇ 0, (4.1)

which satisfies that L ≥i(λ)/L ≥(i+1)(λ) ∼= L i(λ), 0 ≤ i ≤ n−1. Here the subquotient L i(λ)
has trivial g−1-action and is finite-dimensional.

Since g0 is isomorphic to gl(n) (resp. sl(n)+Cd or so(n)+Cd) for g being of type W (resp.
S̄ or H̄) and d acts on L i(λ) as a scalar λ(d) − i, Weyl’s completely reducible theorem is
available to L j(λ), which means that L j(λ) can be certainly decomposed into the following
sum of irreducible g0-modules:

L j(λ) =

nj⊕
k=1

L0
(
η

(j)
k

)
, (4.2)

where η
(j)
k ∈ Λ+ satisfies Homg0

(
L0
(
η

(j)
k

)
,
∧j g−1 ⊗ L0(λ)

)
6= 0.

So as a U(P)-module, there is a filtration of L ≥j(λ)

L ≥j(λ) =: L ≥j
1 (λ) ⊇ L ≥j

2 (λ) ⊇ · · · ⊇ L ≥j
nj

(λ) ⊇ L ≥j+1(λ) = L ≥j+1
1 (λ) (4.3)

such that L ≥j
k (λ)/L ≥j

k+1(λ) ∼= L0
(
η

(j)
k

)
and L ≥j

nj
(λ)/L ≥j+1

1 (λ) ∼= L0
(
η

(j)
nj

)
. From (4.1) and

(4.3), we then get the following U(P)-module filtration,

L ≥0(λ) ⊇ L ≥1(λ) ⊇ · · · ⊇ L ≥j
1 (λ) ⊇ L ≥j

2 (λ) ⊇ · · · ⊇ L ≥j
nj

(λ) ⊇

⊇ L ≥j+1
1 (λ) ⊇ L ≥j+1

2 (λ) ⊇ · · · ⊇ L ≥j+1
nj+1

(λ) ⊇ · · ·
· · · ⊇ L ≥n(λ) ⊇ 0, (4.4)

such that L ≥j
k (λ)/L ≥j

k+1(λ) ∼= L0
(
η

(j)
k

)
and L ≥j

nj
(λ)/L ≥j+1

1 (λ) ∼= L0
(
η

(j)
nj

)
for j = 0, 1, · · · , n.

Now set I≥jk (λ) = U(g)⊗U(P ) L ≥j
k (λ). Then we have the following U(g)-module filtration,

I≥0(λ) ⊇ I≥1
1 (λ) ⊇ · · · ⊇ I≥j1 (λ) ⊇ I≥j2 (λ) ⊇ · · · ⊇ I≥jnj (λ) ⊇ I≥j+1

1 (λ) ⊇ · · · ⊇ I≥n(λ) ⊇ 0.

(4.5)

By the construction, I≥jk (λ)/I≥jk+1(λ) is isomorphic to ∆
(
η

(j)
k

)
for 1 ≤ k < nj, and I≥jnj /I

≥j+1
1

is isomorphic to ∆
(
η(j)
nj

)
.

(iii) Thirdly, we prove that any direct summand of I(λ) admits a ∆-flag.
By the construction in (ii), we have got that I(λ) admits a ∆-flag of finite length, in

which the bottom one is a submodule ∆(γ) with γ = λ −
∑n

i=1 εi for g = W (n) or S̄(n),

and γ = λ − nδ for g = H̄(n) or CH(n). This means that γ ∈ Λ+ is the minimal one in
Wt(I(λ)) ∩ Λ+ (the set of the dominant and integral weights of I(λ) is in the same sense as
in the proof of the above lemma). Actually, one can prove the general result that if V ∈ Omin

admits a ∆-flag of finite length with the bottom standard module factor ∆(γ) satisfying that
γ is minimal in Wt(V ) ∩ Λ+, then any direct summand of V admits a ∆-flag. This can be
done by some standard inductive arguments on the lengths of ∆-flags (see [12, §3.7]).
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(iv) Fourthly, we prove that there exists an indecomposable projective module J0 such
that J0 → L(λ) is an epimorphism as U(g)-modules.

From the arguments in (ii), we know that as U(g)-modules,

I(λ)/I≥1
1 (λ) ∼= ∆(λ).

So there are natural surjective morphisms I(λ)
π2−→∆(λ)

π1−→L(λ). Denote π := π1 ◦ π2. So
we have

π : I(λ) � L(λ). (4.6)

Assume I(λ) =
⊕k

i=0 Ji (the finiteness of k is ensured by (ii) and (iii)). Then there is a
summand of I(λ), written as J0 without loss of generality, such that π|J0 is non-zero. We

denote π|J0 by π0. Because ∆(λ)
π1−→L(λ) is surjective, the projective property of J0 entails

that π0 can be lifted to a morphism π̄0 : J0 −→ ∆(λ).
(v) We claim that J0 is the projective cover of both ∆(λ) and L(λ).
By the above argument, we already have the following commutative diagram:

J0

π̄0

{{
π0

��
∆(λ)

π1 // L(λ).

In fact, π̄0 is surjective. Otherwise, the image of π̄0 will be contained in the maximal
submodule of ∆(λ), so π1 ◦ π̄0(J0) = 0 6= π0(J0), which contradicts to the above commutative
diagram.

What remains is to prove that π0 is essential. Consider A := HomOmin(I(λ), I(λ)). Then
we have an isomorphism of vector spaces: A ∼= HomU(g0)(L

0(λ), I(λ)|U(g0)). Because L0(λ)
is generated by vλ and I(λ)λ is finite-dimensional, dimA <∞. Hence, as a subalgebra of A,
A0 := HomOmin(J0, J0) is finite-dimensional. Then, by some standard arguments on Fitting
decomposition we can prove that π0 is indeed essential.

We can further have that J0 is also the projective cover of ∆(λ). This is because the
essential property of π̄0 can be ensured by that of π0.

As I(λ) admits a unique factor ∆(λ) in its ∆-flag, it is easy to deduce that the choice of
J0 is unique among all indecomposable direct summands of I(λ). �

Remark 4.3. (1) We can precisely construct such a P (λ) (=J0) as below. From π0 = π|J0

and the definition of the category Omin, it follows that J0 contains a vector v0 of the form
like

1⊗ v0
λ +

∑
i

ui ⊗ vi

where ui ∈ U(g≥1)g≥1U(g−1)g−1 with the weight of all ui ⊗ vi being λ. Set

J̃0 := U(g)v0.
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By the arguments as above, we actually have the following commutative diagram

J̃0
π̄0|J̃0

{{
π0|J̃0
��

∆(λ)
π1 // L(λ).

The essential property of π0 entails that J0 = J̃0.
(2) From the proof (v) of Theorem 4.2, we know that J0 admits a unique maximal sub-

module, which is exactly ker(π0). So an irreducible module in Omin is naturally the unique
irreducible quotient of its projective cover.

(3) Let λ ∈ Λ+. Set

Υ(λ) := {µ ∈ Λ+ | (
∧

g−1 ⊗ L0(λ) : L0(µ))g0 6= 0}, (4.7)

where (L : L0(µ))g0 denotes the multiplicity of L0(µ) in the composition series of the finite-
dimensional g0-module L. As in the proof (ii) of Theorem 4.2, we have the following decom-
position of as g′0-modules: ∧

g−1 ⊗C L0(λ) =
⊕
µ∈Υ(λ)

nλ,µL
0(µ).

Moreover, the following statements hold.

(1◦) nλ,µ = 0 for any µ /∈ Υ(λ).
(2◦) For a projective object Q ∈ Omin, denote by [Q : ∆(µ)] the multiplicity of ∆(µ) in its

∆-flag. Then [I(λ) : ∆(µ)] = nλ,µ for any µ ∈ Λ+. In particular, [I(λ) : ∆(λ)] = 1.
(3◦) Suppose λ −

∑n
i=k εi ∈ Λ+. Then [I(λ) : ∆(λ −

∑n
i=k εi)] 6= 0, 1 ≤ k ≤ n, for

g = W (n), S̄(n), In particular, [I(λ) : ∆(λ−
∑n

i=1 εi)] 6= 0 for g = W (n), S̄(n).

(4◦) [I(λ) : ∆(λ +
∑k

i=1 εi − (n − k)δ)] 6= 0 (k = 0, 1, ..., r) for g = H̄(n), CH(n). In

particular, [I(λ) : ∆(λ− nδ)] 6= 0 for g = H̄(n), CH(n).

These statements (1◦)-(4◦) will be used in the sequel. The statements (1◦)-(2◦) are direct
consequences of the theorem. For (3◦), we remind that Dk ∧ Dk+1 ∧ · · · ∧ Dn ⊗ v0

λ with

1 ≤ k ≤ n is a maximal weight vector of
∧n−k+1 g−1 ⊗C L0(λ) for g = W (n), S̄(n). As for

(4◦), we can check that Dk+1∧ · · · ∧Dr ∧Dr+1∧ · · · ∧Dn⊗ v0
λ is a g0-maximal weight vector.

Now the results in (3◦) and (4◦) hold by (3.4), (3.6) and the formula (4.2) in the proof of
Theorem 4.2.

4.2. The category Omin
f . Denote by Omin

f the full subcategory of Omin whose objects are

finitely-generated U(g)-modules in Omin. Then we have the following consequence based on
Theorem 4.2.

Theorem 4.4. The category Omin
f has enough projective objects, this is to say, for each

M ∈ Omin
f , there is a projective object P ∈ Omin

f and an epimorphism P �M .

Proof. Note that P (λ), ∆(λ), ∇(λ) and L(λ) are all in Omin
f . And it is still true that P (λ) is

a projective cover of L(λ) in Omin
f . For any nonzero object M ∈ Omin

f , M admits a filtration
of finite length

M = M0 ⊃M1 ⊃M2 ⊃ · · · ⊃M t−1 ⊃M t = 0 (4.8)
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such that M i−1/M i is isomorphic to a non-zero quotient of ∆(λi) for some L(λi) ∈ E,
i = 1, · · · , t. The least number t in all possible filtrations as in (4.8) is called the standard
length of M , denoted by l(M).

Set P =
⊕t

i=1 P (λi). Then by induction on t, there will be a covering morphism from P
onto M . The proof is completed. �

Proposition 4.5. In Omin
f , every indecomposable projective module is isomorphic to the

projective cover P (λ) of some irreducible module L(λ).

Proof. Suppose P is an indecomposable projective module in Omin
f . By the definition of

Omin
f , P has an irreducible quotient L(λ), which defines an epimorphism φ : P → L(λ). The

projective property of P yields the following commutative diagram

P
φ̄

zz
φ
��

P (λ)
π0 // L(λ).

Because π0 is essential, φ̄ must be surjective. Hence P (λ) is isomorphic to a direct summand
of P . The assumption of indecomposability of P entails that P is isomorphic to P (λ). �

5. Degenerate BGG reciprocity and typical functor

Maintain the previous notations and assumptions.

5.1. Thanks to Lemma 4.1, Brundan’s arguments in [7] are available to Omin.

Theorem 5.1. ([7, Theorem 4.4] and [21, Theorem 3.2]) Every simple object L(λ) = L(λ)d
in Omin

≥d′ admits a projective cover P≥d′(λ) with d ≥ d′, the head of P≥d′(λ) is isomorphic to
L(λ) = L(λ)d. Moreover,

(1) P≥d′(λ) admits a finite ∆-flag with ∆(λ) at the top.
(2) For m < l, the kernel of any surjection P≥m(λ)→ P≥l(λ) admits a finite ∆-flag with

subquotients of the form ∆(µ) for m ≤ bL0(µ)c < l.
(3) L(λ) admits a projective cover in Omin if and only if there exists l� 0 with P≥l(λ) =

P≥l−1(λ) = P≥l−2(λ) = · · · , in which case P (λ) = P≥l(λ).

In our case we have a stronger result (Theorem 4.2). This is to say, the projective covers
of L(λ) in Omin

≥d and Omin exist. But the above theorem can help us to give more information
on P (λ) in the next subsection.

5.2. By Theorem 5.1, every simple object L(λ) = L(λ)d′ in Omin
≥d admits a projective cover

P≥d(λ) with d′ ≥ d, the head of P≥d(λ) is isomorphic to L(λ) = L(λ)d′ . Theorem 5.1 along
with Theorem 4.2 implies that there exists l� 0 with P≥l(λ) = P≥l−1(λ) = P≥l−2(λ) = · · · ,
and P (λ) = P≥l(λ). Furthermore, by Theorem 5.1, any P≥l(λ) admits a ∆-flag. Denote by
[P≥l(λ) : ∆(µ)] the multiplicity of ∆(µ) in the ∆-flag of P≥l(λ). By [21, §4] or [7, Lemma
4.5], we have the following result.

Lemma 5.2. [P≥l(λ) : ∆(µ)] = (∇(µ) : L(λ)) for all L(λ) and L(µ) ∈ E as long as
dpt(L(λ)) ≥ l and dpt(L(µ)) ≥ l.
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5.3. Degenerate BGG reciprocity.

Theorem 5.3. In the category Omin, the following statement holds

[P (λ) : ∆(µ)] = (∇(µ) : L(λ))

for all L(λ), L(µ) ∈ E.

Proof. For any given L(λ) ∈ E, assume dpt(L(λ)) = d. By Theorem 5.1(3), there exists
some l� 0 such that P (λ) in Omin and P (λ) = P≥l(λ) = P≥l−i(λ) for all i ∈ Z≥0 (certainly,
l < d). For any L(µ) ∈ E, there exists some i0 ∈ Z≥0 such that dpt(L(µ)) ≥ l − i0. Since
l < d and i0 ∈ Z≥0, we have P (λ) = P≥l−i0(λ) and dpt(L(λ)) ≥ l− i0. Now applying Lemma
5.2 to P≥l−i0(λ), we have [P (λ) : ∆(µ)] = (∇(µ) : L(λ)). �

5.4. The Kac-module realization of co-standard modules. Set g+ := ⊕i≥0gi. The
following module is the so-called Kac-module

K(λ) = U(g)⊗U(g+) L
0(λ),

where L0(λ) is regarded as a g+-module with trivial g≥1-action. One can check that K(λ)
has a simple head, denoted by L(λ).

Following [18], we introduce the set Ω of the so-called Serganova atypical weights as follows.
If g = W (n), set

Ω = {aεi + εi+1 + · · ·+ εn | a ∈ C, 1 ≤ i ≤ n}.
If g = S̄(n), set

Ω = {aε1 + · · ·+ aεi−1 + bεi + (a+ 1)εi+1 + · · ·+ (a+ 1)εn | a, b ∈ C, 1 ≤ i ≤ n}.
If g = H̄(n), set

Ω = {−ε1 − · · · − εi−1 + bεi + aδ | a, b ∈ C, 1 ≤ i ≤ r}.

Definition 5.4. A weight λ is called Serganova atypical if λ belongs to Ω. Otherwise, λ is
called Serganova typical.

Keep it in mind that the notation Ξ = ε1 + ε2 + · · ·+ εn for g = W (n) or S̄(n).

Proposition 5.5. Let g = X(n), X ∈ {W, S̄, H̄}.
(1) If g = W (n), S̄(n), then ∇(λ) ∼= K(λ+ Ξ).
(2) If g = H̄(n), then ∇(λ) ∼= K(λ+ nδ).
(3) The Kac-module K(λ) is irreducible if and only if λ is Serganova typical.

Proof. The third statement follows from [18, Theorem 6.3]. We proceed to prove the first
two statements.

Note that g+ is a subalgebra of g with codimension n and g0̄ ⊆ g+. Let f : g+ →
gl(g/g+) = gl(g−1) be the map defined by f(a)(b + g+) = [a, b] + g+. Then it follows from
[4, Theorem 2.2] that U(g) : U(g+) is a free θ-Frobenius extension, where θ is the unique
automorphism of U(g+) defined by

θ(a) =

{
a+ µ(a) · 1, if a ∈ g+

0̄
,

(−1)na, if a ∈ g+
1̄
,

and µ : g+ → C is defined by µ(a) = trf(a). Thus by [15, §3], we have
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Homg+

(
U(g), θL

0(λ)
) ∼= U(g)⊗U(g+) L

0(λ) = K(λ), (5.1)

where θL
0(λ) is a g+-module with action twisted by θ, i.e., s ∗ v := θ(s)v for any s ∈ g+ and

v ∈ L0(λ).
Now let v0

λ be a maximal vector of L0(λ) corresponding to the standard Borel subalgebra
b+

0 . Since

θ(x) =

{
x, if x ∈ g≥1 ∩ g0̄,
(−1)nx, if x ∈ g≥1 ∩ g1̄,

θL
0(λ) is still an irreducible g+-module with trivial g≥1-action. Because µ(x) = 0 for x ∈ n+,

v0
λ is still a maximal vector of θL

0(λ). Let h ∈ h̄.
Case (i): g = W (n) or S̄(n).
Since f(h)(Di + g+) = [h,Di] + g+ = −εi(h)(Di) + g+, it follows that µ(h) = trf(h) =
−ε1(h)− ε2(h)− · · · − εn(h) = −Ξ(h). Consequently,

h ∗ vλ = θ(h)vλ = (h+ µ(h).1)vλ = (λ− Ξ)(h)vλ.

Hence by (5.1) we get that

∇(λ− Ξ) ∼= K(λ) for any λ ∈ Λ+.

Equivalently,
∇(λ) ∼= K(λ+ Ξ) for any λ ∈ Λ+. (5.2)

Case (ii): g = H̄(n).
Subcase (ii-1): n = 2r.
In this subcase,

f(h)(Di + g+) = (−εi − δ)(h)(Di + g+) for 1 ≤ i ≤ r,

f(h)(Di + g+) = (εi′ − δ)(h)(Di + g+) for r + 1 ≤ i ≤ 2r.

Subcase (ii-2): n = 2r + 1.
In this subcase,

f(h)(Di + g+) = (−εi − δ)(h)(Di + g+) for 1 ≤ i ≤ r,

f(h)(Di + g+) = (εi′ − δ)(h)(Di + g+) for r + 1 ≤ i ≤ 2r,

f(h)(Dn + g+) = −δ(h)(Dn + g+).

It follows that θL
0(λ) ∼= L0(λ− nδ). Hence, by (5.1), we get

∇(λ− nδ) ∼= K(λ), ∀λ ∈ Λ+.

Equivalently,
∇(λ) ∼= K(λ+ nδ), ∀λ ∈ Λ+.

�

Theorem 5.6. Let λ, µ ∈ E. Then the following statements hold.

(1) If g = W (n) or g = S̄(n), then

[P (λ) : ∆(µ)] = (K(µ+ Ξ) : L(λ)).

(2) If g = H̄(n), then

[P (λ) : ∆(µ)] = (K(µ+ nδ) : L(λ)).



REPRESENTATIONS OF LIE SUPERALGEBRAS OF CARTAN TYPE (I) 25

Proof. Theorem 5.3 and Proposition 5.5 can be applied to get these results. �

5.5. Typical blocks and the typical functor. We begin this subsection with the fol-
lowing consequence of indecomposable projective modules in Omin, which is well known for
Noetherian categories.

Lemma 5.7. Suppose M ∈ Omin. Then the following statements hold.

(1) For any L(λ) ∈ E,

(M : L(λ)) = dim HomOmin(P (λ),M).

(2) If there exists a nonzero vector v ∈M of weight λ, which is annihilated by g−1 + n+,
then (M : L(λ)) 6= 0.

Proof. (1) Suppose dpt(L(λ)) = t. If (M : L(λ)) 6= 0, then the multiplicity is less than the
dimension of Mt. By the definition of Omin, dimMt <∞. Thus, it is a routine way to prove
the lemma by induction on (M : L(λ)) <∞.

(2) Consider the submodule N generated by v in M . Note that by assumption the module
U(g0)v is a finite-dimensional highest weight module over U(g0), generated by the maximal
vector v. Therefore U(g0)v is isomorphic to L0(λ). Furthermore, the assumption of g−1-
annihilation of v implies that as a U(g)-module, N is a homomorphism image of ∆(λ).
Hence (M : L(λ)) 6= 0. �

In general, define Aλ := HomOmin(P (λ), P (λ)). Then Aλ is a finite-dimensional C-algebra,
whose dimension is exactly (P (λ) : L(λ)) by Lemma 5.7(1). Let Omin

λ stand for the block in
which L(λ) lies. In general, we can define a functor

Sλ := HomOmin(P (λ),−).

By Lemma 5.7(1) again, Sλ gives rise to a functor from Omin
λ to the category of finite-

dimensional Aλ-modules, the latter of which is denoted by Aλ-modf .
Denote by Λst the set of all Serganova typical weights. All dominant Serganova typical

weights can be clearly described. For example, if g = W (n), then Λ+
st = {λ =

∑n
i=1 aiεi |

ai − ai+1 ∈ Z≥0}\Ω+ with Ω+ := Ω ∩ Λ+.
Set Λt := {λ − Ξ | λ ∈ Λst} if g = W (n), S̄(n), and Λt := {λ − nδ | λ ∈ Λst} if

g = H̄(n). All weights lying in Λ+
t := Λ+

⋂
Λt are called typical. According to Theorem 5.3

and Proposition 5.5 (or Theorem 7.8), we have that for λ ∈ Λ+
t ,

P (λ) = ∆(λ). (5.3)

So when λ is typical, Aλ = EndOmin(∆(λ)), which is one-dimensional. The functor Sλ is
degenerated.

Proposition 5.8. Let λ be a typical weight and M be an object of Omin
λ . Then the functor Sλ

measures the multiplicity of L(λ) in M . This is to say, if (M : L(λ)) = m, then Sλ(M) = Cm,
the unique m-dimensional Aλ-module up to isomorphisms.

Proof. Note that Aλ is a one-dimensional algebra over C, which is isomorphic to C. The
isomorphism class of an object in Aλ-modf is only dependent on the dimension. So the
statement is a direct consequence of Lemma 5.7(1). �
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6. Blocks of Omin

6.1. Definition. Due to Theorem 4.2, we define an equivalent relation ∼ in E. For any
simple objects L(λ1), L(λ2) in E, we say that L(λ1) and L(λ2) are linked (or λ1 and λ2 are
linked) if there exists L(µ) ∈ E such that (P (µ) : L(λi)) 6= 0 for i = 1, 2. We say that
L(λ) ∼ L(µ) (or λ ∼ µ) if there exist a sequence L(λ) = L(λ1), L(λ2),......,L(λk) = L(µ) in
E such that L(λi) and L(λi+1) are linked (or λi and λi+1 are linked) for every i = 1, ..., k−1.

For a given element θ ∈ E/∼, we define a full subcategory Omin
θ of Omin whose objects

are those modules M only admitting composition factors from θ. We call Omin
θ a block

corresponding to θ.

Lemma 6.1. Any indecomposable object in Omin
f must belong to a certain Omin

θ .

Proof. Suppose that M is a nonzero indecomposable module belonging to Omin
f . As in the

proof of Theorem 4.4, there is a projective module P := ⊕ti=1P (λi) and an epimorphism
π : P �M. So

M = π(P (λ1)) + π(P (λ2)) + · · ·+ π(P (λt)). (6.1)

This ensures that we can define a non-zero submodule Mθ of M , which is a sum of submodules
belonging to Omin

θ .
If Mθ coincides with M , then we are done. Otherwise, we have a non-zero submodule

M ′
θ of M , which is the sum of all submodules belonging to the blocks outside Omin

θ . Then
M = Mθ + M ′

θ by (6.1). Furthermore, Mθ + M ′
θ is a direct sum through the definition of

blocks. This contradicts to the indecomposability of M . The proof is completed. �

Recall that all standard modules ∆(λ) and costandard modules ∇(λ) are indecomposable
and finitely generated. In addition, we have the following stronger results.

Lemma 6.2. Let (λ, d) ∈ E = Λ+ × Z. Then ∆(λ) and ∇(λ) are in the same block.

Proof. One can give a proof following [7, Lemma 3.5]. Here we give another one. By the
arguments in the proof of Proposition 5.5, as a vector space ∇(λ) can be identified with∧

g−1⊗−θL0(λ). Take a maximal vector v0 of L0(λ), and set v =
∧n
i=1Di⊗v0. By definition,

v has weight λ. Furthermore, v is annihilated by g−1 + n+. Hence by Lemma 5.7(2), ∇(λ)
shares the same composition factor L(λ) with ∆(λ). So this lemma is a direct consequence
of Lemmas 3.3 and 6.1. �

Remark 6.3. In [7], the definition of blocks was introduced via standard modules and co-
standard modules because of the loss of projective covers of simple objects. Lemma 6.2 shows
that our definition of blocks is compatible with the one introduced therein.

6.2. In the following, we discuss some block properties through investigating standard
modules. Recall that g admits a Z-gradation which gives rise to the Z-gradation U(g) =∑

i∈Z U(g)i. Similarly, we can talk about the gradation of U(g≥1) =
∑

i≥0 U(g≥1)i.

Consider ∆(µ) =
∑

i≥0 ∆(µ)i for ∆(µ)i = U(g≥1)i ⊗ L0(λ). Set ∆(µ)(j) =
∑

i≥j ∆(µ)i for

j ∈ N. Then as a g≥0-module, ∆(µ) has the natural descending filtration {∆(µ)(j)}j∈N.

Lemma 6.4. Let λ, µ ∈ Λ+. If vλ is a nonzero λ-weighted vector of ∆(µ) annihilated by n+,
then λ ∼ µ.
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Proof. By definition, ∆(µ) = U(g≥1) ⊗ L0(µ) as a vector space. For any n+-annihilating
vector vλ ∈ ∆(µ) of weight λ, if vλ lies in 1 ⊗ L0(µ), then λ coincides with µ, and the
statement of the lemma is obvious. In the following, we suppose vλ ∈ ∆(µ)j\∆(µ)j−1 for
some j > 0. Still set g+ = g≥0. Consider the U(g+)-submodule generated by vλ in ∆(µ),
denoted by M. Clearly, M has a proper submodule N := U(g≥1)g≥1U(g0)vλ. So we have a
U(g+)-module M := M/N. This M is generated by the image of vλ in M, denoted by v̄λ
which has weight λ and is annihilated by n+ ⊕ g≥1. So we have surjective morphisms

M�M�L0(λ),

where L0(λ) is an irreducible g+-module with highest weigh λ and trivial g≥1-action. Con-
sider the functor Γ = Homg≥0

(U(g),−) from the category of U(g+)-modules to the one of
U(g)-modules. Then Γ(L0(λ)) = ∇(λ).

In the following we focus on the subcategory Cg+ of U(g+)-module category which consists
of objects C satisfying: (i) it has Z-gradation, and finitely generated over U(g+), (ii) C
is locally finite over g0, i.e. for any v ∈ C the U(g0)-submodule generated by v is finite-
dimensional. Then all irreducible objects in Cg+ are finite-dimensional, and the isomorphism
classes of irreducible objects in Cg+ coincide with {L0(λ) | λ ∈ Λ+} (see the forthcoming
Lemma 6.5). The functor Γ is regarded as a functor from Cg+ to the Z-graded U(g)-module
category. Furthermore, by the same arguments as in the proof of Proposition 5.5, Γ(M) for
any M ∈ Cg+ , can be identified with

∧
g−1 ⊗ −θM where the meaning of −θM are the same

as in the paragraph around (5.1).
Note that ∆(µ) belongs to Cg+ , and is still an indecomposable U(g+)-module. The ir-

reducible U(g+)-module L0(λ) is already known as a composition factor of ∆(µ). Hence,
there is a series of irreducible U(g+)-modules L0(λi), i = 0, 1, . . . , s for λi ∈ Λ+ such that
λ0 = λ and λs = µ with Ext1

Cg+
(L0(λi−1), L0(λi)) 6= 0 or Ext1

Cg+
(L0(λi), L

0(λi−1)) 6= 0 for

i = 1, . . . , s (see the forthcoming Lemma 6.6). Note that Γ is an exact functor. Under the
former situation, for example, we claim that

Ext1
U(g)(∇(λi−1),∇(λi)) 6= 0. (6.2)

Actually, taking in Cg+ a non-split extension

0 −→ L0(λi)
ϕ−→N ψ−→L0(λi−1) −→ 0, (6.3)

one has a short exact sequence over U(g):

0 −→ ∇(λi)
Γ(ϕ)−→Γ(N)

Γ(ψ)−→∇(λi−1) −→ 0.

If this one is split, i.e. there exists a U(g)-module homomorphism π : ∇(λi−1) −→ Γ(N)
such that Γ(ψ) ◦ π = id∇(λi−1), then one in particular has Γ(ψ) ◦ π|1⊗L0(λi−1) = id1⊗L0(λi−1).
Notice that Γ(ψ)−1(1⊗L0(λi−1)) = 1⊗N . Hence π maps 1⊗L0(λi−1) to 1⊗N . This implies
that the extension (6.3) is split, which contradicts to the assumption. The claim (6.2) is
proven.

Hence as U(g)-modules, the indecomposable module ∇(λ) must lie in the same block as
the indecomposable module ∇(µ) does.

Thanks to Lemma 6.1, it follows that λ ∼ µ. The proof is completed. �
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Lemma 6.5. Let M be an irreducible module in the category Cg+ which is defined in the proof
above. Then M is finite-dimensional, which is actually an irreducible g0-module annihilated
by g≥1.

Proof. At first, U(g+) has the Z-graded structure defined by the Z-gradation of g+. That
is, U(g+) =

⊕
i∈Z U(g+)i with all U(g+)i being g0-modules. Furthermore, U(g+)≥k :=⊕

i≥k U(g+)i is a regular U(g+)-module.
For M =

∑
i∈ZMi, we suppose that M0 is nonzero without loss of generality. Take a

nonzero vector v ∈M0. By assumption, V0 = U(g0)v is a finite-dimensional subspace in M0.
By the irreducibility of M , we have M =

∑
i≥0 Vi where Vi = U(g+)iV0. Furthermore, set

M (k) :=
∑
i≥k

Vi.

Then all M (k) are U(g+)-submodules of M and M/M (1) is finite-dimensional. The irre-
ducibility of M yields that for any k, M (k) either coincides with M itself or equals to zero.
Combining with the filtration M = M (0) ⊃ M (1) ⊃ M (2) ⊃ · · · along with the fact that g≥1

is nilpotent, we have that if M = M (1), by Nakayama Lemma M = 0. It’s a contradiction.
So it must happen that M (1) = 0. Note that M = M/M (1) is finite-dimensional, which
actually coincides with V0. Consequently, M is irreducible over g0, annihilated by g≥1. �

Lemma 6.6. In Cg+, any two composition factors of ∆(µ) lie in a connected Ext-quiver.
This is to say, if L0(λ), L0(λ′) are two composition factors of ∆(µ), then there are a series
of different λi, i = 0, 1, . . . , s with λ0 = λ and λs = λ′ such that Ext 1

Cg+
(λi−1, λi) 6= 0 or

Ext 1
Cg+

(λi, λi−1) 6= 0 for all i = 1, . . . , s.

Proof. We only need to show the lemma for the fixed λ′ = µ because ∆(µ) has a simple
head isomorphic to L0(µ) in Cg+ . For this we write ∆(µ) =

⊕
i≥0 ∆(µ)i which has a natural

Z-grading arising from the gradation of g+ =
∑

i≥0 gi, furthermore ∆(µ) admits a U(g+)-

module filtration {∆(µ)(k) :=
⊕

i≥k ∆(µ)i | k ∈ Z≥0}.
By construction, there is k ≥ 1 such that L0(λ) is a subquotient of ∆(µ)(k). We further

suppose without loss of generality, that L0(λ) ∼= M/N for M,N ∈ Cg+ satisfying M,N ⊆
∆(µ)(k).

Consider ∆(µ) := ∆(µ)/∆(µ)(k+1) which is a finite-dimensional and indecomposable object

in Cg+ . Clearly ∆(µ) also has a head isomorphic to L0(µ). Set φ : ∆(µ) → ∆(µ) to be the

canonical surjective homomorphism in Cg+ . Then L0(λ) ∼= φ−1(φ(M))/φ−1(φ(N)) which is

still a composition factor of ∆(µ). Here φ−1(•) stands for the preimage in ∆(µ) of •.
By the same arguments as in the finite-dimensional module category, it can be shown that

L0(λ) and L0(µ) lie in a connected Ext-quiver in Cg+ .
The proof is completed. �

6.3. Recall Ξ = ε1 + ε2 + · · ·+ εn. We have the following elementary observation, the proof
of which follows directly from the forthcoming Lemma 9.7 in Appendix B.

Lemma 6.7. Let g = S̄(n). Then the following statements hold.

(1) For l ∈ C, we have lΞ ∼ (l + Z)Ξ.
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(2) For λ = bΞ + cεn, b ∈ C, c ∈ Z≤0, we have λ ∼ bΞ.
(3) For λ = aε1 + bΞ, a ∈ Z≥0, b ∈ C, we have λ ∼ bΞ.

The following result is crucial for determining the blocks for the Lie superalgebra S̄(n) of
special type.

Proposition 6.8. Let g = S̄(n) and λ = λ1ε1 + λ2ε2 + · · ·+ λnεn ∈ Λ+. Then λ ∼ λ1Ξ, i.e.,
L(λ) belongs to the same block as that L(λ1Ξ) lies in.

Proof. We begin with the following Claim.
Claim: if there exists some i with 2 ≤ i ≤ n− 2 such that λi > λi+1 and λn−1 ≥ λn + 1,

then
λ ∼ λ+ εi+1. (6.4)

Indeed, for any j with 2 ≤ j ≤ n− 1, ξ1ξ2 · · · ξjDn⊗ v0
λ is an n+-maximal weight vector of

weight λ+ε1+ε2+· · ·+εj−εn. By Lemma 6.4, we know that L(λ) and L(λ+ε1+ε2+· · ·+εj−εn)
lie in the same block. i.e., λ ∼ λ+ ε1 + ε2 + · · ·+ εj − εn. In particular,

λ ∼ λ+ ε1 + ε2 + · · ·+ εn−1 − εn. (6.5)

By the condition of the claim, λ− ε1− ε2−· · ·− εi+ εn ∈ Λ+, so λ ∼ λ− ε1− ε2−· · ·− εi+ εn
and λ− ε1 − ε2 − · · · − εi + εn ∼ λ+ εi+1, it follows that λ ∼ λ+ εi+1. The claim follows.

With the above claim, we carry on the proof by taking all possibilities of λ1 into the
arguments.

Case 1: λ1 = λ2.
In this case, set µ = λ+ ε1 + ε2 + · · ·+ εn−1 − εn = (λ1 + 1)ε1 + (λ2 + 1)ε2 + · · ·+ (λn−1 +

1)εn−1 + (λn− 1)εn. Then λ ∼ µ by (6.5). Moreover, we can use (6.4) successively to obtain
µ ∼ (λ1 + 1)(ε1 + ε2 + · · ·+ εn−1) + (λn − 1)εn. Hence λ ∼ µ ∼ (λ1 + 1)Ξ ∼ λ1Ξ by Lemma
6.7(1) and (2), as desired.

Case 2: λ1 6= λ2.
By using similar arguments as in Case 1, without loss of generality, we can assume

λ1 > λ2 = λ3 = · · · = λn−1 � λn.

Subcase (i): λ1 − λ2 is even.
Recall that ∆(λ) contains a g0-submodule S̄(n)1 ⊗C L0(λ), and S̄(n)1

∼= L0(ε1 + ε2 − εn)
as g0-modules. Take w1 = (1n) ∈ Sn (the symmetric group on n letters), which is the Weyl
group of g0. Set

ν1 := λ+
1

2
(λ1 − λ2)w1(ε1 + ε2 − εn)

=
1

2
(λ1 + λ2)ε1 +

1

2
(λ1 + λ2)ε2 + λ3ε3 + · · ·+ λn−1εn−1 +

(
λn +

1

2
(λ1 − λ2)

)
εn ∈ Λ+.

It follows from [14, Theorem 2.10] and Lemma 6.4 that λ ∼ ν1. Furthermore, ν1 ∼ 1
2
(λ1 +

λ2)Ξ ∼ λ1Ξ by the claim in Case 1 and Lemma 6.7(1). Consequently, λ ∼ λ1Ξ.
Subcase (ii): λ1 − λ2 is odd.
In this case, take w2 = (13)(2n) ∈ Sn. Set

ν2 := (λ+ 2(ε1 + ε2 − εn)) + w2(ε1 + ε2 − εn)

= (λ1 + 2)ε1 + (λ2 + 1)ε2 + (λ3 + 1)ε3 + λ4ε4 · · ·+ λn−1εn−1 + (λn − 1)εn ∈ Λ+.
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It follows from [14, Theorem 2.10] and Lemma 6.4 that λ ∼ ν2. Now, (λ1 + 2)− (λ2 + 1) is
even in ν2. The claim in Subcase (i) implies that ν2 ∼ (λ1 + 2)Ξ ∼ λ1Ξ. Hence, we also
have λ ∼ λ1Ξ, as desired. We complete the proof. �

6.4. Continue to investigate the standard modules. Denote by ∆(λ)X the standard X(n)-
module for X ∈ {W, S̄, H̄, CH}. i.e. ∆(λ)X = U(X(n))⊗U(P )L

0(λ). Similarly, we can define
Omin
X , I(λ)X , L(λ)X , EX and Υ(λ)X . In this subsection, we establish some relation between

standard modules for CH(n) and H̄(n). The following preliminary result is important for
us.

Lemma 6.9. Let φ ∈ HomH̄(n)(∆(λ)CH(n),∆(λ)CH(n)) with φ2 = φ. If φ|∆(λ)H̄(n)
= 0, then

φ = 0.

Proof. Recall that CH(n) = H̄(n)⊕ CDH(ξ1 · · · ξn). It suffices to show that

φ((DH(ξ1 · · · ξn))k ⊗ v) = 0, ∀ k ∈ N+, v ∈ L0(λ). (6.6)

We use induction on k to show (6.6).
Since φ keeps the grading and weight spaces invariant, we can assume

φ(DH(ξ1 · · · ξn)⊗ v0
λ) = cDH(ξ1 · · · ξn)⊗ v0

λ +
s∑
i=1

ui ⊗ vi,

where c ∈ C, ui ∈ U(H̄(n)≥1), vi ∈ L0(λ), 1 ≤ i ≤ s, and all v′is are linearly independent.
On one hand,

φ2(DH(ξ1 · · · ξn)⊗ v0
λ) = φ(cDH(ξ1 · · · ξn)⊗ v0

λ +
s∑
i=1

ui ⊗ vi)

= cφ(DH(ξ1 · · · ξn)⊗ v0
λ)

= c2DH(ξ1 · · · ξn)⊗ v0
λ +

s∑
i=1

cui ⊗ vi.

On the other hand, we have

φ2(DH(ξ1 · · · ξn)⊗ v0
λ) = φ(DH(ξ1 · · · ξn)⊗ v0

λ) = cDH(ξ1 · · · ξn)⊗ v0
λ +

s∑
i=1

ui ⊗ vi.

Hence, c = 1, or c = 0 and
s∑
i=1

ui ⊗ vi = 0. We claim that the latter happens. Indeed, if

c = 1, then for any 1 ≤ j ≤ n, we have

φ(Dj(DH(ξ1 · · · ξn)⊗v0
λ)) = Djφ(DH(ξ1 · · · ξn)⊗v0

λ) = (−1)j−1DH(ξ1 · · · ξ̂j · · · ξn)⊗v0
λ+

s∑
i=1

[Dj, ui]⊗vi.

However,

φ(Dj(DH(ξ1 · · · ξn)⊗ v0
λ)) = (−1)j−1φ(DH(ξ1 · · · ξ̂j · · · ξn)⊗ v0

λ) = 0.
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We get a contradiction. Hence, c = 0 and
s∑
i=1

ui ⊗ vi = 0, i.e., φ(DH(ξ1 · · · ξn) ⊗ v0
λ) = 0.

Since L0(λ) = U(n−)v0
λ, it follows that

φ(DH(ξ1 · · · ξn)⊗ L0(λ))

=φ(DH(ξ1 · · · ξn)U(n−)⊗ v0
λ)

=φ(U(n−)DH(ξ1 · · · ξn)⊗ v0
λ)

=U(n−)φ(DH(ξ1 · · · ξn)⊗ v0
λ)

=0,

i.e., (6.6) holds for k = 1.
Now suppose φ((DH(ξ1 · · · ξn)l ⊗ L0(λ)) = 0 for l < k. We need to show that

φ((DH(ξ1 · · · ξn)k ⊗ L0(λ)) = 0.

Since φ keeps the grading and weight spaces invariant, we can assume

φ((DH(ξ1 · · · ξn))k ⊗ v0
λ) = a(DH(ξ1 · · · ξn))k ⊗ v0

λ +
t∑
i=1

wi ⊗ νi,

where a ∈ C, wi ∈ U(H̄(n)≥1)B, νi ∈ L0(λ), 1 ≤ i ≤ t, B = spanC{(DH(ξ1 · · · ξn))i | 0 ≤ i ≤
k − 1}, and all ν ′is, 1 ≤ i ≤ t, are linearly independent. On one hand,

φ2((DH(ξ1 · · · ξn))k ⊗ v0
λ) = φ(a(DH(ξ1 · · · ξn))k ⊗ v0

λ +
t∑
i=1

wi ⊗ νi)

= aφ((DH(ξ1 · · · ξn))k ⊗ v0
λ)

= a2(DH(ξ1 · · · ξn))k ⊗ v0
λ +

t∑
i=1

awi ⊗ νi.

On the other hand, we have

φ2((DH(ξ1 · · · ξn))k ⊗ v0
λ) = φ((DH(ξ1 · · · ξn))k ⊗ v0

λ) = a(DH(ξ1 · · · ξn))k ⊗ v0
λ +

t∑
i=1

wi ⊗ νi.

Similar arguments as in the case k = 1 yield that a = 0 and
t∑
i=1

wi⊗ νi = 0, and furthermore

φ((DH(ξ1 · · · ξn))k ⊗ v) = 0, i.e., (6.6) holds for k. Consequently, φ = 0, as desired. �

As a consequence of Lemma 6.9, we have the following result.

Corollary 6.10. As an H̄(n)-module, ∆(λ)CH(n) is indecomposable.

Proof. Let f be an element of HomH̄(n)(∆(λ)CH(n),∆(λ)CH(n)) with f 2 = f . Then f |∆(λ)H̄(n)
=

0 or 1 due to the indecomposability of ∆(λ)H̄(n) as an H̄(n)-module. If f |∆(λ)H̄(n)
= 0, then

f = 0 by Lemma 6.9. If f |∆(λ)H̄(n)
= 1, then (id−f)|∆(λ)H̄(n)

= 0 and (id−f)2 = id−2f+f 2 =

(id−f). It also follows from Lemma 6.9 that (id−f)|∆(λ)CH(n)
= 0, i.e., f = id. This implies
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that 0 and id are the only two idempotents in HomH̄(n)(∆(λ)CH(n),∆(λ)CH(n)). Then it

follows from [1, Proposition 5.10] that ∆(λ)CH(n) is an indecomposable H̄(n)-module. �

6.5. Revisit to I(λ).

Proposition 6.11. Let g = W (n), S̄(n), H̄(n), CH(n). Then all composition factors in I(λ)
lie in the same block.

Proof. Note that I(λ) =
⊕

µ∈Υ(λ) P (µ)⊕aλµ , here aλµ ∈ Z>0. Each P (µ) (µ ∈ Υ(λ)) is

actually the projective cover of both L(µ) and ∆(µ). In order to prove the proposition, it
suffices by the definition of blocks to prove

µ ∼ λ, ∀µ ∈ Υ(λ). (6.7)

In the following we will prove the proposition for the case of W (n) by verifying the formula
(6.7) (consequently, the case of S̄(n) is easily solved). For the case CH(n), we will prove the
proposition by partially verifing the formula (6.7) and accomplishing the remaining cases by
using Corollary 6.10. So the arguments will be divided into cases.

(i) Assume g = W (n). Take µ ∈ Υ(λ). For ∆(µ) = U(g)⊗U(P)L
0(µ), keeping the notations

in Lemma 3.6, we see that ∆(µ) contains a g0-submodule M+(µ) (see Remark 3.8). From
Lemma 3.6(3), there is a g0-maximal vector mλ in M+(µ), i.e. n+mλ = 0, Hmλ = λ(H)mλ

for any H ∈ h̄. By Lemma 6.4 we know µ ∼ λ, as desired.
(ii) Assume g = S̄(n). For any µ ∈ Υ(λ), it follows from Lemma 6.7, Proposition 6.8 and

Remar 4.3(3) that µ ∼ λ. Hence, the assertion for g = S̄(n) is proven.
(iii) Assume g = CH(n). By the definition of Υ(λ) (see (4.7)), we can write Υ(λ) =⋃n
i=0 Υi(λ) with

Υi(λ) = {µ ∈ Υ(λ) | (
∧i

g−1 ⊗C L0(λ) : L0(µ))g0 6= 0}. (6.8)

By the same arguments as (i), it follows from Lemmas 3.7 and 6.4 that for µ ∈ Υ(λ):

µ ∼ λ− 2δ if µ ∈
⋃
i≥3

Υi(λ); (6.9)

µ− (n− 2)δ ∼ λ− 2δ if µ ∈ Υ1(λ); (6.10)

µ− (n− 4)δ ∼ λ− 2δ if µ ∈ Υ2(λ). (6.11)

As all standard modules are indecomposable, the above formula (6.9) implies that all ∆(µ)
for µ ∈

⋃
i≥3 Υi(λ) lie in the same block as L(λ−2δ) does. Especially, by Remark 4.3(3)(4◦),

We have the following result:

L(λ+ ε1 + · · ·+ εk − (n− k)δ) and L(λ− 2δ) lie in the same block.

Furthermore, we divide the following arguments into two different cases.
(Case 1) For g = CH(n) with n = 2r. In this case, r ≥ 3 by the assumption that n ≥ 5.
Claim 1: L(λ) and L(λ +

∑r
i=1 εi + rδ) lie in the same block. Let k = r and k = 0, by

the above result we know that both L(λ+
∑r

i=1 εi− rδ) and L(λ−nδ) lie in the same block.
Due to the arbitrariness of λ, one can change λ to λ− nδ, then the claim follows.

Claim 2: L(λ) and L(λ+
∑r

i=1 εi + (r− 2)δ) share one block. This claim can be checked
by the fact that DH(Πr

i=1ξi)⊗ v0
λ is a g0-maximal vector and Lemma 6.4.
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By the arbitrariness of λ (or by translating λ to λ− (
∑r

i=1 εi + (r − 2)δ) in the previous
claims), we have that L(λ) and L(λ ± 2δ) lie in the same block. Furthermore, we see that
L(λ), L(λ± 2δ) and L(λ± nδ) lie in the same block.

(Case 2) For g = CH(n) with n = 2r + 1, by a direct verification, the standard module
∆(λ) admits g0-maximal vectors DH(

∏r
i=1 ξi) ⊗ v0

λ and DH((
∏r

i=1 ξi)ξ2r+1) ⊗ v0
λ. Hence by

Lemma 6.4 we get L(λ), L(λ+
∑r

i=1 εi + (r − 2)δ) and L(λ+
∑r

i=1 εi + (r − 1)δ) share the
same block. By the arbitrariness of λ again (or by translating λ to λ− (

∑r
i=1 εi)+(2−r)δ in

the above), we have that in this case, L(λ) and L(λ±δ) lie in the same block. Consequently,
L(λ), L(λ± 2δ) and L(λ± nδ) share the same block.

With the above arguments, we can directly deduce that not only for µ ∈ Υ≥3(λ) but also
for µ ∈ Υ1(λ) ∪ Υ2(λ), all L(µ) lie in the same block as L(λ) does. Hence we indeed prove
that all composition factors in ∆(µ) for µ ∈ Υ(λ), thereby all composition factors in I(λ),
lie in the same block. We have proven the proposition in this case.

(iv) Assume g = H̄(n). Recall that I(λ)H̄(n) has a ∆(µ)H̄(n)-filtration and L(µ)H̄(n) is the
head of ∆(µ)H̄(n). By Lemma 6.1 and the indecomposability of ∆(µ)H̄(n), we need to show
that all L(µ)H̄(n), µ ∈ Υ(λ)H̄(n), belong to the same block.

Recall that both H̄(n) and CH(n) have the same 0-graded spaces so(n) ⊕ Cd. The pa-
rameters of isomorphism classes of irreducible modules for Omin

CH(n) and for Omin
H̄(n) are the

same, arising from {L0(λ) | λ ∈ Λ+} for g0. Since H̄(n) and CH(n) has the same −1-graded
spaces, Υ(λ)H̄(n) = Υ(λ)CH(n).

By the arguments in (iii), we have known that all ∆(µ)CH(n), µ ∈ Υ(λ)H̄(n), lie in the same

block in Omin
CH(n) as L(λ)CH(n) does. Hence all H̄(n)-modules ∆(µ)CH(n), µ ∈ Υ(λ)CH(n),

lie in the same block of Omin
H̄(n). Because ∆(µ)CH(n) admits an H̄(n)-irreducible quotient

L(µ)H̄(n), By Lemma 6.1 and Corollary 6.10, all L(µ)H̄(n), µ ∈ Υ(λ)H̄(n), belong to the same
block. So the desired result follows.

Summing up, we finish the proof. �

When g = H̄(2r), set ℵr ∈ {0, 1} satisfying ℵr ≡ r mod 2 for g = H̄(2r). Then we put
forward some additional new notations{

ΘB := ε1 + · · ·+ εr−1 + εr, for H(2r + 1).

ΘD,ℵr := ε1 + · · ·+ εr−1 + εr + ℵrδ, for H(2r).

(along with already appointing Ξ :=
∑n

i=1 εi, for g = X(n), with X ∈ {W, S̄}).
Set

δ̃ :=

{
δ, for H(2r + 1);

2δ, for H(2r).

Then we have the following corollary.

Corollary 6.12. For any L(λ) ∈ E, the following statements hold.

(1) When g = X(n) with X ∈ {W, S̄, H̄}. If there exists −β ∈ Wt(
∧

(g−1)) such that
λ− β ∈ Υ(λ), then L(λ) and L(λ− β) share the same block.

(2) When g = X(n) with X ∈ {W, S̄}, then L(λ) and L(λ +
∑n

i=k εi), 1 ≤ k ≤ n, lie in
the same block. In particular, L(λ) and L(λ− Ξ) lie in the same block.

(3) When g = H̄(n), then L(λ) and L(λ− δ̃) lie in the same block.
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(4) When g = H̄(2r+ 1), then L(λ) and L(λ+
∑k

i=1 εi− (n− k)δ) lie in the same block.
In particular, L(λ) and L(λ+

∑r
i=1 εi) lie in the same block.

(5) When g = H̄(2r), then L(λ) and L(λ−ΘD,ℵr) lie in the same block (ℵr ∈ {0, 1} with
ℵr ≡ r mod 2).

Proof. (1) This is a direct consequence of the proof for Proposition 6.11.
(2) This is the consequence of Remark 4.3(3)(3◦) and the result in (1).
(3) When n = 2r (resp. n = 2r + 1), one can check it by the same arguments as the

process for proof of Proposition 6.11(iii) for case 1(resp. case 2).

(4)-(5) By Remark 4.3 (3)(4◦), I(λ) admits the composition factor L(λ+
∑k

i=1 εi−(n−k)δ).

So L(λ) and L(λ+
∑k

i=1 εi− (n−k)δ) lie in the same block due to Proposition 6.11. Thanks
to (3), we further have that L(λ) and L(λ +

∑r
i=1 εi) lie in the same block for H(2r + 1)

and H(2r) with even r. Similarly, for H(2r) with odd r, we can check that L(λ) and
L(λ+

∑r
i=1 εi + δ) lie in the same block. �

6.6. Depth Lemma and parity Lemma. We will analyse the relation of depths for sim-
ple objects in a block. Suppose that L(λ) is given, and dpt(L(λ)) = d. Then by the
construction of P (λ) (see Remark 4.3(1)), the depth of each composition factor is conse-
quently determined. Conversely, for any given composition factor L(µ′) = L(µ′)d′ in P (λ′),
the depth of P (λ′) (thereby the depth of L(λ′)) is definitely determined by the predefined
depth of L(µ′). From this fact and the definition of blocks we can easily have the following
depth lemma. We firstly introduce some new notations before the following lemma. Let
µ = µ1ε1 + µ2ε2 + · · · + µnεn be an element of h̄∗ for g = X(n) with X ∈ {W, S̄}, and
µ = µ1ε1 + µ2ε2 + · · ·+ µrεr + cδ for g = H̄(n). We define the length of µ, which is denoted
by `(µ), as below

`(µ) =

{∑n
i=1 µi, for g = X(n), with X ∈ {W, S̄};

c for g = H̄(n).
(6.12)

Obviously,
`(λ± µ) = `(λ)± `(µ).

Lemma 6.13. (Depth Lemma)
(1) If L(µ) and L(ν) are in the same block, then dpt(L(µ))− dpt(L(ν)) = `(µ− ν).
(2) For any λ ∈ Λ+, and different d1, d2 ∈ Z, L(λ)d1 and L(λ)d2 do not lie in the same block.

Proof. (1) The proof is divided into the following steps.
Claim I: If (∆(λ) : L(µ)) 6= 0 and (∆(λ) : L(ν)) 6= 0, then

dpt(L(µ))− dpt(L(ν)) = `(µ− ν). (6.13)

Set bL0(λ)c = d. So ∆(λ), L(λ) are all of depth d. Recall that ∆(λ) = U(g)⊗U(P ) L
0(λ) ∼=

U(g≥1)⊗C L0(λ) as a vector space. So if v ∈ U(g≥1)i ⊗C L0(λ) is a homogeneous element of
∆(λ), then degree(v) = d+ i.

Now let L(µ) be an irreducible U(g)-module with (∆(λ) : L(µ)) 6= 0. Then there exists an
inclusion of submodule ∆(λ) ⊇ M ⊇ N ⊇ 0 such that M/N ∼= L(µ). Let vµ ∈ M/N be a
maximal vector of L(µ). If vµ ∈ U(g≥1)i ⊗C L0(λ), then

dpt(L(µ)) = i+ d = dpt(L(λ)) + `(µ− λ). (6.14)
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Similarly, we have

dpt(L(ν)) = dpt(L(λ)) + `(ν − λ). (6.15)

Consequently, the equality (6.13) holds due to `(µ−λ)− `(ν−λ) = `(µ−ν). The first claim
is proven.

Claim II: If (P (λ) : L(µ)) 6= 0 and (P (λ) : L(ν)) 6= 0, then dpt(L(µ)) − dpt(L(ν)) =
`(µ− ν).

Since P (λ) is a direct summand of I(λ) (see Theorem 4.2), it suffices to prove this claim for
I(λ), i.e. If (I(λ) : L(µ)) 6= 0 and (I(λ) : L(ν)) 6= 0, then dpt(L(µ))− dpt(L(ν)) = `(µ− ν).
Set dpt(L(λ)) = d. Assume that

I(λ) = M1 ⊇M2 ⊇M3 ⊇ · · · ⊇Ml ⊇ 0

is the descending sequence such that Mi/Mi+1
∼= ∆(λi) shown in Theorem 4.2. Then we

have that `(∆(λi)) = d + `(λi − λ). Denote by s = max{i | L(µ) is a subquotient of Mi},
t = max{j | L(ν) is a subquotient of Mj}.

If s = t, then there exists the following down sequence

Ms ⊇ N1 ⊇ N2 ⊇Ms+1

such that N1/N2
∼= L(µ). because

N1/N2 ↪→Ms/N2
∼= Ms/Ms+1�N2/Ms+1

∼= ∆(λs)�N2/Ms+1,

L(µ) can be realized as a sub-quotient of ∆(λs)d+`(λs−λ). Meanwhile, L(ν) can be also re-
alized as a sub-quotient of ∆(λs)d+`(λs−λ). Thus L(µ) and L(ν) are two sub-quotients of
∆(λs)d+`(λs−λ). Then Claim I implies Claim II.

If s 6= t, assume s < t without loss of generality. Then by the above discuss, L(µ) (resp.
L(ν)) is a sub-quotient of ∆(λs)d+`(λs−λ) (resp. ∆(λt)d+`(λt−λ)). So by the equality (6.14) we
have

dpt(L(µ)) = d+ `(λs − λ) + `(µ− λs) (6.16)

dpt(L(ν)) = d+ `(λt − λ) + `(ν − λt) (6.17)

Then the desired assertion follows from (6.16)-(6.17).
Now the statement (1) of the theorem holds due to the definition of blocks in Subsection

6.1.
For (2), this is a direct consequence of (1). �

Because L(λ) (resp. ∆(λ), P (λ)) is generated by v0
λ, which is a maximal vector of L0(λ),

the super structure of L(λ) (resp. ∆(λ), P (λ)) is completely determined by the predefined
parity |v0

λ| of v0
λ. By abuse of the notions and notations with the context being clear, we

say that L(λ) is of parity |v0
λ|, denote pty(L(λ)) := |v0

λ|, or write L(λ) = L(λ)ι for ι = |v0
λ|.

Meanwhile, we have the following parity Lemma.

Lemma 6.14. (Parity Lemma) Keep the notations as above. The following statements
hold.

(1) If L(µ) and L(ν) are in the same block, then |v0
µ|−|v0

ν | = `(µ− ν) where `(µ− ν) ∈ Z2

denotes the parity of `(µ− ν).



36 FEI-FEI DUAN, BIN SHU AND YU-FENG YAO

(2) For any λ ∈ Λ+, and different parities ι1, ι2 ∈ Z2, L(λ)ι1 and L(λ)ι2 do not lie in the
same block.

Proof. By arguments similar to the proof of Lemma 6.13, the lemma is readily justified. �

6.7. Blocks of Omin for g = W (n) or S̄(n). In this subsection, we focus our concern on
W (n) and S̄(n). Recall the notation Ξ =

∑n
i=1 εi. Let λ = λ1ε1 + λ2ε2 + · · · + λnεn be an

element of Λ+. Write λ in the following form

λ = λnΞ + (λ1 − λn)ε1 + · · ·+ (λn−1 − λn)εn−1

= λn(ε1 + ε2 + · · ·+ εn) + α, with λn ∈ C, α ∈ Q+ := (
n−1∑
i=1

Z≥0εi) ∩ Λ+.

(6.18)

Denote by Q the root lattice of g with respect to the root system Φ(g) (see §1.3). Then set

Omin(c, i) = {L(λ) ∈ E | λ ∈ (c+ Z)Ξ +Q, dpt(L(cΞ)) = i;

dpt(L(λ)) = i+ `(λ− cΞ)}.
It further splits into

Omin(c, i) = Omin(c, 0̄, i) ∪ Omin(c, 1̄, i)

where

Omin(c, ι, i) = {L(λ) ∈ Omin(c, i) | pty(L(cΞ)) = ι;

pty(L(λ)) = ι+ `(λ− cΞ)}

for ι ∈ Z2. Here `(λ− cΞ) ∈ Z2 denotes the parity of `(λ− cΞ).
Let µ = µ1ε1 + µ2ε2 + · · ·+ µnεn be an element of h̄∗ for g = X(n) with X ∈ {W, S̄}. We

define the height of µ, which is denoted by ht(µ), as ht(µ) =
∑n

i=1 µi.

Theorem 6.15. Assume that g = X(n) with X ∈ {W, S̄}. The complete set of all different
blocks in Omin is described as follows

{Omin(c, ι, i) | (c, ι, i) ∈ C/Z× Z2 × Z}.

Proof. Firstly, we will prove that simple objects belonging to Omin(c, ι, i) are indeed in the
same block.

For any given L(λ) ∈ Omin(c, ι, i), naturally λ ∈ Λ+. By (6.18) and Corollary 6.12(2), we
can write λ = cΞ + α for some α ∈ Q+ without loss of generality. We will prove that L(λ)
lies in the block where L(cΞ) lies by induction on ht(α).

When ht(α) = 0, then α = 0 because α ∈ Q+. So the conclusion is true.
When ht(α) > 0, suppose that the conclusion has been true for the situation of being less

than ht(α). Assume α =
∑n−1

i=1 aiεi with ai ∈ Z≥0. Then there exists 1 ≤ t ≤ n− 1 such that
at > at+1, where we make convention that an = 0. Take β =

∑n
k=t+1 εk. Consider λ′ := λ+β

which lies in Λ+. By Corollary 6.12(2), L(λ′) and L(λ′ − β) = L(λ) lie in the same block.
Note that α + β =

∑t
i=1 aiεi +

∑n
k=t+1(ak + 1)εi = Ξ + γ, where γ = α −

∑t
i=1 εi ∈ Q+. So

we have λ′ = (c+ 1)Ξ + γ. By Corollary 6.12(2), L(λ′) and L(cΞ + γ) lie in the same block.
Furthermore, ht(γ) < ht(α). Thus, by inductive hypothesis, L(cΞ + γ) and L(cΞ) already
lie in the same block. Hence, L(λ) and L(cΞ) finally turn out to lie in the same block.
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Secondly, for any L(λ) ∈ E, we see that L(λ) ∈ Omin(c, ι, i) for some c ∈ C, ι ∈ Z2, i ∈ Z
by (6.18). Moreover, we will prove that if a simple object L(µ) lies in the block where L(cΞ)γi
lies, then L(µ) must lie in Omin(c, ι, i). For this, we only need to note the following two facts:

(i) For any indecomposable projective module P (λ) with λ = cΞ + α for c ∈ C and
α ∈ Q, and its composition factor L(µ), by Remark 4.3 we have µ− λ ∈

∑n
i=1 Zεi, thereby

µ ∈ cΞ +Q.
(ii) If L(µ′) is a composition factor of P (λ′) and µ′ ∈ cΞ +Q. By Theorem 4.2, P (λ′) is a

direct summand of I(λ′) and L(µ′) is a composition factor of I(λ′). Hence λ′ ∈ cΞ +Q.
Thus, by the definition of blocks and taking Depth Lemma and Parity Lemma into account,

we have proven that if a simple object L(µ) lies in the block where L(cΞ)ιi lies, then L(µ)
must lie in Omin(c, ι, i). The proof is completed. �

6.8. Blocks of Omin for g = H̄(n). In this case, n = 2r or n = 2r + 1. Recall that the
notation ℵr ∈ {0, 1} satisfies ℵr ≡ r mod 2 for H(2r). And recall that there is a standard
dual δ of d in h̄ = h + Cd. Let λ = λ1ε1 + λ2ε2 + · · · + λrεr + cδ be an element of h̄∗, We
define the height of λ, which is denoted by ht(λ), as ht(λ) =

∑r
i=1 λi.

Recall the notations ΘD,ℵr = ε1+· · ·+εr−1+εr+ℵrδ for H̄(2r), and ΘB = ε1+· · ·+εr−1+εr
for H̄(2r + 1). For λ ∈ Λ+ ⊆ h̄∗, it can be further presented as

λ =

{
λrΘD,ℵr + cδ +

∑r−1
i=1 (λi − λr)εi, if n = 2r;

λrΘB + cδ +
∑r−1

i=1 (λi − λr)εi, if n = 2r + 1
(6.19)

satisfying that
∑r−1

i=1 (λi − λr)εi ∈
∑r−1

i=1 Z≥0εi ∩ Λ+ for both H̄(2r) and H̄(2r + 1). So for
λ ∈ Λ+, by (6.19) we can write

λ = cδ + dΘ + α with c, d ∈ C, α = γ + ht(γ)δ (6.20)

where γ ∈ Q+ :=
∑r−1

i=1 Z≥0εi ∩ Λ+ and γ + ht(γ)δ ∈ Q := ZΦ(g), here ZΦ(g) denotes the
root lattice of g.

In the following, we will simply write Θ = ΘB or ΘD,ℵr according to the situation n = 2r+1
or n = 2r respectively.

Lemma 6.16. ( Independence Lemma) Let g = H̄(n) and λ ∈ Λ+. Then the expression
of λ in (6.20) is unique.

Proof. Suppose λ = ciδ + diΘ + αi, i = 1, 2. We need to prove that c1 = c2, d1 = d2 and
α1 = α2. We know d1 = d2 = λr. So we have λ − λrΘ = c1δ + α1 = c2δ + α2, Hence
(c1 − c2)δ + (α1 − α2) = 0. According to (6.20), assume that αi = γi + ht(γi)δ, i = 1, 2 with
γi ∈ Q+. Then (c1 + ht(γ1) − c2 − ht(γ2))δ = γ2 − γ1. Since γ1, γ2 ∈ Q+, γ2 − γ1 = 0, we
have γ1 = γ2. Consequently, α1 = α2 and c1 = c2. �

6.8.1. Case H(2r+ 1). In this case δ̃ = δ and Θ = ΘB =
∑r

i=1 εi. Recall that Q = ZΦ(g) is
the root lattice of g. By Lemma 6.16 it does make sense to set

Omin(c, d, i) = {L(λ) | λ ∈ (c+ Z)δ + (d+ Z)Θ +Q, dpt(L(cδ + dΘ)) = i;

dpt(L(λ)) = i+ `(λ− cδ − dΘ)}.
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It further splits into

Omin(c, d, i) = Omin(c, d, 0̄, i) ∪ Omin(c, d, 1̄, i)

where

Omin(c, d, ι, i) = {L(λ) ∈ Omin(c, d, i) | pty(L(cδ + dΘ)) = ι;

pty(L(λ)) = ι+ `(λ− cδ − dΘ)}

for ι ∈ Z2. Here `(λ− cδ − dΘ) ∈ Z2 denotes the parity of `(λ− cδ − dΘ).

Theorem 6.17. Assume g = H̄(2r + 1). The complete set of all different blocks in Omin is
listed as follows

{Omin(c, d, ι, i) | (c, d, ι, i) ∈ (C/Z)2 × Z2 × Z}.

Proof. We will take the same strategy as the proof of Theorem 6.15. For any given L(λ) ∈
Omin(c, d, ι, i), we first prove that L(λ) lies in the block where L(cδ+ dΘ) lies. By Corollary
6.12 and Lemma 6.16, we can write λ = cδ + dΘ + α for some α = γ + ht(γ)δ ∈ Q
with γ =

∑r−1
i=1 aiεi ∈ Q+. By definition, we know ht(α) = ht(γ) ≥ 0. Thus, we will

accomplish the proof by taking induction on ht(α). When ht(α) = 0, then α = 0 because
γ =

∑r−1
i=1 aiεi ∈ Q+. So the statement holds.

Suppose ht(α) > 0, and suppose that the conclusion has been true for the situation of
being less than ht(α). In this case, we can write γ =

∑r−1
i=1 aiεi with ai ∈ Z≥0 such that

a1 ≥ a2 ≥ · · · ≥ ar−1 ≥ ar = 0. Because ht(α) > 0 and ar = 0, there exists at least one
t ∈ {1, . . . , r− 1} satisfying at > at+1. Take β =

∑t
i=1 εi − (n− t)δ and λ′ = λ− β. Because

at > at+1, λ′ ∈ Λ+. By Corollary 6.12(4), L(λ′) and L(λ′ + β) = L(λ) share the same block.
On the other hand, λ′ = cδ + dΘ + (α − β) with α − β = (γ −

∑t
i=1 εi) + (ht(γ) + n− t)δ.

Obviously, γ−
∑t

i=1 εi ∈ Q+ and ht(α−β) = ht(γ)− t < ht(α). Thus, L(λ′) and L(cδ+dΘ)
lie in the same block by inductive hypothesis. Hence, L(λ) and L(cδ + dΘ) finally lie in the
same block.

Conversely, we have the following clear observation.
(i) Let P (λ) be any indecomposable projective module where λ = cδ + dΘ + α with

c, d ∈ C and α ∈ Q. By the construction of P (λ) (Remark 4.3(1)), all weights of P (λ) are
in λ+Zδ+Q. So if L(µ) is a composition factor of P (λ), then µ ∈ (c+Z)δ+ (d+Z)Θ +Q.

(ii) If L(µ′) is a composition factor of P (λ′) and µ′ ∈ (c + Z)δ + (d + Z)Θ + Q, then by
Remark 4.3 again, we have λ′ ∈ (c+ Z)δ + (d+ Z)Θ +Q.

Thus, by the definition of blocks and taking Depth Lemma and Parity Lemma into account,
we have proven that if a simple object L(µ) lies in the block where L(cδ + dΘ)ιi lies, then
L(µ) must lie in Omin(c, d, ι, i). The proof is completed. �

6.8.2. Case H̄(2r). In this case, Θ = ΘD,ℵr . Recall that g admits the root lattice Q (see
§6.7). In contrast with the block structure of H(2r + 1), there is a crucial difference in the
case of H(2r), that is, L(λ) and L(λ+ δ) do not lie in the same block. The following lemma
is a clue to it.

Lemma 6.18. Let g = H̄(2r). Then the following statements hold.

(1) The root lattice Q contains ±2δ, but does not contain ±δ.
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(2) If L(µ) and L(ν) are in the same block, then (µ − ν) ∈ Q. In particular, L(λ) and
L(λ± δ) can not belong to the same block.

(3) Let β = β1ε1 + · · · + βrεr be an element of Q ∩ Λ+. Then there exist m ∈ Z and
γ ∈ Q+ such that

β = 2mδ + βrΘ + γ + ht(γ)δ.

Proof. (1) Recall that the root system is

Φ = {±εi1 ± · · · ± εik + lδ | 1 ≤ i1 < i2 < · · · < ik ≤ r;

k − 2 < l < n− 2, l − k ∈ 2Z}.

It is easily seen that ±δ does not appear in the Z-linear combinations of roots.
(2) Consider I(λ). Any of its weights is of the form λ+ α for some α ∈ Q. Because P (λ)

is a direct summand of I(λ), if L(µ) and L(ν) are two composition factors of P (λ), then
(µ−ν) ∈ Q. The statement (2) follows due to the definition of blocks and the statement (1).

(3) Since ε1−δ, ε2−δ, · · · , εr−δ, 2δ belong to Q, we can check that ε1+· · ·+εr−1+εr+ℵrδ ∈
Q. Hence,

β − βrΘ
=(β1 − βr)ε1 + (β2 − βr)ε2 + · · ·+ (βr−1 − βr)εr−1 + (β1 + · · ·+ βr−1 − (r − 1)βr)δ

+ (−β1 − · · · − βr−1 + (r − 1)βr − βrℵr)δ ∈ Q ∩ Λ+. (6.21)

Write γ := (β1 − βr)ε1 + (β2 − βr)ε2 + · · ·+ (βr−1 − βr)εr−1 ∈ Q+ and γi := βi − βr. Since

β = β1ε1 + · · ·+ βrεr ∈ Q,

by (1) we see that β1 + · · ·+ βr is even. Then there exists m ∈ Z such that

−β1 − · · · − βr−1 + (r − 1)βr − βrℵr = −β1 − · · · − βr + βr(r − ℵr) = 2m.

By (6.21), we have

β − βrΘ = γ + ht(γ)δ + 2mδ

The statement (3) follows. �

By Lemma 6.16 it does make sense to set

Omin(c, d, i) = {L(λ) | λ ∈ (c+ 2Z)δ + (d+ Z)Θ +Q,

dpt(L(cδ + dΘ)) = i;

dpt(L(λ)) = i+ `(λ− cδ − dΘ)}.

It further splits into

Omin(c, d, i) = Omin(c, d, 0̄, i) ∪ Omin(c, d, 1̄, i)

where

Omin(c, d, ι, i) = {L(λ) ∈ Omin(c, d, i) | pty(L(cδ + dΘ)) = ι;

pty(L(λ)) = ι+ `(λ− cδ − dΘ)}

for ι ∈ Z2. Here `(λ− cδ − dΘ) ∈ Z2 denotes the parity of `(λ− cδ − dΘ).
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Theorem 6.19. Assume g = H̄(2r). The complete set of all different blocks in Omin is listed
as follows

{Omin(c, d, ι, i) | (c, d, ι, i) ∈ C/2Z× C/Z× Z2 × Z}.

Proof. For any given L(λ) ∈ Omin(c, d, ι, i), we first prove that L(λ) lies in the block where
L(cδ + dΘ) lies. Assume that λ = (c+ 2m1)δ + (d+m2)Θ + β, β ∈ Q, is an element of Λ+.
By the expression of Θ, we can deduce β ∈ Λ+ ∩ Q. Assume β =

∑r
i=1 βiεi, then βi ∈ Z.

By Lemma 6.18(3), there exist m ∈ Z and γ ∈ Q+ such that β = 2mδ + βrΘ + γ + ht(γ)δ.
So λ = (c + 2m1 + 2m)δ + (d + m2 + βr)Θ + γ + ht(γ)δ. By Corollary 6.12(3) and (5), we
can write λ = cδ + dΘ + α directly for some α = γ + ht(γ)δ ∈ Q with γ =

∑r−1
i=1 γiεi ∈ Q+

without loss of generality. Thus, we can accomplish the proof similarly by taking induction
on ht(α). By taking the same arguments as in the proof of Theorem 6.17 (here we omit the
details) we can prove that L(λ) and L(cδ + dΘ) lie in the same block. Readers need only to
notice that n = 2r is even now.

What remains is to prove conversely that if a simple object L(µ) lies in the block where
L(cδ + dΘ)ιi lies, then L(µ) must lie in Omin(c, d, ι, i). For this, it suffices to observe the
following facts.

(i) Let P (λ) be any indecomposable projective module where λ = cδ+dΘ+α with c, d ∈ C
and α ∈ Q. We claim that any composition factor of I(λ), say L(µ), must belong to the set
λ+2Zδ+ZΘ+Q. Recall that I(λ) admits a ∆-flag with subquotients ∆(τ) for τ ∈ Υ(λ). So
L(µ) must be a composition factor of some ∆(τ). By the definition of Υ(λ) we can assume

τ = λ−γ with γ =
∑k

j=1±εij +mδ, where ij ∈ {1, 2, ..., r} satisfying m ≥ k and m−k ∈ 2Z.

So τ = λ− (
∑k

j=1±εij +mδ) = λ− (
∑k

j=1±εij + kδ + (m− k)δ). Thus, τ ∈ λ+ 2Zδ +Q.

Next we investigate L(µ) from ∆(τ). Note that by the definition of standard modules, all
weights of ∆(τ) must lie in τ + Z≥0Φ(g≥1) where Φ(g≥1) meas the root system of g≥1. So µ
lies in τ + 2Zδ + ZΘ +Q. The claim is true. So the claim is naturally true for P (λ).

(ii) If L(µ′) is a composition factor of P (λ′) and µ′ ∈ cδ+dΘ+Q, then L(µ′) is naturally a
composition factor of I(λ′). By the same reason as in (i) we have λ′ ∈ (c+2Z)δ+(d+Z)Θ+Q.
Thus, by the definition of blocks and taking Depth Lemma and Parity Lemma into account,
we have that L(µ) indeed lies in Omin(c, d, ι, i). Summing up, we finish the proof. �

Remark 6.20. (1) According to the proof, it is not hard to see that any irreducible module
sharing the same block as L(cδ + dΘ + α) must be of the form L(µ) with µ ∈ cδ + dΘ +Q.

(2) As a direct consequence of the above theorem, we know that L(λ) and L(λ± δ) do not
lie in the same block as mentioned at the beginning of the sub-subsection §6.8.2.

(3) On the basis of Proposition 6.11, one easily knows that Theorems 6.17 and 6.19 are
valid in the case when g = CH(n) (n = 2r or n = 2r + 1).

6.9. Application to the category of finite-generated modules over g. We are going
to consider blocks of the category of finite-generated modules over g. Denote this category
by g-modf , whose objects are by definition, finite-generated modules, and whose morphisms
are required to be even.

Recall that the forgetful functor F (see Remark 3.2(5)) makes Omin into the U(g)-module
category F(Omin) whose objects are only subjected to weighted-structure, and locally-finiteness
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over U(P). This is to say, all objects in F(Omin) inherit all structures in Omin except Z-
gradation. Then the isomorphism classes of simple objects both in F(Omin) and in F(Omin

f )
are parameterized by Λ+ respectively, still denoted by {L(λ) | λ ∈ Λ+}.

Lemma 6.21. (1) Any object of F(Omin
f ) can be naturally regarded as an object in Omin.

Any morphism in F(Omin
f ) can be lifted to Omin.

(2) For any P (λ) in Omin, F(P (λ)) is still indecomposable and projective in F(Omin
f ).

Proof. (1) For any given object M in F(Omin
f ) and any given integer d, we will show that M

can be endowed with a Z-gradation related to d. By the same arguments as (4.8) in Theorem
4.4, we have that M admits a filtration of finite length

M = M (0) ⊃M (1) ⊃M (2) ⊃ · · · ⊃M (t−1) ⊃M (t) = 0 (6.22)

such that M (i−1)/M (i) is isomorphic to a non-zero quotient of F(∆(λi)) associated with
some irreducible U(P)-module L0(λi) = U(n−)v0

λi
with λi ∈ Λ+, i = 1, · · · , t, with t being

the standard length l(M). If l(M) = 1, M = U(g)v0
λ1

which is easily endowed with a Z-
gradation, provided that L0(λ1) is predefined to be of grading d. In general, we can define
such a gradation on M by induction on l(M). Suppose that t = l(M) > 1, and the gradation
is defined already for less than t. Especially, M (1) is supposed to be already endowed with a
Z-gradation associated with d, hence all gradations of v0

λi
(i = 2, ..., t) are actually predefined,

denoted by gi. For any m ∈ M , m ≡ m1 mod M (1) for m1 ∈ U(g)mλ1 with mλ1 being a
pre-image of v0

λ1
. Then we can define the gradation of mλ1 to be g1 such that g1 is compatible

with λi for i = 2, ..., t, this is to say, if λ1 − λi ∈ Q, then g1 = gi + `(λ1 − λi). Thus, m1,
thereby M is endowed with a Z-gradation. We have proven the first part of (1).

Suppose that φ : M → N is a homomorphism in F(Omin
f ) . In the way just mentioned

above, M can be endowed with a Z-gradation, thereby we can naturally endow a Z-gradation
on φ(M) such that φ is lifted to be a morphism in Omin. Hence we have proven the second
part of (1).

(2) Let P (λ) be the projective cover of L(λ) ∈ E with dpt(L(λ)) = d. Due to Remark
4.3(1), we can assume that P (λ) =

∑
g∈Z P (λ)g is generated by some λ-weighted vector v0

and the grading of v0 is d. For any given surjective morphism φ : M → N in F(Omin
f ),

and a nonzero morphism ψ : F(P (λ)) → N in Omin
f , we want to prove that there is a lift

ψ̄ : F(P (λ))→M . We begin with the definition of grading shift functor. Let L be a Z-graded
module belonging to Omin and d ∈ Z. Define a grading shift functor [d] : L 7→ L[d], such
that as a vector space, L[d] = L, but the Z-grading of L[d] is changed through L[d]i = Li−d.
We can check that P (λ)[d0] is the projective cover of L(λ)[d0] ∈ E. By (1), the surjective
morphism φ : M → N can be lifted to a surjective morphism in Omin which becomes
φ̇ : Ṁ → Ṅ . We suppose that ψ(v0) has a gradation d0 in Ṅ . Then by a suitable shift,
we can re-endow a Z-gradation on F(P (λ)) such that v0 is of gradation d0, getting a new
object Ṗ (λ) in Omin. By the arguments in the previous paragraph, we see that Ṗ (λ) is still

indecomposable and projective in Omin. So we really have a morphism ψ̇ : Ṗ (λ) → Ṅ in

Omin. The projectiveness of Ṗ (λ) entails that there exists a lift ¯̇ψ : Ṗ (λ) → Ṁ of ψ̇. After
applying the forgetful functor F, we get the desired lift ψ̄ of ψ. The proof is completed. �

By the above lemma, we can similarly define blocks in F(Omin) as below.
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Set F(Omin(c)) := {F(L(λ)) | λ ∈ cΞ +Q} when g = W (n) or S̄(n). Then we have in the
same sense as in §6.7, that

F(Omin(c)) = F(Omin(c, 0̄)) ∪ F(Omin(c, 1̄)).

Similarly, set F(Omin(c, d)) := {F(L(λ)) | λ ∈ cδ+ dΘ +Q} when g = H̄(n). We have in the
same sense as in §6.8, that

F(Omin(c, d)) = F(Omin(c, d, 0̄)) ∪ F(Omin(c, d, 1̄)).

Then we have the following direct consequence by Theorems 6.15, 6.17 and 6.19.

Corollary 6.22. The complete classification of all different blocks in F(Omin) is listed as
follows:

(1) If g = W (n), or S̄(n), then it is

{F(Omin(c, γ)) | (c, γ) ∈ (C/Z)× Z2}.

(2) If g = H̄(n), then it is

{F(Omin(c, d, γ)) | (c, d, γ) ∈ (C/Z)2 × Z2} if n = 2r + 1; and

{F(Omin(c, d, γ)) | (c, d, γ) ∈ C/2Z× C/Z× Z2} if n = 2r.

Obviously, g-modf is a full subcategory of F(Omin). We can introduce blocks of g-modf

as follows.

Definition 6.23. A block B of g-modf is a subcategory of g-modf , satisfying that for any
B ∈ B, all its composition factors lie in the same block of F(Omin).

We finally obtain the block theorem for g-modf as follows.

Theorem 6.24. The following statements hold.

(1) For g = W (n) or S̄(n),

g-modf =
⊕

(c,γ)∈C/Z×Z2

B(c, γ)

(2) For g = H̄(n),

g-modf =

{⊕
(c,d,γ)∈(C/Z)2×Z2

B(c, d, γ) when n = 2r + 1;⊕
(c,d,γ)∈C/2Z×C/Z×Z2

B(c, d, γ) when n = 2r.

Remark 6.25. (1) In our setup, Theorem 6.24 essentially covers the main result of [20] on
blocks of the category of finite-dimensional modules over W (n).

(2) By the same arguments as in [20], one can show that all blocks of Omin are wild.

7. Tilting modules and character formulas

Keep the same notations as in Sections 1 and 3. In particular, δ is the linear dual of d in
h̄∗ when g = H̄(n) (See §1.2).
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7.1. Thanks to Lemma 4.1, we can apply the arguments in [7] to our category Omin. We
first recall some properties for standard and co-standard modules.

Lemma 7.1. Keep the assumption as above. The following results hold in the category Omin:

(1) The category Omin has enough injective objects.
(2) Assume that ∆(λ) has depth d. Then ∆(λ) is the projective cover of L(λ) in Omin

≥d .
(3) dim HomOmin(∆(λ),∇(µ)) = δλ,µ for λ, µ ∈ Λ+.
(4) Ext1

Omin(∆(λ),∇(µ)) = 0 for λ, µ ∈ Λ+.

Proof. For (1), readers can refer to [7, Lemma 2.1]. For (2),(3),(4), readers can refer to [7,
Lemma 3.6]. �

7.2. Tilting modules. Thanks to Lemma 1.3, the category Omin is associated with a semi-
infinite character of g. So we can apply Soergel’s tilting module theory to our category Omin.
The following lemma asserts the existence of the so-called indecomposable tilting modules
T (λ) for λ ∈ E.

Lemma 7.2. ([21, Theorem 5.2] and [7, Theorem 5.1]) For any given L0(λ) = L0(λ)d
((λ, d) ∈ E = Λ+ × Z), there exists a unique up to isomorphism indecomposable object
T (λ) ∈ Omin such that

(1) Ext1
Omin(∆(µ), T (λ)) = 0 for any µ ∈ E.

(2) T (λ) admits a ∆-flag starting with ∆(λ) at the bottom.

Definition 7.3. An object T in Omin is called a tilting module if it satisfies (1) and (2) in
Lemma 7.2 as T (λ) does. In particular, the indecomposable tilting object T (λ) is called the
indecomposable tilting module associated with λ ∈ E.

In the following, we will investigate the flags of standard modules for indecomposable
tilting modules, by means of Soergel reciprocity and the Kac-module realizations of co-
standard modules.

7.3. Soergel reciprocity. By [7, Corollary 5.8], we have the following reciprocity for inde-
composable tilting modules.

Proposition 7.4. Let λ, µ ∈ E, and w0 be the longest element of the Weyl group of g0.
Denote by [T : ∆(λ)] the multiplicity of ∆(λ) in the ∆-flag of a given tilting module T . The
following statements hold.

(1) If g = W (n), then

[T (µ) : ∆(λ)] = (∇(−w0λ+ Ξ) : L(−w0µ+ Ξ)).

(2) If g = S̄(n) or H̄(n), then

[T (µ) : ∆(λ)] = (∇(−w0λ) : L(−w0µ)).

Proof. Note that the character EX gives rise to a one-dimensional g0-module C−EX , and we
have the following g0-module isomorphism

C−EX ∼=
{
L0(Ξ), if g = W (n),
L0(0), if g = S̄(n), H̄(n).

Then the statements are consequences of [7, Corollary 5.8]. �
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With the aid of Proposition 5.5, the above Soergel reciprocity can be rewritten below.

Proposition 7.5. Let λ, µ ∈ Λ+. The following statements hold.

(1) If g = W (n), then

[T (µ) : ∆(λ)] = (K(−w0λ+ 2Ξ) : L(−w0µ+ Ξ)).

(2) If g = S̄(n), then

[T (µ) : ∆(λ)] = (K(−w0λ+ Ξ) : L(−w0µ)).

(3) If g = H̄(n), then

[T (µ) : ∆(λ)] = (K(−w0λ+ nδ) : L(−w0µ)).

Proof. This is a direct consequence of Propositions 7.4 and 5.5. �

7.4. Definition of character formulas for Omin
f . By Theorem 5.6 and Proposition 7.5

we have seen that the multiplicities of ∆(λ) in P (µ) or T (µ) can be attributed to the Cartan
invariants of some finite-dimensional Kac-module, so P (λ) and T (λ) belong to Omin

f . In
this section, we compute the character formulas for those P (λ) and T (λ), on the basis of
degenerate BGG reciprocity (Theorem 5.3) and Soergel reciprocity (Propositions 7.4 and
7.5) respectively. In the following, we first introduce the formal characters of modules in the
category Omin

f .

Recall that associated with the standard triangular decomposition g0 = n− ⊕ h̄ ⊕ n+,
g0 admits a positive root system Φ+

0 . Furthermore, denote by Φ≥1 the root system of g≥1

relative to h̄, i.e., Φ≥1 := {α ∈ h̄∗ | (g≥1)α 6= 0} where

(g≥1)α = {x ∈ g≥1 | [h, x] = α(h)x, ∀h ∈ h̄}.

Then we have g≥1 =
∑

α∈Φ≥1

gα. Associated with λ ∈ Λ+, we define a subset of h̄∗:

D(λ) = {µ ∈ h̄∗ | µ � λ},

where µ � λ means that µ− λ lies in Z≥0-span of Φ≥1 ∪Φ+
0 . Now we define a C-algebra A,

whose elements are series of the form
∑

λ∈h̄∗ cλe
λ with cλ ∈ C and cλ = 0 for λ outside the

union of a finite number of sets of the form D(µ). Then A naturally becomes a commutative
associative algebra if we define eλeµ = eλ+µ, and identify e0 with the identity element. All
formal exponentials {eλ} are linearly independent, and then in one-to-one correspondence
with h̄∗. For a semisimple h̄-module W =

∑
λ∈h̄∗Wλ, if the weight spaces are all finite-

dimensional, then we can define ch(W ) =
∑

λ∈h̄∗(dimWλ)e
λ. In particular, if V is an object

in Omin
f , then ch(V ) ∈ A. We have the following fact.

Lemma 7.6. The following statements hold.

(1) Let V1, V2 and V3 be three g-modules in the category Omin
f . If there is an exact sequence

of g-modules 0→ V1 → V2 → V3 → 0, then ch(V2) = ch(V1) + ch(V3).
(2) Suppose that W =

∑
λ∈h̄∗Wλ is a semisimple h̄-module with finite-dimensional weight

spaces, and U =
∑

λ∈h̄∗ Uλ is a finite-dimensional h̄-module. If ch(W ) =
∑

λ∈h̄∗ cλe
λ

falls in A, then ch(W ⊗C U) must fall in A and ch(W ⊗C U) = ch(W )ch(U).
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Let us investigate the formal character of a standard module ∆(λ) for λ ∈ E. Recall
∆(λ) = U(g≥1) ⊗C L0(λ). As a U(g≥1)-module, ∆(λ) is a free module of rank dimL0(λ)
generated by L0(λ). By Lemma 7.6(2), we have ch(∆(λ)) = ch(U(g≥1))chL0(λ) for λ ∈ E.
Note that

Φ≥1 = Φ≥1
0̄
∪ Φ≥1

1̄
, where Φ≥1

ī
= Φ≥1 ∩ Φī, i ∈ Z2.

Set

Θ :=
∏

α∈Φ≥1
1̄

(1 + eα)
∏

α∈Φ≥1
0̄

(1− eα)−1.

Then we further have ch(∆(λ)) = ΘchL0(λ).

7.5. Character formulas of T (λ). As a direct consequence of the forthcoming Propositions
9.5, 9.8 and 9.12 in the Appendix B, along with Lemma 7.6, Soergel reciprocity leads to the
following theorem on character formulas for indecomposable tilting modules.

Theorem 7.7. Let g = X(n) for X ∈ {W, S̄, H̄}, and λ ∈ Λ+. The character formulas for
tilting modules T (λ) are listed as follows.

(1) If g = W (n), then

chT (λ) =


Θ(chL0(λ) + chL0(2λ)), if λ = Ξ;

Θ(chL0(λ) + chL0(λ+ ε1)), if λ = 2Ξ + aε1 with a ≥ 0;

Θ(chL0(λ) + chL0(λ+ εn)), if λ = Ξ + bεn with b ≤ −1;

Θ(chL0(λ)), if λ /∈ Ω.

(2) If g = S̄(n), then

chT (λ) =



Θ(chL0(λ) + chL0(λ+ Ξ) + chL0(λ+ Ξ− εn) + chL0(λ+ ε1)),

if λ = kΞ;

Θ(chL0(λ) + chL0(λ+ εn) + chL0(λ+ ε1 + εn)),

if λ = kΞ− εn;

Θ(chL0(λ) + chL0(λ+ εn)),

if λ = kΞ + bεn with b ∈ Z≤−2;

Θ(chL0(λ) + chL0(λ+ ε1)),

if λ = kΞ + aε1 with a ∈ Z≥1;

Θ(chL0(λ)), if λ /∈ Ω.

(3) If g = H̄(n), then

chT (λ) =



Θ(chL0(λ) + chL0(λ+ nδ) + chL0(ε1 + (k + n+ 1)δ) + chL0(ε1 + (k + 3)δ)),

if λ = kδ;

Θ(chL0(λ) + chL0(λ+ 2δ) + chL0(λ+ ε1 + 3δ) + chL0(λ− ε1 − δ)),
if λ = kδ + aε1 with a ∈ Z≥1;

Θ(chL0(λ)), if λ /∈ Ω.
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7.6. Character formulas of P (λ). According to the degenerate BGG reciprocity (Theorem
5.3), one can compute the character formulas of indecomposable projective modules precisely
by the same method as Theorem 7.7. We omit the details and list the formulas as below.

Theorem 7.8. Let g = X(n) for X ∈ {W, S̄, H̄}, and λ ∈ Λ+. The character formulas for
indecomposable projective modules P (λ) are listed as follows.

(1) If g = W (n), then

chP (λ) =


Θ(chL0(0) + chL0(−Ξ)), if λ = 0;

Θ(chL0(λ) + chL0(λ− ε1)), if λ = aε1 with a ≥ 1;

Θ(chL0(λ) + chL0(λ− εn)), if λ = −ε1 − ε2 − · · · − εn−1 + aεn with a ≤ −1;

Θ(chL0(λ)), otherwise .

(2) If g = S̄(n), then

chP (λ) =



Θ(chL0(λ) + chL0(λ− Ξ) + chL0(λ− Ξ + ε1) + chL0(λ− εn)),

if λ = kΞ;

Θ(chL0(λ) + chL0(λ− ε1) + chL0(λ− ε1 − εn)),

if λ = ε1 + kΞ;

Θ(chL0(λ) + chL0(λ− ε1)),

if λ = aε1 + kΞ with a ∈ Z≥2;

Θ(chL0(λ) + chL0(λ− εn)),

if λ = kΞ + cεn with c ∈ Z≤−1;

Θ(chL0(λ)), otherwise .

(3) If g = H̄(n), then

chP (λ) =



Θ(chL0(λ) + chL0(λ− nδ) + chL0(λ+ ε1 + (1− n)δ) + chL0(λ+ ε1 − δ)),
if λ = kδ;

Θ(chL0(λ) + chL0(λ− 2δ) + chL0(λ+ ε1 − δ) + chL0(λ− ε1 − δ)),
if λ = aε1 + kδ with a ∈ Z≥1;

Θ(chL0(λ)), otherwise .

7.7. Bar-typical weights and indecomposable projective tilting modules. Call a
weight λ ∈ h̄∗ bar-atypical if λ ∈ Ωā defined as below

Ωā =


{±Ξ + bεn | b ∈ Z≤0} ∪ {dΞ + aε1 | d = 0, 2; a ∈ Z≥0}, for W (n);

{aε1 + kΞ | a ∈ Z≥1, k ∈ C} ∪ {kΞ + cεn | c ∈ Z≤0, k ∈ C}, for S̄(n);

{aε1 + kδ | a ∈ Z≥0, k ∈ C}, for H̄(n).

Call a weight λ ∈ h̄∗ bar-typical, if λ /∈ Ωā.

Proposition 7.9. If λ ∈ Λ+ is bar-typical, then P (λ) = T (λ) = ∆(λ). Conversely, if
P (λ) = T (λ), then λ must be bar-typical.

Proof. The first part of the proposition is a direct consequence of the above theorems. As to
the second part, we only need to verify that when λ ∈ Ωā, P (λ) is not a tilting module. In
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this case, it is really true that P (λ) = ∆(λ) and T (λ) = ∆(λ) do not simultaneously happen.
By Propositions 9.5, 9.8, 9.12 in Appendix B, Theorem 5.6 and Proposition 7.4, we can see
that [P (λ) : ∆(λ)] = 1 and [T (λ) : ∆(λ)] = 1 in their ∆-flags. However, ∆(λ) is a quotient
of P (λ) and a submodule of T (λ) (see Lemma 7.2). This implies that P (λ) 6∼= T (λ) in this
case. The proof is completed. �

8. Appendix A: A proof for the existence of semi-infinite characters

(1) Assume g = W (n). Let us first check that the linear map EX is indeed a homomorphism
of Lie algebras. For any basis elements ξiDj, ξsDt ∈ g0,

EW ([ξiDj, ξsDt]) = EW (δjsξiDt − δtiξsDj) = 0.

So EX is a character.
Let ξk1ξk2 · · · ξki+1

Ds be an element in gi, i ≥ 2. We have the following two cases.
Case (i): s 6= kj, ∀ 1 ≤ j ≤ i+ 1.
In this case,

ξk1ξk2 · · · ξki+1
Ds = (−1)i[ξk2 · · · ξki+1

Ds, ξsξk1Dk1 ].

Case (ii): s = kj for some j ∈ {1, · · · , i+ 1}.
In this case, without loss of generality, we can assume j = i + 1, i.e., s = ki+1. Then we

have
ξk1ξk2 · · · ξki+1

Ds = [ξ1ξk2 · · · ξkiDki , ξkiξki+1
Ds].

It follows that gi is included in [gi−1, g1] for any i ≥ 2. By induction on i, we see that (SI-1)
holds for W (n). For (SI-2), we can check it through direct calculation in the following.

Without loss of generality, we can assume x = ξkξiDj, y = Ds. We divide the proof into
the following three cases.

Case (i): s 6= k and s 6= i.
In this case, [x, y] = 0. And we have

[x, [y, z]] =

 ξiDj, if z = ξsDk;
−ξkDj, if z = ξsDi;
0, if z ∈ {ξuDt | 1 ≤ u, t ≤ n} \ {ξsDk, ξsDi}.

It follows that str((adx ◦ ady)|g0) = 0 = EW ([x, y]).
Case (ii): s = k and i = j.
In this case, [x, y] = ξjDj, and we have

[x, [y, z]] =

 ξjDj, if z = ξsDs;
−ξsDj, if z = ξsDj;
0, if z ∈ {ξuDt | 1 ≤ u, t ≤ n} \ {ξsDs, ξsDj}.

It follows that str((adx ◦ ady)|g0) = −1 = EW ([x, y]).
Case (iii): s = k and i 6= j.
In this case, [x, y] = ξiDj, and we have

[x, [y, z]] =

 ξiDj, if z = ξsDs;
−ξsDj, if z = ξsDi;
0, if z ∈ {ξuDt | 1 ≤ u, t ≤ n} \ {ξsDs, ξsDi}.

It follows that str((adx ◦ ady) |g0) = 0 = EW ([x, y]).
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Thus, (SI-2) holds for W (n). Consequently, EW is a semi-infinite character for W (n).
(2) Assume g = S̄(n). For (SI-1), one can refer to [13, Proposition 4.1.1]. Moreover, since

g0 coincides with W (n)0, and str is linear, it follows that ES̄ is a semi-infinite character for
S̄(n).

(3) Assume g = H̄(n) or CH(n). For (SI-1), one can refer to [13, Proposition 4.1.1]. For
(SI-2), we can check it through direct calculation in the following.

Without loss of generality, we can assume x = DH(ξiξjξk) and y = Ds. We divide the
proof into the following two cases.

Case (i): s = i.
In this case, [x, y] = DH(ξjξk), and

[x, [y, z]] =


DH(ξjξk), if z = DH(ξsξs′) or d;
DH(ξsξk), if z = DH(ξsξj′);
−DH(ξsξj), if z = DH(ξsξk′);
0, if z = DH(ξsξt) for t 6= s′, j′, k′;
0, if z = DH(ξlξm) for l 6= s,m 6= s.

It follows that str((adx ◦ ady)|g0) = 0 = EH̄([x, y]).
Case (ii): s 6= i, j, k.
In this case, [x, y] = 0, and

[x, [y, z]] =

{
δit′DH(ξjξk)− δjt′DH(ξiξk) + δkt′DH(ξiξj), if z = DH(ξsξt);
0, if z = d orDH(ξlξm) for l 6= s,m 6= s.

It follows that str((adx ◦ ady) |g0) = 0 = EH̄([x, y]).
Thus, (SI-2) holds both for H̄(n) and CH(n). Hence, EH̄ (resp. ECH) is a semi-infinite

character for H̄(n) (resp. CH(n)).

9. Appendix B: Computations for character formulas

In this appendix, we list the composition factors of Kac-module which is contributed to
compute the character formulas of tilting modules and indecomposable projective modules.
Recall that we have introduced the set Ω of the so-called Serganova atypical weights in
subsection 5.4.

9.1. The case of W (n).

Lemma 9.1. Let λ ∈ Λ+. Then the following statements hold.

(1) If λ 6= aεi + εi+1 + · · ·+ εn, L(λ− Ξ) ∼= L(λ).
(2) If λ = aεi + εi+1 + · · ·+ εn and λ 6= 0, then L(λ− Ξ + εi) ∼= L(λ).
(3) If λ = 0, L(0) ∼= L(0).

Based on [18, Theorem 7.6] and Lemma 9.1, the following lemma holds.

Lemma 9.2. Let λ, µ ∈ Λ+. Then the following statements hold.

(1) If λ = 0, then there is the following exact sequence

0→ L(−Ξ)→ K(0)→ L(0)→ 0.

(2) If λ = aεn, a < 0, then there is the following exact sequence

0→ L(aεn − Ξ)→ K(aεn)→ L((a+ 1)εn − Ξ)→ 0.



REPRESENTATIONS OF LIE SUPERALGEBRAS OF CARTAN TYPE (I) 49

(3) If λ = ε1 + ε2 + · · ·+ εn, then there is the following exact sequence

0→ L(0)→ K(ε1 + ε2 + · · ·+ εn)→ L(ε1)→ 0.

(4) If λ = aε1 + ε2 + · · ·+ εn, a ≥ 2, then there is the following exact sequence

0→ L((a− 1)ε1)→ K(aε1 + ε2 + · · ·+ εn)→ L(aε1)→ 0.

(5) If (K(λ) : L(µ)) 6= 0, then (K(λ) : L(µ)) = 1.

By the definition of Omin we only need to consider the weights belonging to Λ+, i.e.,
the weights λ = λ1ε1 + λ2ε2 + · · · + λnεn such that λ1 − λ2, λ2 − λ3, · · · , λn−1 − λn are all
non-negative integers. Obviously, the following lemma holds.

Lemma 9.3. Let λ be a weight belonging to Λ+ such that −w0λ+ 2Ξ is Serganova atypical.
Then λ has to be one of the following two forms

(1) λ = (2− a)ε1 + 2ε2 + · · ·+ 2εn, for some a ∈ Z≤0.
(2) λ = ε1 + ε2 + · · ·+ εn−1 + (2− b)εn, for some b ∈ Z≥1.

In case (1), −w0λ+ 2Ξ = aεn, while in case (2), −w0λ+ 2Ξ = bε1 + ε2 + · · ·+ εn.

Proof. Assume

−w0λ+ 2Ξ = aεi + εi+1 + · · ·+ εn.

It follows that

λ = ε1 + ε2 + · · ·+ · · ·+ εn−i + (2− a)εn−i+1 + 2εn−i+2 + · · ·+ 2εn−1 + 2εn.

Since λ is an element in Λ+, λ has to be one of the following two forms:

λ = (2− a)ε1 + 2ε2 + · · ·+ 2εn, a ∈ Z≤0,

or

λ = ε1 + ε2 + · · ·+ εn−1 + (2− b)εn, b ∈ Z≥1.

Consequently, −w0λ+ 2Ξ = aεn or bε1 + ε2 + · · ·+ εn, respectively. �

Now we are in the position to determine the multiplicities of standard modules appearing
in each tilting module.

Proposition 9.4. Let λ, µ ∈ Λ+. Then the following statements hold.

(1) In the case λ = 2Ξ, [T (µ) : ∆(λ)] 6= 0 if and only if µ = Ξ or µ = λ.
(2) In the case λ = (2− a)ε1 + 2ε2 + · · ·+ 2εn, a ∈ Z≤−1, [T (µ) : ∆(λ)] 6= 0 if and only if

µ = λ− ε1 or µ = λ.
(3) In the case λ = ε1 + ε2 + · · ·+ εn−1 + (2− b)εn, b ∈ Z≥1, [T (µ) : ∆(λ)] 6= 0 if and only

if µ = λ− εn or µ = λ.
(4) In the case that λ is not any one of the forms in Cases (i), (ii), (iii), [T (µ) : ∆(λ)] 6= 0

if and only if λ = µ.

Moreover, if [T (µ) : ∆(λ)] 6= 0, [T (µ) : ∆(λ)] = 1.

Proof. (1) Let λ = (2− a)ε1 + 2ε2 + · · ·+ 2εn, a ∈ Z≤0. By Proposition 7.5 and Lemma 9.3,
we have

[T (µ) : ∆(λ)] = (K(aεn) : L(−w0µ+ Ξ)).

(1-i) a = 0.
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In this case,

[T (µ) : ∆(λ)] 6= 0
⇐⇒ (K(0) : L(−w0µ+ Ξ)) 6= 0
⇐⇒ L(−w0µ+ Ξ) ∼= L(0) or L(−w0µ+ Ξ) ∼= L(−Ξ) (by Lemma 9.2)
⇐⇒ −w0µ+ Ξ = 0 or − w0µ+ Ξ = −Ξ
⇐⇒ µ = Ξ or µ = 2Ξ
i.e., µ = Ξ or µ = λ.

(1-ii) a ≤ −1.
In this case,

[T (µ) : ∆(λ)] 6= 0
⇐⇒ (K(aεn) : L(−w0µ+ Ξ)) 6= 0
⇐⇒ L(−w0µ+ Ξ) ∼= L(aεn − εn−1 − · · · − ε1) or

L(−w0µ+ Ξ) ∼= L((a− 1)εn − εn−1 − · · · − ε1) (by Lemma 9.2)
⇐⇒ −w0µ+ Ξ = aεn − εn−1 − · · · − ε1

or − w0µ+ Ξ = (a− 1)εn − εn−1 − · · · − ε1
⇐⇒ µ = (1− a)ε1 + 2ε2 + · · ·+ 2εn or µ = (2− a)ε1 + 2ε2 + · · ·+ 2εn
i.e., µ = λ− ε1 or µ = λ.

For the results in (2)-(4), we can calculate them similarly. �

As a direct consequence, the following proposition holds.

Proposition 9.5. Let g = W (n) and µ ∈ Λ+. Then the following statements hold.

(1) If µ = ε1 + ε2 + · · ·+ εn, we have the following exact sequence:

0→ ∆(µ)→ T (µ)→ ∆(2µ)→ 0.

(2) If µ = aε1 + 2ε2 + · · ·+ 2εn with a ≥ 2, then we have the following exact sequence:

0→ ∆(µ)→ T (µ)→ ∆(µ+ ε1)→ 0.

(3) If µ = ε1 + ε2 + · · ·+ εn−1 + bεn with b ≤ 0, then we have the following exact sequence:

0→ ∆(µ)→ T (µ)→ ∆(µ+ εn)→ 0.

(4) Otherwise, T (µ) = ∆(µ).

9.2. The case S̄(n). Let λ be an element in Ω. Then it is easy to see that λ belongs to Λ+

if and only if
λ = bε1 + aε2 + aε3 + · · ·+ aεn with (b− a) ∈ Z≥0,

or
λ = aε1 + aε2 + · · ·+ aεn−1 + cεn with (a− c) ∈ Z≥0.

The following result follows directly from [18, Lemma 5.1].

Lemma 9.6. Let λ ∈ Λ+. Then the following statements hold.

(1) If λ = aΞ− εn, L(λ) ∼= L(λ− Ξ + ε1 + εn), i.e.,

L(aΞ− εn) ∼= L(aΞ− εn − εn−1 − · · · − ε2).

(2) If λ = aΞ, L(λ) ∼= L(λ).
(3) If λ = aΞ− bεn for b ∈ Z≥2, then L(λ) ∼= L(λ− Ξ + εn).
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(4) If λ = aΞ + bε1 for b ∈ Z≥1, then L(λ) ∼= L(λ− Ξ + ε1).
(5) If λ /∈ Ω, L(λ) ∼= L(λ− Ξ).

Based on the results in [18, §8] and Lemma 9.6, we get the following lemma.

Lemma 9.7. Let λ ∈ Λ+. Then the following statements hold.

(1) If λ = aΞ, then we have the following exact sequences

0→M → K(aΞ)→ L(aΞ)→ 0,

0→ L((a− 1)Ξ)→M → L((a− 1)Ξ + ε1)→ 0.

(2) If λ = aΞ + ε1, then we have the following exact sequences

0→M → K(aΞ + ε1)→ L((a− 1)Ξ + 2ε1)→ 0,

0→ L((a− 1)Ξ + ε1)→M → L(aΞ)→ 0.

(3) If λ = aΞ− εn, then we have the following exact sequences

0→M → K(aΞ− εn)→ L((a− 1)Ξ + ε1)→ 0,

0→ L((a− 1)Ξ− εn)→M → L((a− 1)Ξ)→ 0.

(4) If λ = bε1 + aΞ, b ∈ Z≥2, then we have the following exact sequence

0→ L((a− 1)Ξ + bε1)→ K(λ)→ L((a− 1)Ξ + (b+ 1)ε1)→ 0.

(5) If λ = aΞ− cεn, c ∈ Z≥2, then we have the following exact sequence

0→ L((a− 1)Ξ− cεn)→ K(λ)→ L((a− 1)Ξ− (c+ 1)εn)→ 0.

(6) If (K(λ) : L(µ)) 6= 0, then (K(λ) : L(µ)) = 1.

Similar arguments as in the proof of Proposition 9.4 yield the following result on the
multiplicities of standard modules in each tilting module for S̄(n).

Proposition 9.8. Let g = S̄(n) and λ be an element in Λ+. Then [T (λ) : ∆(µ)] 6= 0 implies
[T (λ) : ∆(µ)] = 1. Furthermore, the following statements hold.

(1) Assume that λ is Serganova atypical.
(1-i) If λ = kΞ, then

[T (λ) : ∆(µ)] 6= 0⇐⇒ µ ∈ {λ, λ+ Ξ, λ+ Ξ− εn, λ+ ε1}.

(1-ii) If λ = kΞ− εn, then

[T (λ) : ∆(µ)] 6= 0⇐⇒µ ∈ {λ+ εn, λ, λ+ ε1 + εn}.

(1-iii) If λ = kΞ + bεn with b ∈ Z≤−2, then

[T (λ) : ∆(µ)] 6= 0⇐⇒ µ ∈ {λ, λ+ εn}.

(1-iv) If λ = kΞ + aε1 with a ∈ Z≥1, then

[T (λ) : ∆(µ)] 6= 0⇐⇒ µ ∈ {λ, λ+ ε1}.

(2) In the case that λ is Serganova typical, T (λ) = ∆(λ).
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9.3. The case H̄(n).

Lemma 9.9. Let λ ∈ Λ+ be a Serganova atypical weight. Then λ = aε1 + mδ for some
a ∈ Z≥0.

Proof. With respect to our choice of positive roots, we can get that if λ = λ1ε1 +λ2ε2 + · · ·+
λrεr + bδ is an element of Λ+, then it must satisfy the following conditions:

(i) when n = 2r, then λ1 ≥ λ2 ≥ · · · ≥ λr−1 ≥ |λr|, λi − λj ∈ Z and λi ∈ 1
2
Z;

(ii) when n = 2r + 1, then λ1 ≥ λ2 ≥ · · · ≥ λr−1 ≥ λr, λi − λj ∈ Z and λr ∈ 1
2
Z≥0.

Consequently, from the expression of Ω in §5.4 the lemma follows. �

The following result follows from [18, Lemma 5.1].

Lemma 9.10. Let λ ∈ Λ+. Then the following statements hold.

(1) If λ is Serganova typical, then L̄(λ) ∼= L(λ− nδ).
(2) If λ is Serganova atypical and λ 6= aδ, then L̄(λ) ∼= L(λ+ (2− n)δ).
(3) If λ = aδ, L̄(λ) ∼= L(λ).

The following description on composition factors of Kac modules with Serganova atypical
weights follows from Lemma 9.10 and [18, Section 9].

Lemma 9.11. Let λ ∈ Ω. Then the following statements hold.

(1) If λ = aδ, then the irreducible composition factors of K(λ) are

L(aδ), L((a− n)δ), L(ε1 + (a+ 1− n)δ).

(2) If λ = ε1 + aδ, then the irreducible composition factors of K(λ) are

L((a− 1)δ), L((a+ 1− n)δ), L(λ+ ε1 + (1− n)δ), L(λ+ (2− n)δ), L(λ− nδ).
(3) If λ = bε1 + aδ, b ∈ Z≥2, then the irreducible composition factors of K(λ) are

L(λ+ (2− n)δ), L(λ− nδ), L(λ+ ε1 + (1− n)δ), L(λ− ε1 + (1− n)δ).

(4) If (K(λ) : L(µ)) 6= 0, then (K(λ) : L(µ)) = 1.

Let λ = aε1 + mδ and µ = bε1 + lδ be elements in Λ+, we have −ω0λ = λ + (2a −
2m)δ,−ω0µ = λ+ (2b− 2l)δ. So [T (µ) : ∆(λ)] = (K(λ+ (2a− 2m+n)δ) : L(µ+ (2b− 2l)δ))
due to Proposition 7.5. Then we obtain the following result on the multiplicities of standard
modules in each tilting module for H̄(n).

Proposition 9.12. Let g = H̄(n) and λ ∈ Λ+. Then [T (λ) : ∆(µ)] 6= 0 implies [T (λ) :
∆(µ)] = 1. Moreover, the following statements hold.

(1) Assume that λ is Serganova atypical.
(1-i) If λ = mδ, then

[T (λ) : ∆(µ)] 6= 0⇐⇒ µ ∈ {λ, λ+ nδ, ε1 + (m+ n+ 1)δ, ε1 + (m+ 3)δ}.
(1-ii) If λ = aε1 +mδ, a ≥ 1, then

[T (λ) : ∆(µ)] 6= 0⇐⇒ µ ∈ {λ, λ+ 2δ, λ+ ε1 + 3δ, λ− ε1 − δ}.
(2) If λ is Serganova typical, T (λ) = ∆(λ).
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