A GENERALIZED JOIN THEOREM FOR REAL ANALYTIC
SINGULARITIES

KAZUMASA INABA

ABSTRACT. Let f1 : (R™,0,) — (R?,02) and fo : (R™,0,,) — (R? 02) be real analytic map
germs of independent variables, where n,m > 2. Then the pair (f1, f2) of fi and f2 defines
a real analytic map germ from (R™*™ 0,4.,) to (R*, 04). We assume that fi and fo satisfy
the as-condition at 0z2. Let g be a strongly non-degenerate mixed polynomial of 2 complex
variables which is locally tame along vanishing coordinate subspaces. A mixed polynomial
g defines a real analytic map germ from (C?,04) to (C,02). If we identify C with R?, then
g also defines a real analytic map germ from (R* 04) to (R?02). Then the real analytic
map germ f : (R™ x R™,0,4m) — (R? 02) is defined by the composition of g and (fi, fa),
ie., f(x,y) = (go (f1, f2))(x,¥) = g(f1(x), f2(y)), where (x,y) is a point in a neighborhood
of On+m~

In this paper, we first show the existence of the Milnor fibration of f. We next show a
generalized join theorem for real analytic singularities. By this theorem, the homotopy type
of the Milnor fiber of f is determined by those of fi, fo and g. For complex singularities, this
theorem was proved by A. Némethi. As an application, we show that the zeta function of the
monodromy of f is also determined by those of fi, f2 and g.

1. INTRODUCTION

Let f1: (C", 092,) — (C,02) and fa : (C™,02,,) — (C,02) be holomorphic function germs of
independent variables z = (21,...,2,) and w = (w1, ...,w,,). Here Oay is the origin of CV.
The join theorem for complex singularities is the following.

Theorem 1 (The join theorem). Let f be a holomorphic function germ on a neighborhood of
the origin of C"™ such that f(z,w) = f1(z) + fo(w). Then the Milnor fiber of f is homotopy
equivalent to the join of the Milnor fibers of f1 and fo and the monodromy of f is equal to the
join of the monodromies of f1 and fo up to homotopy.

The join theorem was algebraically proved by M. Sebastiani and R. Thom for isolated singulari-
ties [27]. So the join theorem is often called the Thom—Sebastiani theorem. M. Oka showed this
for weighted homogeneous singularities [17]. For general complex singularities, this was proved
by K. Sakamoto [26].

Let ¢ : (RY,0y) — (RP,0,) be a real analytic map germ, where N > p > 2, and Oy and 0,
are the origins of R and RP respectively. In general, real analytic singularities may not admit
Milnor fibrations. To show the existence of the Milnor fibration of ¢, we assume that ¢ satisfies
the following conditions. Let  be a small positive real number. Set V() = ¢~(0,)NBY, where
BY = {x € RV | ||x|| < €}. In this paper, BY is used for the disk in the domain Euclidean space.
A real analytic map germ ¢ : (RY,0x) — (RP,0,) is locally surjective near the origin if there
exists a positive real number ¢ such that for any x € V() and for any neighborhood W of x,
the image p(W) is a neighborhood of 0,. We also assume that V' (¢) has codimension p at the
origin. Let S be a stratification of V(¢). The map ¢ satisfies the af-condition with respect to S
if BN\ V(i) contains no critical points and satisfies the following condition: Take any sequence
py of points in BY \ V(¢) converging to some py, € M, where M is a stratum in S and suppose
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that T}, 1(¢(py)) converges to 7 in the Grassmanian space. Then T, M is a subspace of 7.
Assume that a real analytic map germ ¢ : (RY,0y) — (RP,0,) satisfies the as-condition with
respect to S. We say ¢ is an ay-stable radius for ¢ with respect to S if it satisfies the following:
Each sphere 55—1 = {x e RV | ||x|| = €'},0 < &’ < ¢, intersects transversely with any stratum
in § and 0, is the unique critical value of ¢|pn : BN — Rp.

Since ¢ : (RY,0x) — (RP,0,) is a real analytic map germ, we may assume that a stratifica-
tion S of V(¢) is a Whitney stratification. See [8] for further information. By using the same
arguments as in the proof of [14, Corollary 2.9] and the proof of [3, Lemma 3.2], we may assume
that 5’6]\,[ ~1 intersects transversely with any stratum in S for 0 < &’ < e. Assume that ¢ satisfies
the following conditions:

(a-1) ¢ has an isolated critical value at the origin, codimrV () = p and ¢ is locally surjective
on V(p) near the origin,
(a-ii) ¢ satisfies the as-condition with respect to S.

Take an ay-stable radius € for ¢ with respect to S. By using the same argument as in the proof
of [22, Proposition 11], we can show that there exists a positive real number § such that SN—1
intersects transversely with ¢~!(n) for any n # 0 with || < § < . By the above conditions
and the Ehresmann fibration theorem [32], we may assume that

1 BY N (DF\{0,}) — DE\ {0}
is a locally trivial fibration, where D = {w € R? | ||w|| < é}. The isomorphism class of the
above fibration does not depend on the choice of € and §. We call this fibration the stable tubular
Milnor fibration of .

Let fi : (R",0,) — (RP,0,) and fa: (R™,0,,) — (R”,0,) be real analytic map germs, where
n,m >p>2. Put ny =n and ng =m. Set V(f;) = f{l(Op) NB for0<e< landj=1,2.
We assume that stratifications S; of V(f;) is given and {0,,} is a stratum in S; for j = 1,2.
We also assume that f; satisfies the condition (a-i) and that f; satisfies the a¢-condition with
respect to §; for j = 1,2. Take a common a-stable radius ¢ for fi and f> and take a sufficiently

small §, 0 < § < € such that f;l(n) intersects transversely with S?j_l for j =1,2, forallnp # 0

with || < 8. Set U;(e,0) = {x € B’ | ||f;(x)|| < &} for j = 1,2. By the above conditions and
the Ehresmann fibration theorem [32], we may assume that

fi 2 Uj(e,0) \ V(f5) — D5\ {0,}

is the stable tubular Milnor fibration of f; for j = 1,2. Put V(fi + fo) = (f1 + f2)"1(0,) N
(Ui(g,8) x Ua(e,6)). We take the stratification Sg, 4, of V(f1 + f2) as follows:

Shivf = (S1 X S) ULV (f1 + f2) \ (V(f1) x V(f2))}-

By using Sy 1f,, we can show that f; + fo also satisfies the conditions (a-i) and (a-ii) [1,
Proposition 5.2]. Note that (f1 + f2)7*(n) N (Ui(g,d) x Us(e,d)) is homotopy equivalent to
(fi + f2) "' (n) N BL™, where 0 < |n| < ¢ < 1 [9, Lemma 7]. Then we can show that the
fiber of the tubular Milnor fibration of f; + fo is homotopy equivalent to the join of the fibers
of the tubular Milnor fibrations of f; and fo. Moreover, if p = 2, the monodromy of the tubular
Milnor fibration of f; + f5 is equal to the join of the monodromies of f; and fo up to homotopy
[9, Theorem 2]. L. H. Kauffman and W. D. Neumann studied fiber structures and Seifert
forms of links defined by tame isolated singularities of real analytic map germs of independent
variables [10]. The definition of tame singularities appears in [10, p. 372]. For mixed weighted
homogeneous singularities, the join theorem was proved by J. L. Cisneros-Molina [4].

In [16], A. Némethi studied a generalized join theorem for complex analytic singularities. Let
¢ : (C" 09,) — (C,02) be a complex analytic map germ. We can consider a complex analytic
map germ as a real analytic map germ (R¢, S¢) : (R?", 09,) — (R?,02). It is known that there
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exists a stratification Sy of ¢»~1(0)N B2" such that ¢ satisfies the a s-condition with respect to Sy
for 0 < e < 1. See [11, Section 6.4].

Let fl : (Cn502n) - ((C702)7f2 : (Cm502m) - (C702) and g (C2504) - ((CvOQ) be
complex analytic map germs of independent variables. Then the complex analytic map germ
f:(C" x C™, 02p42m) — (C,02) is defined by the composition of ¢ and (f1, f2), i.e., f(x,y) =
(g o (f1,f2))(x,y) = g(fi(x), f2(y)). Let Fy,F, and Fj; be the Milnor fibers of fi, fo and g
respectively. For 0 < § <« 1, we denote the disk in the domain Euclidean space of g by
D} = {(z1,22) € C*| ||(21,22)| < 8}. Let by C D} be a bouquet of circles with base point .
We assume that b, is a deformation retract of the fiber of the stable tubular Milnor fibration
of g|D§ and by N {z122 = 0} = 0. Then the map (f1, f2) : (f1,f2) " (by) — by is a locally

trivial fibration with fiber F} x Fy. See [15, 16]. Set F, = V(f1) x Fy and Fy, = F| x V(f2).
Némethi showed that the Milnor fiber of f has the homotopy type of the space obtained from
(f1, fo) (b ¢) by gluing to (f1, fg) L(%) 11 copies of Fy and I, copies of Fy, where [ is the number
of points of {(0, z2) € DEng='(5)} and Iy is the number of points of {(21,0) € DiNg='(d)} for
0<d<d<1[16].

To study a generalization of the join theorem for real analytic singularities, we consider
strongly non-degenerate mixed functions. Let g = (g1,92) : (R?*",09,) — (R?,03) be a real
analytic map germ with real 2n variables x1, ..., 2z, and y1,...,y,. Then (g1, g2) is represented
by a complex-valued function of variables z = (z1,...,2,) and z = (Z1,...,2,) as

9(2,2) := 91<Z;FZ ;\}Z)+ng<z;z ;\;)

Here any complex variable z; of C" is represented by ;++/—1y; and z; is the complex conjugate
of zj for j =1,...,n. Then the map g : (C",02,) — (C,02) is called a mized function. Oka
introduced the notion of Newton boundaries of mixed functions and the concept of strong non-
degeneracy. Let g be a strongly non-degenerate mixed function which is locally tame along
vanishing coordinate subspaces. Then there exists a stratification Sgqy of 971(02) such that
g satisfies the ag-condition with respect to Seqn. See [22] and Section 2. By [22, Lemma 14],
g also satisfies the condition (a-i).

Assume that f1 : (R",0,) — (R?,02) and fo : (R™,0,,) — (R?,05) satisfy the conditions (a-i)
and (a-ii). Let g be a strongly non-degenerate mixed polynomial of 2 complex variables which
is locally tame along vanishing coordinate subspaces. By using S.q,, we can take an ay-stable
radius & for g and take a sufficiently small 4, 0 < § < & such that g : Din g*I(D(% \ {02}) —

D(% \ {02} is a locally trivial fibration. Let b, C D} be a bouquet of circles with base point x.
Assume that b, is a deformation retract of the fiber of the stable tubular Milnor fibration of g
and by N {2122 = 0} = (. By the local triviality of g : Df N gfl(Dg \ {02}) — D? \ {02}, the
map (f1, f2) : (f1, f2) "1 (by) — by is a locally trivial fibration with fiber Fy x Fy. See the proof of
Theorem 3. If we identify C with R?, then g also defines a real analytic map germ from (R*, 04)
to (R%,05). Then the real analytic map germ f : (R"® x R™ 0,4,,) — (R?,02) is defined by
f(x,y) = (go(f1, f2))(x,¥) = g(f1(x), f2(y)), where (x,y) is a point in a neighborhood of 0,4 ,.
In general, f is not strongly non-degenerate. To show the existence of the Milnor fibration of f,
we need to prove that f satisfies the ay-condition. Take a common ag-stable radius € for f;
and fy and take a sufficiently small ¢’ such that f; : Uj(e, ¢') \ V(fj) — D% \ {02} is the stable
tubular Milnor fibration of f; for j = 1,2. Set V(f) F71H02) N (Uy(e,8") x Us(e,d)). We
define

S'(1) = {U1(e, )\ V(f1)) x Ma | M2 € So} {1} € Z(9),
R {1} € Z.(9),
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S(2) = {My x (Ua(e,8)\ V(f2)) | My € &1} {2} € Lu(g),
0 {2} € Zu(9)-
The definition of Z,(g) will be explained in Section 2. Then put &’ = §'(1) US’(2) and we define
the stratum V' (f)’ of V(f) and the stratification Sy of V(f) as follows.

V() = V() \Unesixsaus V:
Sf = (81 X 82) usS'u {V(f)/}
By using Sy, we can show the following theorem.

Theorem 2. Let f; : (R",0,) — (R2,05) and f> : (R™,0,,) — (R% 02) be real analytic map
germs of independent variables x = (x1,...,x,) andy = (y1,...,Ym), where n,m > 2. Assume
that fi1 and fa satisfy the conditions (a-i) and (a-ii). Let g be a strongly non-degenerate mized
polynomial of 2 complex variables which is locally tame along vanishing coordinate subspaces.
Then the real analytic map germ f = go (fi, f2) satisfies the ag-condition with respect to Sy.

By Theorem 2, we can show that f admits the Milnor fibration. To study Némethi’s theorem
for f, we assume that fi, fo and g satisfy the above conditions and add the assumption (A)
on g. See Section 4.

Theorem 3. Let f = go (f1,f2) : (R® x R™, 0,41m) — (R% 05) be the real analytic map germ
as in Theorem 2. Assume that g satisfies the assumption (A) in Section 4. Let by C Dj be
a bouquet of circles with base point x. Assume that by is a deformation retract of the fiber
of the stable tubular Milnor fibration of g and by N{z122 = 0} = 0. Set Fy = V(f1) x Fy and
Fy = F) x V(f2). Then the Milnor fiber Fy of f is homotopy equivalent to the space obtained from
(f1, f2)~(by) by gluing to (f1, fa)~L(x) Iy copies of Fy and ly copies of Fy, where 1y is the number
of points of {(0, z2) € D} Ng='(8)} and ly is the number of points of {(z1,0) € D} Ng=1(8)} for
0<d<d< 1.

As an application of Theorem 3, the monodromy of f is determined by those of fi, fo and g.
Then we can calculate the zeta function of the monodromy of f by using the Alexander polyno-
mial of the link determined by ¢g~1(0) and the zeta function of the monodromy of fjforj=1,2.
See Section 6.

This paper is organized as follows. In Section 2 we give the definition of strongly non-
degenerate mixed functions. In Section 3 we prove Theorem 2 and the existence of the Milnor
fibration of f. In Section 4 we study homeomorphisms of Milnor fibers of mixed polynomials of
2 complex variables. In Section 5 we prove Theorem 3. In Section 6 we study the zeta function
of the monodromy of f.

The author would like to thank Mutsuo Oka for precious comments and fruitful suggestions.
He also thanks to the referee and the editor for careful reading of the manuscript and several
accurate comments.

2. STRONGLY NON-DEGENERATE MIXED FUNCTIONS

In this section, we introduce a class of mixed functions which admit tubular Milnor fibrations
and spherical Milnor fibrations given by Oka in [20]. Let g(z,z) be a mixed function, i.e.,
9(z,z) is a function expanded in a convergent power series of variables z = (z1,...,2,) and
z=(Z1,...,%n),

g(z’ Z) = ZV,H, CV’/‘LZVZM’
where z¥ = 2 -2l for v = (vq,...,1,) (respectively z# = z|" -
The Newton polygon 'y (g;2z.z) is defined by the convex hull of

Ui+ ) +RY [ e, # 0},

27[1” for n= (,U,l,... 7lu’n))'
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where v + p is the sum of the multi-indices of z"z*, i.e., v+ p = (v1 + p1,...,Vn + ). The
Newton boundary T'(g;z,z) is the union of compact faces of I';(g;z,z). Let Z, be the set of
non-negative integers. For any non-zero weight vector P = !(p1,...,pn) € (Z4)", we define a
linear function ¢/p on I'} (g;z,2) as follows:

E=(&,. &) Z?:lpjgj'

We denote the minimal value of £p by d(P) and put A(P) = {¢ € I'+(g9;2,z) | £p(§) = d(P)}.
Let A and P be a face of 'y (g;z,Zz) and a non-zero weight vector respectively, then we define

gA(Z’ Z) = Zy-}-pGA CV7MZVZH’ gP(Z7 Z) = ZV—‘,—;LGA(P) CVylleZM'

The mixed functions ga and gp are called the face function of f of the face A and the face
function of f of the weight vector P respectively.

The strong non-degeneracy of mized functions is defined from the Newton boundary as follows:
let A be a face of I'(g;2,2z). If gn : C* — C has no critical points, and ga is surjective
when dim A > 1, we say that g(z,z) is strongly non-degenerate for A, where C** = {z =
(21,.--52n) | 2 # 0,5 = 1,...,n}. If g(z,2) is strongly non-degenerate for any A, we say that
9(z,2) is strongly non-degenerate. If g((0,...,0,%;,0,...,0),(0,...,0,%,0,...,0)) # 0 for each
j=1,...,n, then we say that g(z,z) is convenient.

For a subset I C {1,...,n}, we set

Cl={(z1,...,2) €C" |z =0,i ¢ I}, C*={(21,...,20) €C" | z; A0 i€}

Note that C*? = {0,,}. Put g/ = g|cs. Then we define the subsets of {I | I C {1,...,n}} as
follows:
Inv(g) = {I - {17"'7n} | gI * 0}7 Iv(g) = {I - {17"‘7n} |gl = 0}

If I € Z,(g), C! is called a vanishing coordinate subspace. For I € Z,(g), we define the distance
function on C! by p;(z) = /> ,c/[7[*. Let 7 : C* — C! be the projection and put z; = 7;(z).
We say that g is locally tame along the vanishing coordinate subspace C! if there exists a positive
real number 77 such that for any a; = (oy)ie; € C*! with py(a;) < rr and for any non-zero weight
vector P =*(p1,...,p,) with I(P) = {i | pi = 0} = I, gp|s,=a, is strongly non-degenerate as a
function of {z; | j € I°}. A mixed function g is said to be locally tame if g is locally tame for
any vanishing coordinate subspace. If a strongly non-degenerate mixed function g is convenient
or locally tame for any vanishing coordinate subspace, g has both tubular and spherical Milnor
fibrations and also two fibrations are isomorphic [20, 22]. The definition of spherical Milnor
fibrations appears in Section 5.1 of the present paper. Moreover g~!(0) N B2" has the following
stratification.

Theorem 4 ([22]). Let g be a strongly non-degenerate mized polynomial. Assume that g is locally
tame for any vanishing coordinate subspace. Let € be a positive real number which satisfies the
following conditions:

e there erists a positive real number §(¢) such that g~1(n) has no singularities in B®" for

any non-zero n with |n| < d(e),

e c <min{r; | I € Z,(9)}

Set
Sean = {971 (0)NC,CN\ (971 (0) NC) | I € o (9)} U{C™ | I € T(g)}-

Then g satisfies the ay-condition with respect to Sean 0 B?".

Let g¢ be an analytic family of strongly non-degenerate mixed polynomials which are locally
tame along vanishing coordinate subspaces. Assume that the Newton boundary of g; is constant
for 0 <t < 1. C. Eyral and M. Oka showed that the topological type of (V(g;),02,) is constant
for any t and their tubular Milnor fibrations are equivalent [6].
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3. THE EXISTENCE OF THE MILNOR FIBRATION OF f

Let fi : (R",0,) — (R%,05) and f : (R™,0,) — (R2 05) be real analytic map germs
of independent variables, where n,m > 2. For a small positive real number ¢, we take a
stratification S; of fj_l(Og) N B’ with ny = n and ny = m. Suppose that f; satisfies the
conditions (a-i) and (a-ii) with respect to S; for j = 1,2. Take a positive real number ¢’ that
is sufficiently smaller than e. Then we may assume that f; : U;(e,d') \ V(f;) — D% \ {02} is
a locally trivial fibration for j = 1,2. Let g be a strongly non-degenerate mixed polynomial
of 2 complex variables which is locally tame along vanishing coordinate subspaces. Then the
real analytic map germ f : (R” x R, 0,:) — (B2, 0) is defined by £(x,¥) = g(f1(x), f2(y));
where (x,y) is a point in a neighborhood of 0,,4,. In this section, we prove the existence of the
Milnor fibration of f.

Lemma 1. The origin 02 is an isolated critical value of f.

Proof. For any (x,y) € (Ui(g,8") x Ua(e,d")) \ V(f), we show that the rank of Jf(x,y) is equal
to 2, where J f is the Jacobian matrix of f. Set g1 = Rg, g2 = 3¢, 2j1 = Nz; and zj3 = Fz; for

7 =1,2. Put
o o
G = 329121 3Z9122 , Ga= 3?21 3?22 :

6211 3212 8221 8222

Since f = g o (f1, f2), the Jacobian matrix Jf of f is equal to

(G1 Gy) (ng JOf;> = (G1Jfi GaJf2),

where O is the 2 x n zero matrix and O’ is the 2 x m zero matrix .
Suppose that fi(x) = 02, {2} € Z,(g) and f2(y) # 02. Since g is a strongly non-degenerate
mixed polynomial, there exists a weight vector P such that ¢(0, z3) is given by

9(0,22) = gp(22) + (higher terms)

and gp : C*{Z} — C has no critical points. Thus for any sufficiently small £ > 0, glest2y ¢ c*2h -
C also does not have critical points for z, |22] < €. By the condition (a-i), rank Jfa(y) =
rank G = 2. Thus rank Jf(x,y) is equal to 2. If fi(x) # 02, fo(y) = 02 and {1} € Z,,(g), by
using the same argument, we can show that rank J f(x,y) is equal to 2.

Assume that (x,y) satisfies fi(x) # 02, fo(y) # 02 and f(x,y) = g(f1(x), f2(y)) # 02. Since

f1, fo and ¢ have an isolated critical value at the origin, we have
vank J fi(x) = rank J fo(y) = rank Jg(f1(x), fa(y)) = 2.

If rank G1 = 2 or rank Gy = 2, then the rank of Jf(x,y) is equal to 2.
Suppose that rank G; < 2 and rank G5 < 2. Set

dg1 O0g1 Og1 Ogi\
(82117 0z12 Oza1’ 8222> = (a1, az, by, b).

Since rank Jg(f1(x), f2(y)) = 2, we may assume that (ay, a2, b1,b2) # (0,0,0,0). If (a1,a2) #
(0,0) and (b1,b2) # (0,0), then there exist real numbers r and s such that Jg(fi(x), f2(y)) =

(G1 G2) is equal to
al a9 bl bQ
ray ras 8by sby )

Since rank Jg(fi(x), f2(y)) = 2, r # s. Set f; = (fj1, fj2), where fj1 and fjo are real-valued
functions for j = 1,2. Then Jf(x,y) is equal to

( ardfi1 + azdfi2 bidfa1 + badfar >
r(ardfin + azdfiz) s(bidfor + badfaz) )
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Here df;, is the gradient of a smooth function fj; for j = 1,2 and k£ = 1,2. Since rank J fi(x) =
rank J fo(y) = 2, we have

ardfi1 + agdfiz # O,  bidfar + badfas # O'.

Note that r is not equal to s. Thus the rank of Jf(x,y) is equal to 2.
If (a1,a2) # (0,0) and (b1, b2) = (0,0), then Jg(f1(x), fo(y)) = (G1 G2) is equal to

al ag 0 0
ra; rag by by)°

ardfin + azdfio o’
r(ardfi + azdfia) bidfar + bhdfan )

Since rank Jf1(x) = rank Jfo(y) = 2, aidfin + aadfi2 # O and bidfa; + bhdfaa # O'. Thus

rank Jf(x,y) is equal to 2. If (a1,a2) = (0,0) and (b1,b2) # (0,0), then by using the same

argument, we can show that rank Jf(x,y) = 2. O

Hence Jf(x,y) is equal to

Proof of Theorem 2. We use Curve Selection Lemma to prove the assertion. Let (x(t),y(t)) €
Ui(g,68") x Us(e,68') be an arbitrary real analytic curve such that (x(0),y(0)) € f~!(02) and
f(x(t),y(t)) # 02 for t # 0. It is enough to check that the ay-condition is satisfied along
this curve. Put (a,b) = (x(0),y(0)). Then (a,b) belongs to one of {V(f)'}, N, N, Nj, where
N € § X S and N]'- € §'(j) for j =1,2. So we divide the proof into four cases:

(1) (a,b) € V(f),a¢ V(f1) and b € V(fs),

(2) (a b) € My x My,

(3) a€ My and b € V(f2),

(4) a¢ V(f1) and b € Mo,

where M; € S; for j = 1,2. Since f; and fo satisfy the condition (a-i) and g is strongly non-
degenerate in case (1), (a b) is a regular point of f. In case (2), since f; and fy satisfy the
condition (a-ii), we have

im Tioc(e) ()~ (F(x(8), ¥(1))

D%%(Tx(t)ffl(fl(x(t))) X Ty(t)fgl(fz(Y(t)))>
D) T(a,b)Ml X M.
Case (3) is divided into two cases:
(3-1) {2} € Zu(g), i.e., (a,b) € §'(2),
(3-2) {2} € Zu(9), Le,, (a,b) € V(f)".
In case (3-1), by using Theorem 4, we can show that there exist vectors
vg1(t) = (91,1,91,2,0,0)t" + (higher terms),
vg2(t) = (92,1, 92,2, 0, 0)t" + (higher terms)

such that rank (g; g;z) = 2 and limy—o T, (x(t)). oy ()9 (9(F1(x(8)), f2(y(1)))) is orthog-

onal to (g1,1,91,2,0,0) and (g2,1,922,0,0). Since f; satlsﬁes the ay-condition with respect to Sy,
there exist vectors
v 1(t) = ait® + (higher terms), vy, o(t) = agt® + (higher terms)
such that
lim Ty fi' (f1(x(1))) = ar Nag D Ty M,
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where ajL ={veR"|(v,a;) =0} for j = 1,2. Up to scalar multiplications, we may assume

that vy, 1(t) and vy, 2(t) are equal to dfi; and dfia respectively. Note that v, 1(t) and vg2(t)
are linear combinations of dg; and dga for ¢ # 0. See the proof of [22, Theorem 20]. Since f is
the composition of g and (f1, f2), T(x(t%y(t))f*l (f(x(t),y(t))) is orthogonal to

vt 0---0
(Vg,l(t)> v 2(t) 0---0 _ <(91,1al + g12a2,0,...,0)t""* + (higher terms)>
vga(t)) | 0---0 dfar(y(®) | ~ \(g2.121 + g2,282,0,...,0)¢" +* + (higher terms)/

0---0 dfa(y(t))

Thus limg_,q T(x(t),y(t))f_l (f(x(t),y(t))) is orthogonal to the following vectors:
(91121 + g1,2a2,0,...,0),  (g2,121 + g2.282,0,...,0).

Since rank <gl’1 z 1’2> =2, v € R" is orthogonal to a; and ag if and only if v is orthogonal to
2,1 92,2
gi11a1 + g1,2a2 and gz 1a1 + g2 2a2. Thus we have the following inclusion relation:

lim Tix(tyend~ (F(x(8),¥()))
D lim T f1 (1(x(8)) X Ty (Ua(e, ) \ V(f2))
D TaMy X Ty, (Us(e,8") \ V(f2)).

Thus f satisfies the ay-condition with respect to S'(2). If {2} ¢ Z,(g), by using the same
argument as in the proof of Lemma 1, the rank of J f(a, b) is equal to 2. Thus (a, b) is a regular
point of f. Case (4) follows from case (3) by interchanging the variables z; and zj. O

Example 1. Consider g(z,%) = (di + c1v/—1)21|22|?. Put w = (c1 + d1v/—1, 22) € C?, where
c1 + div/—1 # 0. Then the normalized gradient of Ry is given by
1

(dh —C1, Oa O)

When z9 — 0, we have
hmzz—>0 ng_l(g(w)) - liInz2—>0 Tw(%g)_l(%g(w)) ¢ Cx {O}

Hence g does not satisfy the a-condition with respect to Sean [22]. Let f1 : (R™,0,) — (R?,05)
and f3 : (R™,0,,) — (R?,03) be real analytic map germs of independent variables, where n, m >
2. Assume that f; and f; satisfy the conditions (a-i) and (a-ii). In this case, G1(w)J fi(x) # O,
where x € f; '(c1 +div/—1). Set y € f5 ' (22). Then we have

]‘imZQA’O T(x,y)f_l(f(x7 Y)) ?5 TX(Ul (6’ 6) \ V(fl)) X TYSQ‘

Thus f = g o (fi, f2) does not satisfy the as-condition with respect to Sy.

We next consider g,(z,2z) = 212922 for a > 2. Then g, is a strongly non-degenerate mixed
polynomial which is locally tame along vanishing coordinate subspaces. By Theorem 2, f, =
ga © (f1, f2) satisfies the as-condition with respect to Sy, .

Lemma 2. Let f be as in Theorem 2. The real analytic map germ f is locally surjective on
V(f) near the origin and the codimension of V(f) is equal to 2.

Proof. Since f1 and fo satisfy the condition (a-i) and g admits the Milnor fibration, f is locally
surjective on Sy x Sz. Let (x,y) be a point of §’. By using the condition (a-i) and the Milnor
fibrations of f1, f2 and g, we can show the existence of a neighborhood Wy y of (x,y) such that
02 is an interior point of f(W(y y)).

Since V ()’ is the set of regular points of f, f is locally surjective on V() and the codimension
of V(f) is equal to 2. O
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By Theorem 2, Lemma 2 and the Ehresmann fibration theorem [32], we can show the following
corollary.

Corollary 1. There exists a positive real number €y such that for any 0 < e < g, there exists
a positive real number () such that

Flizsmog—s o qoay - BTN 7 (DE\ {02)) — D2\ {02}

is a locally trivial fibration for 0 < 6 < 6(¢). The isomorphism class of this fibration does not
depend on the choice of € and §.

4. HOMEOMORPHISMS OF MILNOR FIBERS OF MIXED POLYNOMIALS OF 2 COMPLEX
VARIABLES

Let g = Zy, u cv,u2”Z" be a strongly non-degenerate mixed polynomial of 2 complex variables
which is locally tame along Vanishing coordinate subspaces. Put V = ¢g~1(0). Let 7; : X1 — C?

be an ordlnary blowmg up and E be the exceptional divisor of 71. We denote the strict transform
of V by V. Put E(V) = ENV C CPL. Let (ug,vg) and (u1,v1) be the local coordinates of X;

which satisfy
21y _ ( uwo \ _ [uivr
z9 o upvo o (%] ’
Take a point [a : b] € E. By using the local coordinates of X7, we have

[mmzytm]amm¢mﬂm

Let ¢ : CP! — RP! be the map defined by ¢([a : b]) = [|a| : [b]]. We identify RP!\ {[0 : 1]}
with R and we assume that

(A) there exist positive real numbers r; and ro such that r; < ro and [r1,7re] C RP\ ({[0 :
1} ug(E(V))).

Example 2. Let p1,p2, ¢ and g2 be integers such that ged(p1, p2) = ged(qi, g2) = 1. We define
the S'-action and the R*-action on C? as follows:

soz=(sPz1,5P2), roz=(r"'z,r%z), se S, reR"
If there exists a positive integer d, such that g(z,z) satisfies
g(sPr 2y, sP229,5P1 2, 572 %9) = s%g(z,2), s € St
then we say that g(z,2) is a polar weighted homogeneous polynomial. Similarly g(z,z) is called
a radial weighted homogeneous polynomial if there exists a positive integer d, such that
g(rTizy, r®2 2, 11z 12 %)) = r¥g(z,2), reR".

Polar and radial weighted homogeneous mixed polynomials admit global Milnor fibrations. See
[24, 4, 19, 20].

We show that polar and radial weighted homogeneous polynomials satisfy the above assump-
tion (A). Since g is a polar and radial weighted homogeneous polynomial, V' is an invariant set
for the S'-action and the R*-action. Let C be a connected component of V' \ {(0,0)}. Note that
dimg V = 2. Then there exist complex numbers ay and as such that

C = {(a17 sP!, apr®sP?) € C% | s € S*,r > 0}.
Assume that a; # 0. Let (ug,v9) be the local coordinates of X; which satisfy

21 = Ug, 22 = Upvo-
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Then the strict transform C of C' is given by

Qg o _
{(UO = ayrftsPt vy = —=rP2~ NP2 P1) ’ = Sl,T > 0}.
aq

If ¢, is greater than ¢o and as # 0, EN C is equal to [0 : 1]. Since the number of connected
components of V'\ {(0,0)} is finite, £(V') is a finite set. Thus E(V') satisfies the assumption (A).

Set 7o = “4™2 and D? x D2, = {(21,22) € C? | |z1| < v, |22| < rov} for 0 < v < 1. By the

rTOov

assumption (A), there exists a positive real number 51 such that

VN (OD2 x 0D ) =10

roU

for v < 1. Take positive real numbers 50, b2 and ¢ such that Dg‘ ,D? are Milnor balls of g and
0 2

4 2 2 4 2 2
DSO C D5 x Dy s C D(§2 - D(§1 X DTOSI.

Then we can choose small positive real numbers 51 and 52 such that 51 < %2 < 6 and

g Y(6) N (OD2 x OD? ) =10

0V

for k = 1,2 and v < &;. By [20, Lemma 28] and [22, Lemma 7], there exists a positive real
number 79 such that g=!(n) is transversal to 8D§ for any n # 0 with || <np and Jp < v < da.

Assertion 1. There exzists a positive real number 1}y such that the fiber g=1(n) is transversal to
O(D? x D2 ) for anym #0,|n| <nfy and § < v < dy.

0V

Proof. Assume that {2} & Z,(g). Since g is a locally tame mixed polynomial, by Theorem 4, the
singular locus X(V') of V' is {(0,0)} or {z2 = 0}. Since g satisfies the assumption (A), the origin
is an isolated singularity of VN {|z1]| < |22|/r0}. Note that the function |21|? : V\3(V) — R has
only finitely many critical values. By using the same argument as in the proof of [14, Corollary
2.9], V and {|z1| = v} intersect transversely and V N {|z1| < |z2|/ro} is compact. Thus we can
show the existence of n}, such that g=!(n) and {|z1| = v} intersect transversely for 7 # 0 with
Il < ng-

If {2} € Z,(g), we assume that the assertion does not hold for D2 x D%Ov. By [22, Lemma 2]
and Curve Selection Lemma, we can find a real analytic curve z(t) = (z;1(t), 22(t)) and a complex—
valued function «(t) such that

e g(z(0)) = 0 and g(z(t)) # 0 for t # 0,
o 21(t) = a(t) 2 (2(t) + al(t) 22 (a(t)) for t > 0.
Put
2j(t) = c;t"7 + (higher terms), c¢; # 0 if 2;(t) #Z 0,

a(t) = apt™ + (higher terms), ag # 0.

To prove the assertion, we may assume that z1(t) Z 0, z2(t) Z 0,p1 > 0 and py = 0. Since {2} €
Z,(g) and g is locally tame, g|,,—¢, is a strongly non-degenerate mixed function of variable z;

for |ea| < rod1. By using ¢1 # 0,¢2 # 0 and 2 (t) = a(t)g—i(z(t)) + 6(t)g—g(z(t)), we can show
that there exists a face A of I'(g; z,z) such that

0 0
0= aoﬂ(q,@) +070%(01,C2).
Z1

8Z1

See the proof of [22, Lemma 7]. By the above equation and [19, Proposition 1], ¢; is a singularity
of gAlz=c,- This is a contradiction to the strong non-degeneracy of g|.,—.,. We can apply the
same argument for the cylinder {|z2| = rov}. Thus there exists a positive real number 7, such
that g~1(n) is transversal to d(D2 x D2 ) for any 1 # 0 with || < 7 and § < v < &. O

ToU
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Proposition 1. Let g be a strongly non-degenerate mized polynomial of 2 complex variables

which is locally tame along vanishing coordinate subspaces. Assume that E(V') satisfies the

assumption (A). Then (D3 x D? g_l(él)ﬂ(DngfO(S)) is homeomorphic to (D:g1 ,g_l(él)ﬂD§ ).
2 2

00

Proof. We take 0y such that 0 < 0y < min{ng,n,}. By Assertion 1, g~!(5) is transversal to
d(DZ x D3 ) for |n| < 6y and § < v < &;. Thus there exists a vector field v(z) defined on
g*l(Di) N (Dg2 \ Int (Dg/2 X Dv%oé/Z)) such that g(h(t,z)) is constant, |hi(t,z)| and |ha(t, z)|
are monotone increasing, where h(t,z) = (hi(t,2), ha(t,z)) is the integral curve of v(z) with
h(0,z) = z. So we can define a homeomorphism from g_l(D§2)ﬂ(D§ X Dfoé) onto g_l(D;Q)ﬁDg2
such that this homeomorphism is equal to the identity map on g_l(Di) N (Dg /o % Dzo 5 /2).
Since g is strongly non-degenerate and locally tame along vanishing coordinate subspaces,
there exists a vector field v/(z) defined on D§‘2 \g~! (D(%Q/z) such that |g(h/(t,2))| and |h'(t,z)| are
monotone increasing, where h'(t,z) is the integral curve of v'(z) with h'(0,z) = z. See [20, 22].
We take d; such that 0 < §; < % < 6. Then h(t,z) and h'(t,2) induce a homeomorphism from
(D} x D2 5,g71(61) N (D} x D2 5)) onto (Dg2,g—1(51) nD}). O

rod’

5. PROOF OF THEOREM 3

Let g be a mixed polynomial of 2 complex variables which satisfies the assumptions in Sec-
tion 4. Let b, C Dg‘ be a bouquet of circles with base point *. Assume that b, is a deformation
retract of the fiber of the stable tubular Milnor fibration of g and by N {z122 = 0} = 0. Let
fi:(R"0,) — (R% 0s) and f2: (R™,0,) — (R 02) be real analytic map germs of independent
variables as in Section 3. Set Fy = V(f1) x Fy and Fy = F} x V(f2).

Take positive real numbers ¢ and €1 such that € < 1 and ¢ and £; are common as-stable
radii for f; and fo. Then there exist a positive real number 77 < ¢ and a vector field v; on
(B \ Int B&?) N {0 < |f;| < 7} such that

* (vi(x),x) <0and (va(y),y) <0,
. —1 . —1
e vi(x) is tangent to f; " (fi(x)) and vo(y) is tangent to f5 " (f2(y))
for j = 1,2. Choose positive real numbers 8,6 and 1 as in Proposition 1, i.e., (Dg fooé, gfl(g)ﬂ
(D? x Dgod)) is homeomorphic to (Dgl,g_l(g) N D§1)' We also assume that §; < 7. By using
v1 and va, we have
(i) f;(B:’) Cc D3 and

fi: BY 0 7D\ {02}) — D\ {02}
is a locally trivial fibration for j = 1,2, = ¢,&1 and n = 4,4y, 3
(it) (Dj x D2 5,97 "(6) N (D§ x D? 5)) is homeomorphic to (Milnor ball, g~*(5)),
(iii) there exists a deformation retract
7+ (Bei \ Int B) N f;H(DF) — 0B 0 f;71(Dj)

such that 7; =1id and f; o 7; = fj.

o2 nf; (D2
We take & sufficiently small such that
e g~1(9) is a Milnor fiber in D} x D2 ; and D? x D2 ;,

~ 7”()(51 ~
e g71(6) N{z122 = 0} N (D? x Dzoé) =g 1(0) N{z122 = 0} N Dj}.

Lemma 3. Set F_; = “1(8) N (BZ x B™). Then (fi, f2)” " (D} x D2 ;) N F_; is homotopy
equivalent to F_ 5.
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Proof. Set g_l(g)o = 9_1(5) N ((Dgl x D7

7061

)\ Int (D% x Dfo(s)). Since the Milnor fibers of ¢
are transversal to small spheres, there exists a deformation retract Dy : g 1(6)° — g~1(4)° such
that Dy = id and Im Dy € g~1(8) N 9(D3 x D?,O(;). By the local triviality of (fi, f2), there exists
a deformation retract

Dy : (BL, x BE) 0 (fr, f2) 971 (0)°) — (BL, x BE) 0 (fi, f2) (971 (0)°)

such that D; is the lifting of Dy, Do = id and Im Dy € (f1, fo) ' (g~ () N (D3 x D%O(S)).
Define 7; : BY N f;1(D3) — B{ 0 f;71(D}) by

7,;. —_ /fjja ‘X’ 2 67
! id, |x|<e.

Then the composed map (71 x 72) 0 D; defines a deformation retract of (f1, f2) (D2 x D? )NF_5

700

in F_;. 0

We take 0 < ] < € and 0 < 0] < §. Assume that (¢],d]) has the same properties as

(e,9) and 5 is sufficiently small. By using the above argument, we can show that the inclusion
(f1, f2)_1(D§,1 x D? )mFs’l,S C (f1, f2)"1(D? x D? )N F_ 5 is a deformation retract. So we can

r0d} o0
show the following corollary.

Corollary 2. The inclusion Fe,lg C F_ 5 is a homotopy equivalence.

By Corollary 2, we have
Lemma 4. Let Fy be the Milnor fiber of f. Then F_; has the same homotopy type of F.

Proof. We choose sufficiently small positive real numbers €1 > €9 > €3. Set ng ;= ffl(g) N
(ng x Bfl) for k = 1,2,3. By Corollary 2,~ The inclusion F5k+175 C Fsk,S is a homotopy
equivalence for k = 1,2. Since the fiber f~'(0) intersects transversely with S, S™F™ and
52+ the inclusion f 4(5)032‘:{? c f~40) NBZH™ is also a homotopy equivalence for k =1, 2.
Thus the sequence

F ;2" O)NBY™DF 52 f ' (6)NBL™DF, 5

3 €3,

defines a homotopy equivalence F_  — F. See [13, Proposition 1.1] and [9, Lemma 7]. O

Proof of Theorem 3. Consider the following map
(f1,f2) : (f1, f2) "H(DF x D} 5) N F. 5 — (D§ x D} 5) N 97 (9).

This map is locally trivial over g=1(8) \ {2122 = 0} with fiber Fy x 3.
Let Dj2- be a small neighborhood of a point of g71(§) N {2122 = 0} and v; be a path from b,
to D? for j=1,...,11 + 5. Assume that
by Ny = {*}, Djz N~y; = {a point} C 3Dj2-

and

for j =1,...,11 + 1y and j # j'. Since (f1, f2) is locally trivial over g_l(g) \ {z122 = 0}, by
homotopy lifting property, F_ 5 is homotopy equivalent to

(f1s £2)7 (b U (US2 D2) U (U 39) )
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See [29, p. 55]. Let (z1,22) be a point of g~1(8) N {2122 = 0} N Di. Then (f1, fo) (21, 22) is
homotopy equivalent to

Fi (21=0),

F (20 =0).
Thus Fy has the homotopy type of a space obtained from (fi, f2)~(b,) by gluing to the fiber
(f1, fz)_l(*) l1 copies of Fl and [y copies of F‘g. O

Corollary 3. Let f = go (f1, f2) : (R® x R™, 0,41) — (R?,02) be the real analytic map germ
as in Theorem 3. Then the Euler chamctemstzc of the Milnor fiber Fy of f is given by

X(Fr) = x(Fy \ {z122 = 0})x(F1)x(F2) + lix(F2) + lax (F1).

Remark 1. Let g be a strongly non-degenerate mixed polynomial of 2 complex variables
which is locally tame along vanishing coordinate subspaces. Assume that ¢’ := g|,,—0 =
Do Con? 2y 0. Put gy =30, ¢y u25 2. Then we can write

g =gq+- - +gg
gy = c25 7 [[5_1 (22 + 0 Z2) P,
where d = min{v +p | ¢, # 0} and d = max{v + u | ¢, # 0}. Suppose that all zeros of ¢’ are

regular points of ¢’ and |0k < 1 for k = 1,...s. By [21, Theorem 20], the number of points of
g7H0) N D? is equal to a — b+ > _p_; fig-
5.1. Spherical Milnor fibrations. Let ® be a real analytic map germ which satisfies the
conditions (a-i) and (a-ii). We assume that ® satisfies the following condition:
(a-iii) there exists a positive real number 7’ such that
®/|®|: 90BN \ Kg — SP~*

is a locally trivial fibration and this fibration is isomorphic to the tubular Milnor fibration

of ®, where K¢ = BN N®~1(0) and 0 < r < 7'.
The fibration in (a-iii) is called the spherical Milnor fibration of ®.

Corollary 4. Let f = go (f1, f2) : (R® x R™, 0,41) — (R?,02) be the real analytic map germ
as in Theorem 3. Assume that fi, fo and f = g o (f1, f2) satisfy the condition (a-iii). Let I,
be the fiber of the spherical Milnor fibration of f; for j = 1,2. Then the fiber of the spherical
Milnor fibration of f is homotopy equivalent to the space obtained from (f1, f2)~*(bg) by gluing
to (f1, fz)* (%) Iy copies of F'1 and ly copies of Fa, where Iy is the number of points of {(0,22) €
Ding=Y(0)} and ly is the number of points of {(z1,0) € DEN g~ ()} for 0 < < § < 1.

Proof. By Theorem 3 and the condition (a-iii), the fiber of the spherical Milnor fibration of f is
homotopy equivalent to a space obtained from (fi, f2)7 (b, ) by gluing to (f1, f2)~ L(%) Iy copies
of F} and ly copies of Fy. Since Fj is diffeomorphic to F, Fy and F, are homotopy equivalent
to F; and Fy respectively. This completes the proof. O

6. ZETA FUNCTIONS OF MONODROMIES OF MILNOR FIBRATIONS

We assume that a real analytic map germ ® : (R?",05,) — (R2,02) satisfies the conditions
(a-i) and (a-ii). Let Fp be the fiber of the Milnor fibration of ®. Set P;(\) = det(Id — Ah, ;),
where h,j : Hj(Fp,C) — H;j(Fp,C) is an isomorphism induced by the monodromy of ® for
j > 0. Then the zeta function ((\) of the monodromy is defined by

() =TL2" Y
See [14, Section 9] and [18, Chapter I].
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In this section, we study the zeta function of the monodromy of f, where f = go (f1, f2) is a
real analytic map germ as in Theorem 3. Let g be a strongly non-degenerate mixed polynomial
of 2 complex variables which is locally tame along vanishing coordinate subspaces. We denote
D = {(z1,22) | 2122 = 0} C D§ X D?O s- Take sufficiently small positive real numbers § and 5

such that and § < §. Consider the following pair of maps
g: (Ding~ (0B, DN g (9B2)) — OB,
9/\9\ (S§\g71(0), (S5 N D)\ g7 (0)) — S,

where S3 = {(z1, 22) € C? | ||(21,22)|| = 6}. In [22, Theorem 10], Oka showed that the spherical
and the tubular Milnor fibrations of g are fiber homotopy equivalent. Since g satisfies the a -

condition and 4 is sufficiently small, the fibers of two maps intersect transversely with Sg and
D. So the above maps are locally trivial fibrations. Moreover the fibrations are fiber homotopy
equivalent.

Let * be a point of F, \ D, where Fy is the Milnor fiber of the spherical Milnor fibration
g/lg] : S3\ g71(0) — S'. By using the above fibrations, we have the exact sequence of groups:

L= m(Fy\ Dyx) = m(S3\ (97 (0) U D)) L Z — 1,
where i is the inclusion Fy \ D — S3\ (¢97!(0) U D). Consider
Al = HY(Fy x F5,C), G=m(S3\ (¢ (0)UD),*), H=m(F,\D,x)

for ¢ > 0. Since the restricted map (f1 x f2) : (B x B™) N (f1 x f2) Y (Dj\ D) — D§\ D is a
locally trivial fibration, we have a monodromy representation

p:mi(DI\ D) =m(S3\ D) =17>— Aut(A?).

The generators of Z? are chosen such that (1,0) and (0, 1) are meridians of the link components
{z1 = 0} and {22 = 0} respectively. By the inclusion S} \ (¢971(0) U D) — S3\ D, A? becomes
a G-module, and by 7, an H-module. Set

Der(H Aq) = {d :H — Aq ’ d(hth) = d(hl) + hld(hg) for all hl, hg € H},

HO(H, A% = (A)" HY(H,A%) = Der(H, A9)/Im 6,
where 0 : A9 — Der(H, A?) is defined by d(a)(k) = p(k)(a) — a for a € A? and k € H. Let
h € G be an element such that (g/|g|)«(h) = 1. The automorphism ¢, : H — H is defined

by en(k) = h='kh for k € H. Then the maps p(h) : A9 — A? and ¢, : H — H induce an
automorphism of the exact sequence of C-vector spaces:

0— HY(H,A%) — A4 —>Der H,A%) — HY(H,A?) —0
lh[ﬁ lp(h) lhDer lh*

0— HOH,A%) — A7 2 Der(H,A%) — HY(H, A7) — 0.
Note that hper(d)(k) = p(h)(d(cp(k))) for d € Der(H, A?) and k € H. So hper, h{y and h7 are
the automorphisms induced by p(h) and ¢;. See [15, p. 72] and [16, p. 11].

Set Ap(A) = det(1—Ap(h)) and Ape(A) = det(1—Ahper). Then by the above exact sequence,
hper is determined by p(h) and ¢j,. So we define
(Cop W) = det(1 — M)/ det(1 — Ah})
= Ap(N)/Aper(N).

The automorphisms hg and h} do not depend on the choice of h. See [28, p. 116]. Thus ((4,p)g
is well-defined.
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Note that H is a free group. Let by,...,b,4 p) be generators of H. By using the map
Der(H, A7) — (AD)"9P), 5 = (3(br), -, 6(byu(q. )
Der(H, A?) can be identified with (A%)#(9:P),

Let i, : Z[H] — Z[G] be the homomorphism induced by 4, and j : Z[G] — Z[AutA9] be the
homomorphism induced by p. The homomorphism of rings s : Z|AutA?] — EndcA? is defined

by

s(22; ailag]) = [X2; cialyljn-
Let aibj : Z|H] — Z[H] be the derivation determined by g%; = 0;; for 1 <i,j < p(g, D). We
denote ¢, (b;) by w;. Note that hpe, is determined by p(h) and c¢,. By using the derivation rule,

we have 9
~ ~ W;
) = s 5(n-2. (2))]

See [15, p. 73]. We set K; = S N {z; = 0} for j = 1,2. Consider the multilink

(Sg, Sg) N g_l(O)) = (Sg),lel UmeKoUmgKgU---U mTKT),
where K is an oriented knot and m; € Z for 1 < j < r. Note that m; = 0 if and only
if gl.;=0 # 0 for j = 1,2. Since g is strongly non-degenerate, |m;| = 1 for j > 3. Put
L=(S3, KUK, UK3U---UK,). Then ((s,p), can be calculated by the Alexander polynomial

of L [15]. We follow the arguments in [15, p. 88-93] and [16, p. 10-11]. The following assertions
are similar to those in [16].

Theorem 5. Let f1, fo and g be real analytic map germs in Theorem 3. Let Hj, - Hy(F},
Hy(F;,C) be the monodromy matriz induced by the monodromy of f; for j = 1,2 and k
Set Eqn = @iy j—q(H1i) ® (I2);j and Eqp = @,y ;—,(11)i © (Ha;), where ()i : Hi(F,C) —
Hy(Fy,C) is the identity matriz for | = 1,2 and k > 0. Then up to multiplication by monomi-
als £\, the zeta function of f = g(f1, f2) is determined by

Cf(/\) = Cf1 ()‘lQ)CfQ ()‘ll) Hq det AL()‘mlElq,la )‘mQEq,Qv Am3[7 LR} )\mTI)(il)qv
where Ap(A1,...,\r) is the Alexander polynomial of L. If l; = 0, then set Chiiey
for 3 =1,2.

Remark 2. Let L; be the link obtained form L by reversing the orientation of K;. Then the

two Alexander polynomials satisfy
AL, M) = QY AL (AL AT ),

) ] )
where ¢ = £1 and «’ € Z. We denote the link K; with the reversed orientation by —Kj;. Then
the associated multiplicity of —Kj is —m;. Thus up to multiplication by monomials, we have
det AL(N™E 1, A\ Eqo, N, ..., N, AT

=det A, (\™ By 1, N2 Eg o, X" T, , X", A )

C) —
> 0.

Ai)y =1

mod2(

for any ¢ > 0.

Example 3. Set g = 2129 [}y (20" + ;28 [[525 1 (21" + @;28%). Assume that a; # ayo for

j#j and 1< j j' < k+/L. Then g is a strongly non-degenerate mixed polynomial of 2 complex
variables which is locally tame along vanishing coordinate subspaces. By [5], the Alexander
polynomial Ap (A1, ..., Axpeqo) is equal to (AP ASTAGYP ... NP2 o — 1), Therefore the zeta
function of the monodromy of f is given by

Cr(N) = Hq det AL (N™M By, A2 B0, N1 ..., )\mk+e+2])(—1)q
— Hi,j det()\p1+p2+p1pz(l€—€) (Hy ;)2 @ (Ha )Pt — I)(_l)iﬂ'(k—i—f).
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Example 4. Set f; : R? — R?, f(z1,22,23) = (v3(23+23+23),22—123), fo : C — C, fo(w) = w?
and g : C? — C,g(21,22) = 22+ 23. Let f : R? x C — R? be the real analytic map germ which is
defined by f(z1,z2,x3,w) = g(f1, f2)(z1, 22, 23, w). By [2], f1 has an isolated singularity at the
origin. Hence f also satisfies the conditions (a-i) and (a-ii). Note that ¢z, (\) = 15, (p,(A) =

1
\2

1]

sz and det Az (A1, A2, A3) = AAZAS — 1. By Theorem 5, (f()) is equal to
1 N—1 0 AN—1
=== 1.
()\2—1)()\6—1)det< 0 >\6—1> oo A TAE
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