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Hurwitz integrality of the power series expansion of the sigma
function for a telescopic curve

By Takanori AYANO

Abstract. A telescopic curve is a certain algebraic curve defined by
m—1 equations in the affine space of dimension m, which can be a hyperelliptic
curve and an (n, s) curve as a special case. The sigma function o (u) associated
with the telescopic curve of genus ¢ is a holomorphic function on CY9. For a
subring R of C and variables u = *(uq,...,uq), let
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If the power series expansion of a holomorphic function f(u) on C9 around
the origin belongs to R((u)), then f(u) is said to be Hurwitz integral over
R. In this paper, we show that the sigma function o(u) associated with the
telescopic curve is Hurwitz integral over the ring generated by the coefficients
of the defining equations of the curve and 1/2 over Z. Further, we show that
o(u)? is Hurwitz integral over the ring generated by the coefficients of the
defining equations of the curve over Z. Our results are a generalization of the
results of Y. Onishi for (m, s) curves to telescopic curves.

1. Introduction

The Weierstrass elliptic sigma function plays important roles in the theory of the
Weierstrass elliptic function. F. Klein [26, 27] generalized the Weierstrass elliptic sigma
function to the multivariate sigma functions associated with hyperelliptic curves. V. M.
Buchstaber, V. Z. Enolski, and D. V. Leykin improved the theory of the Klein hyper-
elliptic sigma functions and generalized it to more general plane algebraic curves called
(n,s) curves (e.g., [11, 12, 13, 14, 15, 16, 17, 18, 21]). The sigma function is obtained
by modifying the Riemann’s theta function so as to be modular invariant, i.e., it does
not depend on the choice of a canonical homology basis. Further, the sigma function has
some remarkable algebraic properties that it is directly related with the defining equa-
tions of an algebraic curve. Namely, the coefficients of the power series expansion of the
sigma function around the origin become polynomials of the coefficients of the defining
equations of the algebraic curve. This property is important in the study of differential
structure of abelian functions (cf. [20, 31]). Further, from this property of the sigma
function, the sigma function has a limit when the coefficients of the defining equations
of the curve are specialized in any way, which is important in the study of integrable
systems (cf. [7, 32]). It is one of the central problems to determine the coefficients of the
power series expansion of the sigma function. This problem is studied in many papers
(e.g., [5, 9, 10, 17, 22, 23, 29, 30, 35]).
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Throughout the present paper, we denote by N,Zx>(,Z,Q, and C the sets of pos-
itive integers, non-negative integers, integers, rational numbers, and complex num-
bers, respectively. For a subring R of C and a set of some complex numbers A, we
denote by R[A] the ring generated by elements in A over R. For positive integers
koo kn, let (ky, .o kn) = {liky + - + Lukn | b1,..., ¢y € Z>o} and we denote by
ged(ky, ..., ky) the greatest common divisor of kq,...,k,. For a subring R of C and
variables z = *(z1,...,2,), let

i1

FALIE zin
R<<Z>> = R<<Zla B Zn>> = Z Kiy,..., Zn% Kit,..yin € R
. X 11 1lp-
i1,ee0yin >0
If the power series expansion of a holomorphic function f(z) = f(z1,...,2,) on C"

around the origin belongs to R{(z)), then we write f(z) € R((z)) and f(z) is said to be
Hurwitz integral over R. For a ring R and a positive integer n, let M, (R) be the set of
the n x n matrices such that all the components are contained in R. For a subset Z of
C and a complex number 7, let rZ = {rz | z € Z}. We denote by & the empty set.

In [28], Miura introduced a certain canonical form, Miura canonical form, for defining
equations of any non-singular algebraic curve. A telescopic curve [28] is a special curve
for which Miura canonical form is easy to determine. For an integer m > 2, let A,, =

(ai1,...,am) be a sequence of positive integers such that ged(aq,...,an) =1, a; > 2 for
any ¢, and

a; aq a; -1 .

— € e , 2<i<m,

d; <di—1 di—1 >

where d; = ged(aq, ..., a;). Let

d;_l—l for 2§i§m}.

i

B(Am) = {(£17"'7£7n) € Zg() 0 < ez <

For any 2 < i < m, we have the unique element (¢;1,...,%4;.m) € B(4,,) satisfying

m
Z 0. di—1
: aj m—ai d .
Jj=1
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For any 2 < ¢ < m, we have ¢; ; = 0 for j > 4. Consider the m — 1 polynomials in m
variables X = (X1,...,X,,) given by

i—1
_ ydi-1/d; 4i (1) J jm
F(X)=X;"""%— H X - Z)‘aidi—l/di*ZL"ZI akijll s XJm
j=1

where 2 < ¢ < m, Ag?di—l/difzgzl anje € C, and the summation is taken over

(J1,--+,Jm) € B(A;) such that

m

. di—l
E e < ai—‘ .
k=1 d
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The algebraic curve defined by the m — 1 equations F; = 0, 2 < ¢ < m, in C™ =
(X1,...,X,) is called the telescopic curve associated with A,,. We denote by A the set
of all )\gi). For a subset & of A, we set A;Z)G = )\;i)/Q if )\g.i) € G and we set )\51)6 = /\E-i)
if )\y) ¢ S. We denote by Ag the set of all )\5% The sigma function o(u) associated
with the telescopic curve of genus g is a holomorphic function on CY9. For m = 2 and
Az = (n,s) with relatively prime positive integers n and s such that 2 < n < s, it is
called the (n,s) curve (cf. [13]). For m = 2, for simplicity, we denote /\§»2) by A;. The
polynomial Fy defining the (n, s) curve is given by

Fo(X) = X5 = X3 = Ans—nji—sia XT" X3, (L.1)

where the summation is taken over (j1,j2) € Z2, such that nj; + sjo < ns. Note that
(2, s) curves are none other than hyperelliptic curves.

We consider the (n,s) curve. In [29], an expression of the sigma function associated
with the (n, s) curve in terms of algebraic functions and integrals of an algebraic differ-
ential form is derived. In [30], an expression of the sigma function associated with the
(n,s) curve in terms of the tau function of the KP-hierarchy is derived. In [29, 30], by
using these expressions of the sigma function of the (n, s) curve, it is proved that we have
o(u) € Q[A[({u)) for the (n,s) curve. Let € be the set of A; which is the coefficient of
X7 X3? with (j1,72) = (odd,odd) in (1.1). In [35], a special local parameter of the (n, s)
curve around oo is introduced, which is called the arithmetic local parameter, and by
using the arithmetic local parameter and the expression of the sigma function associated
with the (n,s) curve in terms of the tau function of the KP-hierarchy, it is proved that
we have o(u) € Z[Ae]((u)) and o (u)? € Z[A]{(u)) for the (n, s) curve ([35, Theorem 2.3]).
In [34], in the case of the (2, 3) curve, Hurwitz integrality of the elliptic sigma function is
proved by an approach different from [35]. In [34, 35], relationships of Hurwitz integrality
of the sigma functions with number theory are discussed.

We consider the telescopic curve associated with A,,. In [4], an expression of the
sigma function associated with the telescopic curve in terms of algebraic functions and
integrals of an algebraic differential form is derived. Further, in [4], an expression of
the sigma function associated with the telescopic curve in terms of the tau function
of the KP-hierarchy is also derived. In [4], by using these expressions of the sigma
function of the telescopic curve, it is proved that we have o(u) € Q[A]{(u)) for the
telescopic curve. We assign degrees for X and )\;i) as deg Xj = ay and deg )\g-i) =j. Let

A= {)\;i) | 7 is odd}. In this paper, we generalize the arithmetic local parameter of the
(n, s) curve to the case of the telescopic curve (Section 6). By using the arithmetic local
parameter of the telescopic curve and the expression of the sigma function associated
with the telescopic curve in terms of the tau function of the KP-hierarchy, we show
o(u) € Z[Ay){{u)) and o(u)? € Z[A]((u)) for the telescopic curve (Theorem 7.8). Let
I be the ideal of C[X1,...,X,,] generated by Fy,...,F,,. For fi, fo € C[X1,...,Xn],
if f1 — fo € I, we say that f; is congruent to fo modulo I. For a subring R of C, let
P(R) be the set of 3§, ;. Xi'--- Xim € R[Xy,...,X,,] such that f;, ;€ 2R or
(11, ... ,tm) € (2Z>0)™. For f € Z[A][X1,...,Xn], let S(f) be the set of the subsets &
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of X such that f € P(Z[As]). Let G be the (m — 1) x m matrix defined by

OF;
o~ (%)
0X; 2<i<m, 1<j<m

and Gy, be the (m — 1) x (m — 1) matrix obtained by deleting the k-th column from G.
Let (Anm) = (a1, ..., an) and g be the genus of the telescopic curve. We take an integer k
such that 1 < k <m and ay, is odd. We take a polynomial f in Z[A][X1,..., X,,] which
is congruent to det G modulo I. In Lemma 7.15, we prove that if & € S(f), we have
o(u) € ZAs|{{u)). In Lemma 7.15, we have the following problems:

e For any telescopic curve and any integer k such that 1 < k < m and ay, is odd,
is there a polynomial f in Z[A][X1,...,X;n] such that f is congruent to det G
modulo I and S(f) # &7

e Find a polynomial .# in Z[A][X1, ..., X,,] such that .# gives the best result among
all the polynomials in Z[A][X7, ..., X,,] which are congruent to det G}, modulo 1.

We solve these problems in Theorem 7.16, where for any integer k such that 1 < k < m
and ay, is odd we prove the following results:

(i) The determinant det G}, is congruent to

F = (—1)ktlg x 20 x 20 Zpil .

modulo I, where
o (h,... hin) € 2, such that 2377 ajh; = 29 — 1+ ag,
e the summation in (1.2) is taken over (i1,...,in) € ZZ, such that Z;nzl a;ji; <
29 — 1+ ay,
o Di i €Z[A]
e % is homogeneous of degree 2g — 1 + a with respect to A and Xy,..., X,,,
o if (i1, yim) # (i1, ir,) and pay i Pir i # 0, then 3570 agi; # 3700 ayil,
o if (i1,...,im) ¢ (2Z>0)™ and pi; ., # 0, then 3770 ajij & 2(Ap).
(ii) We have S(.F) # . For any & € S(.F), we have o(u) € Z[As]{{u)).

(iii) For any f € Z[A][X1,...,X,,] which is congruent to det G) modulo I, we have
S(f) € (7).

We can apply Theorems 7.8 and 7.16 to any telescopic curve. For the (n,s) curve,
[35, Theorem 2.3] gives the better result than Theorem 7.8 (i) (Remark 7.21). When we
apply Theorem 7.16 to the (n,s) curve, we obtain the same result as [35, Theorem 2.3]
(Remark 7.22). Therefore, Theorem 7.16 includes [35, Theorem 2.3]. In Examples 7.24,
7.25, and 7.26, we consider the case of m = 3 and A3 = (4,6,5), (4,6,7), and (6,9,5),
respectively. For these curves, Theorem 7.16 gives the better result than Theorem 7.8

(i)-
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In the case of hyperelliptic curves, more precise properties on the power series ex-
pansion of the sigma function are known. We consider the hyperelliptic curve of genus g
defined by

X2 = XD N X9 N XTI b Mg X 4 Ao

By applying [35, Theorem 2.3] to this curve, we obtain o(u) € Z[{ 2 }225'((u)). In

[19, 34], it is proved that we have o(u) € Z[2A4,8Xg]((u)) for ¢ = 1. In [19], it is
conjectured that we have o(u) € Z[2A4,24X6]{{u)) for ¢ = 1. In [3, Corollary 2], it is
proved that we have o(u) € Z[A4, g, As, 2A10){{u)) for g = 2.

The present paper is organized as follows. In Section 2, we review the definition
and properties of telescopic sequences and give a new result for telescopic sequences,
which is important in the proof of the main result of this paper. In Section 3, we review
the definition and properties of telescopic curves. In Section 4, we review the algebraic
construction of a Klein fundamental 2-form for a telescopic curve. In Section 5, we review
the definition and properties of the sigma functions for telescopic curves. In Section 6, we
construct the arithmetic local parameter of a telescopic curve and study the expansions
of the coordinate functions, the holomorphic 1-forms, and a Klein fundamental 2-form
for the telescopic curve with respect to the arithmetic local parameter. In Section 7, we
give the main results of this paper on Hurwitz integrality of the power series expansion
of the sigma function for a telescopic curve.

2. Telescopic sequences

For an integer m > 2, let A,, = (a1,...,a;,) be a sequence of positive integers such
that ged(ay,...,a,) =1 and
a; aq a; 1 .
— € ... , 2<i<m
d; <di—1’ 7di—1> -
where d; = ged(ay, ..., a;). This sequence A, is called a telescopic sequence (cf. [25]).

Let (A,,) = (a1,...,am). The set Z>¢ \ (Ay,) is a finite set. The number of elements of
Zxo \ (Ay,) is called the genus of (A,,). Let g be the genus of (A,,). Then the following

relation holds:
1 m dz‘_l
=—<1- E — —1)a 2.1
! 2{ a1+i_2<di )al ( )

(cf. [33]). The following lemma is important in the proof of Theorem 7.16.

LEMMA 2.1. Let a be a positive odd integer such that a € (A,,). Then we have
29— 14+a€2(4,).

Proor. Let a = kiay + -+ + kmam, where ki,...,k, € Z>9. We prove this
lemma by induction on m. First, we prove this lemma for m = 2. Note that
kia1 + koas is odd. If (a1,k1) = (odd,odd), then we have (as,k2) = (odd,even),
(even,odd), or (even,even). If (a1,k1) = (odd,even), (even,odd), or (even,even), then
we have (ag,k2) = (odd,odd). In the case of (a1,k1,aq,k2) = (odd,odd,odd,even),
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(odd, odd, even, even), or (even, odd, odd, odd), we have
2g—1+a= (k?l — 1)@1 + (a1 -1+ kg)ag S 2<a1,a2>.

In the case of (a1, ki,a2,k2) = (odd,odd,even,odd), (odd,even,odd,odd), or
(even, even, odd, odd), we have

2g—1+a= (ag + k1 — 1)(11 + (k‘g — 1)&2 S 2<a1,a2>.

Therefore, we obtain the statement of the lemma for m = 2. For an integer n > 3, we
assume that the statement of the lemma holds for m = n — 1. We prove this lemma for
m=mn. For1 <i<n-1,leta;, =a;/d,—1 and d, = d;/d,,—1. For 1 <i <n—1, we have
d; = ged(al,...,a;). The sequence (af,...,a,_) is also a telescopic sequence. Let ¢’ be
the genus of (a,...,al,_;). Note that kya; + --- + kna, is odd. Let o' = kja} + - +
kn—1al,_q. If (dy—1,a’) = (0odd,odd), then we have (a,,k,) = (odd,even), (even,odd),
or (even,even). If (d,_1,a’) = (odd,even), (even,odd), or (even,even), then we have
(an, kn) = (0odd,odd). We consider the case of (d,,—1,a’, an, k,) = (odd, odd, odd, even),
(odd, odd, even, even), or (even, odd, odd, odd). We have

n—1

d

2g—1+a=d, 1 {—a’l—l—z ( ;71 —1) ag—l—a'} + (dp—1 — 1+ kp)ay
i=2 i

=dp 129 —1+d)+ (dp_1 — 1+ kp)an.

/

By the induction hypothesis, we have 29’ — 1+ o' € 2(af,...,a),_;). Thus, we have
dn-1(29 — 1+ 4a') € 2(a,...,an—1). Since d,_1 — 1+ k, is even, we have 2g — 1 +
a € 2(a1,...,an). We consider the case of (d,,—1,d’,an,k,) = (0dd,odd,even, odd),

(odd, even, odd, odd), or (even, even, odd, odd). We have

n—1 7

d'
2g—1+a:dn1{—a’1+2( lel —1) ag—l—a/-i-an}—i-(kn—l)an
i=2 i

=d,-1(29' —14+d +an) + (ky — Day.

Since (aq,...,ay) is a telescopic sequence, we have a,, € (a},...,al,_;). By the induction

hypothesis, we have 2¢' — 1+ a’ + a,, € 2(a},...,al,_;). Thus, we have d,,—1(2¢' — 1 +
a +ap,) € 2{ay,...,an—1). Since k, — 1 is even, we have 2g — 1 + a € 2{ay,...,a,).
Therefore, we obtain the statement of the lemma for m = n. By induction, we obtain

the statement of the lemma for any m > 2. O

3. Telescopic curves

In this section, we briefly review the definition of telescopic curves following [28, 1, 4].
Let A, = (a1,...,a,) be a telescopic sequence such that a; > 2 for any i. Let

B(Am):{(ﬂh...,fm)e 7 og&gdilfl—l for 2§i§m}.

LEMMA 3.1 ([8, 25]). For any a € (Ay,), we have the unique element (k1, ..., kn)
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of B(Ay,) such that

m
E (Liki = a.
i=1

By this lemma, for any 2 < ¢ < m, we have the unique element (¢;1,...,4;m) €
B(A,,) satisfying

N

i d’i—l
Z%‘ff,j =i (3.1)
Jj=1

LEMMA 3.2 ([4]). For any 2 < i <m, we have {; ; =0 for j > i.

Consider the m — 1 polynomials in m variables X = (X,...,X,,) given by
_ ydi-1/di () j1 jom
FI(X) HX Z aidi_1/di=Y p lak]kX{ X'gn ’ (32)

where 2 < 7 < m, )\l(l)d7 =S g € C, and the summation is taken over
(J1s--+,Jm) € B(Ap) such that

> o < o
7
k=1 d

Let V2 be the common zeros of I, ..., F,:
Vel — (X, X)) € C™ | Fy(X1, .., X)) = 0,2 <4 < m}.

In [28, 1], V2 is proved to be an affine algebraic curve. We assume that V2% is non-
singular. Let V be the compact Riemann surface corresponding to V2. Then V is
obtained from V! by adding one point, say oo [28, 1]. The genus of V coincides with
the genus g of (A,,), which is given by (2.1). We call V' the telescopic curve associated
with A,,. For m = 2, for simplicity, we denote /\5-2) by A;.

EXAMPLE 3.3. (i) Let n and s be integers such that 2 < n < s and ged(n, s) = 1.
We consider the case of m = 2 and Ay = (n, s). If (j1,j2) € Z%, satisfies nji + sjo < ns,
then we have jo < n. Thus, we have (j1,j2) € B(As). The polynomial F; is given by

Fy(X) = X' = X7 =) Anecnji—sin XT' X3, (3.3)

where the summation is taken over (j1,j2) € Z2 such that nj; +sja < ns. The telescopic
curve associated with Ay = (n, s) is the (n, s) curve introduced in [13].

(ii) For m = 3 and A3 = (4,6,5), the polynomials F; and Fj are given by
Fo(X) = X2 — X} - AP X0 X3 - AP X1 X0 - AP X0 X5 - AP X7 - 0P X, - AP X,
AP x, -\,
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Fy(X) = X3 — X1 Xs — AV X0 X5 = AP X2 - AP X, - AP X AP X, - 2.
(iii) For m = 3 and A3 = (4,6, 7), the polynomials Fy and F3 are given by

R(X)=X2- X3 - 2Px1 X5 - APx1 X, - APx2 - AP x - AP x, - AP x; - a2,
F(X)=X2 - X2X, - APV XX - AV X3 AP x x5 - AP xx, - AP x2 - AW xy
AP X, - A0 x, .

(iv) For m = 3 and Az = (6,9, 5), the polynomials Fy and Fj are given by
F(X) = X3 - X - AP XX - AP X0 X2 - AP X0 X - AP Xo X — AP X2
“APX X5 - AP XZ AP X - AE X - A X - A,
F(X) = X3 - X1 X - AP X,x5 - AP X2 - 2P x x5 - 2P x2 - AP x, - AP x,
A -,

(v)! Let a and b be integers such that a > b > 2 and ged(a, b) = 1. For A, = (a1, ...,am),
where a; = a™*b*"!, the polynomials Fj, 2 < i < m, are given by

F(X)=X¢ - X2, =Y a0 XJt - X,

aa;—3 3 Ak
where the summation is taken over (ji,...,Jjm) € B(A,,) such that ;" | arjx < aa;.

Let I be the ideal of C[X}, ..., X,,] generated by Fs, ..., F,,. Then [ is a prime ideal
(cf. [28, 1]). The coordinate ring C[X7y,...,X,,]/I of V can be identified with the set
of the meromorphic functions on V' which are holomorphic at any point except oo (cf.
[28, 1]). For 1 < k < m, let z} be the image of X}, for the projection C[Xy,..., X,,] —
ClX1,...,Xm]/I. In [28, 1], it is proved that x has a pole of order aj at co. We assign
degrees for X, x, and )\gi) as

deg Xy, = deg z, = ag, deg /\E»i) =7

We denote by A the set of all /\§'i)~ For 2 < i < m, the polynomial F;(X) is homogeneous
of degree a;d;_1/d; with respect to the coefficients A and the variables X1,..., X,,.

For (ki,...,km) € Z%,, we have dega:’fl coegkm = a1ky + - 4+ amky,. We define an
ordering for the monomials :c’fl coexhm(kyo oo k) € B(An), according as the degree

and denote them by ¢;, ¢ > 1. In particular, we have ¢; = 1. The set {p;}5°, is a
basis of the coordinate ring C[X1,..., X,,]/I over C (cf. [28, 1, 4]). Further, we have
the following more precise property.

LemMA 3.4, For any (k1,...,kn) € ZZ, the monomial a¥ ke can be uniquely

IThis example is given in [28, 4].
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expressed by the linear combination of p; as follows:

n—1
O S o
i=1

where deg v, = Y i, aiki, pi € Z[A] for 1 <i <n—1, and the right hand side of (3.4)
is homogeneous of degree >~ | a;k; with respect to X and 1, ..., Tp,.

PrOOF. The proof of this lemma is similar to that of the lemma in [28, p. 1412].
For the sake to be complete and self-contained, we give a proof of this lemma. For
(k1 k), (K, k) € 22, we define (ki ... k) < (k1. k) if and only if

° Z?;l aik; < Z?ll aikg or

o Yo aiki = >0 akl and ky = K, ko = kb, ... ki1 = ki_y, k; > K] for some

K2

1<i<m.
For (ki,...,km) = (0,...,0), it is trivial that 2% - z¥m can be expressed in the form
of (3.4). We take (£1,...,4y) € ZZ, such that ({1,...,65) # (0,...,0). We assume that
2. gkm can be expressed in the form of (3.4) for any (ki,..., kn) € Z< such that

(k.. km) < (81, L), IE (01,...,6y) € B(Ay,), then it is trivial that zf ... zfm
can be expressed in the form of (3.4). We assume ({1,...,%4y,) ¢ B(A;). Then there
exists an integer ¢ such that 2 <i <m and ¢; > d;_1/d;. From (3.2), we have

e m

£y
xl -.-xm

i—1
_ b lia li—di1/ds Lij (1) J1 Jm Lita Lo,
=z -z, H x 7+ E )\aidi—l/di_z;cn:l ainT1 |
Jj=1

The right hand side of the above equation is homogeneous of degree > " a;{; with

respect to A and x1,...,x,,. For any a:lfl ---zkm in the right hand side of the above
equation, we have (k1,...,kn) < (¢1,...,4y). Thus, :17{1 --.zfm can be expressed in

the form of (3.4). By induction, z* ... zkm

any (ki1,...,kn) € ZY,. Since the set {;}{2; is a basis of the coordinate ring of the
telescopic curve V over C, the expression of (3.4) is unique. (|

can be expressed in the form of (3.4) for

km ag the linear combination

In the proof of Lemma 3.4, a method to express & - - - zkr

of ¢; explicitly is given. Let (w1, ..., wy) be the gap sequence at oo:

{wi|1<i<g}=7Z>0\(An), w1 <--- <w,.

In particular, we have w; = 1. The numbers aq,...,a,, generate the semigroup of
non-gaps at oo. Let G be the (m — 1) X m matrix defined by
G- ( OF; )
90X /) s<i<m, 1<j<m

and Gi be the (m — 1) x (m — 1) matrix obtained by deleting the k-th column from G.
Let P = (21,...,2m,) € V. A basis of the vector space consisting of holomorphic 1-forms
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on V is given by

§0g+17i .
= ey, 1<i<yg,
YT T et G (P) MY t=9

where det Gy is the determinant of Gy (cf. [1]).
LEMMA 3.5 ([33, 25]). We have wy = 2g — 1.
LEMMA 3.6 ([1]).  The holomorphic 1-form wy has a zero of order 2g — 2 at co.

From Lemmas 3.5 and 3.6, we find that the Riemann constant for the telescopic curve
with the base point oo is a half-period.

4. Klein fundamental 2-form

A Klein fundamental 2-form plays important roles in the theory of the sigma functions.
We recall its definition.

We consider the telescopic curve V' of genus g associated with A4, = (a1,...,am).
Let Ky be the canonical bundle of V. Fori = 1,2, let m; : V x V — V be the projection
to the i-th component. A section of 7 Ky ® 75 Ky is called a bilinear form on V- x V
(cf. [24, 29, 36]).

DEFINITION 4.1. A meromorphic bilinear form w(P, @) on V x V is called a Klein
fundamental 2-form if the following conditions are satisfied.
(i) w(Q,P) =w(P,Q) for any P,Q € V.
(i) w(P, Q) is holomorphic at any point except {(R,R) | R € V'}.
(iii) For any R € V, take a local parameter ¢ around R. Then w(P, @) has the following
form around (R, R):

1
(tp —tQ)?

where tp = t(P), tg = t(Q), and f (tp,tq) is a holomorphic function of tp and tq.

w(P,Q) = ( + f (tp,tQ)) dtpdtg,

For a Klein fundamental 2-form w(P, @) and complex numbers {c; ;}{,_, such that

Ci,j = Cjiy
g
w(P,Q) + Z cijwi(P)w;(Q)
ij=1

is also a Klein fundamental 2-form.

For the telescopic curve V', a Klein fundamental 2-form is algebraically constructed
in [1]. We recall its construction. Note that the construction inherits all steps of the
classical construction in [6] that was recently recapitulated and generalized in [21, 29] for
(n,s) curves. We define the meromorphic bilinear form &(P,Q) on V x V by

i=1
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where P = (x1,...,2,) and Q = (y1,...,Ym) are points on V,

det H(P, Q)
Q P7 = dm ,
() (r1 —y1) det G, (P) "
H = (hij)2<ij<m with
oo Bl yi-1 25 Ty ) — iy Y5185 Ty - T
1,] T 7

Tj—Yj

and n; is a meromorphic 1-form on V' which is holomorphic at any point except co. Here,
dgQ (P, Q) means the derivative of Q(P, Q) with respect to Q.

LEMMA 4.2 ([1, Lemma 4.7], [29, Lemma 6]).  The set

— P
det Gl(.P) i=1

is a basis of the vector space consisting of the meromorphic 1-forms on V' which are
holomorphic at any point except co.

Let
g

Zcil cem Ty ] ;Cil "-ximy'{l ...yjnz
i(P)mi(Q) = et O (F ’ -y dyy,
;w (P)n:i(Q) det G- (P) det G2 (Q) r1dy1

where (i1,...,%m), (J1,---,Jm) € B(Am) and ¢, i, 0,50 € C.

LEMMA 4.3 ([1, Theorem 4.1 (i)], [29, Proposition 2 (ii)]). It is possible to take
{ﬂi}fﬂ such that "AU(Q’P) = &\)(Pv Q)7 Cityoryimidtyeim € QP‘]} and c;,,..., b3 seendm 8
homogeneous of degree 2(2g—1)—Y " | ap(ix—+ji) with respect to X if ¢, .._ivij,onjm 7 0-

LEMMA 4.4 ([1, Theorem 4.1 (ii)], [29, Proposition 2 (i)]). If we take {n;}?_; as in
Lemma 4.3, then W(P, Q) becomes a Klein fundamental 2-form.

5. Sigma functions of telescopic curves

We take {n;}?_, as in Lemma 4.3. We take a canonical basis {a;, b;}?_; in the one-
dimensional homology group of the telescopic curve V and define the period matrices

(L) () (1) (1)

The normalized period matrix is given by 7 = (w')71w”. Let § = 76’ +0" with &', 8" € RY
be the Riemann’s constant with respect to ({a;, b;}7_;,00). We denote the imaginary
unit by i. The sigma function o(u) associated with the curve V, u = *(uy,...,uq), is
defined by

/

(1) = Cexp (;tun’(w’)_lu> 0 m (2) ) | (5.1)
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/

0 } defined

5 . . . . _
where ¢ [ 5,,} (u, ) is the Riemann’s theta function with the characteristics { 5"

by
!
’ [:;"] (u,7) = Y exp{mi‘(n+08)r(n+6)+2mi"(n+06)(u+ ")},
nez9

and C'is a non-zero constant which is fixed in Theorem 5.4. Since 0 is a half-period, o (u)
vanishes on the Abel-Jacobi image of the (g — 1)-st symmetric product of the telescopic
curve. We have the following proposition.

PROPOSITION 5.1 ([1, 29]). For mi,mq € Z9 and u € C9, we have

o(u+2w'my + 2w"ms)

o(u)

_ (71)2(t5'm17t6”m2)+tm1m2 eXp{t(27)'m1+277"m2)(u+w'm1+w”m2)}.

A sequence of non-negative integers p = (1, pio, - - ., fte) such that pg > pg > -+ > e
is called a partition. For a partition p = (u1, pa, ..., o), let |u| = g1 + po+ -+ - + pe. For
n >0, let p,,(T') be the polynomial of Ty, Ts, ... defined by

i
> a ik | =Y pa(T)k", (5.2)
1 n=0

i=0 j=

where k is a variable, i.e., p,(T) is the coefficient of k™ in the left hand side of (5.2). For
example, we have

T2 T3
po(T) =1, pi(T)=T1, poT) =T+ 717 p3(T) =T+ T 1> + ?1

For n < 0, let p,(T) = 0.

LEMMA 5.2.  Forn > 1, we have

TF ... Tkn
po() =) T

LR e
where the summation is taken over (ki,..., ky) € Z%, satisfying
n
> kj=n
j=1

PROOF. By comparing the coefficients of k™ in (5.2), we obtain the statement of the
lemma. U

For an arbitrary partition g = (u1, 2, ..., te), the Schur function S,(T) is defined
by

Su(T) = det (pm—i+j(T))1gi,jgé :
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For the telescopic curve V associated with A,, = (a1,...,an), we define the partition by
p(Am) = (wg, ..., w1) —(g—1,...,0).
LeEMMA 5.3.  The Schur function S,a,)(T) is a polynomial of the wvariables
Ty s T, -
PROOF. We can prove this lemma as in the case of (n,s) curves (cf. [13, Section 4]). O
THEOREM 5.4 ([4, Theorem 7]).  The sigma function o(u) is a holomorphic function

on C9 and we have the unique constant C in (5.1) such that the series expansion of o(u)
around the origin has the following form:

unl .. ung
o(u) = Su(Am)(T”Tw,i:ul' + Z Eni,...,ng ﬁv (5.3)
! g!

wini+-Fwgng>|u(Any)|

where €, ... n, € QA and ep, .. n
with respect to X if €ny,  n, # 0.

is homogeneous of degree wini+---+wgng —|(Am)]|

9

We take the constant C in (5.1) such that the expansion (5.3) holds. Then the sigma
function o(u) does not depend on the choice of a canonical basis {a;, b;}_; in the one-
dimensional homology group of the curve V' and is determined only by the coefficients A
of the defining equations of the curve V.

6. Arithmetic local parameter for the telescopic curve
Since ged(aq, ..., an,) = 1, we can take (by,...,b,) € Z™ such that
aiby + -+ amb, = —1. (61)

Note that (b1,...,by) € Z™ satisfying (6.1) is not uniquely determined. We fix
(b1,...,bm) € Z™ satistying (6.1). We consider the defining equations (3.2) of the tele-
scopic curve V. We consider the matrix

—(2,1 d1/d2 0 s 0
—l31 —l39 da/ds - 0
D= . : . : € Mm(Z)-
_Em,l _Em,Z e _ém,m—l dm—l/dm
bl b2 e bm—l bm

LEMMA 6.1.  We have det(D) = (—1)™.
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PRrROOF. From (3.1) and Lemma 3.2, we have

a1

(6.2)

By multiplying some elementary matrices whose determinants are 1 on the left, the

equation (6.2) becomes

0
aq )
ﬁ : = : ,
0
am O
where
ez di/de O .- 0
es 0 dy/ds--- 0
D=|: oL
em 0 0 - dm—l/dm
e1 0 0o .- 0
with some ey, ..., e, € Q. From the above equation, we obtain e; = —1/a;. We have
N _1d1 d -1
dtD:dtD:—lmlfi . :_1m'
e( ) e( ) ( ) d2 d3 dm e1 ( )
O
Let
t=alt . ahm (6.3)

Since t has a zero of order 1 at co, we can regard ¢ as a local parameter of V' around ooc.
We call ¢ an arithmetic local parameter as in the case of [35]. For 1 <4 < m, we consider

the expansion of z; around oo with respect to ¢

Xr; =

1 oo
s Zpi,ktk7 pik € C.
k=0

From (3.2) and (6.4), for 2 <i < m, we obtain

. di-1/di i1 /oo biy
(metk) =11 <ij,ktk>
k=0 k=0

j=1

(6.4)
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J1 o Jm
+Z a; d7 1/di Zk 1ak1ktal B (Zpl ktk) <me7ktk> ,
k=0

k=0
(6.5)
where the summation is taken over (ji,...,jm) € B(A,,) such that
m
, di—
Zakjk <a; ZZ -
i
k=1
ProrosSITION 6.2.  We have p1,o = p2,0 ="+ = Pm,o = 1.
PROOF. By comparing the coefficients of t° in (6.5), we obtain
i—1
di—1/d; Li
Py o (6.6)
j=1

for 2 < i < m. By substituting (6.4) into (6.3), we obtain

o0 b1 o0 bm
1= (Zpl,ktk> <me,ktk> .
k=0 k=0

We divide the set {1,2,...,m} into the two sets {aq,...,as} and {as41,. .., am}, where
bay .-, ba, are negative integers and by, ..., bq,, are non-negative integers. Then we
have

s o0 _baj aj
11 (Zpajyktk> = H (Zpa ktk> : (6.7)
k=0

j=s+1

By comparing the coefficients of t° in (6.7), we obtain

PP = 1. (6.8)

For a complex number z satisfying z # 0, the principal value of the complex logarithm
of z is defined by Log(z) = log|z| +iArg(z), where Arg(z) is the argument of z satisfying
—m < Arg(z) < . Since xj, has a pole of order a, at co, we have p1o - pm,o # 0. From
(6.6), we have

i—1

LOg Di, 0 Ze ,JLOg(pJ 0) € 27iZ, 2<i<m.
Jj=1

dz
From (6.8), we have

blLog(pLo) —+ -+ meog(pWo) € 2miZ.
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Therefore, we have

Log(p1,0)
D € (2miZ)™.
LOg(pm,O)

From Lemma 6.1, we have D! € M,,(Z), where D~! is the inverse matrix of D. There-
fore, we have Log(p;0) € 2miZ for 1 < j < m. Thus, we obtain p;o =1for 1 < j < m.
O

From (6.3), we have degt = —1.

PROPOSITION 6.3.  We have p; € Z[A] and the expansion of z; around oo with
respect to t is homogeneous of degree a; with respect to A and t.

PRrROOF. From Proposition 6.2, for any 1 < ¢ < m, we have p,o € Z[A] and p;o is
homogeneous of degree 0 with respect to A. We take an integer £ > 1. Forany 1 <i <m
and 0 < k < £ — 1, we assume that p;, € Z[A] and p; , is homogeneous of degree k
with respect to X if p; x # 0. By comparing the coefficients of t* in (6.5), there exist
Ji(A) € Z[A] for 2 < i < m such that J;(\) is homogeneous of degree ¢ with respect to
Aif J;(A) # 0 and

d

i—1
;ﬁlpi,z - Z&,jpj,e =Ji(A), 2<i<m.
7 ]:1
By comparing the coefficients of ¢ in (6.7), there exists J;(A) € Z[A] such that J;(\) is
homogeneous of degree ¢ with respect to A if Jj(A) # 0 and
bipre+ -+ bmpme = Ji(A).

Therefore, we obtain

Jo(A

P1e 2? )
U e
T

pm,é J]_(A)

Since D™ € M,,(Z), for any 1 < i < m, we have p; , € Z|\] and p; , is homogeneous of
degree ¢ with respect to A if p; o # 0. By induction, for any 1 <4 < 'm and k > 0, we
have p; , € Z[A] and p; 1, is homogeneous of degree k with respect to X if p;  # 0. O

LEMMA 6.4 ([2, Lemma 3.4]). For 1<k < m, we have
det Gi(P) = (=1)"aga" - aly + > iy 2l iy, (6.9)

where (Y1, ...,7%m) is the unique element of B(A,,) such that ZT:l a;v; =29 — 1+ a
and the summation in (6.9) is taken over (i,...,im) € B(Ay) such that 3770, aji; <
2g — 1+ a,. We have By, ... i, € ZIA] and the right hand side of (6.9) is homogeneous of
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degree 2g — 1 + ay with respect to X and x1,...,%y,.

In the same way as [4, Proposition 1], for 1 < i < g, we can prove that the expansion
of w; around oo with respect to t has the following form:

wi =t 14 bt | dt, by € C (6.10)
j=1

PROPOSITION 6.5. We have b, ; € Z[A] and the expansion of w; around oo with
respect to t is homogeneous of degree 1 — w; with respect to A and t.

PROOF. From Propositions 6.2, 6.3, and Lemma 6.4, for 1 < k < m, we have the
following expansion:

dxk

— (—1)k29-2 | 1 (k) 15
361 G (D) (—1)Ft +) b | dt,

j=1
where b;k) € Z[1/ag, A] and b;k) is homogeneous of degree j with respect to A if b;k) # 0.
For any 1 < k < m, we have

dJZl

det Gy (P) L. (6.11)

det Gk(P) ’

(cf. the proof of [1, Lemma 3.2]). Therefore, we have b§.1) = bg»k) for any j > 1 and
2 <k < m. Since ged(ay,...,a,) =1, for any j > 1, we have

1
M € (M) Z[1/ar, Al = ZIA].
k=1
From Propositions 6.2 and 6.3, we obtain the statement of the proposition. O
We take {n;}7_; as in Lemma 4.3.

PROPOSITION 6.6. It is possible to take {n;}J_, such that ¢, i ...
Z;nzl agiy > 22;1 k-

PrOOF. If 37" agip > > pey arjk and ¢y ivir,jm 7 0, we add

=0

m

im0 g T, 2 U, P R
_ Cityeimigtyenim 1 T Y1 Ym' dxldyl_Cn,.n,zm;Jhm,mel Tm' Y1 Ym' drrdys

det Gl(P) det Gl(Q) det Gl(P) det Gl(Q)
to (P, Q). If Y ;" | akir = > pe; akjk, which is equivalent to (i1,...,im) = (J1,.- -, jm)s
and iy, iviji,ejm 7 0, we add
Cir ity T4+ Ty oyl
— dzrid
det G, (P) det G1(Q) T

to @W(P, Q). Then we can take {n;}7_; in the form as claimed. O
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Hereafter, we take {n;}7_, as in Proposition 6.6.

LEMMA 6.7 ([1, p. 470], [2, p. 6]). We have

12, Q)
{0 (1) — ) 29 (P, Q) et G4 (Q)) + det G (Q) det H(P, Q)

B (x1 — y1)? det G1(P) det G1(Q) dardyr,

where the numerator is homogeneous of degree 2y v, (d;—1/d; — 1)a; = 2(2g — 1 + ay)
with respect to A and x1,. .., Tm,Y1s-- - Ym-

We define ¢;, . by

ctmiJ1se s dm

d Q P = 15--5%m;3J1,--5Im m m d d
Q (P,Q) (z1 —y1)2det G1(P) det G1(Q) e

where the summation is taken over (i1,...,4m), (J1,.-.,79m) € B(4m).

LEMMA 6.8. We have ;.. i irjm € ZIA] and €, i, 51 . 18 homogeneous of
degree 2(2g — 1+ a1) — Yo, ar(ix + ji) with respect to X if Gy i ivoojm 7 0.

PROOF. From Lemmas 3.4 and 6.7, we obtain the statement of the lemma. O
We define F(P, Q) by

F(P,Q)
(1 —y1)? det G1(P) det G1(Q)

(:J(P,Q) = dJL‘ldyl.

We can determine the coefficients ¢;, . by the following recurrence relations.

s bm3J1seesJm

PROPOSITION 6.9.  We take (i1,...,%m), (J1,---sJm) € B(Am) such that
221:1 apip < 2?21 agJk-
(i) If iy = 0, we have

€0,iz,ensimidtyndm = Ci1+2.02,0mi0,02, e sim — €Oz, im i1 +2,02,5e00m
(i) If i1 = 1, we have

Clyin,coyimidtseedm = 2Ci143,d2scesimi0sieesim — 2€0,i,imiji+3,02scsdm T Ci1422,eesfmiLiin,eensim

- Cl7i27---;im§j1+27j27--<7j7n'
(iii) If i1 > 2, we have

Cityrnsimidseesdm — 2611—17127--<7im§j1+1»j2,-~~7jm T Cit =240, i1 42,2500 0m

T Cjut2,2, e dmiinseensim — Cityeenyimifi+2,2 0 -
PROOF. (i) The coefficient of z2 - - - ximyl T2yd2 ... yJm in F(P,Q) is

C0yig,eeyimifiyemsdim T COyizyeesimifi+2,02,e e rfm -
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Frog _ZZ;Q‘aki‘k < S, arjr  and Proposition 6.6, the coefficient of
o g afrys -y in F(P,Q) 38 Cjy12,s,jimi0sia,enim - From ©(Q, P) = G(P,Q),
we obtain the statement of (i).

(i) The coefficient of zy 2% - - - aimyl t2yd> ... yim in F(P,Q) is

Cliia,eooyimifiseodm = 2€0in,eeimifi+Ld2,dm T Clyiz,.oimiji +2,52,..jm

From a1 + Y jr,akix < Y p—jarjr and Proposition 6.6, the coefficient of

le1+2$%‘2 T x%nyly? T y:;zn in F(P7 Q) 18 Cjy42,a . jims Ly, iy - FTOM @(Q7 P) = Q(Pa Q)
and (i), we obtain the statement of (ii).

- PR R TN S S :
(iii) The coefficient of ! -+ - almyi* "y3> - - ydm in F(P, Q) is
Cityoeyimignseeenim — 2Ci1—Lyiz,eesimifs + 12 seeesdm T Cit =202y 15142520 dim TCitseeyim i1+ 2,525 im

From ' arix < Y- arjr and Proposition 6.6, the coefficient of

5 R - 0 o N
m{ﬁ P admyltyimoin F(P,Q) 1S Cjit2,4a,. . jmiins.vim - From ©(Q, P) = &(P,Q),
we obtain the statement of (iii). O

LEMMA 6.10.  We have ¢iy . i iinjm € LA and ¢y, iviiy. i 15 homogeneous
of degree 2(2g — 1) — Z;nzl ax (ix + jk) with respect to X if ¢iy,ivijrsim 7 O.

PROOF. From Proposition 6.9, we obtain the statement of the lemma. O

We define ¢;, .. by

SAm3J1sedm
F(P,Q) = Zal,...,im;jl,...,jmx? . xiny{l eyl
where the summation is taken over (i1,...,%m), (j1;---,Jm) € B(Ap).

LEMMA 6.11.  We have G, i, jr,....jm € Z[A] and €, ;.15 is homogeneous
of degree 2(2g — 1 + a1) — 221:1 ar(ix + ji) with respect to X if €y, iiir,.jm 7 0.

PRrROOF. From Lemmas 6.8 and 6.10, we obtain the statement of the lemma. O

The Klein fundamental 2-form @(P, Q) is expanded around oo X oo with respect to
the arithmetic local parameter ¢ as follows:

1 1
s+ > agte 'ty | dtpdtg, ¢, €C, (6.12)

O(P,Q) = (e P

where tp = t(P) and tg = t(Q). From &(Q,P) = &(P,Q), we have ¢;; = ¢; ; for any
%, ].

PROPOSITION 6.12.  We have q; j € Z[A] and g;; is homogeneous of degree i + j
with respect to A if q; ; # 0.
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PRrROOF. From (6.4) and Proposition 6.2, we have

t?ﬂal%al (1 —y)* = (tal + Zln ktPtal —tp - Zpl ktath> . (6.13)

k=1

From Proposition 6.3, we have

g (@ —y1)® = (tp — 1) Y vilpth, (6.14)
0,320

where v; ; € Z[A] and v; ; is homogeneous of degree 2 — 2a; + ¢ + j with respect to A if
v;; 7 0. From (6.12), (6.13), and (6.14), around oo x co, we have

e (x1 — 41)°0(P,Q) =

2
o0
> vigtioth + (tg; + Zpl Rthtl — 13 — Zpl,ktﬁ,lt@ > gty th | dtpdte.
k=1

4,520 k=1 i,j2>1
(6.15)
Therefore, around oo x oo, we have
Rty (o — )’ 0(P,Q) = | Y Gijtpts, | dipdtg, Gy €C. (6.16)

4,520

From Propositions 6.3, 6.5, and Lemma 6.11, we have g; ; € Z[A] and g; ; is homogeneous
of degree 2 — 2a; + i + j with respect to A if g; ; # 0. From (6.15) and (6.16), we have

Z (@i — vij)tpty

4,520

2
oo
:<al+zputpt“1—t“1 Zpl,kt?téj > aitp'ty |- (617)
k=1

k=1 i,5>1

By comparing the coefficients of 752@“1 in the both sides of (6.17), we have ¢; 1 € Z[A] and
q1,1 is homogeneous of degree 2 with respect to A if ¢;,; # 0. We take a pair of positive
integers (ig,jo). For any (i,5) € N? such that

o i+ 7 <ig+joor
e i+ j =19+ jo and i < i,

we assume that ¢; ; € Z[A] and ¢; ; is homogeneous of degree i+ j with respect to A
if ¢;; # 0. By comparing the coefficients of )37t g)+2a1 in the both sides of (6.17),
we have ¢;, j, € Z[A] and g¢;, j, is homogeneous of degree iy + jo with respect to A if
Gio,jo 7 0. By induction, we obtain the statement of the proposition. O
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7. Hurwitz integrality of the power series expansion of the sigma function
for the telescopic curve

DEFINITION 7.1.  For a subring R of C and variables z = *(21,...,2,), let
Zi]‘ PR Zz’n/
R<<Z>> :R<<Zl7""2n>> = Z Hilnu;in% Kigyooin € R
i)y
11500300, >0 )
If the power series expansion of a holomorphic function f(z) = f(z1,...,2,) on C"

around the origin belongs to R((z)), then we write f(z) € R((z)) and f(z) is said to be
Hurwitz integral over R.

Let W = {w1,...,wy} and u = *(uq,...,u,). For any partition p and the Schur
function S,(T), we substitute T, = w; for 1 < ¢ < g and T; = 0 for any j satisfying
j ¢ W, and denote it by S, (u).

LEMMA 7.2.  For any partition p, we have S, (u) € Z{{u)).

PRrOOF. For an integer n > 1 and the polynomial p,(T") (cf. Section 5), we substitute
Tw, = u; for 1 <1 < g and T; = 0 for any j satisfying j ¢ W, and denote it by p,(u).
Let po(u) =1 and p,(u) =0 for n < 0. From Lemma 5.2, for n > 0, we have

unl .. .ung
pn(u)zz 1 !

nil--ongl’
where the summation is taken over (nq,...,ny) € Z‘;O satisfying wing +-- - +wgng = n.
We have
Spu(u) = det (puwiJrj(u)hgi,jgé ’
where = (p1, po, . . ., pbe). For integers mq,...,mg,n1,...,n4 > 0, we have

mi Mg njy Ng mi+ni m9+n9
ul™ e ug Ut g (m1+n1).'.<mg+ng) uy g

mal---mg! nql--ny! my my my 4+mnq)!- - (mg 4+ ng)!
Since the binomial coefficients (mlnj n1> e (mgnj Mg ) are integers, we obtain the
1 g
statement of the lemma. O

LEMMA 7.3.  Let R be a subring of C, f(u) = f(u1,...,uy) be a holomorphic function
on C9, and M € My(R). If f(u) € R((u)), then we have f(Mu) € R((u)).

PROOF. Let M = (m; j)i<i j<g, where m; ; € R. For any integer n > 0, we have

n n
(migur 4 - - -+ my gug)" n o
; :Zm“...migi' -
n! ’ Il ong!
where the summation is taken over (n1,...,ng) € Z%, satisfying ny +- - - +ny = n. Thus,

we obtain the statement of the lemma. O
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We expand 9 p; around oo with respect to the arithmetic local parameter ¢
tgfle — Zgi,jti-
i
From Proposition 6.3, we have §; ; € Z[A]. For j > g, we have

¢ = 0 if i< —j
Y i = -y

For a partition p = (u1, p2, - .. ), we define

Eml,l £m1,2 £7rL1,3 e

d fmz,l §m2,2 £m2,3"'
Eu =det(&m, j)ijen = Emant Ema2 Emas |

where m; = p; — ¢ and the infinite determinant is well defined. Then we have &, € Z[A].
The tau function 7(u) is defined by

T(u) = Z guSu(u)7

where the summation is taken over all partitions.

PROPOSITION 7.4.  We have 7(u) € Z[A]{{u)).

PRrROOF. From Lemma 7.2, we obtain the statement of the proposition. O
For k > 1, we define ¢; by
) d 0 4
k1 Ldi (1 + Zj:l bgyyt]>
Z th = = 3 ; ) (71)
Pt 20 14307 byt

where b, ; are defined in (6.10). For 1 <14 < g, we expand w; around oo with respect to

t as follows:

(o]
w; = Zbivjtjildt, b@j e C.
=1

From Proposition 6.5, we have 6” € Z[A] and

WL =
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We define the g x g matrix

1/b\1,wz El,wg e El,wg
0 1 Doy - Do,
B = (biw)i<ijg= |0 0 1 b, |,

0 0 0o --- 1
¢ = (Cwy»--sCu,), and the g x g matrix N = (qu,,w,)1<i,j<g-
THEOREM 7.5 ([4, Theorem 1], [30, Theorem 8]). For v = *(v1,...,vy) € CY, the

following relation holds:

7(v) = exp <—cv + ;%Nu> o(Bv).

For a subset & of X\, we set /\51)6 = /\lg-i)/2 if ASO E_ G and we set )\g% = )\gi) if ASD ¢ 6.
We denote by Ag the set of all )\E% We set deg )\;Z)G = deg )\y).

EXAMPLE 7.6. We consider the (2,3) curve. The polynomial F» defining the (2, 3)
curve is given by

Fo(X) = X2 — X3 = M X1 X — X7 — A3Xo — M X1 — Xe.
We have XA = {A1, A2, A3, Ay, Ag}. We consider the case of & = {A1, A\3}. Then we have
ALe =A1/2, As =X, Ae=2X3/2, Mo =M, oo =X
and Ag = {A1,6, A28, A3,6: A\1,6, A6,6 1

Let 2 = {A;i) | 7 is odd}. For a domain R, we denote by R|[[t]] the set consisting of
formal power series over R.

LEMMA 7.7.  We have ¢, € Z[Ay] and ¢y, is homogeneous of degree k with respect to
)\Q[ Zf Ck 7& 0.

PRrROOF. From Proposition 6.5, we have b, ; € Z[A] and b, ; is homogeneous of degree j

with respect to X if by ; # 0. Therefore, if j is odd and by ; # 0, any term of b, ; contains
a coefficient )\;Z) such that j is odd. Thus, we have

and it is homogeneous of degree 1 with respect to Ag and t. On the other hand, we have

0
1 o0 o0 )
e = 1Y [ =300 | e ZI[I]
L+ 3772 by it ; ; 9
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and it is homogeneous of degree 0 with respect to A and ¢. Therefore, we have

i cxt* ™1 € Z[Aa][[t]

and it is homogeneous of degree 1 with respect to Ag and t. Thus, we obtain the

statement of the lemma. O
THEOREM 7.8. (i) We have o(u) € Z[Ay]{{u)).

(i) We have o(u)? € ZIA|{{u)).

PROOF. Since the determinant of B is 1, we have
B! =B,

where B is the adjugate matrix of B. Therefore, we have B~! ¢ My (Z[X]). We set
u = Bv in Theorem 7.5. Then we have

o(u) = exp <cBlu - %tu t(Bl)NBlu> (B~ ). (7.2)

From Lemma 7.3 and Proposition 7.4, we have 7(B~'u) € Z[A]{(u)). Let ¢ = c¢B™1,
= (1,...,&), N=4BYNB™! and N = (i )1<ij<g From Lemma 7.7, we have
C; € Z[Ay] for any i. Since N is a symmetric matrix, N is also a symmetric matrix. From
Proposition 6.12, we have g; ; € Z[A] for any 4, j. Thus, we have exp(c;u;) € Z[Aa]{{u;))
and exp(q; juiu;) € Z[A]{({u;,u;)) for any 4, j. For any non-negative integer n, we have

(2n)!

2nn! €z

(cf. [3, Lemma 11]). Therefore, we have exp(q; ;u?/2) € Z[A]{{u;)) for any i. Thus, from
(7.2), we obtain the statement of (i). From (7.2), we have

o(u)® =exp (2B 'u—'u ' (B"')NB~'u) 7(B'u)*.
From (7.1), we have 2¢; € Z[A] for any i. Therefore, we obtain the statement of (ii). O
LEMMA 7.9.  For (ki,...,kn) € (2Z>0)™, we define ¢, by

. - i . Fm
Z Cntn = (Z pl,ktk> e (Z pm,ktk> ) (73)
n=0

k=0 k=0
where p; i, € Z[A] is defined in (6.4). If n is odd, then we have ¢, € 2Z[A].

ProoF. We differentiate the both sides of (7.3) with respect to ¢. Since k1, ..., k,, are
even non-negative integers, we have nc,, € 2Z[A] for any n > 1. Therefore, if n is odd,
then we have ¢,, € 2Z[A]. O

LEMMA 7.10.  For (k1,...,km), (€1, ) € ZZy such that 331" aiki = 7" ails,
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we have
il =l atp Yt i, 71
where the summation is taken over (i1, ... ,im) € ZZy such that 37" aji; < Y7, ajk;,

0,...in, € Z[A], and the right hand side of (7.4) is homogeneous of degree Z;”:l a;k; with
respect to A and T1,...,Tm.

PROOF. From Lemma 3.4, we obtain the statement of the lemma. O
When we consider a polynomial f € C[X7, ..., X;,], we combine like terms in f. For
a polynomial f € Z[A][X1,...,X], we consider the following two operations:

(A). When a term ¢; X1 - - Xkm such that e; € Z[A] and (ki,..., kn) € ZZ5\ (2Z0)™
appears in f, we replace X¥ ... X¥Fm with X% ... X4m 4 ... in this term.

(B). When a term ea(X 5 - X%m)2 such that ¢y € Z[A] and (k1, ..., kn) € 7, appears
in f, we replace (XF' ... XEm)2 with (X% ... X% +...)2 in this term.

m

In the operations (A) and (B), X{'... X% 4 ... denotes the polynomial in
Z[N|[X1, ..., X, obtained by replacing z; of the right hand side of (7.4) with X; for
any 1 <7< m.

EXAMPLE 7.11. We consider the (2,3) curve. We have
z? = :c% — X129 — )\ng — A3To — A4x1 — Ag.
First, we consider the case of
f=MX3+ M AsXs.
By applying the operation (A) to X3, the polynomial f transforms into

A (X3 — MXGXs — M XT — A3 Xo — AX1 — Ag) + MAsXo
= MX2 - NX1Xo — MAXE — MAX: — M.

Next, we consider the case of
f=MX% =221 0306 X2 — 201 X6 X1 — A1A2.
By applying the operation (B) to X?, the polynomial f transforms into

M (X3 = M X1 X — A XT — A Xo — AaXy — Ag)” — 200806 Xa — 2\ A X7 — A A2
= MX5 = 203X X3 4+ A (A2 — 200) XPXT + 2\ 20X X, — 20 3 X5

+ 20 (M Az = A) X1 X2+ M A3XT 200 (M da + dadz) XEXo + A (A2 — 2)06) X2

+ 20 00 X3 4 20 (M A6 + A3 Ag) X1 Xo + A (A + 20006) X7

For a subring R of C, let P(R) be the set of > fi, i Xi*-- - Xim € R[X1,..., Xp)
such that §;, ;. € 2R or (i1,...,0m) € (2Z>0)™. For f € Z[A|[X1,..., Xn], let S(f)
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be the set of the subsets & of A such that f € P(Z[As]). If &y € S(f), then we have
G € S(f) for any subset & of X such that Gy C 6.

ExAMPLE 7.12.  We consider the (2,3) curve. First, we consider the case of
f=X2X34+2X7 + M X5+ M X7+ 203X X0 + X6 X7 + A5 X.

The set S(f) is the set of the subsets of A which contain A1, A2, \y. We have S(f) =
{61, 62,83,6,}, where

61 = {)\17>\27)\4}7 62 = {)\17)\27)\37)\4}7
G3 = {1, A2, Ag, A6}, Sy = {1, 2, A3, A1, N6 }-

Next, we consider the case of
f=XD 4+ MX3 4+ M X3 203X X0 + A X7+ N5 X
We have S(f) = <.

For fi,fs € ZIA|[X1,...,Xn] and & C A, if & € S(f1) N S(fz2), then we have
S e S(fi+ f2).

LEMMA 7.13.  Let f1 and fy be polynomials in Z[N][X1, ..., Xm] such that f1 — fa €
P(Z[A\]). Then we have S(f1) = S(f2).

PROOF. There is a polynomial f3 € P(Z[A]) such that fi = fo + f3. We assume & €
S(f2). From & € S(f3), we have & € S(f1). Thus, we have S(f2) C S(f1). In the same
way, we have S(f1) C S(f2). Therefore, we have S(f1) = S(f2). O

For fi, fo € C[Xy,..., X, if f1 — fo € I, we say that f; is congruent to fo modulo
I, where I is defined in Section 3.

LEMMA 7.14.  For f € Z[N|[X1,...,Xn], let fa and fp be polynomials obtained by
applying the operations (A) and (B) to f, respectively. Then f is congruent to fa and
fB modulo I and we have S(f) C S(fa) and S(f) = S(fB).

PrROOF. From Lemma 7.10, f is congruent to f4 and fp modulo I. Let f =
S Giyoin X1 Xim . We assume & € S(f). For any term g;, 4, Xi'--- Xim in f
such that (i1,...,im) ¢ (2Z>0)™, we have g;, .. ;,. € 2Z[Ag]. Thus, we have & € S(fa).
Therefore, we have S(f) C S(fa). In the operation (B), we have

(Xfr - Xl ) € P(ZIN).
From Lemma 7.13, we have S(f) = S(fB). O

LEMMA 7.15.  Let k be an integer such that 1 < k < m and ay is odd. Let f
be a polynomial in ZIN]|[X1,...,Xm] such that f is congruent to det G, modulo I. If
G € 8(f), then we have o(u) € Z[As]{{u)).

PRrROOF. From Propositions 6.2, 6.3, and Lemma 6.4, for P = (z1,...,z,) € V,
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det G (P) can be expanded around co with respect to ¢ as follows:

( k+1

det G, (P) = th — <1+antn>

where b, € Z[1/ay, As] for any n > 1. We have det Gi(P) = f(P). From f € P(Z[As])
and Lemma 7.9, if n is odd, then we have bh,, € 2Z[1/ax, Ag]. From

1 2t2g 1+ag

det Gy (P) ~ (~1)*a ”Z<_;b”tn> |

we have the expansion

n=1

1 t2g 1+4ag n
det Gy (P) — (=1)k+1ay <1+Zlnt ) (7:5)

where i, € Z[l/a,As] for any n > 1. Further, if n is odd, then we have i, €
2Z[1/ak, As]. On the other hand, we have the expansion around co with respect to
t

—ay, =. .
dry = Jantl (1 + lent ) ) (7.6)

where j, € Z[l/ag,As] for any n > 1. Further, if n is odd, then we have j, €
2Z[1/ax, As]. From Proposition 6.5, we have b, ; € Z[Ag] for any j > 1. From (6.11),
(7.5), and (7.6), if j is odd, then we have b, ; € 2Z[Ag]. Thus, we have

1d

La +;bg,jta‘ e ZAs ][]

As in the case of Lemma 7.7, we have ¢, € Z[Ag] for any k > 1. Therefore, as in the
case of Theorem 7.8 (i), we obtain the statement of the lemma. O

In Lemma 7.15, we have the following problems:

e For any telescopic curve and any integer k£ such that 1 < &k < m and a is odd,
is there a polynomial f in Z[A][X1,..., X;n] such that f is congruent to det G
modulo I and S(f) # &7

e Find a polynomial .# in Z[A|[X7, ..., X;,] such that .Z gives the best result among
all the polynomials in Z[A][X1,. .., X,,] which are congruent to det G}, modulo I.

We solve these problems in Theorem 7.16.
THEOREM 7.16. Let k be an integer such that 1 < k < m and ay, is odd.

(i) By applying the operations (A) and (B), we can transform det Gy, into

F = (- )k-‘rl X2h1 . .X’Eﬂh”l + Zpihm,imXil L. Xri;bn’ (7.7)
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where

o (hi,... hiy) € L%y such that 2377 | ajhy = 29 — 1+ ax,

e the summation in (7.7) is taken over (i1,...,im) € ZY, such that Z;nzl a;i; <
29 —1+ay,
4 pil;-nﬂ;m, € Z[AL

a

e 7 is homogeneous of degree 2g — 1 + ay, with respect to A and X1, ..., Xm,
if (P15 sim) 7 (81, i) and iy i, Par i 7 0, then ZJ 1 a5 # ZJ 14515,
Zf (il, ey im) §é (QZZQ)M and Pir,...im 7’5 0, then Zj:l ajij ¢ 2< m>~

(ii) We have S(F) # . For any & € S(.F), we have o(u) € Z[As]{{u)).

(iii) For any f € Z[N|[X1,...,Xm] which is congruent to det Gy, modulo I, we have
S(f) € S(7).

PROOF. (i) We have det G, € Z[A][X1,...,Xm] and det G}, is homogeneous of degree
2g — 1 + ay with respect to A and Xq,..., X,,. From Lemma 6.4, the maximum of the
degree of X'+ X!m appearing in det G, is 29 — 1 + aj. From Lemma 2.1, we have

29 — 14 ax € 2(A,,). From Lemma 6.4, by applying the operations (A) and (B), we can
transform det Gy, into

( )k+1 X2h1 . X"%Lhm + g7

where (hi,...,hp) € ZZ, such that 2377 ajh; = 29 — 1+ ax, 4 € ZN|[X1, ..., Xpn),
and the maximum of the degree of Xfl -+ Xim appearing in ¢ is less than 29 — 1 + ay.
Let £ be the maximum of the degree of X' --- X'm appearing in 4.

o If £ € 2(A,,), we take a sequence (hgl), el hi})) € ZZ, such that 2 Zm_l ajh(l) = ¢

By applying the operationb (A) and (B), we replace all Xi* ... X/ in & such that

m
2k (1)
Ej 1ajzj—{%W1thX -~-Xmm

o If £ ¢ 2(A,,), we take a sequence (hgz), ce hSZ)) € 2%, such that 337", ajh;?) =

¢. By applying the operation (A), we replace all Xli1 <+ Xim in & such that

©)
Z; 1a]ZJ—EW1thX1 -~~X£L{" +---

By repeating the above operations, we obtain the statement of (i).

(ii) Since any p;, ... i, such that p;, ; # 0 contains a coefficient )\;i) in A, we have
S(F) # . From Lemma 7.14, .Z is congruent to det G modulo I. From Lemma 7.15,
for any & € S(.7), we have o(u) € Z[As]{{u)).

(iii) Let f be a polynomial in Z[A][X1, ..., X;,] which is congruent to det G, modulo
I. Let I be the maximum of the degree of X} --- X' appearing in f. Then we have
[>2g — 1+ ax. We consider the case of [ > 2g — 1 + ay.

e If [ € 2(A,,), we take a sequence (h(3) . h(d)) ZZ, such that 23770 a; ;3) =1L
By applying the operations (A) and (B )7 we replace all X! ... X% in f such that

3)
>oiy ajij = L with X2h1 CXEh
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o If I ¢ 2(A,,), we take a sequence (h§4), ce hg,%)) € ZY, such that Z;n:l ajh§.4) =

[. By applying the operation (A), we replace all X{l <+ Xim in f such that
(4) h®

Z;i1ajij:[withX?1 c X

By repeating the above operations, we can transform f into a polynomial 7 in
ZIN][X1,. .., Xm], where the maximum of the degree of Xi'--- X!m appearing in
is 29 — 1+ ay. By applying the operations (A) and (B), we can transform J# or f in the
case of [ =2g — 1+ ay, into

(D) ap X7 X2 4

where (hi,...,hy) is defined in (7.7), & € Z[A][ X1, ..., X, and the maximum of the
degree of X{'--- X!m appearing in .# is less than 2g — 1 + a;. Let m be the maximum
of the degree of X' --- X’m appearing in ..

e If we have the term pkl,__”k.mel <+« XFm such that py, .., # 0and Z;":l ajk; =m

in (7.7), by applying the operations (A) and (B), we replace all Xfl v Ximoin f
such that Y7 a;i; = m with X{* - Xkn 4.

o If m € 2(A,,) and there is no term py, ., X5 --- X5 such that py, g, #
0 and 7%, ajk; = m in (7.7), we take a sequence (h§5)7 . .,hﬁ;’;)) € ZY, such
that 22;"‘:1 ajhf) = m. By applying the operations (A) and (B), we replace all
Xi... Xim in . such that >ojy ajij = m with thgm = -Xfrfi'?) + -

o If m ¢ 2(A,,) and there is no term py,  , X' --- X5 such that py, ., # 0
and Z;":l a;jk; = min (7.7), we take a sequence (hgﬁ), e hﬁ,?)) € ZZ, such that
Z;.”:l ajh(G) =m. By applying the operation (A), we replace all X{* ... Xim in .&

J
h(6)
mm

©
suchthatz:;nzlajij:mWithX{L1 c X e

By repeating the above operations, we can transform f into .%. From Lemma 7.14, we
have S(f) € S(F). O

For a non-negative integer n, we define x(n) by

(n) = 0 if nis even
MW= ifnisodd

Let B be the set of /\y) which is the coefficient of X7'--- X/m with S.7" | x(jx) > 2 in
(3.2).

PropoOSITION 7.17.  If 23;11 X ;) <1 for any 2 < i <m, where {; ; is defined in
(3.1), then we have o(u) € Z[Ax]|((u)).

PROOF. We take an integer k such that 1 < k < m and ay, is odd. From Z;: x4 ;) <1,
for any 2 < ¢ < m and 1 < j < m, we have 0F;/0X; € P(Z[Ag]). Thus, we have
det G, € P(Z[Ag]). Therefore, we have B € S(det Gj). From Lemma 7.15, we obtain
the statement of the proposition. O
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REMARK 7.18. We can apply Theorems 7.8 and 7.16 to any telescopic curve. In
the case that the condition of Proposition 7.17 holds, Theorem 7.16 gives the better
result than Proposition 7.17. On the other hand, in Proposition 7.17, we do not need to
calculate det G..

LEMMA 7.19.  We consider the case of m = 2. For (i1,i2), (j1,J2) € Z%¢, if ariy +
agis = a1j1 + agjz < ajaz, then we have (i1,i2) = (j1,72)-

PROOF. From aiiy + agis = a1j1 + azje < ajaz, we have is,js < a1. Thus, we have
(i1,42), (j1,J2) € B(Az). From Lemma 3.1, we have (i1,i2) = (j1, jo2). O

REMARK 7.20. We consider the (n, s) curve. The polynomial F» defining the (n, s)
curve is given in Example 3.3 (i). Let € be the set of A; which is the coefficient of
X7'X3* with (j1,72) = (odd,odd) in (3.3). In [35, Theorem 2.3], it is proved that we
have o(u) € Z[Ae]((w)).

REMARK 7.21.  We apply Theorem 7.8 (i) to the (n,s) curve. In the case of (n,s) =
(odd, odd), 2 is the set of \; which is the coefficient of X7' XJ* with (ji, j2) = (odd, odd)
or (even, even). In the case of (n, s) = (odd, even), 2 is the set of A; which is the coefficient
of X9 X722 with (j1,j2) = (odd, odd) or (odd, even). In the case of (n,s) = (even, odd), A
is the set of A; which is the coefficient of X7 X7 with (j1,j2) = (0dd, odd) or (even, odd).
Therefore, [35, Theorem 2.3] gives the better result than Theorem 7.8 (i) for (n, s) curves.

REMARK 7.22.  We apply Theorem 7.16 to the (n,s) curve. First, we consider the
case that n is odd. We have

det Gy =nX3"" =" jodnsnj, e X1 X371, (7.8)

where the summation is taken over (ji,j2) € ZQZO such that nj; 4+ sj2 < ns and jo > 1.
From Lemma 7.19, we find that the polynomial (7.8) is in the form of (7.7). We can
express the polynomial (7.8) in the form of ¢, + ¢ with #; € P(Z[A]) and

_ J1 yJj2—1
jl = E :)‘”S*ﬂjlfsjzXl X5 )

where the summation is taken over (ji,72) € 2220 such that (ji,j2) = (odd,odd) and
nj1 + sjo < ns. From Lemma 7.13, we have S(det G1) = S(_#1). Thus, we obtain the
same result as [35, Theorem 2.3]. Next, we consider the case that s is odd. We have

det Gg = —S)(f_1 — Zlens_njl_szX{l_ngrz, (79)

where the summation is taken over (j1,72) € ZQZO such that nj; + sjo < ns and j; > 1.
From Lemma 7.19, we find that the polynomial (7.9) is in the form of (7.7). We can
express the polynomial (7.9) in the form of J# + J#% with % € P(Z[A]) and

_E J1—1 yJ2
% - Ans_njl_s.th X2 I

where the summation is taken over (ji,j2) € Z2, such that (ji,j2) = (odd,odd) and
nj1 + sjz2 < ns. From Lemma 7.13, we have S(det G3) = S(#1). Thus, we obtain the
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same result as [35, Theorem 2.3]. Therefore, Theorem 7.16 includes [35, Theorem 2.3].

REMARK 7.23.  We can apply Proposition 7.17 to the (n, s) curve. Applying Proposi-
tion 7.17 to the (n, s) curve, we have [35, Theorem 2.3] immediately. We consider the case
of m = 3. The sequence Az can be uniquely expressed as Az = (a}d, ahyd, kia) + koal),
where af,a5,d € N and ki, ks € Z>¢ such that ged(a), ay) = ged(d, k1a) + koah) = 1,
(l’ld, a’gd, /{51(1/1 + kgaé > 2, and /{2 < a’l. Then we have 6371 = k’l and 6372 = kz. If ]{31
or ko is even, then Aj satisfies the condition of Proposition 7.17. For example, for any
non-negative integer k, As = (4,6, 4k + 3) satisfies the condition of Proposition 7.17. On
the other hand, if both k; and ko are odd, then Az does not satisfy the condition of
Proposition 7.17. For example, for any positive integer k, As = (4,6,4k + 1) does not
satisfy the condition of Proposition 7.17. We can apply Proposition 7.17 to the telescopic
curve considered in Example 3.3 (v).

ExaMPLE 7.24. We consider the case of m = 3 and A3 = (4,6,5). The poly-
nomials F5 and Fj defining this curve are given in Example 3.3 (ii). We have 2 =
{/\f), )\;(32), )\g), /\53), /\(53)}. From Theorem 7.8 (i), we have o(u) € Z[Ay]{(u)). By apply-
ing the operation (A), we can transform det G3 into

£ =5X2+200% —2) X0 X5 + (A — AP -3y x2
F20870 = AP AP — 2P X X
+ (AW AP + 30 - 40)?) x7
2087 + 290 2P — 2P Y) x,
+ (AN 130D AP - AN =P — PP x;,
F20870Y + AN AP AP — 2P0 x,
F3ATAE - AN AN — ) ).

The polynomial . is in the form of (7.7). We have ¥ = 4 + % with % € P(Z[A])
and

2= A L ADND AP AN AP x5
From Lemma 7.13, we have S(.Z) = S(Z4). Let

D1 = DIAP AT AT AL Dy = PP AP AT AP,
D3 = (AP AT AT AT Da= P AP AP AP AP,
D5 = AT AT AT AL D6 = PP AP AP AP,
D7 = PP AT AT AT AL D= PP AP AT AP AP,
Dy = DZAP AT AT AT Dio = 87 A7 AP AP A,
D1 = AT AT AP AT D = 0P AP AP AP,
D13 = AP AD AP AB A o, = (AP AD AR AB B



32 T. AvaNo
915 = {)‘éz); A(72), )‘513)7 >\£,3)7 )‘é3) }7 ©16 = {>"(72)7 )‘53)3 )‘4(13)7 )\553)7 Aég) }

From Theorem 7.16, for 1 < i < 16, we have o(u) € Z[Ap,]{(u)). We have 2 = Dg. We
cannot apply Proposition 7.17 to this curve.

EXAMPLE 7.25. We consider the case of m = 3 and A3 = (4,6,7). The poly-
nomials Fy and F3 defining this curve are given in Example 3.3 (ili). We have
A = {A?),,\f),A§3)7A§3),/\(73)}. From Theorem 7.8 (i), we have o(u) € Z[Ay]{{(u)).
By applying the operation (A), we can transform det G3 into a polynomial .# in the
form of (7.7). Here, we omit the explicit expression of .#. We have .# = .41 + .#> with
Mo € P(Z|A]) and

Ay = (A2 A X2x5 4+ APAD £ APAD L ADND L ADAD L AD A X,
From Lemma 7.13, we have S(.#) = S(#1). Let

& = D A2 AP AP 0], e = A A A0 )
&= DN AP NP AD), e = DR 0 A0 )
€= D A2 AP AP, = A A0 A0 )
&= DA AP AP AP), e = A A0 A0 A0

From Theorem 7.16, for 1 < i < 8, we have o(u) € Z[Ag,]((u)). We have A = E;. We
can apply Proposition 7.17 to this curve. We have 8 = &,.

EXAMPLE 7.26. We consider the case of m = 3 and A3 = (6,9,5). The poly-
nomials Fy and F3 defining this curve are given in Example 3.3 (iv). We have
A= AP AP AP AP AD AD AP AD AD A1 From Theorem 7.8 (i), we have
o(u) € Z[Ay]{{u)). By applying the operation (A), we can transform det Gy into a poly-
nomial .4 in the form of (7.7). Here, we omit the explicit expression of 4. We have
N = M+ AN with A5 € P(Z[A]) and

M= O A X2X + AP +AP) X x2
+ AR+ APAE AP+ APAY + AP +28) X,
From Lemma 7.13, we have S(.4") = S(A41). Let

= QP AP AP A AZ AP, 5= AP AP A A A A,
0 = DD AP AP AP B AP AP 5= (A AP A AP AP AP,
85 = AT AT AT AR AT AL Be = A A AP A,
§r = AT AT NN AT AL, B = AR AT AP )
From Theorem 7.16, for 1 < ¢ < 8, we have o(u) € Z[Az,]{{u)). We have F5 C 2L

By applying the operation (A), we can transform det Gz into a polynomial & in the
form of (7.7). Here, we omit the explicit expression of €. We have € = 0y + 0, with
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Oy € P(Z[A]) and

01 = (A2 LA X2x5 + 02N + AP x X, + (Ag%g@ + A§2>(A§3>)2) XX
+ AN AP X1 X5 + AN + AP X + AN + AP X
F PN AN L AN+ AAD A + AP AP X,

We obtain the same result as the case of det Go. We cannot apply Proposition 7.17 to
this curve.

REMARK 7.27. For the above three curves, Theorem 7.16 gives the better result
than Theorem 7.8 (i).
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