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Abstract. We discuss the ACC conjecture and the LSC conjecture for minimal
log discrepancies of generalized pairs. We prove that some known results on these
two conjectures for usual pairs are still valid for generalized pairs. We also discuss
the theory of complements for generalized pairs.
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1. Introduction

Generalized pairs are introduced by Birkar and Zhang [BZ16], and they are gen-
eralizations of the usual log pairs. Generalized pairs play an essential role in Birkar’s
papers [Bir19, Bir21a]. In these papers, Birkar proves the BAB conjecture, which
states that a certain class of singular Fano varieties is bounded. Generalized pairs
also have many applications to important topics in birational geometry (for exam-
ple, the Iitaka conjecture [BZ16], and the termination problem and the existence of
minimal models [Mora,HM20,Morb]). We refer the reader to his expository article
[Bir21b] for the motivation and related problems.

In this article, we focus on the singularity aspect of generalized pairs, in particular,
their minimal log discrepancies. The minimal log discrepancy is an invariant of
singularities introduced by Shokurov (for usual log pairs) in order to attack the
termination of flips. Shokurov proved that two conjectures on the minimal log
discrepancies, the LSC (lower semi-continuity) conjecture and the ACC (ascending
chain condition) conjecture, imply the conjecture of termination of flips [Sho04].
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The ACC conjecture predicts that the set of minimal log discrepancies of fixed
dimension with the suitable restrictions on the coefficients of the boundary divisors
satisfies the ascending chain condition.

Conjecture 1.1 (ACC conjecture, [Sho96]). Let d ∈ Z>0 and let I ⊂ [0, 1] be a
subset that satisfies the DCC. Then the set A(d, I) defined by

A(d, I) :=

{
mldx(X,∆)

∣∣∣∣ (X,∆) is a log pair with
dimX = d, ∆ ∈ I and x ∈ |X|0.

}
satisfies the ACC, where |X|0 denotes the set of all closed points of X.

The ACC conjecture is proved when d ≤ 2 by Alexeev [Ale93] and Shokurov [Sho94].
In [Kaw15, Kaw14], Kawakita proves the ACC conjecture on the interval [1, 3] for
three-dimensional smooth varieties, and the discreteness of the minimal log discrep-
ancies for a fixed variety. In [Nak16b], the third author generalizes the discreteness
result by Kawakita to the varieties with fixed Gorenstein index and proves the ACC
conjecture for canonical three-folds when I is a finite set. We refer the reader to
[Amb06,MN18,Kaw21,HLS,HL20,Mor21,Mor23] for other developments related to
the ACC conjecture.

The LSC conjecture predicts that the minimal log discrepancies satisfy the lower
semi-continuity.

Conjecture 1.2 (LSC conjecture, [Amb99]). Let (X,∆) be a log pair. Then the
function

m : |X|0 → R ∪ {−∞}; x 7→ mldx(X,∆)

is lower semi-continuous, where |X|0 denotes the set of all closed points of X with
the Zariski topology.

The LSC conjecture is proposed by Ambro and proved when d ≤ 3 [Amb99]. Ein,
Mustaţǎ and Yasuda in [EMY03] prove the conjecture when X is smooth using
the jet scheme theory, and Ein and Mustaţǎ in [EM04] generalize the argument to
the case where X is a locally complete intersection variety. In [Nak16a], the third
author proves the conjecture when X has quotient singularities, more generally when
X has a crepant resolution in the category of the Deligne-Mumford stacks. In [NS22,
NS], the third author and Shibata prove the conjecture when X has hyperquotient
singularities.

A usual log pair (X,∆) consists of a normal variety X and an R-divisor ∆. A
generalized pair (X,∆ +M) additionally has a b-divisor M over X. More precisely,
M is the push-forward of a nef Cartier R-divisor on some birational model X ′ (see
Definition 2.1). Then we can extend the definition of the minimal log discrepancy to
generalized pairs, and we can also expect the ACC conjecture and the LSC conjecture
in this setting.

Conjecture 1.3 (ACC conjecture for generalized pair). Let d ∈ Z>0 and let I ⊂
[0,+∞) be a subset that satisfies the DCC. Then the set Agen(d, I) defined by

Agen(d, I) :=

{
mldx(X,B +M)

∣∣∣∣ (X,B +M)/Z is a generalized pair with
dimX = d, B ∈ I, M ∈ I and x ∈ |X|0.

}
satisfies the ACC. See Definition 2.2 (1) for the meaning of M ∈ I

Conjecture 1.4 (LSC conjecture for generalized pair). Let (X,B + M)/Z be a
generalized pair. Then the function

m : |X|0 → R ∪ {−∞}; x 7→ mldx(X,B +M)

is lower semi-continuous.
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The main purpose of this article is to confirm that known results on these two
conjectures for usual pairs are still valid for generalized pairs.

First, we follow the argument in [Sho94] to prove Conjecture 1.3 in dimension two
(see [Mora] for a similar related result). Furthermore, we generalize the argument
in [Nak16b] to prove Conjecture 1.3 for varieties with fixed Gorenstein index, and
prove partial results on generalized canonical pairs of dimension three.

Theorem 1.5 (= Theorem 5.12). For any DCC subset I ⊂ [0,+∞), the set
Agen(2, I) satisfies the ACC.

Theorem 1.6 (= Theorem 6.5). Let d, r ∈ Z>0 and let I ⊂ [0,+∞) be a finite set.
Let P (d, r, I) be the set of all generalized log canonical pairs (X,B+M)/Z with the
following conditions:

• dimX = d,
• rKX is Cartier,
• B =

∑
i biBi for some bi ∈ I and effective Cartier divisors Bi.

• M =
∑

imiMi for some mi ∈ I and Cartier divisors Mi such that Mi =
f∗M

′
i for some projective birational morphism f : X ′ → X and nef/Z Cartier

divisors M ′i .

Then the following set

A′gen(d, r, I) :=
{

mldx(X,B +M)
∣∣ (X,B +M)/Z ∈ P (d, r, I), x ∈ |X|0.

}
is a discrete subset of [0,+∞).

Theorem 1.7 (= Corollary 6.6). Let I ⊂ [0,+∞) be a finite subset. Then the
following set

Agen.can(3, I) :=

mldx(X,B +M)

∣∣∣∣∣∣
(X,B +M)/Z is a generalized
canonical pair of dimX = 3
with B ∈ I, M ∈ I, x ∈ |X|0.


satisfies the ACC. Furthermore, 1 is the only accumulation point of this set.

For the LSC conjecture, we prove that Conjecture 1.4 can be reduced to Conjec-
ture 1.2.

Theorem 1.8 (= Theorem 3.8). Conjecture 1.2 implies Conjecture 1.4.

By this theorem, we can confirm that Conjecture 1.4 is still true in dimension three
or when X is smooth for example. In the proof of Theorem 1.8, two lemmas play
important roles. The first one is the constructibility of the minimal log discrepancy
proved by Ambro (Lemma 3.2). The second one is the limit lemma (Lemma 3.4),
which allows us to approximate the minimal log discrepancy of a generalized pair
by those of usual pairs.

As we mentioned, Shokurov proved that Conjecture 1.1 and Conjecture 1.2 imply
the conjecture of termination of flips [Sho04]. His argument can be easily extended
to the generalized setting.

Theorem 1.9 (= Theorem 4.8). Conjecture 1.4 and Conjecture 1.3 imply the ter-
mination of flips for generalized log canonical projective pairs.

In the remaining part of this paper, we discuss the theory of complements for
generalized pairs. Theorem 6.16 states that it is possible to perturb irrational coeffi-
cients preserving ε-log canonicity in some sense. This gives a slight generalization of
the result by G. Chen and J. Han [CH21, Lemma 3.4]. As an application, we prove
Corollaries 6.28 and 6.29, which remove the rationality condition on the coefficient
set from the results by Filipazzi and Moraga [FM20]. We note that Corollaries 6.28
and 6.29 overlap with [Che] and [CX22] (see the beginning of Subsection 6.3 and
Remark 6.30 for more details).
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The paper is organized as follows. In Section 2, we review some definitions and
facts on generalized pairs. In Section 3, we prove some basic properties on the
minimal log discrepancies for generalized pair and prove Theorem 1.8 (= Theorem
3.8). In Section 4, we prove Theorem 1.9 (= Theorem 4.8). In Section 5, we prove
the ACC conjecture in dimension two (Theorem 1.5 = Theorem 5.12). In Section
6, we study the minimal log discrepancies on varieties of fixed Gorenstein index,
and prove Theorem 1.6 (= Theorem 6.5) and Theorem 1.7 (= Corollary 6.6). In
Subsections 6.2 and 6.3, we discuss the theory of complements for generalized pairs.
Theorems 6.16 and 6.26, Corollaries 6.28 and 6.29 are the main results of these
subsections.
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2. Preliminary

2.1. Notation and Convention. Throughout this paper, we work over the field
C of complex numbers. We follow the notation and terminology in [KM98] and
[Kol13].

2.2. Generalized pairs. We recall some notation and properties on generalized
pairs. For more detail, we refer the reader to [Bir19] and [Bir21a]. We also refer the
reader to [KM98] and [Kol13] for the notation in the minimal model program.

Definition 2.1. A generalized pair (X,B +M)/Z consists of

• a normal variety X and a quasi-projective variety Z with a projective mor-
phism X → Z,
• an effective R-divisor B on X, and
• a b-R-Cartier b-divisor over X represented by some projective birational

morphism ϕ : X ′ → X and a nef/Z R-Cartier divisor M ′ on X ′

such that M = ϕ∗M
′ and KX +B +M is R-Cartier.

We say that B is the boundary part and M is the nef part of the generalized pair
(X,B +M).

Definition 2.2. Let (X,B +M)/Z be a generalized pair.

(1) Let I ⊂ [0,+∞) be a subset. Then we write B ∈ I when all nonzero
coefficients of B belong to I. By abuse of notation, we also write M ∈ I
when M ′ =

∑
1≤i≤` riM

′
i holds for some positive real numbers r1, . . . , r` ∈ I

and nef/Z Cartier divisors M ′1, . . . ,M
′
` possibly replacing X ′. This definition

is natural when considering an NQC generalized pair (see [HL22, Section 2.6]
for more detail).
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(2) For a prime divisor E over X, we define the generalized log discrepancy
aE(X,B + M) as follows. Possibly replacing X ′ with a higher model, we
may assume that ϕ is a log resolution of (X,B) and that E is a divisor on
X ′. We define an R-divisor B′ on X ′ by

KX′ +B′ +M ′ = ϕ∗(KX +B +M).

Then we define aE(X,B + M) := 1 − coeffE B
′. The image ϕ(E) is called

the center of E on X and we denote it by cX(E).
(3) Let W ⊂ X be a closed subset. Then we define the generalized minimal log

discrepancy mldW (X,B +M) along W as

mldW (X,B +M) := inf
cX(E)⊂W

aE(X,B +M)

if dimX ≥ 2, where the infimum is taken over all prime divisors E over X
with center cX(E) ⊂ W . When dimX = 1, we define mldW (X,B + M) :=
infcX(E)⊂W aE(X,B +M) if the infimum is non-negative and mldW (X,B +
M) := −∞ otherwise. For simplicity of notation, we write mld(X,B + M)
instead of mldX(X,B +M).

(4) Let η be a scheme-theoretic point of X of codim η ≥ 1. Then we define the
generalized minimal log discrepancy mldη(X,B +M) at η as

mldη(X,B +M) := inf
cX(E)={η}

aE(X,B +M)

if codim η ≥ 2, where the infimum is taken over all prime divisors E over X
with center cX(E) = {η}. When codim η = 1, we define mldη(X,B+M) :=
inf

cX(E)={η} aE(X,B +M) if the infimum is non-negative and mldη(X,B +

M) := −∞ otherwise. We denote mldη(X) = mldη(X,B +M) if B = M ′ =
0.

(5) When mldη(X,B+M) ≥ 0 in (4), we say that a divisor E over X computes

mldη(X,B+M) if cX(E) = {η} and mldη(X,B+M) = aE(X,B+M) hold.
When mldη(X,B +M) = −∞, we say that E computes mldη(X,B +M) if

cX(E) = {η} and aE(X,B +M) < 0 hold.
(6) We say that (X,B+M) is generalized log canonical (generalized lc for short)

if mld(X,B +M) ≥ 0 holds. We say that (X,B +M) is generalized Kawa-
mata log terminal (generalized klt for short) if mld(X,B + M) > 0 holds.
Furthermore, for ε ∈ R≥0 we say that (X,B + M) is generalized ε-lc if
mld(X,B +M) ≥ ε holds.

(7) A generalized non-klt center of (X,B +M) is the center cX(E) of a divisor
E over X with aE(X,B +M) ≤ 0.

(8) We say that (X,B+M) is generalized dlt when the following two conditions
hold:
• (X,B +M) is generalized lc.
• If η is the generic point of a generalized non-klt center of (X,B +M),

then (X,B) is log smooth at η and M ′ = ϕ∗M holds over a neighbor-
hood of η.

(9) Let f : Y → X be a projective birational morphism. Possibly replacing ϕ,
we may assume that ϕ factors through f . Then we define BY by

KY +BY +MY = f∗(KX +B +M),

where MY is the push-forward of M ′ on Y . We say that (Y,BY + MY ) is
a Q-factorial generalized dlt model of (X,B + M)/Z if the following three
conditions hold.
• Y is Q-factorial.
• (Y,BY +MY ) is generalized dlt.
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• aE(X,B +M) = 0 holds for any f -exceptional divisor E.
By [HL22, Proposition 3.10], a Q-factorial generalized dlt model always exists
for every generalized lc pair (X,B +M)/Z.

(10) Suppose that (X,B+M) is generalized lc. Let D be an effective R-divisor on
X, and let N ′ be a nef/Z R-Cartier divisor on X ′. We assume that D +N
is R-Cartier, where N := ϕ∗N

′. Then
(
X, (B + tD) + (M + tN)

)
/Z is a

generalized pair for each t ∈ R≥0. We define the generalized lc threshold of
D +N with respect to (X,B +M) as

sup
{
t ∈ R≥0

∣∣ (X, (B + tD) + (M + tN)
)

is generalized lc
}
.

Here, we regard B + tD as the boundary part and M + tN as the nef part
of
(
X, (B + tD) + (M + tN)

)
.

(11) Let E be a divisor over X. Suppose that X is Q-Gorenstein at the generic
point of cX(E). Then we define the order ordE(B + M) at E as follows.
Possibly replacing ϕ, we may assume that E is a divisor on X ′. We define
an R-divisor C on X ′ by

C +M ′ = ϕ∗(B +M).

Then we define ordE(B+M) := coeffE C. Since B ≥ 0 and M ′ is nef/Z, we
have ordE(B +M) ≥ 0.

(12) Let η be a scheme-theoretic point of X of codim η ≥ 1. Suppose that X is
smooth at η. Then we define the multiplicity multη(B + M) as follows. If
codim η = 1, then multη(B +M) := coeffE B, where E is the corresponding
prime divisor to η. We assume codim η ≥ 2 in what follows. Let Y → X be
the blow-up along {η} and E the divisor on Y that dominates {η}. Then we
define multη(B +M) := ordE(B +M).

Remark 2.3. (1) For a generalized pair (X,B + M)/Z with M ′ = 0, the in-
variants defined in Definition 2.2 coincide with those for a usual pair (X,B).

(2) A referee kindly pointed out that the condition “M ′ =
∑

1≤i≤` riM
′
i” in

Definition 2.2(1) can be weakened to “M ′ ≡
∑

1≤i≤` riM
′
i” without loss of

generality because the invariants defined in Definition 2.2 remains unchanged
even if M ′ is replaced with a numerically equivalent one.

We list basic facts on generalized minimal log discrepancies.

Remark 2.4. Let (X,B+M)/Z be a generalized pair and let η be a scheme-theoretic
point of X of codim η ≥ 1.

(1) Let ϕ : X ′ → X be the birational morphism in Definition 2.1. We define an
R-divisor B′ by

KX′ +B′ +M ′ = ϕ∗(KX +B +M).

Then we have
aE(X,B +M) = aE(X ′, B′)

for any divisor E over X. Hence we have

mldη(X,B +M) = inf
cX(E)={η}

aE(X ′, B′),

where the infimum is taken over all prime divisors E over X with center
cX(E) = {η}. This observation allows us to prove the remarks below, which
are well-known for usual pairs (that is, the case when M ′ = 0).

(2) Possibly replacing ϕ, we may assume that ϕ is a log resolution of (X,B).
Then mldη(X,B + M) = −∞ holds if and only if aE(X,B + M) < 0 and
η ∈ cX(E) hold for some prime divisosr E on X ′. Moreover, such E can
be found in the divisors contained in the ϕ-exceptional locus or the strict
transform of B.
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(3) For any η ∈ X, possibly replacing ϕ, we may assume that ϕ is a log resolution

of the triple (X,B, {η}). If mldη(X,B + M) ≥ 0, then some divisor on X ′

computes mldη(X,B +M).
(4) The set {η ∈ X | mldη(X,B + M) = −∞} is a closed subset of X. This

follows from (2).
(5) If mldη(X,B +M) < 0 , then mldη(X,B +M) = −∞.
(6) If mldη(X,B +M) ≥ 0, then the infimum in Definition 2.2(4) is in fact the

minimum.

We note that the similar statements as above also hold for mld(X,B +M).

2.3. Generalized minimal model program. In this subsection, we collect some
facts related to the minimal model program for generalized pairs.

We will start from the basics of the minimal model program for generalized pairs.

Definition 2.5 (Generalized minimal model program). Let π : X → S be a
projective morphism of quasi-projective varieties and (X,B + M)/Z a Q-factorial
generalized lc pair. Suppose that X → Z in Definition 2.1 factors through π :
X → S. Assume that there exists an extremal ray R1 ⊂ NE(X/S) such that
(KX + B + M) · R1 < 0 and we have an extremal contraction with respect to R1.
Note that when (X,B + M) is generalized klt, we always have such an extremal
contraction. If the contraction is a divisorial contraction or a flipping contraction,
let

(X,B +M) 99K (X1, B1 +M1)

be the divisorial contraction or its flip, respectively. Here B1 + M1 is the strict
transform of B + M on X1. Next, if we find an extremal ray R2 ⊂ NE(X1/S)
with the same conditions as above, we repeat this process. We call this process a
generalized minimal model program over S;

(X,B +M) = (X0, B0 +M0) 99K (X1, B1 +M1) 99K · · · 99K (Xi, Bi +Mi) 99K · · · .

Furthermore, we call it a sequence of flips when every map (Xi−1, Bi−1 +Mi−1) 99K
(Xi, Bi +Mi) is a flip and we say that it terminates if the sequence of flips is not an
infinite sequence.

Next, we consider special minimal model programs with some extra data:

Definition 2.6 (Generalized minimal model program with scaling). Let π : X → S
and (X,B +M)/Z be as in Definition 2.5. Suppose that (X,B +M) is generalized
klt. Let H be an effective R-divisor such that KX + B + H + M is π-nef and
(X,B +H +M) is still generalized lc. We put

λ1 := inf{α ∈ R≥0 | KX +B + αH +M is π-nef}.

If KX + B + M is not π-nef, then λ1 > 0 and there exists an extremal ray R1 ⊂
NE(X/S) such that (KX +B+M) ·R1 < 0 and (KX +B+λ1H +M) ·R1 = 0 (cf.
[BZ16, Section 4]). We consider the extremal contraction with respect to this R1. If
it is a divisorial contraction or a flipping contraction, let

(X,B +M) 99K (X1, B1 +M1)

be the divisorial contraction or its flip. Note that KX1 +B1 + λ1H1 +M1 is π-nef,
where H1 is the strict transform of H on X1. We put

λ2 := inf{α ∈ R≥0 | KX1 +B1 + αH1 +M1 is π-nef}.

If KX1 +B1 +M1 is not π-nef, we can find an extremal ray R2 by the same way as
above. We repeat this process and get a sequence

(X,B +M) = (X0, B0 +M0) 99K (X1, B1 +M1) 99K · · · 99K (Xi, Bi +Mi) 99K · · · ,
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with λ1 ≥ λ2 ≥ λ3 ≥ · · · , where

λi := inf{α ∈ R≥0 | KXi−1 +Bi−1 + αHi−1 +Mi−1 is π-nef}

and Hi−1 is the strict transform of H on Xi−1. We call this process a generalized
minimal model program for (X,B +M) with scaling of H over S.

In Definition 2.6, we have assumed that (X,B+M) is generalized klt. We note that
the existence of R1 is a problem when the pair is generalized lc.

Theorem 2.7 ([BZ16, Lemma 4.4(1)]). Let (X,B +M)/Z be a Q-factorial gener-
alized lc pair with X klt. Suppose that KX +B +M is not pseudo-effective over Z.
Then, for a general ample R-divisor H, a generalized minimal model program with
scaling of H for (X,B +M) exists and terminates with a Mori fiber space.

Theorem 2.8. Let (X,B+M)/Z be a generalized klt pair and let E be an exceptional
divisor over X with aE(X,B + M) ≤ 1. Then there exists a projective birational
morphism f : W → X such that E is the only f -exceptional divisor.

Proof. Take a log resolution ψ : Y → X of (X,B) such that E is on Y . We may
assume that ϕ : X ′ → X factors through ψ : Y → X and MY is nef/Z, where MY

is the push-forward of M ′ on Y . Write ψ∗(KX + B + M) + F = KY + BY + MY ,
where F and BY are effective and with no common components. Let G be the
sum of ψ-exceptional divisors except for E. Take a sufficiently small ε > 0 such
that (Y,BY + εG + MY ) is generalized klt. Then we run a generalized MMP for
(Y,BY + εG+MY )/Z over X with scaling of general ample divisor H. This MMP
exists and terminates with a minimal model W by [BZ16, Lemma 4.4(2)]. By
applying the negativity lemma to the push-forward of εG + F on W , the minimal
model f : W → X turns out to have only exceptional divisor E. �

2.4. Divisorial adjunction for generalized pairs. We recall the construction
of divisorial adjunction for generalized pairs. In the minimal model theory, the
divisorial adjunction is a significant tool in arguments by induction on dimension.

Definition 2.9 (cf. [Bir19, 3.1]). Let (X,B + M)/Z be a generalized pair and
let ϕ : X ′ → X be the birational morphism in Definition 2.1. Replacing X ′, we
may assume that ϕ is a log resolution of (X,B). Let S be the normalization of a
component of B with coefficient 1, and let S′ be the strict transform of S on X ′.
We define an R-divisor B′ on X ′ by

KX′ +B′ +M ′ = ϕ∗(KX +B +M).

Then we set BS′ = (B′−S′)|S′ and pick MS′ ∼R M
′|S′ . By the adjunction, we have

KS′ +BS′ +MS′ ∼R (KX′ +B′ +M ′)|S′ .

We denote by ϕS : S′ → S the induced morphism. We set BS = ϕS∗BS′ and
MS = ϕS∗MS′ . Then, (S,BS +MS)/Z is a generalized pair satisfying

• KS +BS +MS ∼R (KX +B +M)|S and
• KS′ +BS′ +MS′ = ϕ∗S(KS +BS +MS).

We call (S,BS +MS) or KS +BS +MS the divisorial adjunction for the generalized
pair (X,B + M) and S. We remark that if (X,B + M) is generalized lc, then
(S,BS +MS) is also generalized lc by the construction ([BZ16, Remark 4.8]).

Remark 2.10. In Definition 2.9, the divisor BS is uniquely determined by B and
M ′ as a divisor, while MS′ is defined only up to R-linear equivalence. We can observe
that if M ′ =

∑
miM

′
i with mi > 0 and M ′i nef/Z Cartier, then we can pick some

Cartier divisors Mi,S′ ∼ M ′i |S′ and take MS′ =
∑
miMi,S′ . Note here that some of

Mi,S′ ’s might be numerically trivial.
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The following lemma is from [Bir19, Lemma 3.3]. We shall write down the coef-
ficients of M ′ more explicitly.

Lemma 2.11. Under the settings and the notation in Definition 2.9, assume that

• (X,B +M)/Z is generalized lc,
• B =

∑
biBi, where Bi’s are prime divisors on X, and

• M ′ =
∑
miM

′
i as in Remark 2.10.

Then the coefficients of BS are of the form

1− 1

`
+

∑
αibi +

∑
βjmj

`
,

where ` ∈ Z>0, αi, βj ∈ Z≥0, and MS′ can be chosen to be of the form∑
miMi,S′ ,

where Mi,S′ are nef/Z Cartier divisors on S′.

Proof. We take over the notations in Definition 2.9. We have already seen the
assertion forMS′ in Remark 2.10. In what follows, we shall show the assertion forBS .
By taking general hypersurface sections (see [BZ16, Remark 4.8]), we may assume
that dimX = 2. Note that, in particular, X is Q-factorial (cf. [KM98, Proposition
4.11(1)]). For any fixed closed point v ∈ S, we shall show that µvBS is of the form
in the statement. Since (S,BS +MS) is generalized lc, we have µvBS ≤ 1. We may

assume that µvBS < 1. We define B̃S by the divisorial adjunction for usual pairs:

KS + B̃S = (KX +B)|S .

Then by the relative nefness of M ′ and the negativity lemma, we have B̃S ≤ BS .
Therefore, by the inversion of adjunction for surfaces (cf. [Sho93, Corollary 3.12]),
(X,B) is plt at the image v′ ∈ X of v.

By the adjunction for usual pairs (cf. [Sho93, Proposition 3.9 and Corollary 3.10]),
there exists ` ∈ Z>0 such that `D is Cartier at v′ for any Weil divisor D on X, and
we have

µvB̃S = 1− 1

`
+
∑ αibi

`
for some αi ∈ Z≥0. We write ϕ∗Mi = M ′i + Ei. Then Ei ≥ 0 holds by the relative
nefness ofM ′i and the negativity lemma. SinceM ′i is Cartier, Mi is integral and hence
`Mi is Cartier at v′. Therefore `Ei is also Cartier over v′. By construction, it follows

that BS = B̃S +
∑
miEiS , where EiS := ϕS∗(Ei|S′). Since `EiS = ϕS∗(`Ei|S′) is

integral, we have

µvBS = 1− 1

`
+
∑ αibi

`
+
∑ βjmj

`
for some βj ∈ Z≥0, which completes the proof. �

3. Lower semi-continuity conjecture for generalized mld’s

3.1. Basic properties on generalized minimal log discrepancies. In this sub-
section, following Ambro’s paper [Amb99], we prove the finiteness and the con-
structibility of the mld function (Lemma 3.2), which is weaker than the lower semi-
continuity conjecture (Conjecture 3.5). We also prove that the minimal log discrep-
ancy of a generalized pair can be approximated by those of usual pairs (Lemma 3.4).
Both Lemmas 3.2 and 3.4 will be important in the next subsection, where we reduce
the lower semi-continuity conjecture for generalized pairs to that for usual pairs.

The following lemma is a generalization of [Amb99, Proposition 2.1] to the gen-
eralized setting. The same proof in [Amb99, Proposition 2.1] also works in this
setting.
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Lemma 3.1. Let (X,B+M)/Z be a generalized pair, and let η be a scheme-theoretic

point of X with codim η ≥ 1. Then there exists an open set U ⊂ |X|0 with {η}∩U 6= ∅
such that

mldx(X,B +M) = mldη(X,B +M) + dim η

holds for any x ∈ {η} ∩ U .

Proof. We may assume that (X,B +M) is generalized lc at η (cf. Remark 2.4(4)).
Let ϕ : X ′ → X be the projective birational morphism in Definition 2.1. Possibly
replacing ϕ, we may assume that ϕ is a log resolution of the triple (X,B, {η}).

We define an R-divisor B′ on X ′ by

KX′ +B′ +M ′ = ϕ∗(KX +B +M).

Let {Di}i∈I be the set of the ϕ-exceptional divisors, the components of ϕ−1∗ B, and
the computing divisors of mldη(X,B +M) on X ′. We may write

B′ =
∑
i∈I

eiDi

with ei ≤ 1. Let Idom ⊂ I be the set of the indices i satisfying ϕ(Di) = {η}. Then
we have

mldη(X,B +M) = min
i∈Idom

(1− ei).

Since (X ′, B′) is log smooth, we have

mldξ(X
′, B′ +M ′) = mldξ(X

′, B′) = codim ξ −
∑
ξ∈Di

ei

for any scheme-theoretic point ξ of X ′ (cf. [KM98, Corollary 2.32]).

By generic smoothness, we can take an open set U ⊂ |X|0 such that {η} ∩U 6= ∅
with the following two conditions:

(a) For any x ∈ {η} ∩ U and any stratum C of Supp
(∑

i∈I Di

)
that satisfies

ϕ(C) = {η}, it follows that dimF = dimC − dim η for any irreducible
component F of C ∩ ϕ−1(x).

(b) For any stratum C of Supp
(∑

i∈I Di

)
, if ϕ(C) ⊂ {η} and ϕ(C) ∩ U 6= ∅,

then ϕ(C) = {η} holds.

In what follows, we shall prove that this U satisfies the assertion.
Let x ∈ {η} ∩ U and let ξ ∈ X ′ be a scheme-theoretic point with ϕ(ξ) = x.

Let C be the minimum stratum of Supp
(∑

i∈I Di

)
that contains ξ. Since ϕ is a

log resolution of {η}, ξ ∈ Dj holds for some j ∈ Idom. Therefore, it follows that

ϕ(C) ⊂ {η}, and hence ϕ(C) = {η} by (b). Therefore, by (a), we have

• codim ξ − codimC ≥ dim η.

Furthermore, since j ∈ Idom, we have

• 1− ej ≥ mini∈Idom(1− ei) = mldη(X,B +M).

Therefore, we have

mldξ(X
′, B′) = codim ξ −

∑
ξ∈Di

ei

= (1− ej) + (codim ξ − 1)−
∑

ξ∈Di, i 6=j
ei

≥ mldη(X,B +M) + (codim ξ − 1)− (codimC − 1)

≥ mldη(X,B +M) + dim η.

Hence we have

mldx(X,B +M) ≥ mldη(X,B +M) + dim η.
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We shall prove the opposite inequality. Let Di be a computing divisor on X ′ of
mldη(X,B + M) (cf. Remark 2.4(3)). Let ξ′ be the scheme-theoretic point of an
irreducible component of Di ∩ ϕ−1(x). Then by (a) and (b), the Di is the unique
divisor that contains ξ′. Hence we have

mldξ′(X
′, B′) = codim ξ′ − ei = mldη(X,B +M) + dim η,

which proves

mldx(X,B +M) ≤ mldξ′(X
′, B′) = mldη(X,B +M) + dim η.

It completes the proof. �

As a corollary of Lemma 3.1, we can prove the finiteness and the constructibility
of the mld function.

Lemma 3.2. Let (X,B+M)/Z be a generalized pair. We denote by m the function
defined by the minimal log discrepancy:

m : |X|0 → R ∪ {−∞}; x 7→ mldx(X,B +M),

where |X|0 is the set of all closed points of X with the Zariski topology. Then the
following hold.

(1) The function m takes finitely many values.
(2) The function m is constructible, that is, any fiber of m is a constructible

subset of |X|0.

Proof. Let ϕ : X ′ → X be the birational morphism in Definition 2.1. We define an
R-divisor B′ on X ′ by

KX′ +B′ +M ′ = ϕ∗(KX +B +M).

Then for x ∈ Xsm \ ϕ(SuppB′), we have

mldx(X,B +M) = mldx(X) = dimX.

Hence the function m is constant on a dense open subset of |X|0. Then the assertion
follows from Lemma 3.1 by the Noetherian induction. �

The following lemma will be used in Lemma 5.4.

Lemma 3.3. Let (X,B + M)/Z be a Q-Gorenstein generalized pair and let E be
a divisor over X. Then there exists a sequence of effective divisors Dm on X such
that KX +B +Dm is R-Cartier and the following two conditions hold.

(1) ordF (B +M) ≤ ordF (B +Dm) holds for any divisor F over X.
(2) ordE(B +M) = limm→∞ ordE(B +Dm) holds.

Here ord−(B + M) on the left-hand side is regarded as the order for a generalized
pair defined in Definition 2.2 (11). The order ord−(B +Dm) on the right-hand side
is regarded as the order in the usual sense (for a usual pair).

Proof. Let ϕ : X ′ → X be the birational morphism as in Definition 2.1. We may
assume that E is a divisor on X ′.

Let A be an ample/Z divisor on X. We may write

ϕ∗A ∼R A
′ + C

for some ample/Z R-divisor A′ and some effective ϕ-exceptional divisor C on X ′.
Let A′m ∈

∣∣M ′+ 1
mA
′∣∣
R be a general effective divisor. We define Dm := ϕ∗A

′
m. Note

that A′m = ϕ−1∗ Dm holds by the generality of A′m. Then we have

ϕ∗(B +M) = ϕ−1∗ B +M ′ +
∑
G

ordG(B +M)G,

ϕ∗(B +Dm) = ϕ−1∗ B +A′m +
∑
G

ordG(B +Dm)G,
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where the sums are taken over all ϕ-exceptional divisors G. Since M ′ ∼R,ϕ A
′
m+ 1

mC,
it follows that

ordG(B +M) = ordG(B +Dm)− 1

m
coeffGC.

Therefore we have
ordG(B +M) = lim

m→∞
ordG(B +Dm)

for any ϕ-exceptional divisor G, in particular for G = E. We have proved (2).
Let F be a divisor over X. Let f : Y → X be a birational morphism such that F

is a divisor on Y . We may assume that f factors through ϕ. We define divisors G1

and G2 on X ′ by

G1 =
∑
G

ordG(B +M)G, G2 =
∑
G

ordG(B +Dm)G,

where the sums are taken over all ϕ-exceptional divisors G. Then it follows that

ordF (B +M) = ordF (ϕ−1∗ B +G1), ordF (B +Dm) = ordF (ϕ−1∗ B +A′m +G2).

Since G2−G1 and A′m are effective, we have ordF (B+M) ≤ ordF (B+Dm), which
proves (1). �

Lemma 3.4. Let (X,B + M)/Z be a generalized pair and let η ∈ X be a scheme-
theoretic point of codim η ≥ 1. Suppose that mldη(X,B+M) > 0. Then there exists
a sequence of effective divisors Dm on X such that the following two conditions hold.

(1) mldξ(X,B + M) ≥ mldξ(X,B + Dm) holds for any scheme-theoretic point
ξ ∈ X of codim ξ ≥ 1.

(2) mldη(X,B +M) = limm→∞mldη(X,B +Dm) holds.

Here, we regard mld−(X,B + Dm) on the right-hand side as the minimal log dis-
crepancy for a usual pair, not as a generalized pair.

Proof. Let ϕ : X ′ → X be the birational morphism as in Definition 2.1. We may
assume that ϕ is a log resolution of the triple (X,B, {η}). Furthermore, we may
assume that there exists a computing divisor of mldη(X,B +M) on X ′.

We define A, A′, C, A′m and Dm as in the proof of Lemma 3.3. Then we have

ϕ∗(KX +B +M) = KX′ + ϕ−1∗ B +M ′ +
∑
G

(
1− aG(X,B +M)

)
G,

ϕ∗(KX +B +Dm) = KX′ + ϕ−1∗ B +A′m +
∑
G

(
1− aG(X,B +Dm)

)
G,

where the sums are taken over all ϕ-exceptional divisors G. By the same way as in
the proof of Lemma 3.3, we have

aG(X,B +M) = aG(X,B +Dm) +
1

m
coeffGC.

Hence by passing to limit, we have

lim
m→∞

aF (X,B +Dm) = aF (X,B +M)

for each ϕ-exceptional divisor F . Note that ϕ is also a log resolution of (X,B+Dm)
by the generality of A′m. If codim η = 1, then the equality in (2) is clear since
we may take A′m such that its coefficients approach zero as m goes to infinity.
Suppose codim η > 1. Then, for each m, some ϕ-exceptional divisor computes
mldη(X,B +Dm). Therefore we have

lim
m→∞

mldη(X,B +Dm) = lim
m→∞

min
F
aF (X,B +Dm) = min

F
aF (X,B +M),

where the minimum is taken over all divisors F on X ′ with center cX(F ) = {η}.
Hence, we have the equality in (2).
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By the same argument as in the proof of Lemma 3.3(1), we have

aF (X,B +M) ≥ aF (X,B +Dm)

for any divisor F over X. Therefore we have the inequality in (1). �

3.2. Lower semi-continuity conjecture for generalized mld’s. In this sub-
section, we reduce the lower semi-continuity of minimal log discrepancies for gen-
eralized pairs to that for usual log pairs (Theorem 3.8). First, we recall the lower
semi-continuity conjecture.

Conjecture 3.5 (LSC conjecture). Let (X,B +M)/Z be a generalized pair. Then
the function

|X|0 → R ∪ {−∞}; x 7→ mldx(X,B +M)

is lower semi-continuous, where |X|0 denotes the set of all closed points of X with
the Zariski topology.

We introduce a different but equivalent formulation of this conjecture.

Conjecture 3.6. Let (X,B + M)/Z be a generalized pair. For any two scheme-

theoretic points ξ and η of X with η ∈ {ξ} and codim ξ ≥ 1, it follows that

mldη(X,B +M) ≤ mldξ(X,B +M) + dim ξ − dim η.

Theorem 3.7 (cf. [Amb99, Lemma 2.6]). The conjectures Conjecture 3.5 and Con-
jecture 3.6 are equivalent.

Proof. First, we assume Conjecture 3.5. Let ξ, η ∈ X be two scheme-theoretic points
with η ∈ {ξ} and codim ξ ≥ 1. By Lemma 3.1, there exist open subsets U, V ⊂ |X|0
such that {η} ∩ U 6= ∅, {ξ} ∩ V 6= ∅, and

mldη(X,B +M) = mldx(X,B +M)− dim η,

mldξ(X,B +M) = mldy(X,B +M)− dim ξ

hold for any x ∈ {η} ∩U and y ∈ {ξ} ∩ V . We fix x ∈ {η} ∩U . Then by Conjecture
3.5, possibly replacing U with a smaller open subset that still contains x, we may
assume

mldy(X,B +M) ≥ mldx(X,B +M)

for any y ∈ U . Since {ξ} ∩ U ∩ V 6= ∅, we have the inequality in Conjecture 3.6.
Next, we assume Conjecture 3.6. Let a ∈ R ∪ {−∞}. We define F ⊂ |X|0 as

F :=
{
x ∈ |X|0

∣∣ mldx(X,B +M) ≤ a
}
.

Let F be its closure. It is sufficient to show that F = F . Take x ∈ F . Let F
′

be an
irreducible component of F containing x, and let ξ be the scheme-theoretic point of

X corresponding to F
′
. Then by Conjecture 3.6, we have

mldx(X,B +M) ≤ mldξ(X,B +M)− dim ξ.

On the other hand, by Lemma 3.1, there exists an open subset U ⊂ |X|0 with

{ξ} ∩ U 6= ∅ such that

mldy(X,B +M) = mldξ(X,B +M)− dim ξ

holds for any y ∈ {ξ}∩U . Since {ξ}∩U ∩F = F
′∩U ∩F 6= ∅, we have mldx(X,B+

M) ≤ a, which implies x ∈ F . The proof is complete. �

In order to prove Conjecture 3.5, it is sufficient to prove it when M ′ = 0.

Theorem 3.8. Conjecture 3.5 for M ′ = 0 implies Conjecture 3.5.
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Proof. Suppose that Conjecture 3.5 is true for M ′ = 0. Suppose that Conjecture 3.5
does not hold for a generalized pair (X,B+M)/Z. Then there exists a ∈ R∪{−∞}
such that the set

F :=
{
y ∈ |X|0

∣∣ mldy(X,B +M) ≤ a
}
.

is not closed. We may assume that a ≥ 0, otherwise F is always closed (cf. Re-
mark 2.4(4)). By the constructibility of F which follows from Lemma 3.2, and by
the valuative criterion (cf. [GW10, Corollary 15.10]) of properness, we can take an
irreducible closed curve C ⊂ F such that C ∩ F is an open dense proper subset of
C. We fix a closed point x ∈ C \ F .

By Lemma 3.4, there exists a sequence of effective divisors Dm such that

(1) mldy(X,B +M) ≥ mldy(X,B +Dm) for each m and y ∈ |X|0, and
(2) mldx(X,B +M) = limm→∞mldx(X,B +Dm) holds.

We define

Fm :=
{
y ∈ |X|0

∣∣ mldy(X,B +Dm) ≤ a
}
,

which is a closed subset by the assumption. Then F ⊂ Fm holds for each m by (1).
Since Fm is a closed subset of X that contains an open dense subset of C, it follows
that x ∈ Fm, and hence mldx(X,B+Dm) ≤ a. By (2), we have mldx(X,B+M) ≤ a,
which contradicts x 6∈ F . �

Corollary 3.9. Conjecture 3.5 is true for the following cases.

(1) dimX ≤ 3.
(2) X is smooth.
(3) More generally, X has locally complete intersection singularities.
(4) X has quotient singularities.

Proof. Conjecture 3.5 is known when M ′ = 0 for each cases (1)-(4) by [Amb99],
[EMY03], [EM04], and [Nak16a], respectively. Hence the general case also holds by
Theorem 3.8. �

4. Termination of generalized MMP’s due to Shokurov

In this section, we discuss the relation to the conjecture of termination of flips.

Conjecture 4.1 (Termination of flips). There is no infinite sequence of flips for
generalized lc pairs.

Shokurov proved that this conjecture for usual pairs is true if we assume the ACC
conjecture and the LSC conjecture [Sho04]. The purpose of this section is to explain
his proof in the generalized setting. First, we prove some lemmas which will be used
in the proof.

The generalized minimal log discrepancies satisfy the monotonicity as in the case
of usual pairs.

Lemma 4.2. Let (X,B +M) 99K (X+, B+ +M+) be the flip of a generalized pair
(X,B +M)/Z. Then the following hold.

(1) aE(X,B +M) ≤ aE(X+, B+ +M+) holds for any divisor E over X.
(2) aE(X,B + M) < aE(X+, B+ + M+) holds if E is a divisor over X whose

center cX(E) is contained in the flipping locus.

Proof. The assertion follows from the negativity lemma. We refer the reader to
[KM98, Lemma 3.38] for the detailed proof for usual pairs. The same proof works
for generalized pairs. �

For our purpose, we generalize the ACC conjecture and the LSC conjecture to
those for scheme-theoretic points.
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Lemma 4.3. Assume Conjecture 1.3. Let n ∈ Z>0 and let I ⊂ [0,+∞) be a DCC
subset. Then the following set{

mldη(X,B +M)

∣∣∣∣ (X,B +M)/Z is a generalized pair with dimX = n,
B ∈ I, M ∈ I and η ∈ X with codim η ≥ 1.

}
satisfies the ACC, where η is a scheme-theoretic point of X.

Proof. The assertion follows from Conjecture 1.3 and Lemma 3.1. �

Lemma 4.4. Assume Conjecture 3.5. Let (X,B+M)/Z be a generalized pair, and
d a non-negative integer such that d ≤ dimX − 1. Then the function

m : |X|d → R ∪ {−∞}; η 7→ mldη(X,B +M)

is lower semi-continuous, where |X|d is the set of all d-dimensional scheme-theoretic
points of X with the Zariski topology.

Proof. The assertion follows from Conjecture 3.5 and Lemma 3.1. �

Lemma 4.5. Let (X,B +M)/Z be a generalized pair. Then the following set{
mldη(X,B +M)

∣∣ η ∈ X with codim η ≥ 1.
}

is a finite set.

Proof. The assertion follows from Lemmas 3.2 and 3.1. �

In the proof of Theorem 4.8, the finiteness of the dimension of Nk(X)Q plays an
important role.

Definition 4.6 (cf. [Ful98, Examples 19.1.3–19.1.6], [Kol96, Ch. II. (4.1.5)]). Let X
be a reduced projective scheme and let k be a non-negative integer. We denote by
Zk(X)Q the group of k-dimensional algebraic cycles on X with rational coefficients.
All cycles which are numerically equivalent to zero form a subgroup of Zk(X)Q, and
we denote by Nk(X)Q the quotient group. Then Nk(X)Q is a finite-dimensional
Q-vector space (cf. [Ful98, Example 19.1.4]).

Lemma 4.7. Let f : X 99K Y be a dominant rational map of reduced projective
schemes. Suppose that f induces a birational map on each irreducible component
of X and Y . Let k be a positive integer. Suppose that f−1 does not contract any
k-dimensional subvariety of Y . Then the following hold.

(1) dimNk(X)Q ≥ dimNk(Y )Q holds.
(2) dimNk(X)Q > dimNk(Y )Q holds if f contracts some k-dimensional subva-

riety of X.

Proof. We have (1) since f∗ : Nk(X)Q → Nk(Y )Q is surjective. Suppose that a
subvariety W ⊂ X of dimension d is contracted by f . Then the cycle [W ] satisfies
[W ] 6≡ 0 in Zk(X)Q and f∗[W ] ≡ 0 in Zk(Y )Q. Hence we have (2). �

Shokurov proved that the ACC conjecture and the LSC conjecture imply the
conjecture of termination of flips for usual pairs in [Sho04]. His proof can be easily
extended to the generalized setting. We shall explain his argument below.

Theorem 4.8. Conjectures 1.3 and 3.5 imply Conjecture 4.1 for gerenalized pairs
(X,B +M)/Z with Z projective.

Proof. Let

X = X0
f0
99K X1

f1
99K · · ·

fi−1
99K Xi

fi
99K · · · ,

be an infinite sequence of (KX+B+M)-flips. Let Bi and Mi be the strict transforms
of B and M on Xi, respectively. Then each (Xi, Bi + Mi)/Z is a generalized pair
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and each fi is a (KXi +Bi +Mi)-flip. We denote by gi : Xi → Yi the corresponding
flipping contraction and by g+i : Xi+1 → Yi its flip.

Xi

gi
  

fi
// Xi+1

g+i}}

Yi

We define Zi ⊂ Xi and Z+
i ⊂ Xi+1 as follows:

• Zi := excep(gi) is the flipping locus, that is, the exceptional locus of gi, and
• Z+

i := excep(g+i ) is the flipped locus, that is, the exceptional locus of g+i .

For non-negative integers i and `, we denote

• ai := mldZi(Xi, Bi +Mi),
• αi := inf{aj | j ≥ i}, and

• α`i := min{aj | ` ≥ j ≥ i}.
STEP 1: This step shows that for any i and ` with i ≤ `, there exists a scheme-
theoretic point η ∈ Xi such that α`i = mldη(Xi, Bi +Mi).

Let `′ be the minimum `′ with i ≤ `′ ≤ ` such that α`i = a`′ . We prove by
induction that for any j with i ≤ j ≤ `′, there exists ηj ∈ Xj such that α`i =
mldηj (Xj , Bj +Mj).

Suppose that α`i = mldηj (Xj , Bj + Mj) holds for i < j ≤ `′ and some ηj . Then,
since

mldZj−1(Xj−1, Bj−1 +Mj−1) = aj−1 > α`i = mldηj (Xj , Bj +Mj),

it follows that fj−1 is isomorphic over ηj by Lemma 4.2. Hence ηj−1 := f−1j−1(ηj)
satisfies

mldηj−1(Xj−1, Bj−1 +Mj−1) = mldηj (Xj , Bj +Mj) = α`i ,

which proves the claim of STEP 1.

STEP 2: This step shows that we may assume the existence of a non-negative real
number a such that

• ai ≥ a holds for any i ≥ 0, and
• ai = a holds for infinitely many i.

By STEP 1 and Lemma 4.5, the set {α`i | ` ≥ i} is a finite set for each i. Therefore
αi = α`i holds for some ` ≥ i, and hence

αi = mldηi(Xi, Bi +Mi)

for some ηi ∈ Xi. Since the sequence αi is non-decreasing, by the ACC conjecture
(Lemma 4.3), there exists a positive integer N such that αi = αN holds for any
i ≥ N . Therefore, we may have the desired a, possibly passing to a tail of the
sequence.

STEP 3: This step shows that we may assume the existence of a non-negative
integer d such that

• For any i, any scheme-theoretic point η ∈ Zi with mldη(Xi, Bi + Mi) = a
satisfies dim η ≤ d.
• For infinitely many i, there exists a d-dimensional scheme-theoretic point
η ∈ Zi such that mldη(Xi, Bi +Mi) = a.

For non-negative integer i, we denote

di := max
{

dim η
∣∣ η ∈ Zi such that mldη(Xi, Bi +Mi) = a

}
,

ei := max{dj | j ≥ i}.
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Since the sequence ei is non-increasing, there exists a positive integer N such that
ei = eN holds for any i ≥ N . Therefore, we may have the desired d, possibly passing
to a tail of the sequence.

STEP 4: Let Si be the set of the d-dimensional scheme-theoretic points η ∈ Xi

with mldη(Xi, Bi +Mi) ≤ a. Let Wi ⊂ Xi be the Zariski closure of Si. Then by the
LSC conjecture (Lemma 4.4), the following condition holds.

• Any d-dimensional scheme-theoretic point η ∈Wi belongs to Si.

STEP 5: In this step, we prove that fi induces

• a bijective map Si \ Zi → Si+1, and
• a dominant morphism f ′i : Wi \ Zi →Wi+1.

Let η ∈ Si \ Zi. Then fi(η) ∈ Si+1 holds because

mldfi(η)(Xi+1, Bi+1 +Mi+1) = mldη(Xi, Bi +Mi) ≤ a.

Let η ∈ Si+1. Suppose η ∈ Z+
i . Then by Lemma 4.2, we have

mldZi(Xi, Bi +Mi) < mldη(Xi+1, Bi+1 +Mi+1) ≤ a,

and it contradicts STEP 2. Therefore it follows that η 6∈ Z+
i and it shows that fi

induces a bijective map Si \ Zi → Si+1. The second assertion follows from the first
one.

STEP 6: By STEP 5, the number of the irreducible components of Wi is non-
increasing. Hence, passing to a tail of the sequence, we may assume that fi induces
a birational map on each irreducible component of Wi. Further by STEP 5 and
STEP 4, f−1i does not contract any d-dimensional subvariety of Wi+1. On the
other hand, by the choice of d in STEP 3, there exist infinitely many i’s such that
mldηi(Xi, Bi +Mi) = a holds for some d-dimensional point ηi ∈ Zi. For such i and
ηi, it follows from STEP 5 that ηi ∈ Wi is contracted by fi. Hence it contradicts
Lemma 4.7. �

Remark 4.9. By the proof of Theorem 4.8, it can be seen that for proving Con-
jecture 4.1 in dimension n, it is sufficient to assume Conjectures 1.3 and 3.5 in the
same dimension.

5. ACC conjecture for surfaces

In this section, we prove the ACC conjecture for surfaces (Theorem 5.12). We
generalize the argument in [Sho94] to the generalized setting with more detail.

First, we prove the following convexity property of generalized log discrepancies
(cf. [Sho94], [Kol13, Proposition 2.37], [MN18, Proposition 4.1]).

Lemma 5.1. Let (X,B + M)/Z be a generalized lc surface and let f : Y → X be
a projective birational morphism from a smooth surface Y . Suppose that aE(X,B+
M) ≤ 1 holds for every f -exceptional divisor E. Then the following hold.

(1) Let E1, E2 and E3 be distinct f -exceptional divisors such that
• E2 meets both E1 and E3, and
• E2

2 ≤ −2.
Then it follows that

a2 ≤
1

2
(a1 + a3),

where ai = aEi(X,B +M).
(2) If E is an f -exceptional divisor, then aE(X,B + M) ≤ 2

−E2 holds. In par-

ticular, if (X,B +M) is generalized ε-lc, then −E2 ≤ 2
ε holds.
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(3) Let E1, E2 and E3 be as in (1). Suppose that (X,B+M) is ε-lc and E2
2 ≤ −3,

then it follows that

a3 − a2 ≥ a2 − a1 + ε.

Proof. First, we shall prove (1) and (3). Let {Ei} be the set of all f -exceptional
divisors. Let MY be the push-forward of M ′ on Y . Then we have

f∗(KX +B +M) = KY +
(
f−1∗ B +

∑
i

(1− ai)Ei
)

+MY

for ai = aEi(X,B +M). Note that 1− ai ≥ 0 holds for every i by assumption. We
have

0 = f∗(KX +B +M) · E2

= (KY + E2) · E2 − a2E2
2 + (1− a1)E1 · E2 + (1− a3)E3 · E2

+ f−1∗ B · E2 +MY · E2 +
∑

i 6=1,2,3

(1− ai)Ei · E2.

Note that MY · E2 ≥ 0 holds by the projection formula and the nefness of M ′.
Furthermore, it is clear that

(KY + E2) · E2 ≥ −2, f−1∗ B · E2 ≥ 0,

and the assumptions give

−a2E2
2 ≥ 2a2, (1− a1)E1 · E2 ≥ 1− a1, (1− a3)E3 · E2 ≥ 1− a3.

By combining them, we obtain the desired inequality 2 ≥ 2a2 + (1− a1) + (1− a3),
which proves (1).

If E2
2 ≤ −3 and a2 ≥ ε, we have

a3 − a2 ≥ (a2 − a1) + a2 ≥ (a2 − a1) + ε,

which proves (3).
(2) follows from the same calculation of f∗(KX +B +M) · E. �

Lemma 5.2. Let (X,B+M)/Z be a generalized lc surface and let x ∈ X be a closed
point. If mldx(X,B +M) > 1, then X is smooth at x.

Proof. Since X is numerically lc, X is Q-Gorenstein. Then

mldx(X) ≥ mldx(X,B +M) > 1

implies that X is terminal at x. Hence the surface X is smooth at x. �

If the minimal log discrepancy at a smooth closed point x ∈ X is at least dimX−1,
then the minimal log discrepancy is computed by the exceptional divisor obtained
by the blow-up at x. See Definition 2.2(12) for the definition of the multiplicity in
the generalized setting.

Lemma 5.3 (cf. [Sho94, Example]). Let (X,B + M)/Z be a generalized pair and
let η be a scheme-theoretic point of X of codim η ≥ 1. Suppose that X is smooth at
η. Then mldη(X,B +M) ≥ codim η − 1 holds if and only if

multη(B +M) ≤ 1

holds. Moreover, in this case, mldη(X,B+M) = aE(X,B+M) holds for the divisor

E obtained by the blow-up of X along {η}.

Proof. If codim η = 1, then the assertion is trivial. We assume that codim η ≥ 2.
Let f : Y → X be the blow-up of X along {η}, and let E be the exceptional

divisor dominating {η}. Then we have

mldη(X,B +M) ≤ aE(X,B +M) = codim η −multη(B +M).
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Therefore, the condition mldη(X,B+M) ≥ codim η− 1 implies multη(B+M) ≤ 1.
Next, we assume that multη(B + M) ≤ 1. Let F be a computing divisor of

mldη(X,B + M). Then by Zariski’s lemma (cf. [KM98, Lemma 2.45]), F can be
obtained by the sequence of blow-ups along its center. Therefore there exists a
sequence of blow-ups

X` → X`−1 → · · · → X1 → X0 = X

with the following conditions:

• Xi+1 → Xi is the normalization of the blow-up along Ci := cXi(F ).
• Ei+1 ⊂ Xi+1 is the exceptional divisor of Xi+1 → Xi dominating Ci.
• E` = F holds, and codimCi ≥ 2 holds for each 0 ≤ i ≤ `− 1.

Then, we note that the following hold.

• C0 = {η}.
• For each 0 ≤ i ≤ ` − 1, Ei+1 is the only exceptional divisor of Xi+1 → Xi

satisfying Ci+1 ⊂ Ei+1.
• For each 0 ≤ i ≤ `− 1, Xi is smooth at the generic point of Ci.

We set ai := aEi(X,B + M) for 1 ≤ i ≤ `. To prove that E1 is also a computing
divisor, it is sufficient to show a` ≥ a1. We shall prove ai ≥ a1 for each 1 ≤ i ≤ ` by
induction on i. Let 1 ≤ c ≤ ` − 1. Suppose that ai ≥ a1 holds for each 1 ≤ i ≤ c.
Since we have

ai ≥ a1 = codim η −multη(B +M) ≥ 2− 1 = 1

for each 1 ≤ i ≤ c, it follows that

ac+1 = aEc+1(X,B +M) ≥ aEc+1

(
Xc, Bc − (ac − 1)Ec +Mc

)
,

where Bc is the strict transform of B on Xc, and Mc is the push-forward of M ′ on
Xc (possilby replacing X ′ with a higher model). Then by Lemma 5.4 below, we have

aEc+1

(
Xc, Bc − (ac − 1)Ec +Mc

)
= codimCc −multηCc (Bc +Mc) + (ac − 1)

≥ codimCc −multη(B +M) + (ac − 1)

≥ 2− 1 + (ac − 1) = ac ≥ a1,
where ηCc is the generic point of Cc. The proof is complete. �

Lemma 5.4. Let (X,B+M)/Z be a generalized pair and let η be a scheme-theoretic
point of codim η ≥ 2. Suppose that X is smooth at η. Let f : Y → X be the blow-up
of X along {η}. We may assume that ϕ in Definition 2.1 factors through f . Then
for every scheme-theoretic point ξ of Y such that f(ξ) = η, we have

multξ(B̃ +MY ) ≤ multη(B +M),

where B̃ is the strict transform of B on Y , and MY is the push-forward of M ′ on
Y .

Proof. If M ′ = 0, then the assertion is well-known. We shall prove the general case
from the case when M ′ = 0.

By Lemma 3.3, there exists a sequence of effective divisors Dm such that

multη(B +M) = lim
m→∞

multη(B +Dm).

By its proof, we may also assume

multξ(B̃ +MY ) = lim
m→∞

multξ(B̃ + D̃m),

where D̃m is the strict transform of Dm on Y . Hence the desired inequality follows
from the case when M ′ = 0. �

First, we prove the ACC property on the interval [1, 2].
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Lemma 5.5. For any DCC subset I ⊂ [0,+∞), the set Agen(2, I)∩ [1,+∞) satisfies
the ACC.

Proof. Let (X,B+M)/Z be a generalized lc surface with B ∈ I and M ∈ I. Suppose
that mldx(X,B +M) > 1. Then by Lemmas 5.2 and 5.3, we have

mldx(X,B +M) = 2−multx(B +M).

Note that multx(B +M) is contained in the set{∑̀
i=1

fi

∣∣∣ ` ∈ Z≥0, fi ∈ I
}
∩ [0, 1],

which satisfies the DCC. Therefore, the set Agen(2, I)∩[1,+∞) satisfies the ACC. �

Lemma 5.6. Let (X,B + M)/Z be a generalized lc surface and x ∈ X a closed
point with mldx(X,B+M) < 1. Then there exists a projective birational morphism
f : Y → X from a smooth surface Y with the following conditions:

• aF (X,B +M) ≤ 1 holds for any f -exceptional divisor F over x, and
• aE(X,B + M) = mldx(X,B + M) holds for some f -exceptional divisor E

over x.

Moreover, we can take such Y with either of the following conditions.

(1) f is the minimal resolution of X.
(2) E is the unique computing divisor of mldx(X,B + M) on Y , and E is the

unique (−1)-curve among the f -exceptional divisors over x.

Proof. Let Y0 → X be the minimal resolution of X. If there exists a computing
divisor of mldx(X,B +M) on Y0, then Y := Y0 satisfies the conditions. Otherwise,
we fix a computing divisor E′ of mldx(X,B + M) on some higher model. We take
the blow-up Y1 → Y0 of Y0 at the center cY0(E′). We continue this process

Y` → Y`−1 → · · · → Y1 → Y0

until E′ is a divisor on Y` (cf. [KM98, Lemma 2.45]). Let 1 ≤ j ≤ ` be the minimum
j such that there exists a computing divisor E on Yj . Then we set Y := Yj and
f : Y → X.

Then it is sufficient to show that

• aF (X,B +M) ≤ 1 holds for any f -exceptional divisor F over x.

For each 0 ≤ i ≤ j, we define Bi on Yi by (KX + B + M)|Yi = KYi + Bi + MYi ,
where MYi is the push-forward of M ′ on Yi (possilby replacing X ′ with a higher
model). Then it is sufficient to show Bj−1 ≥ 0. Note that B0 ≥ 0 holds by the
negativity lemma. Then we obtain Bi ≥ 0 for 0 ≤ i ≤ j − 1 by induction on i since
multyi(Bi +MYi) > 1 for yi := cYi(E

′) and i ≤ j − 2 by Lemma 5.3. �

Next, we prove the ACC property when the number of the f -exceptional divisors
in Lemma 5.6 is bounded from above.

Lemma 5.7. Let ε be a positive real number, ` a positive integer, and I ⊂ [0,+∞) a
DCC subset. Then there exists an ACC subset J = J(ε, `, I) ⊂ [0, 1] depending only
on ε, ` and I such that mldx(X,B + M) ∈ J holds for any generalized lc surface
(X,B +M)/Z and a closed point x ∈ X with the following three conditions:

• B ∈ I, M ∈ I,
• ε ≤ mldx(X,B +M) < 1, and
• there exists a birational morphism f : Y → X as in Lemma 5.6 such that

the number of the f -exceptional divisors over x is at most `.
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Proof. Let E be a computing divisor on Y of mldx(X,B+M). Since aE(X,B+M) <
1, we can construct the extraction W → X of E (cf. Theorem 2.8). Then we have

deg(KW +BW +MW + E)|E = aE(X,B +M)E2 ≤ 0,

where BW is the strict transform of B on W , and MW is the push-forward of M ′ on
W (possilby replacing X ′ with a higher model).

Let ν : Eν → E be the normalization. Then by the generalized adjunction (see
Definition 2.9 and Lemma 2.11), there exists a generalized boundary BEν +MEν on
Eν such that

• KEν +BEν +MEν ∼R (KW +BW +MW + E)|Eν ,
• BEν ∈ I ′ and MEν ∈ I ′ hold for some DCC subset I ′ ⊂ [0,+∞) which is

determined by I.

Since deg(KEν ) = −2 and

deg(BEν +MEν ) ∈
{ k∑
i=1

fi

∣∣∣ k ∈ Z≥0, fi ∈ I ′
}
,

the non-negative real number

aE(X,B +M) · (−E2) = 2− deg(BEν +MEν )

is contained in an ACC set determined by I.
Thus it is sufficient to show that −E2 has finitely many possibilities depending

only on ε and `. By Lemma 5.1(2) and the assumption on ` and ε, the weighted dual
graph of the f -exceptional divisors over x has finitely many possibilities depending
only on ε and `. Since W is obtained by contracting the f -exceptional divisors except
for E, the self-intersection number −E2 on W also has finitely many possibilities
depending only on ε and `. The proof is complete. �

We study minimal log discrepancies which are close to 1.

Lemma 5.8. Let δ be a positive real number. Then there are no generalized lc
surface (X,B+M)/Z and a closed point x ∈ X with the following three conditions.

• max
{
2
3 , 1−

1
2δ
}
< mldx(X,B +M) < 1.

• B ≥ δ and M ≥ δ.
• There exists a computing divisor of mldx(X,B+M) on the minimal resolu-

tion Y of X.

Proof. Suppose the contrary that there exist such (X,B + M)/Z and x ∈ X. Let
f : Y → X be the minimal resolution of X. Since mldx(X,B + M) > 2

3 , it follows
from Lemma 5.1(2) that any f -exceptional divisor E over x is a (−2)-curve. Then,
by adjunction of (X,B +M) to an f -exceptional divisor E over x, we have

2− 2aE(X,B +M) ≥ (f−1∗ B +MY ) · E
(see the proof of Lemma 5.1), where MY is the push-forward of M ′ on Y (possilby
replacing X ′ with a higher model). Since

2− 2aE(X,B +M) ≤ 2− 2 mldx(X,B +M) < δ,

we have (f−1∗ B+MY ) ·E = 0 for any f -exceptional divisor E over x, which implies
B = 0 and MY = f∗M near x. Therefore we have

mldx(X,B +M) = mldx(X) = 1,

which contradicts the assumption mldx(X,B + M) < 1. Note that the second
equality mldx(X) = 1 follows from the fact that any f -exceptional divisor E over x
is a (−2)-curve. �

We introduce a notation that will be used in Lemma 5.11.
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Definition 5.9. Let X be a klt surface and x ∈ X a closed point, and let f : Y → X
be a projective birational morphism from a smooth surface Y . Let Γ be the dual
graph of the f -exceptional divisors over x. For adjacent vertices E and F in Γ, we
denote by Γ′E,F the subgraph of Γ that is obtained by removing the edge connecting

E and F from Γ. Since Γ is a tree (cf. [KM98, Theorem 4.7]), Γ′E,F has exactly two

connected components. We denote by ΓE,F the connected component of Γ′E,F that
contains E as a vertex.

We state a graph-theoretic lemma, which will be used in the proof of Lemma 5.11.

Lemma 5.10. Let ` be a positive integer and G a connected graph of order n >
1
2(3` − 1). Let v be its vertex with degree at most three. If every vertex of G has
degree at most four, then the graph G contains a chain of length ` containing v with
degree one.

Proof. Let G′ be the subgraph of G obtained by removing the vertex v and all edges
incident to v. Then G′ has at most three connected components, and hence some
component G′′ of G′ has order at least n−1

3 > 1
2(3`−1 − 1). Let v′ be a vertex of G′′

that is incident to v in G. Then v′ has degree at most three in G′′. Therefore the
assertion follows from the induction on `. �

The following lemma is a key of the proof of Theorem 5.12 and gives combinatorial
information on the computing divisors.

Lemma 5.11. Let n be an integer larger than one. Set n′ := log3(2n+ 1)− 1. Let
(X,B +M)/Z be a generalized lc surface and let x ∈ X be a closed point. Suppose
that

• 0 < mldx(X,B +M) < 1, and
• there exists a birational morphism f : Y → X as in Lemma 5.6 such that

the number of the f -exceptional divisors over x is at least n.

Let Γ be the dual graph of f -exceptional divisors over x. Then there exists an edge
path

E0 − E1 − · · · − Em

of length m ≥ n′

2 with the following three conditions.

(1) E0 is a computing divisor of mldx(X,B +M).
(2) Either of the following two conditions holds:

(2-1) E1 is not a computing divisor.
(2-2) • E1, · · · , Em are computing divisors,

• ΓE0,E1 contains no computing divisor except for E0, and
• ΓE0,E1 has no fork.

(3) 0 ≤ aE1(X,B +M)− aE0(X,B +M) ≤ 1
m .

Moreover, if ε and δ are positive real numbers such that

• min{ε, δ} > 16
n′ ,

• mldx(X,B +M) ≥ ε and
• B ≥ δ and M ≥ δ,

then the following additional three conditions hold.

(4) Ei is a (−2)-curve for each 1 ≤ i ≤ m
2 .

(5) If δ ≤ 2
3 , then the number of the vertices of ΓE0,E1 is at most 16

min{ε,δ} + 1.

(5’) If E0 is a (−1)-curve, then E0 is the unique vertex of ΓE0,E1.

Proof. First, we shall find an edge path E0, . . . , Em satisfying (1) and (2).
Since X is klt at x, the dual graph of the minimal resolution of X over x is a tree

with at most one fork. Furthermore, if it has a fork, then the fork has exactly three
branches (cf. [KM98, Theorem 4.7]). Therefore, by the construction of Y in Lemma
5.6, the dual graph Γ satisfies the following condition.
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• Each vertex of Γ has at most four branches. Furthermore, the vertices cor-
responding to the computing divisors of mldx(X,B+M) have at most three
branches.

Let F0 be a computing divisor of mldx(X,B + M). Then by the condition on Γ
above, we can take an edge path

F0 − F1 − · · · − Fm′

of length m′ with m′ ≥ n′ by Lemma 5.10. Let j be the maximum j such that Fj is

a computing divisor. If j < n′

2 , the chain

Fj − Fj+1 − · · · − Fm′

satisfies (1) and (2-1), and it is sufficient to set Ei := Fj+i for 0 ≤ i ≤ m′ − j.
Suppose j ≥ n′

2 . Since F0 and Fj are computing divisors, all vertices of the chain

F0 − F1 − · · · − Fj

are computing divisors by Lemma 5.1(1). Note that f : Y → X is the minimal
resolution of X in this case since there are at least two computing divisors F0 and
F1. Since Γ is a tree with at most one fork, one of the following conditions holds:

• ΓF0,F1 is a chain and F0 has at most one branch in ΓF0,F1 .
• ΓFj ,Fj−1 is a chain and Fj has at most one branch in ΓFj ,Fj−1 .

Hence we may assume the former case, i.e. the graph ΓF0,F1 is a chain:

F−m′′+1 − F−m′′+2 − · · · − F0,

where m′′ is the number of the vertices of ΓF0,F1 . Let k be the minimum k ≤ 0 such
that Fk is a computing divisor. Then Fk+1, . . . , F−1 are also computing divisors by
Lemma 5.1(1). Hence the chain

Fk − Fk+1 − · · · − Fj

satisfies (1) and the three conditions in (2-2). Therefore, it is sufficient to set Ei :=
Fk+i for 0 ≤ i ≤ j − k.

We have constructed an edge path E0, . . . , Em satisfying (1) and (2). In what
follows, we shall prove that this path satisfies the other conditions (3)-(5)’.

Set ai := aEi(X,B +M) for each 0 ≤ i ≤ m. Note that

0 ≤ a0 ≤ a1 ≤ · · · ≤ am
holds by Lemma 5.1(1). Furthermore, we have

am − a0 ≥ m(a1 − a0)
by Lemma 5.1(1). Then (3) follows from the log canonicity a0 ≥ 0 and am ≤ 1 (cf.
Lemma 5.6).

We shall prove (4). Suppose the contrary that −E2
i ≥ 3 for some 1 ≤ i ≤ m

2 .
Then we have

ai+1 − ai ≥ ai − ai−1 + ε

by Lemma 5.1(3), and hence

am − ai ≥ (m− i)(ai − ai−1 + ε)

by Lemma 5.1(1). Then it contradicts the following inequalities

1 ≥ am, ai ≥ 0, m− i ≥ m

2
, ai − ai−1 + ε ≥ ε > 16

n′
≥ 8

m
.

Next, we shall prove (5’). Suppose the contrary that E−1 is an adjacent vertex of
E0 in ΓE0,E1 . Then by (4), there exists the following chain

E−1 − E0 − E1 − · · · − Em′



24 WEICHUNG CHEN, YOSHINORI GONGYO, AND YUSUKE NAKAMURA

in Γ with m′ > m
2 − 1 such that E1, . . . , Em′ are (−2)-curves. Since Y → X factors

through the blow-downs of the curves E0, . . . , Em′ , it follows that −E2
−1 ≥ m′ + 2.

On the other hand, we have −E2
−1 ≤ 2

ε by Lemma 5.1(2). It contradicts the following
inequalities

2

ε
≥ −E2

−1 ≥ m′ + 2 >
m

2
≥ n′

4
>

4

ε
.

We shall prove (5). By (5’), which has been already proved, we may assume that
−E2

0 ≥ 2. Note that f : Y → X is the minimal resolution of X in this case because
a computing divisor E0 is not a (−1)-curve. Therefore, ΓE0,E1 has at most one fork

as discussed in the second paragraph. Suppose the contrary that ` > 16
min{ε,δ} and

ΓE0,E1 consists of ` + 1 vertices. Since ΓE0,E1 has at most one fork, there exists a
chain

E0 − E−1 − · · · − E−m′

in ΓE0,E1 with m′ ≥ `
2 . Then the same argument as in (3) gives

0 ≤ a−1 − a0 ≤
1

m′
.

Note that we have the inequality

(?) (a−1 − a0) + (a1 − a0) < 1
4 min{ε, δ}

because
1

m
+

1

m′
≤ 2

n′
+

2

`
<

1

8
min{ε, δ}+

1

8
min{ε, δ} =

1

4
min{ε, δ}.

First, we claim that −E2
0 = −2. By adjunction of (X,B +M) to E0, we have

2 + E2
0a0 ≥ (1− a−1) + (1− a1).

Therefore it follows that

(a−1 − a0) + (a1 − a0) ≥ (−E2
0 − 2)a0 ≥ (−E2

0 − 2)ε,

and we have −E2
0 = 2 by (?).

We have the following two cases:

(A) E−1 and E1 are the only f -exceptional divisors which meet E0.
(B) E0 meets three f -exceptional divisors E−1, E1 and E′.

Suppose (A). Then by adjunction of (X,B +M) to E0, we have

(a−1 − a0) + (a1 − a0) = (f−1∗ B +MY ) · E0,

where MY is the push-forward of M ′ on Y (possilby replacing X ′ with a higher
model). Here, we note that at least one of E−1 and E1 is not a computing divisor
by (2). Therefore, the left-hand side is positive, and hence

(a−1 − a0) + (a1 − a0) ≥ δ
by the assumptions B ≥ δ and M ≥ δ. However, it contradicts (?).

Suppose (B). Set a′ := aE′(X,B+M). Then by adjunction of (X,B+M) to E0,
we have

(a−1 − a0) + (a1 − a0) = (f−1∗ B +MY ) · E0 + (1− a′).
Hence we have

1− a′ ≤ (a−1 − a0) + (a1 − a0) <
1

4
min{ε, δ}.

By adjunction to E′, we have

2− (−E′2)a′ ≥ 1− a0 ≥ 0.

Hence, if −E′2 ≥ 3, we get a contradiction:

0 ≤ 2− (−E′2)a′ ≤ 2(1− a′)− a′ < 1

2
min{ε, δ} − ε < 0.
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Since −E′2 = 2, we get

1− a0 ≤ 2(1− a′) < 1

2
min{ε, δ} ≤ 1

2
δ ≤ 1

3
,

which contradicts Lemma 5.8. The proof of (5) is complete. �

Theorem 5.12. For any DCC subset I ⊂ [0,+∞), the set Agen(2, I) satisfies the
ACC.

Proof. Let I ⊂ [0,+∞) be a DCC subset. We may assume 2
3 ∈ I. Let δ be the

minimum element of I ∩ (0,+∞). Then we have δ ≤ 2
3 , which will be used when

applying Lemma 5.11(5). By Lemma 5.5, it is sufficient to show that Agen(2, I)∩[ε, 1)
satisfies the ACC for any 0 < ε < 1. Suppose the contrary that there exist a sequence
of generalized lc surfaces

{
(Xi, Bi +Mi)/Zi

}
i≥1 and closed points xi ∈ Xi with the

following conditions.

• ε ≤ a(i)0 < 1 holds for each a
(i)
0 := mldxi(Xi, Bi +Mi).

•
(
a
(i)
0

)
i≥1 is a strictly increasing sequence.

We fix a resolution fi : Yi → Xi that satisfies the conditions in Lemma 5.6. Let Γ(i)

be the dual graph of the fi-exceptional divisors over xi. Let n(i) be the number of
the fi-exceptional divisors over xi. Then by Lemma 5.7, we may assume

• the sequence
(
n(i)
)
i≥1 is strictly increasing.

We set n′(i) := log3(2n
(i) + 1)− 1. Then,

• the sequence
(
n′(i)

)
i≥1 is also strictly increasing.

Hence, by passing to a subsequence, we may assume that min{ε, δ} > 16
n′(i)

for each
i ≥ 1. Therefore by Lemma 5.11, for each i ≥ 1, there exist fi-exceptional divisors

E
(i)
0 and E

(i)
1 over xi with the following conditions:

• E(i)
0 is a computing divisor of mldxi(Xi, Bi +Mi).

• E(i)
0 meets E

(i)
1 .

• 0 ≤ a(i)1 − a
(i)
0 ≤ 2

n′(i)
, where we set a

(i)
1 := a

E
(i)
1

(Xi, Bi +Mi).

• If a
(i)
1 − a

(i)
0 = 0, then the graph Γ

(i)

E
(i)
0 ,E

(i)
1

is a chain.

• The number of the vertices of Γ
(i)

E
(i)
0 ,E

(i)
1

is at most 16
min{ε,δ} + 1.

• If E
(i)
0 is a (−1)-curve, then E

(i)
0 is the unique vertex of Γ

(i)

E
(i)
0 ,E

(i)
1

.

In particular, by the fifth condition and Lemma 5.1(2), the weighted dual graph

Γ
(i)

E
(i)
0 ,E

(i)
1

has finitely many possibilities depending only on ε and I.

Let Yi → Ỹi be the contraction of all the curves contained in Γ
(i)

E
(i)
0 ,E

(i)
1

. We denote

by gi and hi the following induced morphisms:

Yi
gi
// Ỹi

hi // Xi.

Then, since E
(i)
1 is the unique hi-exceptional divisor that contains the center of E

(i)
0

on Ỹi, we have

a
(i)
0 = a

E
(i)
0

(Xi, Bi +Mi)

= a
E

(i)
0

(
Ỹi, h

−1
i∗ Bi +

(
1− a(i)1

)
E

(i)
1 +M

i,Ỹi

)
= a′

(i) − c(i)
(
1− a(i)1

)
,
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where M
i,Ỹi

is the push-forward of M ′i on Ỹi (possilby replacing X ′i with a higher

model), and we set

a′
(i)

:= a
E

(i)
0

(
Ỹi, h

−1
i∗ Bi +M

i,Ỹi

)
, c(i) := coeff

E
(i)
0

(
g∗iE

(i)
1

)
.

Since the weighted dual graph Γ
(i)

E
(i)
0 ,E

(i)
1

has finitely many possibilities depending

only on ε and I, the number c(i) has also finitely many possibilities. Therefore, by
passing to a subsequence, we may assume the existence of a positive real number c
such that c(i) = c for any i ≥ 1.

We claim that we may assume c ≤ 1. First, we have c(i) = 1 when E
(i)
0 is a (−1)-

curve. Indeed, E
(i)
0 is the unique vertex of Γ

(i)

E
(i)
0 ,E

(i)
1

in this case. In what follows,

we assume that E
(i)
0 is not a (−1)-curve, and hence Yi is the minimal resolution of

Xi (cf. Lemma 5.6). Since Yi is also the minimal resolution of Ỹi, we have a′(i) ≤ 1.
Hence we have

2

n′(i)
≥ a(i)1 − a

(i)
0 = a

(i)
1 − a

′(i) + c
(
1− a(i)1

)
≥ (c− 1)

(
1− a(i)1

)
.

Suppose that c > 1. Then we have

1− a(i)0 =
(
1− a(i)1

)
+
(
a
(i)
1 − a

(i)
0

)
≤ c

c− 1
· 2

n′(i)
.

It contradicts Lemma 5.8 for i sufficiently large. Therefore we may assume c ≤ 1
possibly passing to a tail of the sequence.

Next, we claim that we may assume the following three conditions.

• (a′(i))i is a non-increasing sequence.

• (a
(i)
1 )i is an increasing sequence.

• The sequence
(
a
(i)
1 − a

(i)
0

)
i

is a non-increasing sequence which converges to
0.

First, we may assume the third condition by passing to a subsequence because we
have

0 ≤ a(i)1 − a
(i)
0 ≤

2

n′(i)
.

Next, we shall see the first condition. We have

a′
(i)

= 1 + coeff
E

(i)
0

(
K
Yi/Ỹi

)
− ord

E
(i)
0

(
h−1i∗ Bi +M

i,Ỹi

)
.

Since the weighted dual graph Γ
(i)

E
(i)
0 ,E

(i)
1

has finitely many possibilities depending

only on ε and I, the following hold:

• coeff
E

(i)
0

(
K
Yi/Ỹi

)
also has finitely many possibilities, and

• ord
E

(i)
0

(
h−1i∗ Bi +M

i,Ỹi

)
is contained in a DCC set depending on ε and I.

Therefore a′(i) is contained in an ACC set depending only on ε and I. Hence, by

passing to a subsequence, we may assume that
(
a′(i)

)
i

is a non-increasing sequence.
Furthermore, since we have

c
(
1− a(i)1

)
= a′

(i) − a(i)0

and
(
a
(i)
0

)
i

is an increasing sequence, it follows that
(
a
(i)
1

)
i

is also an increasing
sequence.

Recall that (
1− a(i)1

)
(1− c) +

(
a
(i)
1 − a

(i)
0

)
= 1− a′(i).
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Therefore by the three claims above, we have

c = 1, a
(i)
1 − a

(i)
0 = 0, a′

(i)
= 1

for some i ≥ 1. Since a
(i)
1 − a

(i)
0 = 0, the graph Γ

(i)

E
(i)
0 ,E

(i)
1

is a chain. Furthermore, by

a′(i) = 1, all vertices of Γ
(i)

E
(i)
0 ,E

(i)
1

are (−2)-curves. In this case, we have c(i) = `
`+1 if

` is the number of the vertices of Γ
(i)

E
(i)
0 ,E

(i)
1

. It contradicts c = 1. �

6. ACC conjecture for varieties with bounded Gorenstein index

6.1. ACC conjecture for varieties with bounded Gorenstein index. Hacon,
McKernan, and Xu in [HMX14] prove the ACC for log canonical thresholds. Birkar
and Zhang in [BZ16] generalize this result to generalized pairs.

Theorem 6.1 ([BZ16, Theorem 1.5]). Let d be a positive integer and let I ⊂ [0,+∞)
be a DCC subset. Then there exists an ACC set J ⊂ [0,+∞) with the following
condition: If X,B,M,D and N satisfy

• (X,B +M)/Z is a generalized pair with dimX = d,
• D and N are R-divisors on X with the conditions in Definition 2.2(10), and
• B,D ∈ I and M,N ∈ I hold,

then the generalized lc threshold of D + N with respect to (X,B + M) belongs to
J ∪ {+∞}.

Theorem 6.2 ([BZ16, Theorem 1.6]). Let d be a positive integer and let I ⊂ [0,+∞)
be a DCC subset. Then there exists a finite subset J ⊂ I with the following condition:
If

• (X,B +M)/Z is a generalized lc pair with dimZ = 0 and dimX = d,
• KX +B +M ≡ 0,
• B ∈ I, and
• M ′ on X ′ in Definition 2.1 satisfies M ′ =

∑
kmkM

′
k for some nef Cartier

divisors M ′k 6≡ 0 and some real numbers mk ∈ I,

then B ∈ J and M ∈ J hold.

The following theorem asserts that it is possible to perturb irrational coeffi-
cients preserving the log canonicity. The assertion for the usual pairs is proved
in [Nak16b, Theorem 1.6] and [HLS, Corollary 5.5] as an application of the ratio-
nality of accumulation points of log canonical thresholds [HMX14, Theorem 1.11].
For generalized pairs, the same proof also works due to Theorems 6.1 and 6.2 (see
[Che] for a detailed discussion).

Theorem 6.3 ([Che, Theorem 3.15]). Fix d ∈ Z>0. Let r1, . . . , r` be positive real
numbers and let r0 = 1. Assume that r0, r1, . . . , r` are Q-linearly independent. Let
sB1 , . . . , s

B
cB

: R`+1 → R (resp. sM1 , . . . , s
M
cM

: R`+1 → R) be Q-linear functions (that

is, the extensions of Q-linear functions from Q`+1 to Q by taking the tensor product
⊗QR). Assume that sBi (r0, . . . , r`) ≥ 0 and sMj (r0, . . . , r`) ≥ 0 for each i and j.
Then there exists a positive real number ε > 0 such that the following holds: For
any normal variety X of dimension d, a projective morphism X → Z, a projective
birational morphism f : X ′ → X, effective Weil divisors B1, . . . , BcB on X, and
nef/Z Cartier divisors M ′1, . . . ,M

′
cM

on X ′, if the generalized pair(
X,

∑
1≤i≤cB

sBi (r0, . . . , r`)Bi +
∑

1≤i≤cM
sMi (r0, . . . , r`)Mi

)
/Z
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is generalized lc, then the pair(
X,

∑
1≤i≤cB

sBi (r0, . . . , r`−1, t)Bi +
∑

1≤i≤cM
sMi (r0, . . . , r`−1, t)Mi

)
/Z

is also generalized lc for any t ∈ [r` − ε, r` + ε].

The following notation will be used in Theorems 6.5 and 6.16.

Definition 6.4. For d, r ∈ Z>0 and a finite set I ⊂ [0,+∞), we define P (d, r, I) as
the set of all generalized lc pairs (X,B +M)/Z with the following four conditions:

• dimX = d.
• rKX is Cartier.
• B =

∑
i biBi for some bi ∈ I and effective Cartier divisors Bi.

• M =
∑

imiMi for some mi ∈ I and Cartier divisors Mi such that Mi = f∗M
′
i

for some projective birational morphism f : X ′ → X and nef/Z Cartier
divisors M ′i .

Theorem 6.5 below can be proved by the induction on dimQ SpanQ(I ∪{1}). This
idea is originally from Kawakita [Kaw14]. We emphasize here that in Definition 6.4,
we assume a Cartier condition on Bi and Mi. Because of it, we shall use the different
notation A′gen for such a special set of mld’s.

Theorem 6.5. Let d, r ∈ Z>0 and let I ⊂ [0,+∞) be a finite set. Let P (d, r, I) be
the set of generalized lc pairs defined in Definition 6.4. Then the following set

Bgen(d, r, I) :=

{
aE(X,B +M)

∣∣∣∣ (X,B +M)/Z ∈ P (d, r, I),
E is a divisor over X.

}
is a discrete subset of [0,+∞).

In particular, the set

A′gen(d, r, I) :=
{

mldx(X,B +M)
∣∣ (X,B +M)/Z ∈ P (d, r, I), x ∈ X.

}
is a discrete subset of [0,+∞).

Proof. The same proof of [Nak16b, Theorem 1.2] works due to Theorem 6.3. For
readers’ convenience, we give a proof below.

We may assume 1 ∈ I. Let r0 = 1, r1, . . . , rc be all elements of I. Set c′ + 1 :=
dimQ SpanQ{1, r1, . . . , rc}. Possibly rearranging the indices, we may assume that
r0, . . . , rc′ are Q-linearly independent. For each 0 ≤ i ≤ c, we may uniquely write
ri =

∑
0≤j≤c′ qijrj with qij ∈ Q.

We prove the discreteness of Bgen(d, r, I) by induction on c′. If c′ = 0, we can
take n ∈ Z>0 such that I ⊂ 1

nZ and 1
r ∈

1
nZ. Then we have Bgen(d, r, I) ⊂ 1

nZ and
Bgen(d, r, I) turns out to be discrete.

Set Q-linear functions s0, . . . , sc as follows:

si : Rc
′+1 → R; si(x0, . . . , xc′) =

∑
0≤j≤c′

qijxj .

Take ε > 0 as in Theorem 6.3. We fix t+, t− ∈ Q satisfying

t+ ∈ (rc′ , rc′ + ε] ∩Q, t− ∈ [rc′ − ε, rc′) ∩Q.

We define r+0 , . . . , r
+
c and r−0 , . . . , r

−
c as

r+i = si(r0, . . . , rc′−1, t
+), r−i = si(r0, . . . , rc′−1, t

−).

Furthermore, we set I ′ := {r+0 , . . . , r+c , r
−
0 , . . . , r

−
c }. Then we have dimQ SpanQ(I ′) =

c′, and hence Bgen(d, r, I ′) is discrete by induction.
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Let
(
X,
∑

0≤i≤c riBi +
∑

0≤i≤c riMi

)
/Z ∈ P (d, r, I) and let E be a divisor over

X. Since
(
X,
∑

0≤i≤c riBi +
∑

0≤i≤c riMi

)
is generalized lc,

(
X,
∑

0≤i≤c r
∗
iBi +∑

0≤i≤c r
∗
iMi

)
is also generalized lc for each ∗ ∈ {+,−}. Hence we have

0 ≤ aE
(
X,

∑
0≤i≤c

r∗iBi +
∑

0≤i≤c
r∗iMi

)
= aE

(
X,

∑
0≤i≤c

riBi +
∑

0≤i≤c
riMi

)
− (t∗ − rc′)

∑
0≤i≤c

qic′ ordE(Bi +Mi).

Therefore, either of the following holds:

• 0 ≤
∑

0≤i≤c qic′ ordE(Bi +Mi) ≤ ε−1+ aE

(
X,
∑

0≤i≤c riBi +
∑

0≤i≤c riMi

)
, or

• −ε−1− aE

(
X,
∑

0≤i≤c riBi +
∑

0≤i≤c riMi

)
≤
∑

0≤i≤c qic′ ordE(Bi +Mi) ≤ 0,

where we set ε+ := t+ − rc′ and ε− := rc′ − t−.
It is sufficient to show the discreteness of Bgen(d, r, I) ∩ [0, a] for any a ∈ R>0.

Take n ∈ Z>0 such that qic′ ∈ 1
nZ for any i. Then, it is sufficient to prove that

Bgen(d, r, I) ∩ [0, a] is a subset of the following set{
b+ ε+e

∣∣∣ b ∈ Bgen(d, r, I ′), e ∈ 1

n
Z ∩ [0, ε−1+ a]

}
∪
{
b− ε−e

∣∣∣ b ∈ Bgen(d, r, I ′), e ∈ 1

n
Z ∩ [−ε−1− a, 0]

}
.

In fact, this set is discrete because Bgen(d, r, I ′) is discrete, and both 1
nZ ∩ [0, ε−1+ a]

and 1
nZ ∩ [−ε−1− a, 0] are finite.

Let
(
X,
∑

0≤i≤c riBi +
∑

0≤i≤c riMi

)
/Z ∈ P (d, r, I) and let E be a divisor over

X. Assume aE

(
X,
∑

0≤i≤c riBi +
∑

0≤i≤c riMi

)
∈ [0, a]. Furthermore, suppose∑

0≤i≤c qic′ ordE(Bi +Mi) ≥ 0 (the same proof also works in the other case). Then,
we have

aE

(
X,

∑
0≤i≤c

riBi +
∑

0≤i≤c
riMi

)
= aE

(
X,

∑
0≤i≤c

r+i Bi +
∑

0≤i≤c
r+i Mi

)
+ (t+ − rc′)

∑
0≤i≤c

qic′ ordE(Bi +Mi).

Here, we have

• aE
(
X,
∑

0≤i≤c r
+
i Bi +

∑
0≤i≤c r

+
i Mi

)
∈ B(d, r, I ′),

• t+ − rc′ = ε+, and
•
∑

0≤i≤c qic′ ordE(Bi +Mi) ∈ 1
nZ ∩ [0, ε−1+ a].

The proof is complete. �

Corollary 6.6. Let I ⊂ [0,+∞) be a finite subset. Then the following set

Agen.can(3, I) :=

mldx(X,B +M)

∣∣∣∣∣∣
(X,B +M)/Z is a generalized
canonical pair of dimX = 3
with B ∈ I, M ∈ I, x ∈ |X|0.


satisfies the ACC. Furthermore, 1 is the only accumulation point of this set.

Proof. The same proof of [Nak16b, Corollary 1.5] works due to Theorem 6.5. For
readers’ convenience, we give a proof below.

Note that Agen.can(3, I) ⊂ [1, 3] holds (cf. [Kaw92], [Mar96]). We shall prove that
for any a > 1, the set

Agen.can(3, I) ∩ [a,+∞)
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is a finite set.
By the classification of three-dimensional Q-factorial terminal singularities (see

[Kaw92] or [Mar96]), the minimal log discrepancy of a three-dimensional terminal
singularity is equal to 3 or 1 + 1/r for some r ∈ Z>0. Furthermore, in the case
when mldx(X) = 3, the X is known to be smooth at x. If mldx(X) = 1 + 1/r, the
Gorenstein index of X at x is known to be r. Furthermore, by [Kaw88, Corollary
5.2], if X has the Gorenstein index r at x ∈ X, then rD is Cartier at x for any Weil
divisor D.

Let (X,B + M)/Z be a three-dimensional generalized canonical pair satisfying
B ∈ I, M ∈ I and mldx(X,B +M) ≥ a. By Theorem 2.8, there exists a projective
morphism f : Y → X with the following properties:

• Y is a Q-factorial terminal variety.
• f∗(KX +B+M) = KY +BY +MY holds, where BY is the strict transform

of B on Y , and MY is the push-forward of M ′ (possilby replacing X ′ with a
higher model).

Take a computing divisor E of mldx(X,B +M).
Suppose dim cY (E) = 0. Then mldx(X,B+M) = mldy(Y,BY +MY ) holds, where

{y} := cY (E). Since mldy(Y ) ≥ mldy(Y,BY +MY ) ≥ a holds, the Gorenstein index
of Y at y is at most

⌊
1

a−1
⌋
. Let ` be the Gorenstein index of Y at y. Since `D is

Cartier at y for any Weil divisor D on Y , it follows that

mldy(Y,BY +MY ) ∈ A′gen
(

3, `,
1

`
I
)
,

where we set 1
` I := {f`−1 | f ∈ I}. Therefore we have

mldx(X,B +M) ∈
⋃

`≤b 1
a−1
c

A′gen

(
3, `,

1

`
I
)
,

and the right-hand side is a finite set by Theorem 6.5.
Suppose dim cY (E) = 1. Then by Lemma 3.1, we have

mldy(Y,BY +MY ) = 1 + mldx(X,B +M)

for some closed point y ∈ cY (E). Since mldy(Y ) ≥ 1 + a > 2, it follows that Y is
smooth at y. Hence,

mldy(Y,BY +MY ) ∈ A′gen(3, 1, I).

Therefore, we have

mldx(X,B +M) ∈ −1 +A′gen(3, 1, I),

and the right-hand side is a finite set by Theorem 6.5.
Suppose dim cY (E) = 2. Then E is a divisor on Y , and we have

mldx(X,B +M) = 1− coeffE BY = 1.

It contradicts mldx(X,B +M) ≥ a > 1. The proof is complete. �

6.2. Uniform perturbation of the ε-log canonicity. In this subsection, we prove
Theorem 6.16 as an application of Theorem 6.3.

Definition 6.7. Let S ⊂ R be a Q-linear subspace and let f : S → R be a Q-linear
function. Let B be an R-divisor on a variety X. When B ∈ S, we define an R-divisor
f(B) on X as follows:

f(B) :=
∑
D

f(coeffD B)D,

where D is taken over all prime divisors D on X.
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Lemma 6.8. Let S ⊂ R be a Q-linear subspace and let f : S → R be a Q-linear
function. Let B be an R-divisor on a variety X.

(1) Suppose that B =
∑`

i=1 aiDi holds for some ai ∈ S and Q-divisors Di. Then

it follows that f(B) =
∑`

i=1 f(ai)Di.
(2) Suppose that B ∈ S holds and B is R-Cartier. Then f(B) is also R-Cartier.
(3) Suppose that B ∈ S holds and B is R-Cartier. Then ϕ∗B ∈ S holds for any

morphism ϕ : Y → X. Furthermore, it follows that ϕ∗(f(B)) = f(ϕ∗B).

Proof. (1) follows from the Q-linearlity of f .
Suppose that B is an R-Cartier R-divisor with B ∈ S. Then we may write

B =
∑`

i=1 aiDi with some ai ∈ S and Q-divisors Di. Moreover we may assume that
a1, . . . , a` are Q-linearly independent. Then by Lemma 6.9 below, each Di turns out
to be Q-Cartier. Therefore (2) and (3) follow from (1). �

Lemma 6.9. Let D be an R-divisor of the form D =
∑`

i=1 aiDi with ai ∈ R
and Q-divisors Di on a variety X. If D is R-Cartier and a1, . . . , a` are Q-linearly
independent, then each Di is Q-Cartier.

Proof. Suppse that D is R-Cartier. Then we may write D =
∑s

i=1 biEi with some
bi ∈ R and some Q-Cartier Q-divisors Ei. We may assume that s ≥ ` and ai = bi
for 1 ≤ i ≤ ` and further that b1, . . . , bs are Q-linear independent. Here, we allow

Ei = 0 in this expression. Since
∑`

i=1 aiDi =
∑s

i=1 biEi, it follows from the Q-linear
independence of bi’s that Di = Ei holds for each 1 ≤ i ≤ `. Therefore Di’s turn out
to be Q-Cartier. �

Remark 6.10. Let S ⊂ R be a Q-linear subspace and let f : S → R be a Q-linear
function. Let (X,B + M)/Z be a generalized pair with M ∈ S. In this remark,
we see that f(M) is well-defined. Let ϕ : X ′ → X be the birational morphism
and M ′ the R-Cartier divisor such that ϕ∗M

′ = M in Definition 2.1. By definition
of “M ∈ S” (Definition 2.2(1)), we may write M ′ =

∑
i riM

′
i with ri ∈ S and

Cartier divisors M ′i . Then we can define f(M ′) and define f(M) := ϕ∗
(
f(M ′)

)
. By

Lemma 6.8, this definition does not depend on the choice of X ′ and the expression
M ′ =

∑
i riM

′
i .

Lemma 6.11. Let S ⊂ R be a Q-linear subspace containing Q and let f : S → R be
a Q-linear function fixing Q. For a generalized pair (X,B +M)/Z with B,M ∈ S,
the following hold.

(1)
(
X, f(B) + f(M)

)
is also a generalized pair if f(B), f(M) ∈ R≥0.

(2) aE(X,B +M) ∈ S holds for any divisor E over X.
(3) f

(
aE(X,B +M)

)
= aE

(
X, f(B) + f(M)

)
holds for any divisor E over X.

Proof. We have f(KX +B+M) = KX +f(B)+f(M) since f fixes Q. Furthermore,
it is R-Cartier by Lemma 6.8(2). We have proved (1).

(2) follows from a similar argument as in the proof of Lemma 6.8. (3) follows
from Lemma 6.8(3). �

The following theorem is an immediate consequence of Theorem 6.3.

Theorem 6.12. Let d be a positive integer and let I ⊂ [0,+∞) be a finite subset.
Then, there exists a positive real number δ depending only on d and I such that the
following holds: If

• (X,B +M)/Z is a generalized lc pair with dimX = d and B,M ∈ I, and
• g : SpanQ(I ∪ {1})→ R is a Q-linear function fixing Q and satisfies |g(a)−
a| ≤ δ for every a ∈ I,

then
(
X, g(B) + g(M)

)
is also generalized lc.
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Proof. Set S = SpanQ(I ∪ {1}). We fix a Q-linear basis r0 = 1, r1, . . . , r` of S that
satisfies r1, . . . , r` ∈ I. We shall prove the stronger statement that is obtained by
replacing the assumption on g with the following weaker condition.

• g : SpanQ(I ∪ {1})→ R is a Q-linear function fixing Q and satisfies |g(ri)−
ri| ≤ δ for each ri.

We prove the assertion by induction on dimQ S. If dimQ S = 1, then the function
g in the statement should be the identity map and there is nothing to show in this
case.

Suppose dimQ S > 1. For each element aj ∈ I, we may write aj = sj(r0, . . . , r`)

for some Q-linear function sj : R`+1 → R. By Theorem 6.3, there exists a positive
real number ε such that the following holds:

(♥) For any generalized lc pair of the form(
X,
∑
j

sj(r0, . . . , r`)Bj +
∑
j

sj(r0, . . . , r`)Mj

)
/Z,

where X is a normal variety of dimension d, Bj ’s are effective Weil divisors
and M ′j ’s are nef/Z Cartier divisors on X ′, the pair(

X,
∑
j

sj(r0, . . . , r`−1, t)Bj +
∑
j

sj(r0, . . . , r`−1, t)Mj

)
is also generalized lc for any t ∈ [r` − ε, r` + ε].

We fix t1 ∈ [r` − ε, r`) ∩Q and t2 ∈ (r`, r` + ε] ∩Q. We set

I ′ := {sj(r0, . . . , r`−1, ti) | i, j}, S′ := SpanQ(I ′ ∪ {1}) = SpanQ{r0, . . . , r`−1}.

Then by the induction hypothesis, there exists a positive real number δ′ satisfying
the assertion for I ′.

In what follows, we shall prove that δ := min{δ′, r` − t1, t2 − r`} satisfies the
assertion for I. Let (X,B +M)/Z be a generalized pair and g a function satisfying
the conditions in the statement. We denote by g1 and g2 the Q-linear functions
S → S′ defined by

gi(rj) =

{
rj (0 ≤ j ≤ `− 1),

ti (j = `).

Then by (♥), it follows that
(
X, g1(B) + g1(M)

)
and

(
X, g2(B) + g2(M)

)
are gen-

eralized lc. Note that gi(B), gi(M) ∈ I ′ holds for each i = 1, 2. Then by the choice
of δ′, it follows that

(
X, g ◦ g1(B) + g ◦ g1(M)

)
and

(
X, g ◦ g2(B) + g ◦ g2(M)

)
are

generalized lc.
Note that the real numbers u1 and u2 defined by

u1 :=
t2 − g(r`)

t2 − t1
, u2 :=

g(r`)− t1
t2 − t1

satisfy u1 + u2 = 1 and g = u1(g ◦ g1) + u2(g ◦ g2). Indeed, it is easy to see that
the function u1(g ◦ g1) + u2(g ◦ g2) is a Q-linear function satisfying

(
u1(g ◦ g1) +

u2(g◦g2)
)
(ri) = g(ri) for each i. Furthermore, u1, u2 ≥ 0 follows from the inequality

δ ≤ min{r` − t1, t2 − r`} and the assumption on g. Therefore
(
X, g(B) + g(M)

)
is

generalized lc. �

Lemma 6.13. Let δ be a positive real number. Let I ⊂ R be a finite subset and
let I ′ ⊂ SpanQ I be a finite subset. Then there exists a positive real number δ′

with the following condition: If g : SpanQ I → R is a Q-linear function satisfying
|g(a)− a| ≤ δ′ for any a ∈ I, then |g(a)− a| ≤ δ holds for any a ∈ I ′.

Proof. The proof is straightforward. �
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Lemma 6.14. Let I ⊂ R be a finite subset and δ a positive real number. Then there
exist finitely many positive real numbers a1, . . . , ak ∈ (0, 1] and Q-linear functions
f1, . . . , fk : SpanQ(I ∪ {1})→ Q with the following conditions:

• Each fi fixes Q,

•
∑k

i=1 aifi = id (i.e.
∑k

i=1 aifi(a) = a holds for any a ∈ SpanQ(I ∪ {1})),
and
• |fi(a)− a| ≤ δ holds for every a ∈ I and i.

Proof. Set S := SpanQ(I ∪ {1}). Let 1, r1, . . . , rn be a Q-linear basis of S satisfying
r1, . . . , rn ∈ I. We may assume that I = {r1, . . . , rn} by Lemma 6.13.

For each 1 ≤ i ≤ n, we take qi1 ∈ [ri − δ, ri) ∩Q and qi2 ∈ (ri, ri + δ] ∩Q, and we
set

ui1 :=
qi2 − ri
qi2 − qi1

, ui2 :=
ri − qi1
qi2 − qi1

.

Then we have

ui1, ui2 > 0, ui1 + ui2 = 1, ui1qi1 + ui2qi2 = ri

for each 1 ≤ i ≤ n. We denote by {1, 2}{1,...,n} the set of maps {1, . . . , n} → {1, 2}.
For each σ ∈ {1, 2}{1,...,n}, we define aσ ∈ (0, 1] and Q-linear functions fσ : S → Q
as follows:

aσ =
∏

1≤i≤n
uiσ(i), fσ(1) = 1, fσ(ri) = qiσ(i).

Then it is easy to see that fσ’s satisfy the first and the third conditions. Furthermore,
we have( ∑

σ∈{1,2}{1,...,n}
aσfσ

)
(1) =

∑
σ∈{1,2}{1,...,n}

∏
1≤i≤n

uiσ(i) =
∏

1≤i≤n
(ui1 + ui2) = 1,

and ( ∑
σ∈{1,2}{1,...,n}

aσfσ

)
(rj) =

∑
σ∈{1,2}{1,...,n}

( ∏
1≤i≤n

uiσ(i)

)
qjσ(j)

=
∑

σ′∈{1,2}{1,...,n}\{j}
(uj1qj1 + uj2qj2)

(∏
i 6=j

uiσ′(i)

)
= (uj1qj1 + uj2qj2)

∏
i 6=j

(ui1 + ui2) = rj

for each 1 ≤ j ≤ n. Therefore aσ’s and fσ’s satisfy the second condition. The proof
is complete. �

Remark 6.15. The positive real numbers a1, . . . , ak in Lemma 6.14 satisfy
∑k

i=1 ai =
1 due to the first and the second conditions.

Now, we prove Theorem 6.16 as an application of Theorem 6.5. This gives a
generalization of [CH21, Lemma 3.4] by removing the boundedness criterion on the
minimal log discrepancy, which is assumed in [CH21, Lemma 3.4].

Theorem 6.16. Let d, r ∈ Z>0 and ε ∈ R≥0, and let I ⊂ [0,+∞) be a finite set.
Let P (d, r, I) be the set of generalized lc pairs defined in Definition 6.4. Suppose
ε ∈ SpanQ(I ∪{1}). Then there exists a positive real number δ depending only on d,
r, ε and I such that the following holds: If

• (X,B +M)/Z ∈ P (d, r, I) and x ∈ X is a scheme-theoretic point,
• mldx

(
X,B +M

)
≥ ε,

• f : SpanQ(I ∪ {1})→ R is a Q-linear function fixing Q, and
• |f(a)− a| ≤ δ holds for every a ∈ I,

then mldx
(
X, f(B) + f(M)

)
≥ f(ε).
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Proof. We set S := SpanQ(I ∪ {1}). By Lemma 6.13, we may replace the fourth
condition in the statement with the following stronger condition:

(♥) |f(a)− a| ≤ δ holds for every a ∈ I ∪ {ε}.
Let Bgen(d, r, I) be the discrete set of log discrepancies obtained from P (d, r, I)

defined in Theorem 6.5. We set

λ := min
{
a− ε

∣∣ a ∈ Bgen(d, r, I), a > ε
}
> 0.

Let δ′ be the δ given in Theorem 6.12. Then we define δ by

δ := min

{
δ′,

δ′λ

ε+ λ+ δ′

}
> 0.

In what follows, we shall see that this δ satisfies the statement.
Let (X,B + M)/Z, x, and f be as in the assumptions and (♥). Then the pair(
X, f(B)+f(M)

)
is also generalized lc by the choice of δ′. By Lemma 6.11, we have

aE
(
X, f(B) + f(M)

)
= f

(
aE(X,B +M)

)
for any divisor E over X. Let F be a divisor that satisfies aF (X,B + M) > ε and

cX(F ) = {x}. Then it is sufficient to show that

aF
(
X, f(B) + f(M)

)
≥ f(ε).

By the definition of λ, we have aF (X,B+M) ≥ ε+λ. We define a Q-linear function

g : S → R by g := δ′

δ (f − id) + id. Then g fixes Q and satisfies |g(a) − a| ≤ δ′ for

any a ∈ I. Therefore the pair
(
X, g(B) + g(M)

)
is generalized lc by the choice of δ′,

and hence aF
(
X, g(B) + g(M)

)
≥ 0. Therefore we have

aF
(
X, f(B) + f(M)

)
= aF

(
X,

δ

δ′
(
g(B) + g(M)

)
+
(

1− δ

δ′

)
(B +M)

)
=
δ

δ′
aF
(
X, g(B) + g(M)

)
+
(

1− δ

δ′

)
aF (X,B +M)

≥
(

1− δ

δ′

)
(ε+ λ)

≥
(

1− 1

δ′
· δ′λ

ε+ λ+ δ′

)
(ε+ λ)

= ε+
δ′λ

ε+ λ+ δ′

≥ ε+ δ

≥ f(ε).

Here, we used the assumption (♥) for the last inequality. This completes the proof.
�

6.3. Application to complement. Based on Birkar’s result (Theorem 6.19), Fili-
pazzi and Moraga in [FM20, Theorem 1.2] show the existence of bounded strong com-
plements for generalized pairs with coefficients in a closed rational DCC set. More-
over, in [FM20, Theorem 1.3], they show the existence of bounded ε-complements
for such pairs and any ε > 0 when dimZ = 0 and M ′ = 0, using the BAB theorem.
Using Theorem 6.3, G. Chen and Q. Xue removed the rationality condition on the
coefficient set if the coefficient set is bounded ([Che, Theorem 1.3] and [CX22, The-
orem 1.3]).

In this subsection, we first prove Theorem 6.27, which allows us to reduce the
problem to the case when the coefficient set is bounded. As a corollary (Corollary
6.28), we remove the rationality condition from the statement of [FM20, Theorem
1.2]. We also give a proof of [CX22, Theorem 1.3] in Corollary 6.29.

We begin with the definition of the complements for generalized pairs.
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Definition 6.17 ([Bir19, 2.18], [HLS, Definition 3.17]). Let (X,B + M)/Z be a
generalized pair with B ∈ [0, 1].

(1) Let n be a positive integer. An (generalized) n-complement of KX +B+M
over a point z ∈ Z is of the form KX +B++M with the following conditions
over a neighborhood of z:
• (X,B+ +M) is generalized lc,
• n(KX +B+ +M) ∼ 0 and nM ′ is Cartier, and
• nB+ ≥ nbBc+ b(n+ 1)(B − bBc)c.

For a non-negative real number ε, an n-complement KX+B++M is called ε-
lc (resp. klt) if the corresponding generalized pair (X,B++M) is generalized
ε-lc (resp. klt).

(2) An (generalized) R-complement of KX +B+M over a point z ∈ Z is of the
form KX +B+ +M+ with the following conditions over a neighborhood of
z:
• (X,B+ +M+) is generalized lc,
• KX +B+ +M+ ∼R 0,
• B+ ≥ B and M+′ −M ′ is nef over Z.

We also define an ε-lc R-complement similarly.
(3) An n-complement (resp. R-complement) of KX + B + M is of the form

KX + B+ + M+ such that KX + B+ + M+ is an n-complement (resp. R-
complement) of KX+B+M over z for every z ∈ Z. We say that (X,B+M)
is R-complementary if there exits an R-complement of KX +B+M . We say
that (X,B+M) is (ε,R)-complementary if there exits an ε-lc R-complement
of KX +B +M .

Remark 6.18. We take over the notations in Definition 6.17.

(1) An n-complement is called strong ifB+ ≥ B holds. In this subsection, we will
consider only strong complements. We remark that if n(KX +B+ +M) ∼ 0
and B+ ≥ B hold, and nM ′ is Cartier, then the condition nB+ ≥ nbBc +
b(n+ 1)(B − bBc)c automatically holds (see [Bir19, 6.1(1)]).

(2) Let (X1, B1 +M1) and (X2, B2 +M2) be generalized pairs with a birational
map X1 99K X2. Let ϕ1 : X ′ → X1 and ϕ2 : X ′ → X2 be the projective
birational morphisms in Definition 2.1 (possilby replacing X ′ with a higher
model). Suppose that

ϕ∗1(KX1 +B1 +M1) + P = ϕ∗2(KX2 +B2 +M2)

holds for some P ≥ 0. In this case, if KX2 + B2 + M2 has a strong ε-
lc n-complement (resp. R-complement), then so does KX1 + B1 + M1 (see
[Bir19, 6.1(2)(3)]).

Birkar proved in [Bir19] the boundedness of complements for generalized pairs.

Theorem 6.19 ([Bir19, Theorem 1.10]). Let d and p be positive integers. Let
I ⊂ [0, 1] ∩ Q be a finite subset. Then there exists a positive integer n depending
only on d, p and I such that if

• (X,B +M)/Z is a generalized lc pair with dimX = d,
• dimZ = 0,
• B ∈ I holds and pM ′ is Cartier,
• X is of Fano type, and
• −(KX +B +M) is nef,

then there exists a strong n-complement KX +B+ +M of KX +B +M .

We recall the following theorems by Filipazzi and Moraga.
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Theorem 6.20 ([FM20, Theorem 1.2]). Let d and p be positive integers. Let I ⊂
[0, 1]∩Q be a finite subset. Then there exists a positive integer n depending only on
d, p and I such that if

• (X,B +M)/Z is a generalized lc pair with dimX = d,
• B ∈ I holds and pM ′ is Cartier,
• X is of Fano type over Z, and
• −(KX +B +M) is nef/Z,

then for every point z ∈ Z, there exists a strong n-complement KX + B+ + M of
KX +B +M over z.

Theorem 6.21 ([FM20, Theorem 1.3]). Let d and p be positive integers, and let ε
be a positive real number. Let I ⊂ [0, 1] ∩ Q be a finite subset. Then there exists a
positive integer n depending only on d, p, ε and I such that if

• (X,B +M)/Z is a generalized ε-lc pair with dimX = d,
• dimZ = 0,
• B ∈ I holds and pM ′ is Cartier,
• X is of Fano type, and
• −(KX +B +M) is nef,

then there exists a strong ε-lc n-complement KX +B+ +M of KX +B +M .

Theorem 6.22 (cf. [HLS, Lemma 5.13, Theorem 5.15]). Fix d ∈ Z>0. Let r1, . . . , r`
be positive real numbers and let r0 = 1. Assume that r0, r1, . . . , r` are Q-linearly
independent. Let sB1 , . . . , s

B
cB

: R`+1 → R (resp. sM1 , . . . , s
M
cM

: R`+1 → R) be Q-

linear functions. Assume that sBi (r0, . . . , r`) ≥ 0 and sMj (r0, . . . , r`) ≥ 0 for each i
and j. Then there exists a positive real number ε > 0 such that the following holds:
If (X,B +M)/Z is a generalized pair with dimX = d such that

• B =
∑

1≤i≤cB s
B
i (r0, . . . , r`)Bi for some Weil divisors Bi on X,

• M ′ =
∑

1≤j≤cM sMj (r0, . . . , r`)M
′
j for some nef/Z Cartier divisors M ′j on X ′,

and
• (X,B +M) is R-complementary,

then for every t ∈ [r` − ε, r` + ε],
(
X,B(t) + M(t)

)
is generalized lc and −

(
KX +

B(t) +M(t)
)

is pseudo-effective over Z, where we set

B(t) :=
∑

1≤i≤cB
sBi (r0, . . . , r`−1, t)Bi, M ′(t) :=

∑
1≤j≤cM

sMj (r0, . . . , r`−1, t)M
′
j .

Proof. Enlarging the set
{
sBi
∣∣ i}, we may assume that sBi (r0, . . . , r`) = r0 = 1 for

some i. We may also remove the zero functions from
{
sBi , s

M
j

∣∣ i, j}. Let ε′ be the

ε appearing in Theorem 6.3 and let u0 be a rational number in [r` − ε′, r` + ε′].
Suppose the contrary that for each k ≥ 1, there exist a real number tk ∈

[
r` −

ε′

k , r` + ε′

k

]
and a generalized pair (Xk, Bk +Mk)/Zk with dimXk = d such that

• Bk(t) =
∑

1≤i≤cB s
B
i (r0, . . . , r`−1, t)Bk,i for some Weil divisors Bk,i on Xk,

• M ′k(t) =
∑

1≤i≤cM sMi (r0, . . . , r`−1, t)M
′
k,i for some nef/Zk Cartier divisors

M ′k,i on X ′k,

• Bk = Bk(r`) and Mk = Mk(r`),
• (Xk, Bk +Mk) is R-complementary, and
• −

(
KXk +Bk(tk) +Mk(tk)

)
is not pseudo-effective over Zk.

Moreover, restricting Xk over a neighborhood of a point z ∈ Zk at which −
(
KXk +

Bk(tk)+Mk(tk)
)

is not pseudo-effective over Zk, we may assume that KXk+Bk+Mk

has an R-complement KXk +B+
k +M+

k satisfying KXk +B+
k +M+

k ∼R 0.
In the following paragraphs, we fix k ∈ Z>0 and denote (X,B+M)/Z = (Xk, Bk+

Mk)/Zk for simplicity.
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STEP 1: Let KX +B+ +M+ ∼R 0 be an R-complement of KX +B +M . We set

D = B+ −B, N ′ = M+′ −M ′.
Let N be the push-forward of N ′ on X. This step shows that we may assume the
following conditions:

• (X,B+ +M+)/Z is a Q-factorial generalized dlt pair.
• SuppD and SuppbB+c have no common divisors.
• Supp(B −B(tk)) and SuppbB+c have no common divisors.

Let f : Y → X be a Q-factorial generalized dlt model of (X,B++M+) (Definition
2.2(9)). Let T be the sum of the f -exceptional divisors, let BY (t) and DY be the
strict transforms of B(t) and D on Y , and let MY (t) and NY be the push-forwards
of M ′(t) and N ′ on Y (possibly replacing X ′ by a higher model). Then(

Y, (T +BY (r`) +DY ) + (MY (r`) +NY )
)
/Z

is a Q-factorial generalized dlt pair, and we have

KY +
(
T +BY (r`) +DY

)
+
(
MY (r`) +NY

)
= f∗

(
KX + (B +D) + (M +N)

)
∼R 0.

We may write

BY (t) =
∑

sBi (r0, . . . , r`−1, t)BY,i,

where BY,i is the strict transform of Bi on Y . We define a Weil divisor Bi on Y as

coeffGBi =

{
0 if G ≤ bBY (r`) +DY c,
coeffGBY,i otherwise,

where G is a prime divisor on Y . Then we set

B′Y (t) :=
∑

sBi (r0, . . . , r`−1, t)Bi.

Similarly, write D =
∑

i diDi, where Di’s are distinct prime divisors, and let D′Y :=∑
dkDk, where Dk is the strict transform of Dk on Y and the sum is taken over all

the k satisfying Dk 6≤ bBY (r`) +DY c. Then the following hold by the construction:

• bBY (r`) +DY c+B′Y (r`) +D′Y = BY (r`) +DY .
• SuppD′Y and Supp

(
T + bBY (r`) +DY c

)
have no common divisors.

• Supp
(
B′Y (r`) − B′Y (tk)

)
and Supp

(
T + bBY (r`) + DY c

)
have no common

divisors.

We shall see that we may assume

• −
(
KY +T + bBY (r`) +DY c+B′Y (tk) +MY (tk)

)
is not pseudo-effective over

Z.

Note that −
(
KX +B(tk)+M(tk)

)
is not pseudo-effective over Z by the assumption.

Since
f∗
(
KY + T +BY (tk) +MY (tk)

)
= KX +B(tk) +M(tk),

−
(
KY + T +BY (tk) +MY (tk)

)
is not pseudo-effective over Z. On the other hand,

for every i, if sBi (r0, . . . , r`) = 1, then sBi (r0, . . . , r`−1, t) should be constantly one by
the linear independence of r0, r1, . . . , r`. Therefore, passing to a tail of the sequence,
we may assume that sBi (r0, . . . , r`−1, tk) ≤ 1. Hence we have

bBY (r`) +DY c+B′Y (tk)−BY (tk) ≥ 0,

and therefore −
(
KY +T +bBY (r`)+DY c+B′Y (tk)+MY (tk)

)
is not pseudo-effective

over Z.
Therefore, we may replace

•
(
X,B(t) +M(t)

)
with

(
Y, (T + bBY (r`) +DY c+B′Y (t)) +MY (t)

)
,

• D with D′Y , N with NY , and
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• B+ +M+ with (T +BY (r`) +DY ) + (MY (r`) +NY ),

and the new pair satisifies the desired three conditions.

STEP 2: By the linear independence of r0, r1, . . . , r`, we have

sBi (r0, . . . , r`) > 0, sMj (r0, . . . , r`) > 0.

Hence by STEP 1, we may take δk > 0 such that(
X,
(
B+ + δkD + δk(B −B(tk))

)
+
(
M+ + δkN + δk(M −M(tk))

))
is generalized dlt. Since

− δk
(
KX +B(tk) +M(tk)

)
∼R δk

(
(B −B(tk) +D) + (M −M(tk) +N)

)
∼R KX +

(
B+ + δkD + δk(B −B(tk))

)
+
(
M+ + δkN + δk(M −M(tk))

)
,

there exists a −
(
KX +B(tk)+M(tk)

)
-MMP over Z (Theorem 2.7) and it ends with

a Mori fiber space X → W such that KX + BX(tk) + MX(tk) is ample over W ,

where BX(t) is the strict transform of B(t) on X, and MX(t) is the push-forward of

M ′(t) on X (possibly replacing X ′ with a higher model). On the other hand, since
−(KX +B +M) is pseudo-effective over Z, −

(
KX +BX(r`) +MX(r`)

)
is nef over

W . Since (X,B +M) is R-complementary,
(
X,BX(r`) +MX(r`)

)
is generalized lc.

Therefore,
(
X,BX(tk) +MX(tk)

)
is also generalized lc since tk ∈ [r` − ε′, r` + ε′].

Let F be a general fiber of X →W . We set

BF (t) = BX(t)|F , MF (t) = MX(t)|F .
Then

(
F,BF (r`) + MF (r`)

)
and

(
F,BF (tk) + MF (tk)

)
are generalized lc, −

(
KF +

BF (r`) + MF (r`)
)

is nef and KF + BF (tk) + MF (tk) is ample. Therefore, we may
find a real number uk between tk and r` satisfying KF + BF (uk) + MF (uk) ≡ 0.
Note that

(
F,BF (uk) +MF (uk)

)
is also generalized lc.

We may write

sBi (r0, . . . , r`−1, t) = sBi (r0, . . . , r`−1, u0) + qi(t− u0),
sMj (r0, . . . , r`−1, t) = sMj (r0, . . . , r`−1, u0) + pj(t− u0)

with qi, pj ∈ Q. Let

I :=
{
sBi (r0, . . . , r`−1, u0), s

M
j (r0, . . . , r`−1, u0)

∣∣ i, j}.
Take a positive integer m such that mqi,mpj ∈ Z holds for every i and j. Since
KF +BF (tk) +MF (tk) 6≡ 0 and limk→∞ uk = r`, we have

r` − u0
m

= lim
k→∞

uk − u0
m

∈ SpanQ
(
I ∪ {1}

)
⊂ SpanQ(r0, . . . , r`−1)

by [Che, Theorem 3.6]. This contradicts the Q-linearly independence of r0, . . . , r`.
�

Theorem 6.23. Let d be a positive integer and let I ⊂ [0,+∞) be a finite subset.
Then, there exists a positive real number δ depending only on d and I such that the
following holds: If

• (X,B +M)/Z is an R-complementary generalized pair of dimension d with
B,M ∈ I, and
• g : SpanQ(I ∪ {1})→ R is a Q-linear function fixing Q and satisfies |g(a)−
a| ≤ δ for every a ∈ I,

then
(
X, g(B)+g(M)

)
is generalized lc and −

(
KX+g(B)+g(M)

)
is pseudo-effective

over Z.

Proof. The same proof as in Theorem 6.12 works due to Theorem 6.22. �
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The following lemma follows from the BAB Theorem ([Bir21a, Theorem 1.1]).

Lemma 6.24. Let d be a positive integer and let ε be a positive real number. Then
the projective Q-factorial varieties X of dimension d such that

• (X,B+M)/Z is generalized ε-lc for some generalized boundary B+M with
• dimZ = 0,
• KX +B +M ∼R 0, and
• X is of Fano type

form a bounded family.

Proof. Let (X,B + M) be as in the assumption. By [Bir21a, Corollary 1.4], it is
enough to show that (X,∆) is ε-lc and KX + ∆ ∼R 0 for some (usual) boundary ∆.

Let X 99K Y be the end result of a (−KX)-MMP. Since −KY is semi-ample and
Y is ε-lc, there exists a boundary ∆Y such that (Y,∆Y ) is ε-lc and KY + ∆Y ∼R 0.
Therefore, there exists a boundary ∆ on X such that (X,∆) is ε-lc and KX+∆ ∼R 0.
The proof is complete. �

We then define the (n,Γ)-decomposable complements for generalized pairs, mod-
ifying [HLS, Definition 1.9].

Definition 6.25 (cf. [HLS, Definition 1.9]). Let (X,B+M)/Z be a generalized pair.
Let Γ = (a1, . . . , ak) be a finite partition of one (i.e. a finite sequence a1, . . . , ak of

non-negative real nunmbers with
∑k

i=1 ai = 1). An (generalized) (n,Γ)-decomposable
complement of KX +B +M is of the form KX +B+ +M+ such that

• (X,B+ +M+) is an R-complement of KX +B +M ,

• B+ =
∑k

i=1 aiB
+
i and M+′ =

∑k
i=1 aiM

+′
i hold for some generalized bound-

aries B+
i +M+

i of X, and

• KX + B+
i + M+

i is an n-complement of KX + B+
i + M+

i itself for each
i = 1, 2, . . . , k.

For a non-negative real number ε, an (n,Γ)-decomposable complement KX+B++
M+ is called (ε, n,Γ)-decomposable complement if (X,B+ +M+) is generalized ε-lc.

We shall show the existence of bounded strong complements for generalized pairs
with coefficients in a finite set. This is a special case of [Che, Theorem 1.3] and
[CX22, Theorem 1.5]. We give a proof using the perturbation technique introduced
in Subsection 6.2.

Theorem 6.26. Let d be a positive integer, ε a non-negative real number, and
I ⊂ [0,+∞) a finite subset. Then there exist a positive integer n and a partition
Γ = (a1, . . . , ak) of one depending only on d, ε and I such that the following condition
holds: If

• (X,B +M)/Z is a generalized ε-lc pair of dimension d,
• dimZ = 0 if ε > 0,
• B,M ∈ I holds,
• X is of Fano type over Z, and
• (X,B +M) is (ε,R)-complementary over z for every z ∈ Z,

then for every z ∈ Z, there exists a strong generalized (ε, n,Γ)-decomposable com-
plement KX +B+ +M of KX +B +M over z.

Proof. Replacing I with I ∪ {ε}, we may assume that ε ∈ I. The proof is divided
into the cases where ε > 0 and where ε = 0.
Case 1 Suppose ε > 0. In this case, Z in consideration satisfies dimZ = 0 by
assumption.

First, we claim that there exists a positive integer r depending only on d and ε
such that
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• If (Y,D+N)/Z is a Q-factorial generalized pair with the following conditions:
– dimZ = 0 and dimY = d,
– D,N ∈ I,
– Y is of Fano type, and
– (Y,D +N) has an ε-lc R-complement,

then it follows that (Y,D+N) ∈ P
(
d, r, 1r I

)
, where the notion P

(
d, r, 1r I

)
is

defined in Definition 6.4.

Indeed, by Lemma 6.24, such Y belongs to a bounded family depending on d and ε.
Hence, there exists a positive integer r depending only on d and ε such that rF is
Cartier for any Weil divisor F on Y (cf. [Kaw88, Lemma 1.12]). Therefore we have
(Y,D +N) ∈ P

(
d, r, 1r I

)
.

We set δ := min{δ1, δ2}, where δ1 is the δ given in Theorem 6.16 applied to
d, r, ε and I ′ := 1

r I, and δ2 is the δ given in Theorem 6.23. By Lemma 6.14,
there exist a partition Γ = (a1, . . . , ak) of one and finitely many Q-linear functions
f1, . . . , fk : SpanQ(I ∪ {1})→ Q fixing Q such that

•
∑k

i=1 aifi = id and
• |fi(a)− a| ≤ δ holds for every a ∈ I and i ∈ {1, . . . , k}.

Let (X,B + M) be a generalized pair satisfying the conditions in the state-
ment. Note that strong complements are preserved by taking push-forwards of
small birational maps. Therefore we may assume that X is Q-factorial by replac-
ing X with its small Q-factorialization. Then by the choice of δ2, it follows that
−
(
KX + fi(B) + fi(M)

)
is pseudo-effective. Let X 99K Yi be the end result of

a −
(
KX + fi(B) + fi(M)

)
-MMP. We denote by Bi and Mi the pushforward of

B and M on Yi, respectively. Since (X,B + M) is (ε,R)-complementary by as-
sumption, so is (Yi, Bi + Mi). In particular, (Yi, Bi + Mi) is generalized ε-lc and
(Yi, Bi + Mi) ∈ P (d, r, I ′). Hence by the choice of δ1,

(
Yi, fi(Bi) + fi(Mi)

)
is gen-

eralized fi(ε)-lc. Therefore by Theorem 6.21 and Remark 6.18(2), there exists a
positive integer n depending only on d, ε and I such that there is a generalized
strong fi(ε)-lc n-complement KX +B+

i + fi(M) of KX + fi(B) + fi(M) for each i.

We set B+ =
∑k

i=1 aiB
+
i . Then we have

mld(X,B+ +M) = mld
(
X,

k∑
i=1

aiB
+
i +

k∑
i=1

aifi(M)
)

≥
k∑
i=1

ai mld
(
X,B+

i + fi(M)
)

≥
k∑
i=1

aifi(ε) = ε.

Therefore KX +B+ +M is a strong generalized (ε, n,Γ)-decomposable complement
of KX +B +M .

Case 2 Suppose ε = 0.
The same argument as in Case 1 works by replacing Theorem 6.16 with Theorem

6.12, and Theorem 6.21 with Theorem 6.20 in the argument. �

Theorem 6.27. Let d be a positive integer and Λ ⊂ [0,+∞) a DCC set. Then there
exists a positive real number m′ depending only on d and Λ such that the following
condition holds: If

• (X,B +M)/Z is a generalized pair of dimension d,
• X is of Fano type over Z,
• (X,B +M) is R-complementary,
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• B ∈ Λ, and
• M ′ =

∑
jmjM

′
j holds for some mj ∈ Λ and some nef/Z Cartier divisors

M ′j 6≡Z 0,

then mj ≤ m′ holds for each j.

Proof. Replacing X with its small Q-factorial modification, we may assume that X
is Q-factorial.

First, we shall prove the boundedness of mj for j satisfying M ′j 6= ϕ∗(Mj). Let
Γ be the ACC set J appearing in Theorem 6.1 when applying it to I = Λ. For
each j with M ′j 6= ϕ∗(Mj), the generalized lc threshold t of Mj with respect to(
X,B + (M − mjMj)

)
satisfies mj ≤ t < +∞ and t ∈ Γ. In particular, mj is

bounded from above by the maximum element max Γ of the ACC set Γ.
Next, we shall prove the boundedness of mj for j satisfying M ′j = ϕ∗(Mj). Sup-

pose the contrary that for each i ≥ 1, there exists a generalized lc pair (Xi, Bi +
Mi)/Zi of dimension d with the following conditions:

• (Xi, Bi +Mi)/Zi satisfies the assumptions in the statement.
• M ′i,0 = ϕ∗(Mi,0) and mi,0 ≥ i hold when we write M ′i =

∑
j≥0mi,jM

′
i,j as in

the assumption.

Since Mi,0 6≡Zi 0 by the assumption, −(KXi + Bi + Mi + tiMi,0) is not pseudo-
effective over Zi for some ti > 0. Since Xi is of Fano type over Zi, there exists
a −(KXi + Bi + Mi + tiMi,0)-MMP over Zi and it ends with a Mori fiber space
Yi →Wi. Then

KYi +Bi,Yi +Mi,Yi + tiMi,0,Yi

is ample over Wi, where Bi,Yi , Mi,Yi , and Mi,0,Yi are the strict transforms of Bi, Mi,
and Mi,0, respectively. Since (Xi, Bi + Mi) is R-complementary, (Yi, Bi,Yi + Mi,Yi)
is generalized lc. Possibly replacing X ′i with a higher model, we may assume that
ψ : X ′i → Yi is a morphism. Then for i > max Γ, we have ψ∗(Mi,0,Yi) = M ′i,0 by

the same argument in the previous paragraph. Hence (Yi, Bi,Yi + Mi,Yi + tiMi,0,Yi)
is also generalized lc. Let Fi be a general fiber of Yi →Wi. We set

BFi := Bi,Yi |Fi , MFi := Mi,Yi |Fi , Mi,0,Fi := Mi,0,Yi |Fi .
Then (Fi, BFi + MFi + tiMi,0,Fi) is generalized lc, −(KFi + BFi + MFi) is nef and
KFi +BFi +MFi + tiMi,0,Fi is ample. Therefore, there exists λi ∈ [0, ti) such that

• KFi +BFi +MFi + λiMi,0,Fi ≡ 0, and
• (Fi, BFi +MFi + λiMi,0,Fi) is generalized lc.

Note that BFi ∈ Λ and MFi + λiMi,0,Fi ∈ Λ∪ {mi,0 + λi | i}, and that mi,0 + λi ≥ i.
Therefore, we get a contradiction by Theorem 6.2. �

Corollary 6.28. Fix a positive integer d and a DCC subset Λ ⊂ [0,+∞) of real
numbers. Then there exist a positive integer n and a finite partition Γ of one de-
pending only on d and Λ such that the following condition holds: If

• (X,B +M)/Z is a generalized lc pair of dimension d,
• B,M ∈ Λ holds,
• X is of Fano type over Z, and
• (X,B +M) is R-complementary over z for every z ∈ Z,

then for every point z ∈ Z, there exists a strong (n,Γ)-decomposable complement
KX +B+ +M+ of KX +B +M over z.

Proof. Replacing X with a small Q-factorial modification, we may assume that X
is Q-factorial. Since M ∈ Λ, we may write

M ′ =
∑
j

mjM
′
j +

∑
h

nhN
′
h
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with mj , nh ∈ Λ and some nef/Z Cartier divisors M ′j and N ′h on X ′, where each

M ′j satisfies M ′j 6≡Z 0 and each N ′h satisfies N ′h ≡Z 0. Let Mj and Nh be the

push-forwards of M ′j and N ′h on X, respectively. By Theorem 6.27, there exists

a positive real number m′ such that mj ≤ m′ holds for every j. On the other
hand, by the negativity lemma, N ′h = ϕ∗(Nh) holds for every h. Since Nh is a
numerically trivial/Z Q-Cartier divisor on a Fano type variety X over Z, it follows
that Nh ∼Q,Z 0 by the base point free theorem (cf. [KMM87, Theorem 3.1.1]).
In particular, for every point z ∈ Z, Nh ∼Q 0 holds over a neighborhood of z. By
assumption, for every z, there exists an R-complement KX+B++M+ of KX+B+M
over z. Therefore, KX + B+ + M+ +

∑
h(dnhe − nh)Nh is an R-complement of

KX +B +M +
∑

h(dnhe − nh)Nh over z. Hence,
(
X,B +

∑
jmjMj +

∑
hdnheNh

)
is R-complementary over z. Then, the assertion follows from the case proved in
[Che, Theorem 1.3] where Λ is bounded. �

When M ′ = 0, the boundedness of complements are shown in [CX22, Theorem
1.5]. We give a brief proof here using Theorem 6.26.

Corollary 6.29 ([CX22, Theorem 1.5]). Fix a positive integer d, a DCC subset
Λ ⊂ [0, 1] of real numbers, and a non-negative real number ε. Then there exist a
positive integer n and a finite partition Γ of one depending only on d, Λ and ε such
that the following condition holds: If

• (X,B) is a projective pair of dimension d,
• B ∈ Λ holds,
• X is of Fano type, and
• (X,B) is (ε,R)-complementary,

then there exists a strong (ε, n,Γ)-decomposable complement KX +B+ of KX +B.

Proof. When ε = 0, the assertion is the special case (i.e. M ′ = 0) of Corollary 6.28.
Therefore, we may assume ε > 0. Replacing Λ with its closure, we may assume that
Λ is closed. Replacing X with its small Q-factorial modification, we may assume
that X is Q-factorial.

By the proof of [FM20, Theorem 1.3], there exists a finite subset Λ0 ⊂ Λ depending
only on d, Λ and ε with the following condition:

(♠) If (X,B) is a pair satisfying the assumptions in the statement, then there
exists a boundary B+ of X such that B+ ≥ B, B+ ∈ Λ0 and (X,B+) is
(ε,R)-complementary.

Then the assertion follows from Theorem 6.26. Note that in [FM20, Theorem 1.3],
the rationality condition Λ ⊂ Q is assumed. However, for proving (♠), their proof
works even for our setting Λ = Λ ⊂ R. �

Remark 6.30. (1) Some results on the boundedness of complements are proved
in [CH21] for surfaces (not necessarily of Fano type).

(2) Corollary 6.28 is proved in [Che, Theorem 1.3] for Λ ⊂ [0, 1].
(3) Corollary 6.29 is proved in [CX22, Theorem 1.5]. Corollary 6.29 is still open

for generalized pairs in general.
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