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Abstract. Let G be a finite group. If n ≤ 5 then any n-dimensional homotopy sphere never admits
a smooth action of G with exactly one fixed point. Let An and Sn denote the alternating group and
the symmetric group on some n letters. If n ≥ 6 then the n-dimensional sphere possesses a smooth
action of A5 with exactly one fixed point. Let V be an n-dimensional real G-representation with
exactly one fixed point. It is interesting to ask whether there exists a smooth G-action with exactly
one fixed point on the n-dimensional sphere such that the associated tangential G-representation
is isomorphic to V . In this paper, we study this problem for nonsolvable groups G and real G-
representations V satisfying certain hypotheses. Applying a theory developed in this paper, we can
prove that the n-dimensional sphere has an effective smooth action of S5 with exactly one fixed

point if and only if n = 6, 10, 11, 12, or n ≥ 14 and that the n-dimensional sphere has an effective
smooth action of A5 × Z with exactly one fixed point if n satisfies n ≥ 6 and n ̸= 9, where Z is a

group of order 2.

1. Introduction

Throughout this paper, manifolds and group actions on manifolds are considered in the smooth

category. We denote by Sn the (standard) sphere of dimension n. Let Z and N denote the ring of

integers and the set of natural numbers. For integers a and b, let [a..b] denote the set {n ∈ Z | a ≤ n ≤

b} and [a..∞) the set
∪

b∈N [a..b]. Let G be a finite group and let S(G) denote the set of subgroups

of G. For a natural number m, we call a G-action on a manifold M an m-fixed-point action if the

G-fixed-point set MG of M consists of exactly m points. Let V be a real G-representation (of finite

dimension) with the trivial G-fixed-point set, i.e. V G = {0}, and let R be the real G-representation

of dimension 1 with the trivial G-action. Let D(V ) (resp. S(V )) be the unit disk (resp. sphere) of

V with respect to a G-invariant inner-product on V . The unit sphere S(R ⊕ V ) of R ⊕ V has two

G-fixed points. In 1946, D. Montgomery and H. Samelson [16] gave a comment that if a G-action on

a sphere has a G-fixed point then it would have a second G-fixed point. Since then, we have been

interested in one-fixed-point actions on spheres.

We refer to a closed manifold which is homotopy equivalent to a sphere as a homotopy sphere.

This raises the question whether there is a one-fixed-point G-action on Sn for a group G possessing

a one-fixed-point G-action on an n-dimensional homotopy sphere. Owing to E. Laitinen–P. Traczyk
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[14], M. Furuta [9], [18], S. Demichelis [7], N.P. Buchdahl–S. Kwasik–R. Schultz [6], and S. Kwasik–

R. Schultz [11], there are no one-fixed-point actions of finite groups on n-dimensional homotopy

spheres with n ≤ 5. We call a G-action on a disk (resp. sphere) linear if it is G-diffeomorphic

to D(V ) (resp. S(V )) for some G-representation V . There exists a one-fixed-point G-action on a

homotopy sphere of dimension n if and only if there exists a fixed-point-free G-action on Dn of which

the restriction to the boundary ∂Dn is linear. Therefore, the study of one-fixed-point G-actions on

spheres is closely related to the study of fixed-point-free G-actions on disks with G-linear boundary.

For a principal ideal domain R, we call a closed manifold M an R-homology sphere if the homology

groups of M with coefficients in R are isomorphic to those of the sphere of the same dimension. By

a homology sphere, we mean a Z-homology sphere. If a homology sphere has a one-fixed-point action

of G then by R. Oliver [25, 26], G is not a mod-P hyper-elementary group, i.e. G dose not admit a

normal series P ⊴ H ⊴ G such that P and G/H are of prime-power order and H/P is cyclic, cf. [22,

Proposition 2.1]. Hereafter we refer to a finite group which is not a mod-P hyper-elementary group as

an Oliver group. Clearly, any (finite) nonsolvable group is an Oliver group. For the first time, E. Stein

[28] found examples of one-fixed-point actions on spheres, namely he proved that the 7-dimensional

sphere admits one-fixed-point actions of the groups SL(2, 5) ×Cr with (r, 30) = 1, i.e. r is a natural

number prime to 30, where Cr is a cyclic group of order r. T. Petrie [27] also constructed one-fixed-

point actions on high-dimensional spheres of finite abelian Oliver groups of odd order (these groups

have necessarily at least three noncyclic Sylow subgroups). We showed in E. Laitinen–M. Morimoto

[12] with help by [21] that for every Oliver group G, there are one-fixed-point G-actions on high-

dimensional spheres. (The case that G is a nonsolvable group such that |G/Gsol| is an odd integer

follows from E. Laitinen–M. Morimoto–K. Pawa lowski [13, Theorem A], too. Here Gsol stands for

the smallest normal subgroup N of G such that G/N is solvable.) By [17, 19, 20] and A. Bak–

M. Morimoto [2], there exists a one-fixed-point action of A5 on Sn if and only if n ≥ 6. On the

other hand, A. Borowiecka [4, Theorem 1.1] showed that any 8-dimensional homology sphere does

not admit effective one-fixed-point actions of SL(2, 5). A. Borowiecka–P. Mizerka [5] studied some

examples of pairs (G,n) of finite groups G with |G| ≤ 216 and natural numbers n ≤ 10 such that

there are no one-fixed-point G-actions on n-dimensional homotopy spheres. S. Tamura and the

author [24] also showed that any n-dimensional homology sphere does not admit one-fixed-point

actions of S5 if n ∈ {7, 8, 9, 13}. S. Tamura showed the non-existence of effective one-fixed-point

G-actions on Sn for G = A6, SL(2, 9), S6, PGL(2, 9), M10 and Aut(A6), and n ∈ TG, where M10 is

the Mathieu group of degree 10 and TG is a certain set of natural numbers depending on G, see [29,

Theorems 1.1 and 1.2]. In addition, P. Mizerka [15] and the author [22] showed the non-existence of

effective one-fixed-point G-actions on Sn for G = TL(2, 5) and n ∈ [0..13] ∪ {15, 16, 17, 21}, where
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TL(2, 5) is the group SmallGroup(240, 89) in GAP [10]. Recently we showed the results that S6 has

effective one-fixed-point actions of A5, A5 ×C2 and S5, that S7 has effective one-fixed-point actions

of A5 and A5 ×C2, and that for all natural numbers k and r with (r, 30) = 1, the spheres S3+4k and

S14+8k have effective one-fixed-point actions of SL(2, 5)×Cr and TL(2, 5)×Cr, respectively, see [23,

Theorem 1.3].

For a G-manifold X and a G-fixed point x0 of X, the tangent space Tx0
(X) of X at x0 is a real

G-representation and we call Tx0(X) the tangential G-representation of X at x0. For an Oliver group

G and a real G-representation V of dimension n, it is interesting to ask whether there exists a one-

fixed-point G-action on Sn such that the tangential G-representation of Sn and V are isomorphic

as real G-representations. In this paper we will give a construction theorem of one-fixed-point

actions on spheres for finite nonsolvable groups G and real G-representations V , i.e. Theorem 2.3.

Keys to proving the theorem are the reflection method, i.e. Lemma 6.1 with Theorem 5.12, and

the equivariant surgery theory under the modified weak gap condition, see Definition 2.4 and [23,

Lemma 8.1]. As applications of the theorem, we obtain the following two theorems.

Theorem 1.1. Let G be the symmetric group S5. Then there exists an effective one-fixed-point

G-action on Sn if and only if n = 6, 10, 11, 12, or n ≥ 14.

In Theorem 1.1, the necessity follows from the results quoted above, and the sufficiency will be

given in Section 3.

Henceforth, the trivial subgroup of G is denoted by E. We call a G-action on a manifold X

m-pseudofree if dimXH ≤ m for all H ∈ S(G) ∖ {E}. We call an m-pseudofree G-action on X

properly m-pseudofree if there is a subgroup H ∈ S(G) ∖ {E} such that dimXH = m. We remark

that the one-fixed-point actions on Sn for n = 6, 10 and 11, obtained in the proof of Theorem 1.1

are properly 3-pseudofree, properly 4-pseudofree and properly 5-pseudofree, respectively.

Theorem 1.2. Let Z be a group of order 2 and let G be the cartesian product A5 × Z. Then there

exists an effective one-fixed-point G-action on Sn if n satisfies n ≥ 6 and n 6= 9.

The proof of Theorem 1.2 will be given in Section 4.

We conjecture that there is a one-fixed-point action on S9 of G = A5 × Z, where |Z| = 2, such

that (S9)Z is diffeomorphic to S6. We remark that the one-fixed-point actions on Sn for n = 6, 7,

8 and 10, obtained in the proof of Theorem 1.2 are properly 3-pseudofree, properly 3-pseudofree,

properly 4-pseudofree and properly 5-pseudofree, respectively.

Acknowledgements. The author is grateful toward Shunsuke Tamura for his information on the

subgroup lattices of S5 and A5 × Z. The author would like to thank Krzysztof Pawa lowski and



4 MASAHARU MORIMOTO

Toshio Sumi for discussions with them on group actions on spheres. In addition, author’s gratitude

should go to the referees for their worthwhile comments.

2. Construction Theorem of one-fixed-point actions on spheres

For a finite group G, the set S(G) is an ordered set, i.e. for H, K ∈ S(G), we say H < K if H is a

proper subgroup of K. For a subset A of S(G), let max(A) (resp. min(A)) denote the set of maximal

(resp. minimal) elements of A with respect to the order on A inherited from S(G). For a real G-

representation V (resp. a G-manifold X), let V (A) (resp. X(A)) denote the union
∪

K V K (resp.∪
K XK) where K ranges over A. We mean by dimV (A) (resp. dimX(A)) the maximum of dim V K

(resp. dimXK), where K ranges over A. Let S(G)sol denote the set of solvable subgroups of G and

set S(G)nonsol = S(G)∖S(G)sol. For a subset F of S(G), let Fsol denote the set F ∩S(G)sol. In the

case where G is nonsolvable, by [8, (1.3.2), (1.3.3) and Proposition 1.3.5], there is a unique element

βG of the Burnside ring Ω(G) of G such that χL(βG) = 0 for all L ∈ S(G)nonsol and χH(βG) = 1

for all H ∈ S(G)sol. Let V be a real G-representation. We say that V is S(G)nonsol-free if V L = 0

for all L ∈ S(G)nonsol. For the G-connected-sum operation associated with [G/G]−βG on G-framed

maps with the target manifold D(V ) or S(R⊕ V ), we need the next definition.

Definition 2.1. Let V be an S(G)nonsol-free real G-representation. We say that V is ample for βG

if

Iso(G, βG) ∖ max(S(G)sol) ⊂ Iso(G,V ∖ {0}).

Let M , H and K be subgroups of G. We say that H is M -conjugate (resp. M -subconjugate)

to K if there is g ∈ M such that H = gKg−1 (resp. H ⊂ gKg−1). We denote by (H)G,M the

M -conjugacy class of H in S(G), i.e.

(H)G,M = {gHg−1 | g ∈M}.

In the case G = M , we set (H)G = (H)G,M . We write (K)G ≤ (H)G if K is G-subconjugate to H.

For H and M ∈ S(G), define UG(H), VG(H), and VM,G(H) by

UG(H) = {K ∈ S(G) | H < K},

VG(H) = {K ∈ S(G) | K is not G-subconjugate to H}, and

VM,G(H) = S(M) ∖
∪

K∈(H)G

S(K ∩M).

The next proposition will be used in Sections 3 and 4.

Proposition 2.1. Let V and W be S(G)nonsol-free real G-representations. If V is ample for βG and

V ⊂W then W is ample for βG.
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Proof. Since V ∖ {0} ⊂W ∖ {0}, we get

Iso(G, βG) ∖ max(S(G)sol) ⊂ Iso(G,V ∖ {0}) ⊂ Iso(G,W ∖ {0}).

□

Let F and H be sets of subgroups of G such that F ⊂ H. We say that F is upwardly closed in

H or that F is an upwardly closed subset of H, if K belongs to F whenever H ∈ F , K ∈ H and

H ⊂ K. In the case where a complete set F∗ of representatives of G-conjugacy classes of subgroups

in F and a subset K of F are specified, let K∗ denote the set K ∩ F∗.

Definition 2.2. Let G be a nonsolvable group and let F and F ′ be G-conjugation-invariant, up-

wardly closed subsets of S(G)sol satisfying

(1) max(S(G)sol) ⊂ F ′ ⊂ F and F ∖ F ′ ⊂ min(F).

We say that (F ,F ′) is G-simply organized if there are a complete set F∗ of representatives of G-

conjugacy classes contained in F , i.e. F =
⨿

H∈F∗(H)G, and a map ρmax : F∗ → max(S(G)sol)
∗

satisfying the next conditions (2) and (3).

(2) NG(H) ⊂ ρmax(H) for any H ∈ F∗.

(3) (H)G ∩ S(ρmax(H)) = (H)ρmax(H) for any H ∈ F ′∗.

Let ρmax : F → max(S(G)sol)
∗ denote the G-conjugation-invariant extension of the map ρmax

above, i.e. the equality ρmax(K) = ρmax(H) holds if K is G-conjugate to a subgroup H in F∗. For

H ∈ F∗, we define the subset X (G, ρmax,H) of UM (H), where M = ρmax(H), by

(2.1) X (G, ρmax,H) = {K ∈ UM (H) | ρmax(K) 6= M}.

We set

(2.2) X (G, ρmax,F∗) =
∪

H∈F∗

X (G, ρmax,H).

For use of G-surgery theory, we quote the notions of ‘weak gap condition’ and ‘modified weak gap

condition’ from [23, Section 7]. Let V be a real G-representation and H a subgroup of G.

Definition 2.3. We say that V satisfies the weak gap condition at H if

(2.3) 2 dimV K ≤ dimV H

holds for all K ∈ UG(H).

Definition 2.4. We say that V satisfies the modified weak gap condition at H if the following

conditions (1)–(3) are fulfilled.

(1) V satisfies the weak gap condition at H.
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(2) If dimV H > 0, K ∈ UG(H), and 2 dimV K = dimV H , then

(i) K ⊂ NG(H),

(ii) K/H contains at most one element of order 2, and

(iii) dimV L + 1 < dimV K for all L ∈ UG(K)sol.

(3) If K1 ∈ UG(H)sol, K2 ∈ UG(H)sol and 2 dimV K1 = 2 dimV K2 = dimV H > 0, then the

smallest subgroup 〈K1,K2〉 of G containing K1 ∪K2 is solvable.

For a non-negative integer k, we set

(2.4)

H(G,V, k) = {K ∈ S(G)sol | dimV K = k},

H(G,V,≤ k) = {K ∈ S(G)sol | dimV K ≤ k}, and

F(0) = max(S(G)sol) ∪H(G,V, 0).

Let H and M be solvable subgroups of G such that H ⊂M . Then define Y(G,M,H) by

(2.5) Y(G,M,H) = {K ∈ UG(H)sol | K ∩M = H}.

Let Z(G,V,M,H) denote the set of pairs (K,L) consisting of K ∈ Y(G,M,H) ∖ H(G,V, 0) and

L ∈ UM (H) such that dimV K + dimV L + 1 = dimV H , and set

(2.6)
Z(G,V,M,H)1 = {K | (K,L) ∈ Z(G,V,M,H)}, and

Z(G,V,M,H)2 = {L | (K,L) ∈ Z(G,V,M,H)}.

Definition 2.5. Let V be an S(G)nonsol-free real G-representation, and let H and M be solvable

subgroups of G such that H ⊂ M . We say that V satisfies the (G,M)-cobordism gap condition at

H if the following conditions (1)–(3) are fulfilled.

(1) The following (A1) or (A2) holds.

(A1) (i) 2 dimV K + 1 < dimV H for all K ∈ Y(G,M,H) ∖H(G,V, 0), and

(ii) dimV K + dimV L + 1 ≤ dimV H for all K ∈ Y(G,M,H) ∖ H(G,V, 0) and

L ∈ UM (H).

(A2) (i) dimV H = 3,

(ii) Y(G,M,H) ⊂ H(G,V,≤ 1),

(iii) UM (H) ⊂ H(G,V, 0),

(iv) NG(K) ∩M = H for all K ∈ Y(G,M,H) ∩H(G,V, 1) ∩ Iso(G,V ∖ {0}), and

(v) (K)G,M = (K ′)G,M for all K, K ′ ∈ Y(G,M,H) ∩H(G,V, 1) ∩ Iso(G,V ∖ {0}).

(2) The following (B1) and (B2) both hold for all K ∈ X (G, ρmax,H) ∖H(G,V, 0).

(B1) dimV K = 1, and

(B2) NG(K) ∩M = K.

(3) In the case Z(G,V,M,H)1 6= ∅, the following (C1) or (C2) holds.

(C1) (i) dimV H ≥ 5,
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(ii) dimV L + 2 < dimV H for all L ∈ UM (H),

(iii) dimV L ≥ 2 for all L ∈ Z(G,V,M,H)2, and

(iv) dimV ⟨L1,L2⟩ + 1 < dimV L1 for all L1, L2 ∈ Z(G,V,M,H)2 with L1 6= L2.

(C2) (i) dimV H ≥ 4,

(ii) Z(G,V,M,H)1 ⊂ H(G,V, 1), and

(iii) NG(K) ∩M = H for all K ∈ Z(G,V,M,H)1 ∩ Iso(G,V ∖ {0}).

Proposition 2.2. Let V , H andM be as in Definition 2.5. Suppose V satisfies the (G,M)-cobordism

gap condition at H. If dimV H = 4 and Z(G,V,M,H)1 6= ∅ then Y(G,M,H) ∖ H(G,V, 0) ⊂

Z(G,V,M,H)1. Therefore if Z(G,V,M,H)1 6= ∅ and Y(G,M,H)∖ (H(G,V, 0) ∪ Z(G,V,M,H)1)

6= ∅ then dimV H ≥ 5.

Proof. To prove the first claim, we suppose dim V H = 4. By Definition 2.5 (1) (A1) (i), we have

2 dimV K < 3 for all K ∈ Y(G,M,H), which means dim V K ≤ 1 for all K ∈ Y(G,M,H). Since

Z(G,V,M,H)1 6= ∅, we get dimV (Y(G,M,H)) = 1. By Definition 2.5 (1) (A1) (ii), we have

1 + dimV L + 1 ≤ 4 for all L ∈ UM (H), which means dimV L ≤ 2 for all L ∈ UM (H). Since

Z(G,V,M,H)1 6= ∅, we get dimV (UM (H)) = 2. For K ′ ∈ Y(G,M,H) ∖ Z(G,V,M,H)1, it must

hold that dimV K′
+ dimV (UM (H)) + 1 < dimV H = 4, which implies dim V K′

= 0 and hence

K ′ ∈ H(G,V, 0).

The second claim immediately follows from the first claim. □

Now we are ready to state a construction result of one-fixed-point G-actions on spheres for a given

nonsolvable group G and a given real G-representation V .

Theorem 2.3 (cf. [23, Theorem 11.2]). Let G be a nonsolvable group and V an S(G)nonsol-free real

G-representation of dimension n > 5 which is ample for βG. Let (F ,F ′) be a G-simply organized

pair with ρmax : F∗ → max(S(G)sol)
∗, where F ′ ⊂ F are upwardly closed G-conjugation-invariant

subsets of S(G)sol. Suppose V satisfies the following conditions (D1)–(D4).

(D1) For H ∈ F∗ ∖H(G,V, 0), if an element H ∈ UG(H)sol ∩ Iso(G,V ∖ {0}) satisfies V H = V H

then F ∩ UG(H) ⊂ S(ρmax(H)) and ρmax(H) = ρmax(H).

(D2) The (G, ρmax(H))-cobordism gap condition at H for all H ∈ (F∗ ∩ Iso(G,V ∖ {0})) ∖F(0).

(D3) dimV H = 3 or dimV H ≥ 5 for all H ∈ S(G)sol ∖ F .

(D4) The modified weak gap condition at H for all H ∈ S(G)sol ∖ F .

Then there exists a one-fixed-point G-action on the standard sphere S of the same dimension as V ,

say SG = {x0}, possessing the following properties (1)–(4).

(1) Tx0
(S) ∼= V as real G-representations.
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(2) SL = {x0} for all L ∈ S(G)nonsol.

(3) SH is NG(H)-diffeomorphic to a standard sphere for each H ∈ F .

(4) SH is a homotopy (resp. homology) sphere for each H ∈ S(G)sol∖F with dimV H ≥ 5 (resp.

dimV H = 3).

By the same argument as the proof of [23, Theorem 11.2], Theorem 2.3 follows from Theorem 2.4

below. In this paper, let I denote the closed interval [0, 1]. We call a homotopy Ξ : (X, ∂X) × I →

(Y, ∂Y ) a homotopy rel. ∂ if Ξ(x, t) = Ξ(x, 0) for all x ∈ ∂X and t ∈ I.

Theorem 2.4 (cf. [23, Theorem 11.1]). Let G, V , (F ,F ′) and ρmax : F∗ → max(S(G)sol)
∗ be those

in Theorem 2.3. Then there exist a G-action on the disk D of the same dimension as V with DG = ∅

and a G-map η : (D, ∂D) → (D(V ), ∂D(V )) possessing the following properties (1)–(4).

(1) η|∂D : ∂D → ∂D(V ) is the identity map.

(2) DL = ∅ for all L ∈ S(G)nonsol.

(3) ηH : DH → D(V )H is NG(H)-homotopic rel. ∂ to a diffeomorphism for each H ∈ F .

(4) ηH : DH → D(V )H is a homotopy equivalence (resp. homology equivalence) rel. ∂ for each

H ∈ S(G)sol ∖ F with dimV H ≥ 5 (resp. dimV H = 3).

This theorem will be proved in Section 6. The next proposition will be used in Sections 3 and 4.

Proposition 2.5. Let G, F , F∗ and ρmax be those in Theorem 2.3. Let V be a real G-representation

having the property:

(D1′) K ⊂ ρmax(H) and ρmax(K) = ρmax(H) for all H ∈ F∗ and K ∈ UG(H)sol such that

V H = V K .

Then an arbitrary real G-representation W containing V inherits the property (D1′) from V .

Proof. Let H ∈ F∗ and K ∈ UG(H)sol and suppose WH = WK . Let W = V ⊕ U be a direct-sum

decomposition of W into two real G-representations V and U . It is clear that WH = V H ⊕ UH ,

WK = V K ⊕ UK , V H ⊃ V K and UH ⊃ UK . Therefore we get V H = V K , which concludes

K ⊂ ρmax(H) and ρmax(K) = ρmax(H). □

3. Proof of Theorem 1.1

Let S5 (resp. A5) denote the symmetric group (resp. the alternating group) on the five letters 1,

2, . . . , 5. Throughout the current section, we set G = S5. We fix subgroups of S5 as follows.

S4 (resp. A4) the symmetric group (resp. the alternating group) on the letters 2, 3, 4, 5.

S3 the symmetric group on the letters 1, 2, 3.
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C2 = 〈(4, 5)〉, C4 = 〈(2, 4, 3, 5)〉, and C6 = 〈(1, 2, 3)(4, 5)〉 (cyclic groups).

S3C2 = 〈(1, 2), (1, 2, 3), (4, 5)〉 (∼= S3 × C2).

C2 = 〈(2, 3)(4, 5)〉, C3 = 〈(1, 2, 3)〉, and C5 = 〈(1, 2, 3, 4, 5)〉 (cyclic groups).

D4 = 〈(2, 3)(4, 5), (2, 4)(3, 5)〉, D6 = 〈(1, 2, 3), (2, 3)(4, 5)〉, and

D10 = 〈(1, 2, 3, 4, 5), (2, 5)(3, 4)〉 (dihedral groups).

D4 = 〈(2, 3), (2, 3)(4, 5)〉, and D8 = 〈(2, 4, 3, 5), (2, 3)〉 (dihedral groups).

F20 = 〈(1, 2, 3, 4, 5), (2, 3, 5, 4)〉 ((2, 3, 5, 4)2 = (2, 5)(3, 4) and ord(F20) = 20).

We tabulate the normalizers of subgroups of S5 in Table 3.1.

H A5 S4 F20 S3C2 A4 D10 D8 S3 D6 C6

NG(H) G S4 F20 S3C2 S4 F20 D8 S3C2 S3C2 S3C2

H C5 D4 D4 C4 C3 C2 C2 E
NG(H) F20 D8 S4 D8 S3C2 S3C2 D8 G

Table 3.1

The Hasse diagram of subgroups of S5 (up to conjugations) is as in Diagram 3.1.
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{
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D

D
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S3C2

}}
}}
}}
}}
}}
}}
}}
}

��
��
��
��
��
��
��
��
��
��
��
�

t
t
t
t
t
t
t
t
t
t

BB
BB

BB
BB

BB
BB

BB
B F20

�
�
�
�
�
�
�
�
�

A5

�
�
�
�
�
�
�

�

0
0
0
0
0
0

D8

AA
AA

AA
AA

AA
AA

AA
A

��
��
��

A4

�
�
�
�
�
�
�
�
�
�
�
�

D4

**
**
**
**
**
**
**
**
* S3

�
�
�
�
�
�
�
�

II
II

II
II

II
II

II
II

II
II

II
II

II
II

I D6

/
/
/
/
/
/ D4 D10

�
�
�
�
�
�

C4

C6

��
��
��

UUUU
UUUU

UUUU
UUUU

UUU C2

��
��
��
��
��
�

C2

XXXXX
XXXXX

XXXXX
XXXXX

XXXXX C3 C5

nnn
nnn

nnn
nn

E

Diagram 3.1

Here a real (resp. dotted) line from a lower subgroup H to an upper subgroup K indicates gHg−1◁K

(resp. gHg−1 < K) for some g ∈ G. We assign ρmax(H) to H as in Table 3.2.

Let Fmax be S(G)sol ∖ {E}, let F ′
max be Fmax ∖ (C2)G, let Fmax

∗ be the set of subgroups listed

as H in Table 3.2, and let ρmax : Fmax
∗ → max(S(G)sol)

∗ be the map given by Table 3.2. In the
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H S4 F20 S3C2 A4 D10 D8 S3 D6 C6

ρmax(H) S4 F20 S3C2 S4 F20 S4 S3C2 S3C2 S3C2

H C5 D4 D4 C4 C3 C2 C2

ρmax(H) F20 S4 S4 S4 S3C2 S3C2 S4

Table 3.2

remainder of this section, restrictions of ρmax to subsets of Fmax
∗ will be denoted by ρmax, too. We

give Diagram 3.2 below to grasp inductive steps of S5-surgeries on S5-framed maps.

S4

�
�
�
�
�
�

S3C2

}}
}}
}}
}}
}}
}}
}}
}

��
��
��
��
��
��
��
��
��
��
��
�

t
t
t
t
t
t
t
t
t
t

BB
BB

BB
BB

BB
BB

BB
B F20

�
�
�
�
�
�
�
�
�

D8

AA
AA

AA
AA

AA
AA

AA
A

��
��
��

�
�

�
A4

�
�
�
�
�
�
�
�
�
�
�
�

D4

**
**
**
**
**
**
**
**
*

//

�

�
�
�
q h a

S3

�
�
�
�
�
�
�
�

II
II

II
II

II
II

II
II

II
II

II
II

II
II

I D6

/
/
/
/
/
/ D4

ff

D10

�
�
�
�
�
�

C4

UU+
+
+
+
+
+
+
+
+

C6

��
��
��

UUUU
UUUU

UUUU
UUUU

UUU C2

��
��
��
��
��
�

``B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B

C2

XXXXX
XXXXX

XXXXX
XXXXX

XXXXX

HH�������������������������������
C3

VV-------------------------------
C5

nnn
nnn

nnn
nn

]]

E

Diagram 3.2

In the diagram above, an arrow from a lower subgroup H to an upper subgroup K indicates

ρmax(H) = K and K ◁ρmax(H), and a dotted arrow from a lower subgroup H to an upper subgroup

K indicates ρmax(H) = K and K 6◁ ρmax(H). We can check straightforwardly the next proposition.

Proposition 3.1. Let F = Fmax, F∗ = Fmax
∗ and ρmax : F∗ → max(S(G)sol)

∗ be those given

above. Let H ∈ F∗ and M = ρmax(H). Then (H)G ∩ S(M) = (H)M (resp. (H)G ∩ S(M) 6= (H)M )

if H 6= C2 (resp. H = C2).

Therefore we have the next fact.

Proposition 3.2. The pair (Fmax,F ′
max) is G-simply organized with respect to ρmax : Fmax

∗ →

max(S(G)sol)
∗ given above.

We can check straightforwardly the next proposition.

Proposition 3.3. Let F = Fmax, F∗ = Fmax
∗ and ρmax : F∗ → max(S(G)sol)

∗ be those in

Proposition 3.1. Then the following holds.
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(1) In the case H = A4 and M = S4, X (G, ρmax,H) = Y(G,M,H) = ∅.

(2) In the case H = D10 and M = F20, X (G, ρmax,H) = Y(G,M,H) = ∅.

(3) In the case H = D8 and M = S4, X (G, ρmax,H) = Y(G,M,H) = ∅.

(4) In the case H = D6 and M = S3C2, X (G, ρmax,H) = Y(G,M,H) = ∅.

(5) In the case H = C6 and M = S3C2, X (G, ρmax,H) = Y(G,M,H) = ∅.

(6) In the case H = S3 and M = S3C2,

(i) X (G, ρmax,H) = ∅,

(ii) Y(G,M,H) = {S4, S4
′}, where S4

′ is M -conjugate to S4, and

(iii) 〈S4, S4
′〉 = G.

(7) In the case H = C5 and M = F20, X (G, ρmax,H) = Y(G,M,H) = ∅.

(8) In the case H = D4 and M = S4, X (G, ρmax,H) = Y(G,M,H) = ∅.

(9) In the case H = D4 and M = S4,

(i) X (G, ρmax,H) = ∅,

(ii) Y(G,M,H) = {S3C2,S3C2
′}, where S3C2

′ is M -conjugate to S3C2, and

(iii) 〈S3C2,S3C2
′〉 = G.

(10) In the case H = C4 and M = S4,

(i) X (G, ρmax,H) = ∅, and

(ii) Y(G,M,H) = {F20
′,F20

′′}, where F20
′, F20

′′ are mutually M -conjugate subgroups

being G-conjugate to F20, and

(iii) 〈F20
′,F20

′′〉 = G.

(11) In the case H = C3 and M = S3C2,

(i) X (G, ρmax,H) = ∅,

(ii) Y(G,M,H) = {A4
′, A4

′′}, where A4
′, A4

′′ are mutually M -conjugate subgroups being

G-conjugate to A4, and

(iii) 〈A4
′, A4

′′〉 = A5.

(12) In the case H = C2 and M = S4,

(i) X (G, ρmax,H) = ∅,

(ii) Y(G,M,H) = {D6
′, D6

′′, D10
′, D10

′′}, where D6
′, D6

′′ (resp. D10
′, D10

′′) are mutu-

ally M -conjugate subgroups being G-conjugate to D6 (resp. D10), and

(iii) 〈K1,K2〉 = A5 for K1, K2 ∈ Y(G,M,H) with K1 6= K2.

(13) In the case H = C2 and M = S3C2,

(i) X (G, ρmax,H) = {D4,D4
′,D4

′′}, where D4
′ D4

′′ are M -conjugate to D4 ((D4)G ∩

S(M) = (D4)M ),

(ii) NG(K) ∩M = H for all K ∈ X (G, ρmax,H).
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(iii) Y(G,M,H) = {S3
′, S3

′′, S3
′′′}, where S3

′, S3
′′, S3

′′′ are mutually M -conjugate sub-

groups being G-conjugate to S3, and

(iv) 〈K1,K2〉 ∈ (S4)G for all K1, K2 ∈ Y(G,M,H) with K1 6= K2.

The proposition above indicates that for the ambient group G = S5, there may arise difficulties

in G-surgeries of isotropy types (H)G for H = D4, C4, C3, C2, and C2.

Lemma 3.4 ([23, Proposition 3.2]). The idempotent βG in the Burnside ring Ω(G) is given by the

formula

(3.1)
βG = [S5/S4] + [S5/F20] + [S5/(S3C2)]

− [S5/S3] − [S5/D4] − [S5/C4] + [S5/C2].

Therefore Iso(G, βG) is the union of (S4)G, (F20)G, (S3C2)G, (S3)G, (D4)G, (C4)G, and (C2)G.

There are 7 irreducible real S5-representations R, V1, V4, W4, V5, W5, and V6, up to isomorphisms,

with characters in Table 3.3.

e (4, 5) (1, 2)(4, 5) (1, 2, 3) (1, 2, 3, 4) (1, 2, 3, 4, 5) (1, 2, 3)(4, 5)
R 1 1 1 1 1 1 1
V1 1 −1 1 1 −1 1 −1
V4 4 −2 0 1 0 −1 1
W4 4 2 0 1 0 −1 −1
V5 5 −1 1 −1 1 0 −1
W5 5 1 1 −1 −1 0 1
V6 6 0 −2 0 0 1 0

Table 3.3

Using this character table, we can compute the fixed-point-set dimensions dim V H of the irreducible

real G-representations V for subgroups H of G. The result is tabulated in Table 3.4.
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S5 A5 S4 F20 S3C2 A4 D10 D8 S3

R 1 1 1 1 1 1 1 1 1
V1 0 1 0 0 0 1 1 0 0
V4 0 0 0 0 0 1 0 0 0
W4 0 0 1 0 1 1 0 1 2
V5 0 0 0 1 0 0 1 1 0
W5 0 0 0 0 1 0 1 1 1
V6 0 0 0 0 0 0 0 0 1

D6 C6 C5 D4 D4 C4 C3 C2 C2 E
R 1 1 1 1 1 1 1 1 1 1
V1 1 0 1 0 1 0 1 0 1 1
V4 1 1 0 0 1 1 2 1 2 4
W4 1 1 0 2 1 1 2 3 2 4
V5 1 0 1 1 2 2 1 2 3 5
W5 1 1 1 2 2 1 1 3 3 5
V6 0 1 2 1 0 1 2 3 2 6

Table 3.4

We draw the diagram of the fixed-point-set dimensions of V = V6.

S4
(0)

y
y
y

�
�
�
�
�
�

//agn
y

�
�

�

ggcc

G
G

G
G

G
G

G
G

G
G

G
G

G
G

G
G

G
G

G
GVV

.
.
.
.
.
.
.
.
.
. S3C2

(0)

xx
xx
xx
xx
xx
xx
xx
xx
x

��
��
��
��
��
��
��
��
��
��
��
��
�

p p p p p p p p p p p p

GG
GG

GG
GG

GG
GG

GG
GG

GGXX

00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00

F20
(0)

�
�
�
�
�
�
�
�
�
� ``

D8
(0)

FF
FF

FF
FF

FF
FF

FF
FF

F

yy
yy
yy

A4
(0)

�
�
�
�
�
�
�
�
�
�
�
�
�

D4
(1)

,,
,,
,,
,,
,,
,,
,,
,,
,,

S3
(1)

�
�
�
�
�
�
�
�
�

MMM
MMM

MMM
MMM

MMM
MMM

MMM
MMM

MMM
MMM

MMM
MM

D6
(0)

3
3

3
3

3
3 D4

(0) D10
(0)
















C4
(1)

C6
(1)

yy
yy
yy

WWWWW
WWWWW

WWWWW
WWWWW

WWW C2
(2)

��
��
��
��
��
��

C2
(3)

YYYYYY
YYYYYY

YYYYYY
YYYYYY

YYYYYY
Y C3

(2) C5
(2)

kkk
kkk

kkk
kkk

k

E(6)

Diagram 3.3

In the diagram above, H(k) indicates dimV H = k.

Proposition 3.5. Let V be an S(G)nonsol-free real G-representation. If V contains a G-subrepresentation

isomorphic to V6 then V is ample for βG.
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Proof. We obtain the equality

(3.2) Iso(G,V6 ∖ {0}) = (S3)G ∪ (C6)G ∪ (C5)G ∪ (D4)G ∪ (C4)G ∪ (C3)G ∪ (C2)G ∪ (C2)G ∪ {E}

from Diagram 3.3. This and Lemma 3.4 imply that V6 is ample for βG. By Proposition 2.1, V is

ample for βG. □

Proposition 3.6. Let F = Fmax, F∗ = Fmax
∗ and ρmax be those given in Proposition 3.1. If an

S(G)nonsol-free real G-representation V contains a subrepresentation isomorphic to V6 then V has

the property (D1′).

Proof. By Proposition 2.5, it suffices to prove that V6 has the property (D1′). Let H ∈ F∗ and

K ∈ UG(H)sol such that V H = V K . Observing Diagram 3.3, we can see that dim V H
6 = dimV K

6 = 0,

K ⊂ ρmax(H) and ρmax(K) = ρmax(H). □

We can readily obtain Table 3.5 from Table 3.4.

H A5 S4 F20 S3C2 A4 D10 D8 S3 D6 C6

V6
⊕k 0 0 0 0 0 0 0 k 0 k

V6
⊕k ⊕ V4 0 0 0 0 1 0 0 k 1 k + 1

V ⊕k
6 ⊕ V5 0 0 1 0 0 1 1 k 1 k

V ⊕k
6 ⊕W5 0 0 0 1 0 1 1 k + 1 1 k + 1

V6
⊕k ⊕ V4

⊕2 0 0 0 0 2 0 0 k 2 k + 2

V6
⊕k ⊕ V4 ⊕ V5 0 0 1 0 1 1 1 k 2 k + 1

V6
⊕k ⊕ V4

⊕2 ⊕ V5 0 0 1 0 2 1 1 k 3 k + 2

H C5 D4 D4 C4 C3 C2 C2 E

V6
⊕k 2k k 0 k 2k 3k 2k 6k

V6
⊕k ⊕ V4 2k k 1 k + 1 2k + 2 3k + 1 2k + 2 6k + 4

V6
⊕k ⊕ V5 2k + 1 k + 1 2 k + 2 2k + 1 3k + 2 2k + 3 6k + 5

V6
⊕k ⊕W5 2k + 1 k + 2 2 k + 1 2k + 1 3k + 3 2k + 3 6k + 5

V6
⊕k ⊕ V4

⊕2 2k k 2 k + 2 2k + 4 3k + 2 2k + 4 6k + 8

V6
⊕k ⊕ V4 ⊕ V5 2k + 1 k + 1 3 k + 3 2k + 3 3k + 3 2k + 5 6k + 9

V6
⊕k ⊕ V4

⊕2 ⊕ V5 2k + 1 k + 1 4 k + 4 2k + 5 3k + 4 2k + 7 6k + 13

Table 3.5

For each n ∈ {6, 10, 11, 12}∪[14..∞), let V (n) be the real G-representations of dimension n defined

by

(3.3) V (n) =



V6
⊕k for n = 6k with k ≥ 1

V6
⊕k ⊕ V4 for n = 6k + 4 with k ≥ 1

V6
⊕k ⊕ V5 for n = 6k + 5 with k ≥ 1

V6
⊕k ⊕ V4

⊕2 for n = 6k + 8 with k ≥ 1

V6
⊕k ⊕ V4 ⊕ V5 for n = 6k + 9 with k ≥ 1

V6
⊕k ⊕ V4

⊕2 ⊕ V5 for n = 6k + 13 with k ≥ 1.
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In the rest of this section, we give F as follows.

(3.4) F =



S(G)sol ∖ ({E} ∪ (C2)G) (n = 6k with k ≥ 1)

S(G)sol ∖ {E} (n = 10)

S(G)sol ∖ ({E} ∪ (C2)G) (n = 6k + 4 with k ≥ 2)

S(G)sol ∖ ({E} ∪ (C2)G) (n = 6k + 5 with k ≥ 1)

S(G)sol ∖ ({E} ∪ (C2)G ∪ (C3)G) (n = 14)

S(G)sol ∖ ({E} ∪ (C2)G ∪ (C2)G ∪ (C3)G) (n = 6k + 8 with k ≥ 2)

S(G)sol ∖ ({E} ∪ (C2)G) (n = 6k + 9 with k ≥ 1)

S(G)sol ∖ ({E} ∪ (C2)G) (n = 6k + 13 with k ≥ 1).

and set F ′ = F ∖ (C2)G. Further let F∗ be the set of subgroups H in Table 3.2 satisfying H ∈ F ,

and let ρmax : F∗ → max(S(G)sol)
∗ be the map given by Table 3.2. Note that

(3.5) (S4)G ∪ (S3C2)G ⊂ H(G,V (n), 0).

Proposition 3.3 implies

(3.6) X (G, ρmax,F∗) ∖H(G,V (n), 0) ⊂ (D4)G

and

(3.7)
∪

H∈F∗∖F(0)

Y(G, ρmax(H),H) ∖H(G,V (n), 0) ⊂ (F20)G ∪ (A4)G ∪ (S3)G ∪ (D6)G ∪ (D10)G.

It is helpful in the following arguments to keep (3.6) and (3.7) in mind.

Case n = 6k (k ≥ 1). The fixed-point-set dimensions of V = V (n) are as in Diagram 3.4.

S4
(0)

x
x
x

�
�
�
�
�
�

//afn
x

�
�

�

ggcc

H
H

H
H

H
H

H
H

H
H

H
H

H
H

H
H

H
H

H
HVV

.
.
.
.
.
.
.
.
.
. S3C2

(0)

ww
ww
ww
ww
ww
ww
ww
ww
w

��
��
��
��
��
��
��
��
��
��
��
��
�

o o o o o o o o o o o o

HH
HH

HH
HH

HH
HH

HH
HH

HHXX

11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
1 F20

(0)

�
�
�
�
�
�
�
�
�
� ``

D8
(0)

GG
GG

GG
GG

GG
GG

GG
GG

G

xx
xx
xx

A4
(0)

�
�
�
�
�
�
�
�
�
�
�
�
�

D4
(k)

--
--
--
--
--
--
--
--
--
- S3

(k)

�
�
�
�
�
�
�
�
�

MMM
MMM

MMM
MMM

MMM
MMM

MMM
MMM

MMM
MMM

MMM
MM

D6
(0)

5
5

5
5

5
5

5 D4
(0) D10

(0)

	
	
	
	
	
	
	

C4
(k)

C6
(k)

xx
xx
xx

WWWWW
WWWWW

WWWWW
WWWWW

WW C2
(2k)

		
		
		
		
		
		
	

C2
(3k)

YYYYYY
YYYYYY

YYYYYY
YYYYYY

YYYYYY
Y C3

(2k) C5
(2k)

kkkk
kkkk

kkkk
k

E(6k)

Diagram 3.4
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Clearly, we have

(3.8) Iso(G,V ∖ {0}) = Iso(G,V6 ∖ {0}).

Recall that in this case, F = S(G)sol∖({E}∪(C2)G) and F ′ = F . There are no pairs (H,K) such that

H ∈ F∗∖H(G,V, 0), K ∈ UG(H)sol∩ Iso(G,V ∖{0}) and dimV H = dimV K . The condition (D1) of

Theorem 2.3 is obviously fulfilled. We have X (G, ρmax,F∗) = ∅, Y(G, ρmax(H),H) ∖H(G,V, 0) = ∅

and Z(G,V, ρmax(H),H) = ∅ for allH ∈ (F∗∩Iso(G,V∖{0}))∖F(0). Therefore (D2) in Theorem 2.3

is fulfilled. Recall S(G)sol ∖ F = {E} ∪ (C2)G. Observing Diagram 3.4, we can easily see that (D3)

and (D4) in Theorem 2.3 are fulfilled.

The fixed-point-set dimensions of V = V (6k + 4) are as in Diagram 3.5.

S4
(0)

t t t t

�
�
�
�
�
�
�
//`el

t
�




�
�

hhdd

JJ
JJ

JJ
JJ

JJ
JJ

JJ
JJ

JJ
JJ

JJ
JJ

JJ
JJ

JJ
JJ

JJ
JJ

JJ
JJ

JJWW

/
/
/
/
/
/
/
/
/
/ S3C2

(0)

tt
tt
tt
tt
tt
tt
tt
tt
tt
t

��
��
��
��
��
��
��
��
��
��
��
��
�

m m m m m m m m m m m m m m

II
II

II
II

II
II

II
II

IIXX

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1EE

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

F20
(0)

�
�
�
�
�
�
�
�
�
� bb

D8
(0)

JJ
JJ

JJ
JJ

JJ
JJ

JJ
JJ

JJ
J

uuu
uuu

u
A4

(1)

�
�
�
�
�
�
�
�
�
�
�
�
�

D4
(k)

..
..
..
..
..
..
..
..
..
. S3

(k)

�
�
�
�
�
�
�
�
�

OOO
OOO

OOO
OOO

OOO
OOO

OOO
OOO

OOO
OOO

OOO
OOO

O D6
(1)

9
9

9
9

9
9

9 D4
(1) D10

(0)

�
�
�
�
�
�
�

C4
(k+1)

C6
(k+1)

ttt
ttt

t

XXXXX
XXXXX

XXXXX
XXXXX

XX C2
(2k+2)

��
��
��
��
��
��
�

C2
(3k+1)

ZZZZZZZ
ZZZZZZZ

ZZZZZZZ
ZZZZZZZ

ZZZZ C3
(2k+2) C5

(2k)

iiii
iiii

iiii
iii

E(6k+4)

Diagram 3.5

Observing the diagram above, we get

(3.9) Iso(G,V ∖ {0}) = Iso(G,V6 ∖ {0}) ∪ (A4)G ∪ (D6)G.

We remark that UG(D4) ∩ S(G)sol ⊂ S4.

Case n = 10. In this case, F = S(G)sol ∖ {E} and F ′ = F ∖ (C2)G. Diagram 3.5 shows that if

H ∈ F∗ ∖H(G,V, 0) and K ∈ UG(H)sol ∩ Iso(G,V ∖ {0}) satisfies dimV H = dimV K , then H = D4

and K = A4. Therefore (D1) of Theorem 2.3 is fulfilled. It holds that dim V D4 = 1 and NG(K) ∩

S3C2 = K for all K ∈ (D4)G∩US3C2
(C2). By Diagram 3.5, we get Y(G, ρmax(H),H) ⊂ H(G,V,≤ 1)

for all H ∈ F∗ ∖ F(0). If H ∈ F∗ ∖ F(0) and K ∈ Y(G, ρmax(H),H) ∩ H(G,V, 1) then (H,K) ∈

{C3} × (A4)G, {C2} × (D6)G or {C2} × (S3)G. Note that dimV H = 4 and dimV (Uρmax(H)(H)) = 2

for H = C3, C2 and C2. By Proposition 3.3, the conditions (A1) and (C2) in Definition 2.5 are
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fulfilled at H = C3, C2 and C2 with M = ρmax(H). Recall X (G, ρmax,F∗) ⊂ (D4)G. The conditions

(B1), (B2) in Definition 2.5 (2) are fulfilled for H = C2 and K ∈ X (G, ρmax,C2) ∖ H(G,V, 0).

Now it is easy to see that V satisfies the (G, ρmax(H))-cobordism gap condition at H for all H ∈

(F∗ ∩ Iso(G,V ∖ {0})) ∖F(0), i.e. (D2) of Theorem 2.3 is fulfilled. Recall S(G)sol ∖F = {E}. It is

also clear that (D3) and (D4) of Theorem 2.3 are fulfilled.

Case n = 6k+ 4 (k ≥ 2). In this case, F = S(G)sol∖ ({E}∪ (C2)G) and F ′ = F . Diagram 3.5 shows

that if H ∈ F∗ ∖H(G,V, 0) and K ∈ UG(H)sol ∩ Iso(G,V ∖ {0}) satisfies dimV H = dimV K , then

H = D4 and K = A4. Therefore (D1) of Theorem 2.3 is fulfilled. Since X (G, ρmax,F∗) = ∅, there

is no need to check Definition 2.5 (1). Diagram 3.5 shows Y(G, ρmax(H),H) ⊂ H(G,V,≤ 1) for all

H ∈ F∗∖F(0). IfH ∈ F∗∖F(0) andK ∈ Y(G, ρmax(H),H)∩H(G,V, 1) then (H,K) ∈ {C3}×(A4)G

or (H,K) ∈ {C2}×(D6)G. Note that dimV H = 2k+2 and dimV (Uρmax(H)(H)) = k+1 for H = C3,

C2. We have

2 dimV K + 1 = 3 < 6 ≤ dimV H and

dimV K + dimV (Uρmax(H)(H)) + 1 = 1 + (k + 1) + 1 = k + 3 < 2k + 2 = dimV H

for (H,K) ∈ ({C3}× (A4)G)∪ ({C2}× (D6)G). Therefore the condition (A1) of Definition 2.5 (1) is

fulfilled and there is no need to check Definition 2.5 (3). Observing Diagram 3.5, we can see without

difficulties that (D2) of Theorem 2.3 is fulfilled. Recall S(G)sol ∖F = {E} ∪ (C2)G. It is easy to see

that (D3) and (D4) of Theorem 2.3 are fulfilled.

The fixed-point-set dimensions of V = V (6k + 5) (k ≥ 1) are as in Diagram 3.6.
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Diagram 3.6
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Observing the diagram above, we obtain

(3.10) Iso(G,V ∖ {0}) = Iso(G,V6 ∖ {0}) ∪ (F20)G ∪ (D8)G ∪ (D6)G ∪ (D4)G.

For n = 6k + 5 (k ≥ 1), F = S(G)sol ∖ ({E} ∪ (C2)G) and F ′ = F . Diagram 3.6 shows that

if H ∈ F∗ ∖ H(G,V, 0) and K ∈ UG(H)sol ∩ Iso(G,V ∖ {0}) satisfies dimV H = dimV K then

H = D10 and K = F20. Therefore (D1) of Theorem 2.3 is fulfilled. The same diagram shows

Y(G, ρmax(H),H) ⊂ H(G,V,≤ 1) for all H ∈ F∗ as well as X (G, ρmax,F∗) = ∅. If H ∈ F∗ ∖ F(0)

and K ∈ Y(G, ρmax(H),H) ∩H(G,V, 1) then (H,K) ∈ {C4} × (F20)G or (H,K) ∈ {C2} × ((D6)G ∪

(D10)G).

Case n = 11. Let H ∈ F∗ ∖ F(0) and K ∈ Y(G, ρmax(H),H) ∩ H(G,V, 1). Note that dimV H = 3

(resp. 5) and dimV (US4(H)) = 0 (resp. 2) for H = C4 (resp. C2). Recall Proposition 3.3 (10). In

the case where H = C4 and K ∈ UG(H) ∩ (F20)G, it holds that dim V K = 1 and NG(K) ∩ S4 = C4,

and therefore (A2) in Definition 2.5 (1) is fulfilled. In the case where H = C2 and K ∈ UG(H) ∩

((C10)G ∪ (C6)G), dimV K = 1 and dimV K + dimV (US4
(H)) + 1 < dimV H , and therefore (A1) in

Definition 2.5 (1) is fulfilled. Thus (D2) of Theorem 2.3 is fulfilled. Recall S(G)sol∖F = {E}∪(C2)G.

It is easy to see that (D3) and (D4) of Theorem 2.3 are fulfilled.

Case n = 6k + 5 (k ≥ 2). In this case, F = S(G)sol ∖ ({E} ∪ (C2)G) and F ′ = F . If H = C4 and

K ∈ UG(H) ∩ (F20)G then 2 dimV K + 1 = 3 < 4 ≤ k + 2 = dimV H and

dimV K + dimV (US4
(H)) + 1 = 1 + 1 + 1 = 3 < 4 ≤ k + 2 dimV H .

If H = C2 and K ∈ UG(H)∩((D6)G∪(D10)G) then we have 2 dimV K +1 = 3 < 7 ≤ 2k+3 = dimV H

and

dimV K + dimV (US4
(H)) + 1 = 1 + (k + 2) + 1 = k + 4 < 2k + 3 = dimV H .

Therefore (D2) of Theorem 2.3 is fulfilled. Recall S(G)sol ∖ F = {E} ∪ (C2)G. It is easy to see that

(D3) and (D4) of Theorem 2.3 are fulfilled.

The fixed-point-set dimensions of V = V (6k + 8) are as in Diagram 3.7.
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Diagram 3.7

Observing the diagram above, we get

(3.11) Iso(G,V ∖ {0}) = Iso(G,V6 ∖ {0}) ∪ (A4)G ∪ (D6)G.

Case n = 14. In this case, F = S(G)sol ∖ ({E} ∪ (C2)G ∪ (C3)G) and F ′ = F ∖ (C2)G. Diagram 3.7

shows that if H ∈ F∗ ∖ H(G,V, 0) and K ∈ UG(H) ∩ Iso(G,V ∖ {0}) satisfies dimV H = dimV K

then H = D4 and K = A4. Therefore (D1) of Theorem 2.3 is fulfilled. Recall X (G, ρmax,F∗) ⊂

(D4)G. Observing Diagram 3.7, we can easily see that dim V D4 = 1 and NG(K) ∩ S3C2 = K

for all K ∈ (D4)G ∩ US3C2
(C2). Diagram 3.7 shows that Y(G, ρmax(H),H) ⊂ H(G,V, 0) for all

H ∈ F∗ ∖ (F(0) ∪ (S3)G). Firstly note dim V K = 1 for all K ∈ X (G, ρmax,C2). Secondly note

dimV S3 = 1, dimV C2 = 5, and

dimV S3 + dimV (US3C2
(C2)) + 1 = 1 + 3 + 1 = 5 = dim V C2

as well as 2 dimV S3 + 1 = 3 < dimV C2 . Therefore (D2) of Theorem 2.3 is fulfilled. Recall S(G)sol ∖

F = {E} ∪ (C2)G ∪ (C3)G. It is easy to see that (D3) and (D4) of Theorem 2.3 are fulfilled.

Case n = 6k + 8 (k ≥ 2). In this case, F = S(G)sol ∖ ({E} ∪ (C2)G ∪ (C2)G ∪ (C3)G) and

F ′ = F . Diagram 3.7 shows that if H ∈ F∗ ∖H(G,V, 0) and K ∈ UG(H) ∩ Iso(G,V ∖ {0}) satisfies

dimV H = dimV K then H = D4 and K = A4. Therefore (D1) of Theorem 2.3 is fulfilled. Note that

X (G, ρmax,H) = ∅ and Y(G, ρmax(H),H) = ∅ for all H ∈ F∗∖F(0). Therefore (D2) of Theorem 2.3

is fulfilled. Recall S(G)sol ∖F = {E} ∪ (C2)G ∪ (C2)G ∪ (C3)G. It is easy to see that (D3) and (D4)

of Theorem 2.3 are fulfilled.
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Case n = 6k + 9 (k ≥ 1). The fixed-point-set dimensions of V = V (n) are as in Diagram 3.8.
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Diagram 3.8

Observing the diagram above, we get

(3.12) Iso(G,V ∖ {0}) = Iso(G,V6 ∖ {0}) ∪ (F20)G ∪ (A4)G ∪ (D8)G ∪ (D6)G ∪ (D4)G.

In the case, we have F = S(G)sol ∖ ({E} ∪ (C2)G) and F ′ = F . Diagram 3.8 shows that if H ∈

F∗ ∖ H(G,V, 0) and K ∈ UG(H) ∩ Iso(G,V ∖ {0}) satisfies dimV H = dimV K then H = D10

and K = F20. Therefore (D1) of Theorem 2.3 is fulfilled. We clearly get X (G, ρmax,F∗) = ∅. By

Diagram 3.8, we get
∪

H Y(G, ρmax(H),H) ⊂ H(G,V,≤ 2),
∪

H Y(G, ρmax(H),H) ∩ H(G,V, 1) ⊂

(A4)G ∪ (D10)G and
∪

H Y(G, ρmax(H),H) ∩ H(G,V, 2) ⊂ (D6)G, where H runs over F∗ ∖ F(0).

Since dimV C3 ≥ 5, V satisfies the (G,S3C2)-cobordism gap condition at C3. Note dimV C2 ≥ 7,

2 dimV D6 + 1 = 5 < 7 ≤ dimV C2 , and

dimV (US4(C2)) + dimV D6 + 1 = (k + 3) + 2 + 1 = k + 6 ≤ 2k + 5 = dimV C
2 ,

where the equality k + 6 = 2k + 5 holds only in the case k = 1. If k = 1 then the codimension

condition dimV C2 −dimV (US4(C2)) ≥ 3 is fulfilled. Observing Diagram 3.8, we can readily see that

V satisfies the (G,S4)-cobordism gap condition at C2. Therefore (D2) of Theorem 2.3 is fulfilled.

Recall S(G)sol ∖F = {E} ∪ (C2)G. It is easy to see that (D3) and (D4) of Theorem 2.3 are fulfilled.

Case n = 6k + 13 (k ≥ 1). The fixed-point-set dimensions of V = V (n) are as in Diagram 3.9.
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Diagram 3.9

Observing the diagram above, we obtain

(3.13) Iso(G,V ∖ {0}) = Iso(G,V6 ∖ {0}) ∪ (F20)G ∪ (A4)G ∪ (D8)G ∪ (D6)G ∪ (D4)G.

In the case, we have F = S(G)sol ∖ ({E} ∪ (C2)G) and F ′ = F . Diagram 3.9 shows that if H ∈

F∗ ∖ H(G,V, 0) and K ∈ UG(H) ∩ Iso(G,V ∖ {0}) satisfies dimV H = dimV K then H = D10

and K = F20. Therefore (D1) of Theorem 2.3 is fulfilled. Note that X (G, ρmax,F∗) = ∅ and

Y(G, ρmax(H),H) ⊂ H(G,V,≤ 3). We have dimV C3 = 2k + 5 ≥ 7, 2 dimV A4 + 1 = 4 + 1 = 5 <

dimV C3 , and

dimV (US3C2(C3)) + dimV A4 = (k + 2) + 2 < 2k + 5 = dimV C3 .

Therefore V satisfies the (G,S3C2)-cobordism gap condition at C3. We have dimV C2 = 2k+ 7 ≥ 9,

2 dimV D6 + 1 = 6 + 1 = 7 < dimV C2 , and

dimV (US4(C2)) + dimV D6 + 1 = (k + 4) + 3 + 1 = k + 8 ≤ 2k + 7 = dimV C2 ,

where the equality k + 8 = 2k + 7 holds only in the case k = 1. If k = 1 then the codimension

condition dimV C2 − dimV (US4(C2)) ≥ 3 is fulfilled. Observing Diagram 3.9, we can see that V

satisfies the (G,S4)-cobordism gap condition at C2. Therefore (D2) of Theorem 2.3 is fulfilled.

Recall S(G)sol ∖F = {E} ∪ (C2)G. It is easy to see that (D3) and (D4) of Theorem 2.3 are fulfilled.

Putting the arguments above together, we have shown that the data (G,V (n),F ,F ′,F∗, ρmax)

specified in this section satisfy the conditions required in Theorem 2.3. This completes the proof of

Theorem 1.1.



22 MASAHARU MORIMOTO

4. Proof of Theorem 1.2

Throughout this section, let Z be a group of order 2 and G = A5 × Z. As it is in [23, Section 7],

we identify subgroups H ∈ S(A5) with H × {e} ∈ S(G), respectively, and Z with {e} × Z ∈ S(G).

Let C2 be the subgroup of order 2 belonging to S(C2Z)∖{C2, Z}. Let D2n be the dihedral subgroup

of order 2n generated by Cn and C2. Table 4.1 below shows the subgroups H giving a complete set

of representatives of conjugacy classes of subgroups of G and the normalizers of H.

H G A5 A4Z D10Z D6Z A4 D10 D10 C5Z D4Z C3Z
NG(H) G G A4Z D10Z D6Z A4Z D10Z D10Z D10Z A4Z D6Z

H D6 D6 C5 D4 C2Z D4 C3 C2 C2 Z E
NG(H) D6Z D6Z D10Z A4Z D4Z A4Z D6Z D4Z D4Z G G

Table 4.1

The Hasse diagram of subgroups (up to conjugations) of G is as follows.
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Diagram 4.1

Assign ρmax(H) to H as in Table 4.2.
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H A4Z D10Z D6Z A4 D10 D10 C5Z D4Z C3Z

ρmax(H) A4Z D10Z D6Z A4Z D10Z D10Z D10Z A4Z D6Z

H D6 D6 C5 D4 C2Z D4 C3 C2 C2
ρmax(H) D6Z D6Z D10Z A4Z A4Z A4Z D6Z A4Z A4Z

Table 4.2

We can grasp the correspondence H 7−→ ρmax(H) from Diagram 4.2.
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Diagram 4.2

By [23, Proposition 3.1 and Remark 3.1], the idempotent βG in Ω(G) has the form

(4.1) βG = [G/A4Z] + [G/D10Z] + [G/D6Z] − [G/C3Z] − 2[G/C2Z] + [G/Z],

and therefore

(4.2) Iso(G, βG) = (A4Z)G ∪ (D10Z)G ∪ (D6Z)G ∪ (C3Z)G ∪ (C2Z)G ∪ (Z)G.

Let W3, W4 and W5 be irreducible real A5-representations of dimension 3, 4 and 5, respectively. We

obtain irreducible real G-representations V3,1, V3,2, V4,2 and V5,2 by V3,1 = W3⊗R, V3,2 = W3⊗R±,

V4,2 = W4 ⊗ R± and V5,2 = W5 ⊗ R±, respectively, where R± stands for the 1-dimensional real Z-

representation with nontrivial Z-action. The H-fixed-point-set dimensions of these G-representations

are as in Table 4.3.
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H E Z C2 C2 C3 D4 C2Z D4 C5

V3,1 3 3 1 1 1 0 1 0 1
V3,2 3 0 1 2 1 0 0 1 1
V4,2 4 0 2 2 2 1 0 1 0
V5,2 5 0 3 2 1 2 0 1 1

H C3Z D6 D6 D4Z C5Z D10 D10 A4 K
V3,1 1 0 0 0 1 0 0 0 0
V3,2 0 0 1 0 0 0 1 0 0
V4,2 0 1 1 0 0 0 0 1 0
V5,2 0 1 0 0 0 1 0 0 0

Table 4.3

where K ranges over {A4Z,D6Z,D10Z}. We draw the diagram of H-fixed-point-set dimensions of

V3,1.
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Diagram 4.3

Observing the diagram above, we obtain

(4.3) Iso(G,V3,1 ∖ {0}) = (C5Z)G ∪ (C3Z)G ∪ (C2Z)G ∪ {Z}.

Note that

(4.4) max(S(G)sol) = (A4Z)G ∪ (D10Z)G ∪ (D6Z)G.

Comparing these with (4.2), we get

(4.5) Iso(G, βG) ⊂ max(S(G)sol) ∪ Iso(G,V3,1 ∖ {0}).

Therefore V3,1 is ample for βG.

Proposition 4.1. Let V be an S(G)nonsol-free real G-representation. If V contains a G-subrepresentation

isomorphic to V3,1 then V is ample for βG.
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Proof. This result follows from Proposition 2.1. □

Proposition 4.2. Let F = S(G)sol∖({E,Z}∪(C2)G). Let F∗ be the set of H appearing in Table 4.1

such that H ∈ F and let ρmax : F∗ → max(S(G)sol)
∗ be the map given by Table 4.2. If an S(G)nonsol-

free real G-representation V contains a subrepresentation isomorphic to V3,1 then V has the property

(D1′).

Proof. By Proposition 2.5, it suffices to prove the proposition for the case V = V3,1. Let H ∈ F∗

and K ∈ UG(H)sol such that V3,1
H = V3,1

K . Observing Diagram 4.3, we see that dim V3,1
H =

dimV3,1
K = 0, or (H,K) = (C2, C2Z), (C3, C3Z), (C5, C5Z). Therefore we can readily see that V3,1

has the property (D1′). □

In this section, we set V6 = V3,1 ⊕ V3,2, V7 = V3,1 ⊕ V4,2, V8 = V3,1 ⊕ V5,2 and V9,2 = V4,2 ⊕ V5,2.

Further define V (n) for n ∈ [6..∞) as follows.

(4.6) V (n) =



V6
⊕k (n = 6k with k ∈ N)

V7 ⊕ V6
⊕k (n = 6k + 7 with k ∈ N ∪ {0})

V8 ⊕ V6
⊕k (n = 6k + 8 with k ∈ N ∪ {0})

V3,2 ⊕ V6 (n = 9)

V9,2 ⊕ V6
⊕k (n = 6k + 9 with k ∈ N)

V4,2 ⊕ V6
⊕k (n = 6k + 4 with k ∈ N)

V5,2 ⊕ V6
⊕k (n = 6k + 5 with k ∈ N)

The H-fixed-point-set dimensions of the real G-representations above are as in Table 4.4.
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H E Z C2 C2 C3 D4 C2Z D4 C5

V6 6 3 2 3 2 0 1 1 2
V (7) 7 3 3 3 3 1 1 1 1
V (8) 8 3 4 3 2 2 1 1 2
V (9) 9 3 3 5 3 0 1 2 3
V9,0 9 0 5 4 3 3 0 2 1
V (10) 10 3 4 5 4 1 1 2 2
V (11) 11 3 5 5 3 2 1 2 3

V (6k + 6) 6k + 6 3k + 3 2k + 2 3k + 3 2k + 2 0 k + 1 k + 1 2k + 2
V (6k + 7) 6k + 7 3k + 3 2k + 3 3k + 3 2k + 3 1 k + 1 k + 1 2k + 1
V (6k + 8) 6k + 8 3k + 3 2k + 4 3k + 3 2k + 2 2 k + 1 k + 1 2k + 2
V (6k + 9) 6k + 9 3k 2k + 5 3k + 4 2k + 3 3 k k + 2 2k + 1
V (6k + 10) 6k + 10 3k + 3 2k + 4 3k + 5 2k + 4 1 k + 1 k + 2 2k + 2
V (6k + 11) 6k + 11 3k + 3 2k + 5 3k + 5 2k + 3 2 k + 1 k + 2 2k + 3

H C3Z D6 D6 D4Z C5Z D10 D10 A4 K
V6 1 0 1 0 1 0 1 0 0
V (7) 1 1 1 0 1 0 0 1 0
V (8) 1 1 0 0 1 1 0 0 0
V (9) 1 0 2 0 1 0 2 0 0
V9,0 0 2 1 0 0 1 0 1 0
V (10) 1 1 2 0 1 0 1 1 0
V (11) 1 1 1 0 1 1 1 0 0

V (6k + 6) k + 1 0 k + 1 0 k + 1 0 k + 1 0 0
V (6k + 7) k + 1 1 k + 1 0 k + 1 0 k 1 0
V (6k + 8) k + 1 1 k 0 k + 1 1 k 0 0
V (6k + 9) k 2 k + 1 0 k 1 k 1 0
V (6k + 10) k + 1 1 k + 2 0 k + 1 0 k + 1 1 0
V (6k + 11) k + 1 1 k + 1 0 k + 1 1 k + 1 0 0

Table 4.4

whereK ranges over {A4Z,D6Z,D10Z}. The table shows (A4Z)G∪(D10Z)G∪(D6Z)G ⊂ H(G,V (n), 0).

We remark that Cases n = 6 and n = 7 of Theorem 1.2 are already proved in [23, Section 12]. In

the rest of this section, we give F as follows

(4.7) F =

{
S(G)sol ∖ ({E,Z} ∪ (C2)G ∪ (C2)G ∪ (C3)G) (n = 7)

S(G)sol ∖ ({E,Z} ∪ (C2)G) (n ∈ {6, 8} ∪ [10, ..∞)).

We set F ′ = F . The set F∗ consists of the subgroups H in Table 4.2 such that H ∈ F . The map

ρmax : F∗ → max(S(G)sol)
∗ is given by Table 4.2. Therefore, by [23, Proposition 7.6], the pair

(F ,F ′) is G-simply organized and X (G, ρmax,F∗) = ∅.

Case n = 6k (k ≥ 1). The fixed-point-set dimensions of V = V (n) are as in Diagram 4.4.
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Diagram 4.4

Observing the diagram above, we get

(4.8)
Iso(G,V6 ∖ {0}) = (D10)G ∪ (C5Z)G ∪ (D6)G ∪ (C3Z)G ∪ (C5)G ∪ (D4)G

∪ (C2Z)G ∪ (C3)G ∪ (C2)G ∪ {Z} ∪ (C2)G ∪ {E}

and Iso(G,V ∖ {0}) = Iso(G,V6 ∖ {0}). Diagram 4.4 shows that there is no pair (H,K) such that

H ∈ F∗ ∖ H(G,V, 0), K ∈ UG(H) ∩ Iso(G,V ∖ {0}) and dimV H = dimV K . Therefore (D1) of

Theorem 2.3 is fulfilled. The same diagram shows Y(G, ρmax(H),H)∖H(G,V, 0) = ∅. It shows that

(D2) of Theorem 2.3 is fulfilled. Recall S(G)sol ∖F = {E,Z} ∪ (C2)G. We can readily see that (D3)

and (D4) of Theorem 2.3 are fulfilled.

For n = 6k + 7 (k ≥ 0), the fixed-point-set dimensions of V = V (n) are as in Diagram 4.5.
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Diagram 4.5
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Observing the diagram above, we obtain

(4.9) Iso(G,V ∖ {0}) = Iso(G,V6 ∖ {0}) ∪ (A4)G ∪ (D6)G.

Diagram 4.5 shows that if H ∈ F∗ ∖H(G,V, 0) and K ∈ UG(H)∩ Iso(G,V ∖ {0}) satisfy dimV H =

dimV K then H = D4 and K = A4. Therefore (D1) of Theorem 2.3 is fulfilled.

Case n = 7. Diagram 4.5 shows Y(G,M,H) ⊂ H(G,V, 0) for all H ∈ F . The condition (D2) of

Theorem 2.3 is clearly fulfilled. We can readily see that (D3) and (D4) of Theorem 2.3 are fulfilled.

Case n = 6k + 7 (k ≥ 1). Diagram 4.5 shows Y(G,M,H) ⊂ H(G,V, 0) (resp. Y(G,M,H) ⊂

H(G,V,≤ 1)) for all H ∈ F ∖ ((C2)G ∪ (C3)G) (resp. H ∈ F) and M = ρmax(H). By the same

diagram, we have

2 dimV A4 + 1 = 2 + 1 = 3 < 5 ≤ dimV C3 ,

dimV A4 + dimV (UD6Z(C3)) + 1 ≤ 1 + (k + 1) + 1 = k + 3 < 2k + 3 ≤ dimV C3 ,

2 dimV D6 + 1 = 2 + 1 = 3 < 5 ≤ dimV C2 , and

dimV D6 + dimV (UA4Z(C2)) + 1 = 1 + (k + 1) + 1 = k + 3 < 2k + 3 ≤ dimV C2 .

It is easy to see that (D2) of Theorem 2.3 is fulfilled. Recalling S(G)sol ∖ F = {E,Z} ∪ (C2)G, we

can readily see that (D3) and (D4) of Theorem 2.3 are fulfilled.

Case n = 6k + 8 (k ≥ 0). The fixed-point-set dimensions of V = V (n) are as in Diagram 4.6.
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Diagram 4.6

Observing the diagram above, we get

(4.10) Iso(G,V ∖ {0}) = Iso(G,V6 ∖ {0}) ∪ (D10)G ∪ (D6)G ∪ (D4)G.

Diagram 4.6 shows that there is no pair (H,K) such that H ∈ F∗ ∖ H(G,V, 0), K ∈ UG(H) ∩

Iso(G,V ∖ {0}) and dimV H = dimV K . Therefore (D1) of Theorem 2.3 is fulfilled. The diagram
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shows Y(G, ρmax(H),H) ⊂ H(G,V, 0) (resp. Y(G, ρmax(H),H) ⊂ H(G,V,≤ 1)) for all H ∈ F∗ ∖

(C2)G (resp. H ∈ F). In this case, we have

2 dimV Ds + 1 = 2 + 1 = 3 < 4 ≤ dimV C2 and

dimV Ds + dimV (UA4Z(C2)) + 1 = 1 + (k + 1) + 1 = k + 3 < 2k + 4 = dimV C2 ,

where s = 6, 10. It is easy to see that (D2) of Theorem 2.3 is fulfilled. By virtue of S(G)sol ∖ F =

{E,Z} ∪ (C2)G, we can readily see that (D3) and (D4) of Theorem 2.3 are fulfilled.

Case n = 6k + 9 (k ≥ 1). The fixed-point-set dimensions of V = V (n) are as in Diagram 4.7.
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Diagram 4.7

Observing the diagram above, we get

(4.11) Iso(G,V ∖ {0}) = Iso(G,V6 ∖ {0}) ∪ (A4)G ∪ (D10)G ∪ (D6)G ∪ (D4)G.

Diagram 4.7 shows that there is no pair (H,K) such that H ∈ F∗ ∖ H(G,V, 0), K ∈ UG(H) ∩

Iso(G,V ∖ {0}) and dimV H = dimV K . Therefore (D1) of Theorem 2.3 is fulfilled. The diagram

shows Y(G, ρmax(H),H) ⊂ H(G,V, 0) (resp. Y(G, ρmax(H),H) ⊂ H(G,V,≤ 1), Y(G, ρmax(H),H) ⊂

H(G,V,≤ 2)) for all H ∈ F ∖ ((C2)G ∪ (C3)G) (resp. H ∈ F ∖ (C2)G, H ∈ F). We have

2 dimV A4 + 1 = 2 + 1 = 3 < 5 ≤ dimV C3 ,

dimV A4 + dimV (UD6Z(C3)) + 1 = 1 + (k + 1) + 1 = k + 3 < 2k + 3 = dimV C3 ,

2 dimV D6 + 1 = 4 + 1 = 5 < 7 ≤ dimV C2 , and

dimV D6 + dimV (UA4Z(C2)) + 1 = 1 + (k + 2) + 1 = k + 4 < 2k + 5 = dimV C2 .

It is easy to see that (D2) of Theorem 2.3 is fulfilled. Recall S(G)sol ∖F = {E,Z} ∪ (C2)G. We can

check without difficulties that (D3) and (D4) of Theorem 2.3 are fulfilled.

Case n = 6k + 10 (k ≥ 0). The fixed-point-set dimensions of V = V (n) are as in Diagram 4.8.



30 MASAHARU MORIMOTO

D6Z
(0)

YYYYYY
YYYYYY

YYYYYY
YYYYYY

YYYY A4Z
(0)

YYYYYY
YYYYYY

YYYYYY
YYYYYY

YYYY D10Z
(0)

�

�

�


	
�

�

D6
(k+2)

iiiiiiiiiiiiiiii

�
�
�
�
'
/
8

D4Z
(0) D6

(1) A4
(1)

D4
(k+2)

eeeeeeeeeeeeeeeeeeeeeeeeeee

55lllllllllllllllllllllllllllll
D10

(k+1)

�
�
�
�
�
�
�

YYYYYY
YYYYYY

YYYYYY
YYYYYY

YYYYYY
YYYYYY

YYYYYY
YYYYYY

YYYYYY
YYYYY
C3Z

(k+1)

;;
;;

;;
;;

;;
;;

;;

�
�

�
�

�
�

�

YYYYYY
YYYYYY

YYYYYY
YYYYYY

YY C5Z
(k+1)

��
��
��
��
��
��
��

D4
(1)

YYYYYYYYYYYYYYYYYYYYYYYYYYYY

ff

D10
(0)

C2Z
(k+1)

1
1
1
1
1
1
1
1
1
1

YYYYYY
YYYYYY

YYYYYY
YYYYYY

YY

ZZ

�
�
�

�
&
,

3

C3
(2k+4)

rrr
rrr

rrr
rrr

rrr
rrr

rrr

�
�

�
�

�
�

�

ll

C2(3k+5)

YYYYYY
YYYYYY

YYYYYY
YYYYYY

YY

eeeeeeeeeeeeeeeeeeeeeeeeee
Z(3k+3) C2

(2k+4)

eeeeee
eeeeee

eeeeee
eeeeee

ee

�
�

�
�

�
�

�

1
1
1
1
1
1
1
1
1
1

ii

4
6

8
;

=
@

C
F

H
J

L
N

P
R

C5
(2k+2)

dddddddd
dddddddd

dddddddd
dddddddd

ddddd

ll

E(6k+10)

Diagram 4.8

Observing the diagram above, we obtain

(4.12) Iso(G,V ∖ {0}) = Iso(G,V6 ∖ {0}) ∪ (A4)G ∪ (D6)G.

Diagram 4.8 shows that if H ∈ F∗ ∖H(G,V, 0) and K ∈ UG(H)∩ Iso(G,V ∖ {0}) satisfy dimV H =

dimV K then H = D4 and K = A4. Therefore (D1) of Theorem 2.3 is fulfilled. The diagram shows

Y(G, ρmax(H),H) ⊂ H(G,V, 0) (resp. Y(G, ρmax(H),H) ⊂ H(G,V,≤ 1)) for all H ∈ F ∖ ((C2)G ∪

(C3)G) (resp. H ∈ (C2)G ∪ (C3)G). We have

2 dimV A4 + 1 = 2 + 1 = 3 < 4 ≤ dimV C3 ,

dimV A4 + dimV (UD6Z(C3)) + 1 = 1 + (k + 2) + 1 = k + 4 ≤ 2k + 4 = dimV C3 ,

2 dimV D6 + 1 = 2 + 1 = 3 < 4 ≤ dimV C2 , and

dimV D6 + dimV (UA4Z(C2)) + 1 = 1 + (k + 2) + 1 = k + 4 ≤ 2k + 4 = dimV C2 .

Here the equality k + 4 = 2k + 4 holds only in the case k = 0. Note that for H = C2 and C3, the

subgroup 〈K1,K2〉 coincides with A5 whenever K1, K2 ∈ (UG(H) ∖ Uρmax(H)(H)) ∩H(G,V, 1) with

K1 6= K2. In the case k = 0, the condition (C2) of Definition 2.5 (4) is satisfied for H = C2, C3

and M = ρmax(H). It is easy to see that (D2) of Theorem 2.3 is fulfilled. Recalling S(G)sol ∖ F =

{E,Z} ∪ (C2)G, we can readily see that (D3) and (D4) of Theorem 2.3 are fulfilled.

Case n = 6k + 11 (k ≥ 0). The fixed-point-set dimensions of V = V (n) are as in Diagram 4.9.
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Diagram 4.9

Observing the diagram above, we get

(4.13) Iso(G,V ∖ {0}) = Iso(G,V6 ∖ {0}) ∪ (D10)G ∪ (D6)G ∪ (D4)G.

Diagram 4.9 shows that there is no pair (H,K) such that H ∈ F∗ ∖ H(G,V, 0), K ∈ UG(H) ∩

Iso(G,V ∖ {0}) and dimV H = dimV K . Therefore (D1) of Theorem 2.3 is fulfilled. The diagram

shows Y(G, ρmax(H),H) ⊂ H(G,V, 0) (resp. Y(G, ρmax(H),H) ⊂ H(G,V,≤ 1)) for all H ∈ F ∖

(C2)G (resp. H ∈ F). We have

2 dimV Ds + 1 = 2 + 1 = 3 < 5 ≤ dimV C2 , and

dimV Ds + dimV (UA4Z(C2)) + 1 = 1 + (k + 2) + 1 = k + 4 < 2k + 5 = dimV C2 ,

where s = 6, 10. It is easy to see that (D2) of Theorem 2.3 is fulfilled. By virtue of S(G)sol ∖ F =

{E,Z} ∪ (C2)G, we can check without difficulties that (D3) and (D4) of Theorem 2.3 are fulfilled.

Putting the arguments above together, we have shown that the data (G,V (n),F ,F ′,F∗, ρmax)

specified in this section satisfy the conditions required in Theorem 2.3. This completes the proof of

Theorem 1.2.

5. Extension of a product M-embedding ΨM

In the remainder of the current article, let G, (F ,F ′), ρmax : F∗ → max(S(G)∗sol), and V be those

stated in Theorem 2.3, let Y be the unit disk D(V ) of V , and let fff = (f, b) and FFFL = (FL, BL),

L ∈ max(S(G)sol), be a G-framed map rel. ∂ and L-framed cobordisms from resGLfff to resGLidididY rel. ∂,

respectively, obtained in [23, Section 9]. Therefore F and F ′ contain max(S(G)sol), cf. Definition 2.2,

f : (X, ∂X) → (Y, ∂Y ) is a G-map,

b : εX(R) ⊕ T (X) ⊕ εX(Rℓ) → εX(R⊕ V ⊕ Rℓ)
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is a G-bundle isomorphism,

FL : (WL, ∂0WL, ∂1WL, ∂01WL) → (Z, ∂0Z, ∂1Z, ∂01Z)

are L-maps, ∂0WL = {0} × X, ∂1WL = {1} × Y , ∂01WL = I × ∂Y , Z = I × Y , ∂0Z = {0} × Y ,

∂1Z = {1} × Y , and ∂01Z = I × ∂Y ,

BL : T (WL) ⊕ εWL
(Rℓ) → εWL

(R⊕ V ⊕ Rℓ)

are L-bundle isomorphisms. By the construction, XK = ∅ for all K ∈ S(G)nonsol and fK :

(XK , ∂XK) → (Y K , ∂Y K) is a map of degree 1 whenever dim V K > 0, see [23, Lemma 9.1]. When

we refer to a G-framed map fff ′ (resp. an L-framed cobordism FFF ′
L), fff ′ is a pair (f ′, b′) consisting of

a G-map f ′ : (X ′, ∂X) → (Y, ∂Y ) and G-bundle isomorphism

b′ : εX′(R) ⊕ T (X ′) ⊕ εX′(Rℓ) → εX′(R⊕ V ⊕ Rℓ)

(resp. FFF ′
L is a pair (F ′

L, B
′
L) consisting of an L-map

F ′
L : (W ′

L, ∂0W
′
L, ∂1W

′
L, ∂01W

′
L) → (Z, ∂0Z, ∂1Z, ∂01Z)

and an L-bundle isomorphism

B′
L : T (W ′

L) ⊕ εW ′
L

(Rℓ) → εW ′
L

(R⊕ V ⊕ Rℓ)).

We use fff ′′, FFF ′′
L, and etc. in a similar way.

Let H ⊂ S(G). For L ∈ S(G) we set

(5.1)
H|L = H ∩ S(L) and

[L,H] = {gKg−1 | g ∈ L, K ∈ H}.

Therefore [L,H] is the L-invariant closure of H with respect to the conjugation L-action on S(G).

Proposition 5.1. Let H ∈ F ′∗, where F ′∗ = F ′ ∩F∗, and M = ρmax(H). Then (H)G|M = (H)M .

Proof. Since (F ,F ′) is G-simply organized, see Definition 2.2 (3), we have (H)G|M = (H)M . □

Let X(H) denote the simplicial subcomplex of X defined by

X(H) =
∪

K∈H
XK .

For a G-simplicial subcomplex A of X with respect to some smooth G-triangulation of X such that

A is a union of smooth submanifolds Ai of X, let NG(A,X) denote a G-regular neighborhood of A

in X which is the union of some tubular neighborhoods of Ai in X. For a subgroup H of G, V has

the form of direct sum V = V H ⊕ VH as real NG(H)-representations. By virtue of the bundle data

b and BL, we have the next property which will be used without mentioning.



CONSTRUCTION OF ONE-FIXED-POINT ACTIONS ON SPHERES II 33

Proposition 5.2. Let H be a solvable subgroup of G. Then the tubular neighborhood NG(XH , X)

is NG(H)-diffeomorphic to XH × D(VH), where D(VH) is the unit disk of VH . Furthermore if

L ∈ max(S(G)sol)
∗ and H ≤ L, then NL(WL

H ,WL) is NL(H)-diffeomorphic to WL
H ×D(VH).

For a submanifold X0 of X and a smooth embedding Ψ : I×X0 →WL, where L ∈ max(S(G)sol)
∗,

we call Ψ a product embedding if

(1) Ψ(t, x) = (t, x) in ∂01WL for all x ∈ X0 ∩ ∂X and t ∈ I,

(2) Ψ(t, x) = (t, x) in a collar neighborhood CX = [0, δ] ×X of {0} ×X in WL for all t ∈ [0, δ]

and x ∈ X0, and

(3) Ψ(1− t, x) = (1− t, ψ(x)) in a collar neighborhood CY = [1− δ, 1]× Y of {1}× Y in WL for

all t ∈ [0, δ] and x ∈ X0, for some embedding ψ : X0 → Y .

Here δ is a small positive real number, and the sets [0, δ], [1 − δ, 1] are the closed intervals ⊂ R. For

a simplicial subcomplex A of X and a topological embedding Ψ0 : I×A→WL, we call Ψ0 a product

embedding if there are a manifold neighborhood X0 of A and a product embedding Ψ : I×X0 →WL

extending Ψ0.

Let K be a subset of F which is G-conjugation invariant and upwardly closed in S(G)sol. We

readily obtain the next proposition.

Proposition 5.3. Let H ∈ F ′∗ ∖K and M = ρmax(H). Then (K ∪ (H)G)|M = K|M ∪ (H)M .

For a G-space A, we set A>H = A(UG(H)) and A=H = AH ∖A>H .

Definition 5.1. Let M ∈ max(S(G)sol)
∗ and let H be a subgroup of G satisfying NG(H) ⊂M . We

say that (X,Y,WM ) has the (G,M)-tame singular set at H (or X>H is (G,M)-tame in (X,WM )) if

there is a product M -embedding Φ : I×NM (M ·X>H , X) →WM such that Image(Φ)>H = WM
>H ,

where M · X>H = {gx | g ∈M , x ∈ X>H}, Image(Φ)>H = Image(Φ)(UM (H)) and WM
>H =

WM (UM (H)).

For L ∈ max(S(G)sol)
∗, we set

(5.2) KL = [L,K ∩ (ρ−1
max(L) ∪ UL(ρ−1

max(L)))],

where ρmax : F∗ → max(S(G)sol)
∗ and

UL(ρ−1
max(L)) =

∪
H0∈ρ−1

max(L)

UL(H0).

Note that K ∩ ρ−1
max(L) ⊂ K ∩ F∗ ∩ S(L) and K ∩ UL(ρ−1

max(L)) ⊂ K ∩ F ′ ∩ S(L). In the case where

H ∈ F∗ and M = ρmax(H), we have KM = K|M .
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Proposition 5.4. Let H ∈ max(F∖K)∗, M = ρmax(H) and L ∈ max(S(G)sol)
∗. Then the following

holds.

(1) KM ∩ UG(H)sol = UM (H).

(2) (K ∪ (H)G)L

=


KM ∪ (H)M (H ∈ F ′ and L = M)

KL ∪ [L, (H)G ∩ UL(ρ−1
max(L))] (H ∈ F ′ and L 6= M)

KM ∪ (H)M (H 6∈ F ′ and L = M)

KL (H 6∈ F ′ and L 6= M).

Therefore (K ∪ (H)G)L ⊂ KL ∪ ((H)G ∩ S(L)).

Proof. The definition of KM implies KM ∩ UG(H)sol ⊂ UM (H). It suffices to prove UM (H) ⊂ KM .

Let K ∈ UM (H). By the definition, It holds that H < K ≤ M . The condition H ∈ max(F ∖ K)∗

and the hypothesis that K is upwardly closed in S(G)sol imply K ∈ K. Therefore, we see

K ∈ K ∩ UM (H) ⊂ K ∩ UM (ρ−1
max(M)) ⊂ KM .

We have completed the proof of the claim (1).

We have the equalities

(5.3)

(K ∪ (H)G)L = [L, (K ∪ (H)G) ∩ (ρ−1
max(L) ∪ UL(ρ−1

max(L)))]

= KL ∪ [L, (H)G ∩ (ρ−1
max(L) ∪ UL(ρ−1

max(L)))]

=

{
KM ∪ [M, {H}] ∪ [M, (H)G ∩ UM (ρ−1

max(M))] (L = M)

KL ∪ [L, (H)G ∩ UL(ρ−1
max(L))] (L 6= M)

=

{
KM ∪ (H)M ∪ [M, (H)G ∩ UM (ρ−1

max(M))] (L = M)

KL ∪ [L, (H)G ∩ UL(ρ−1
max(L))] (L 6= M)

The claim (2) follows from (5.3). □

Definition 5.2. Let H be a subset of S(G)sol which is upwardly closed in S(G)sol and G-conjugation

invariant. We say that (fff, {FFFL}L) (or (X, {WL}L)), where L runs over max(S(G)sol)
∗, is adjusted

on (H,K) if there are

• L-regular neighborhoods NL(X(H ∪KL), X) of X(H ∪KL) in X,

• product L-embeddings ΨL : I ×NL(X(H ∪KL), X) →WL, and

• L-homotopies HL : (WL, ∂0WL)× I → (I × Y, {0}× Y ) from FL to FL,1 rel. ∂1WL ∪ ∂01WL,

for all L ∈ max(S(G)sol)
∗, satisfying the condition that for each K ∈ K∗ (= K ∩ F∗) and L =

ρmax(K), the restriction

FL,1|Image(ΨL) : Image(ΨL) → FL,1(Image(ΨL)) (⊂ I × Y )

is an L-diffeomorphism. (Hence

FL,1|ΨL({0}×N) : ΨL({0} ×N) → FL,1(ΨL({0} ×N)) (⊂ {0} × Y ),
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where N = NL(X(H ∪KL), X), is also an L-diffeomorphism.)

If (fff, {FFFL}L) is adjusted on (∅,K) then we say that (fff, {FFFL}L) is adjusted on K.

By the construction of fff and {FFFL}L (see [23, Lemmas 9.1 and 9.2]), we can suppose with-

out any loss of generality that (fff, {FFFL}L) is adjusted on (H(G,V, 0),F(0)), where L ranges over

max(S(G)sol)
∗. In the rest of this section, we suppose that

(K1) K ⊃ F(0) and

(K2) (fff, {FFFL}L) is adjusted on (H(G,V, 0),K) with respect to product L-embeddings ΨL : I ×

NL(X(H(G,V, 0) ∪ KL), X) →WL as above.

In the remainder of this section, let H ∈ max(F ∖K)∗ ∩ Iso(G,V ∖ {0}) and M = ρmax(H).

Proposition 5.5. The following equalities hold.

(1) X(H) = X(H ∩ Iso(G,V ∖ {0})) for any subset H of K such that H is upwardly closed in

S(G)sol.

(2) K|M ∩ UG(H)sol = UM (H) and WM (K|M )H = WM (UM (H)).

(3) KM ∩ UG(H)sol = UM (H) and WM (KM )H = WM (UM (H)).

(4) X(Y(G,M,H))∖X(X (G, ρmax,H)) = X(Y(G,M,H)∩Iso(G,V ∖{0}))∖X(X (G, ρmax,H)).

Proof. It is easy to show the claims (1) and (2). The claim (3) follows from Proposition 5.4. Here

we prove the claim (4). It is obvious that X(Y(G,M,H) ∩ Iso(G,V ∖ {0})) ⊂ X(Y(G,M,H)). Let

K be an element of Y(G,M,H) ∖ Iso(G,V ∖ {0}) and let K be the element of Iso(G,V ∖ {0})

such that V K = V K . By the hypothesis, we have H < K < K, K ∈ K and K ∈ K as well as

ρmax(K) = ρmax(K) 6= M , and by the hypothesis (K2) we have XK = XK .

If K ∩M = H then we have K ∈ Y(G,M,H), moreover K ∈ Y(G,M,H) ∩ Iso(G,V ∖ {0}), and

XK = XK ⊂ X(Y(G,M,H) ∩ Iso(G,V ∖ {0})).

Suppose K ∩M > H. Then K ′ = K ∩M lies in X (G, ρmax,H). This shows

XK = XK ⊂ XK′
⊂ X(X (G, ρmax,H)).

Therefore we have proved the claim (4). □

Set
NX,K = NG(X(K), X), NWM ,K = NM (WM (K|M ),WM ), and

NX,M,K = NX,K ∩NWM ,K,

where we choose NX,K and NWM ,K so that NX,M,K = NM (X(K|M ), X). For a submanifold N of

WM (resp. X) such that Closure(N) = N and dimN = dimWM (resp. dimN = dimX), define
◦
N

by
◦
N = WM ∖ Closure(WM ∖N)
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(resp.
◦
N = X ∖ Closure(X ∖N)).

We set

(5.4)

XH
0 = XH ∖

◦
N where N = NM (X(H(G,V, 0) ∪ K|M ), X),

WH
M,0 = WM

H ∖
◦
N and Y H

0 = Y H ∖
◦
N

where Y is identified with {1} × Y (= ∂1WM ) and N = Image(ΨM ).

In the present situation, it holds that NG(H) coincides with NM (H) and the group NM (H)/H acts

freely on XH
0 and WH

M,0.

By the hypothesis (K2), there are M -homotopies

(1) IhM : X × I → Y from resGMf to resGMf1 rel. ∂ and

(2) HM : (WM , ∂0WM , ∂1WM , ∂01WM )× I → (I ×Y, {0}×Y, {1}×Y, I × ∂Y ) from FM to FM,1

rel. ∂1WM ∪ ∂01WM

such that HM |{0}×X = IhM and FM,1|Image(ΨM ) : Image(ΨM ) → FM,1(Image(ΨM )) is an M -

diffeomorphism. Note I × N ∼=M Image(ΨM ) ∼=M I × Image(ξ), where N = NM (X(H(G,V, 0) ∪

KM ), X), for some M -embedding ξ : N → Y rel. ∂. We remark that X>H coincides with

X(UM (H)) ∪X(Y(G,M,H)).

For each K ∈ Y(G,M,H) ∩ H(G,V, 1), let AK,i, where i ranges over [1..tK ], be the connected

components of (XH
0 )K , where AK,i 6= ∅ for all i ∈ [1..tK ] and AK,i 6= AK,j for all i, j ∈ [1..tK ] with

i 6= j. By the hypothesis (K2), we have AK,i ∩X=K = ∅ for all i ∈ [1..tK ] if K /∈ Iso(G,V ∖ {0}).

Proposition 5.6. Suppose H ∈ Iso(G,V ∖{0}) and dimV H ≥ 2. Let K ∈ Y(G,M,H)∩H(G,V, 1)∩

Iso(G,V ∖ {0}). Then the following holds.

(1) AK,i ∩AK,j = ∅ if i, j ∈ [1..tK ] and i 6= j.

(2) AK,i is diffeomorphic to D1 (= [−1, 1]) for all i ∈ [1..tK ].

(3) Iso(G,AK,i) = {K} for all i ∈ [1..tK ].

(4) AK,i ∩AK′,j = ∅ if K ′ ∈ Y(G,M,H) ∩H(G,V, 1), K ′ 6= K, i ∈ [1..tK ] and j ∈ [1..tK′ ].

(5) Let K ′ ∈ Y(G,M,H) ∩ H(G,V, 1) with K ′ 6= K, i ∈ [1..tK ], j ∈ [1..tK′ ] and g ∈ NG(H). If

AK,i ∩ gAK′,j 6= ∅ then gK ′g−1 = K and AK,i = gAK′,j.

(6) If NG(K) ∩M = H then the group

LK,i = {g ∈ NG(H) | gAK,i = AK,i}

coincides with H.

Proof. We prove the proposition by step-by-step basis.

Claim (1). It is clear from the definition of ‘connected component’.

Claim (2). It follows from the hypothesis fK : XK → Y K ∼= D1 is homotopic to a diffeomorphism.
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Claim (3). Assume there is a point x ∈ AK,i such that Gx 6= K. Then Gx > K. If Gx ∩M 6= H

then x ∈ X(UM (H)), which is a contradiction. Therefore Gx ∈ Y(G,M,H). If dimAK,i
Gx = 0 then

x ∈ X(H(G,V, 0)), which is a contradiction. It says that Gx ∈ H(G,V, 1), and therefore K < Gx

and dimV K = dimV Gx = 1. This contradicts the hypothesis K ∈ Iso(G,V ∖ {0}).

Claim (4). Assume there is a point x ∈ AK,i ∩AK′,j . It follows from Claim (3) that K = Gx = K ′,

which contradicts the hypothesis K 6= K ′.

Claim (5). Let x ∈ AK,i ∩ gAK′,j . Then Gx = K as well as Gx = gK ′g−1. Therefore we get

K = gK ′g−1. Note that gAK′,j = AgK′g−1,j′ = AK,j′ for some j′ ∈ [1..tK ]. Since AK,i ∩ AK,j′ 6= ∅,

we get j′ = i and gAK′,j = AK,j′ = AK,i.

Claim (6). Let g ∈ LK,i. Then, since gKg−1 = K, we get g ∈ NG(K)∩NG(H) ⊂ NG(K)∩M = H.

Therefore Claim (6) is valid. □

Let us consider the case that (A2) in Definition 2.5 (1) is fulfilled.

Proposition 5.7 (Case (A2)). Suppose that the condition (A2) in Definition 2.5 (1) is fulfilled.

Then, up to modification of FFFM by 1-dimensional M -surgeries rel. ∂WM ∪ Image(ΨM ) (see (K2)) of

isotropy type (H)M , there is a product NG(H)-embedding ϕNM (H),H,U : I × (XH
0 ∩X(UG(H)sol)) →

WM
H compatible with ΨM , i.e. ϕNM (H),H,U ∪ ΨM is a well-defined embedding. Therefore there is

a product M -embedding ϕM,H,U : I ×X([M,UG(H)sol]) → WM compatible with ΨM , and there is a

product M -embedding ΦM : I ×X(H(G,V, 0) ∪ KM ∪ [M,UG(H)sol]) →WM compatible with ΨM .

In the case of the proposition above, X (G, ρmax,H) ∩H(G,V, 1) = ∅ and Z(G,V,M,H) = ∅.

Proof. If Y(G,M,H) ∩ H(G,V, 1) = ∅ then we have nothing to prove. Therefore we suppose

Y(G,M,H) ∩H(G,V, 1) 6= ∅. Similarly to Proposition 5.5 (4), we have

X(Y(G,M,H) ∩H(G,V, 1)) ∖
◦
N = X(Y(G,M,H) ∩H(G,V, 1) ∩ Iso(G,V ∖ {0})) ∖

◦
N.

Recall Proposition 5.6. We can suppose without loss of generality that FM,1
H is transversal on

WM,0
K to (I × Y )K in (I × Y )H for all K ∈ Y(G,M,H) ∩H(G,V, 1) ∩ Iso(G,V ∖ {0}).

Let K ∈ Y(G,M,H) ∩ H(G,V, 1) ∩ Iso(G,V ∖ {0}). Let BK,i, i ∈ [1..tK ], be the connected

components of (FM,1|WH
M,0

)−1((I × Y )K) such that BK,i ∩X0 = AK,i. BK,i is a compact orientable

2-dimensional surface. Since FM,1|∂1WM
= idY , we see

(FM,1|Y H
0

)−1(({1} × Y )K) = (Y H
0 )K ⊂ Y K ∼= D1.

This shows that (Y H
0 )K can not contains circles, which implies ∂BK,i ∩ (Y H

0 )K ∼= D1 and ∂BK,i
∼=

∂(I × D1). It also follows from the transversality construction above that if BK,i ∩ BK,j 6= ∅, for

some i, j ∈ [1..tK ] then BK,i = BK,j , i.e. i = j. Let g ∈ NM (H) such that BK,i ∩ gBK,i 6= ∅. Then
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gBK,i = BgKg−1,j = BK,j for some j ∈ [1..tK ]. Since BK,i ∩ BK,j 6= ∅, we get i = j, and therefore

BK,i = gBK,i and AK,i = gAK,i. By Proposition 5.6 (6), g is an element of H. We get

{a ∈ NM (H) | BK,i ∩ aBK,i 6= ∅} = H.

Since BK,i is cobordant rel. ∂ to I ×D1, we can perform 1-dimensional NM (H)/H-surgeries rel. ∂

on
⨿

i∈[1..tK ]BK,i (⊂WH
M,0) so that the resulting

⨿
i∈[1..tK ]B

′
K,i is diffeomorphic to

⨿
i∈[1..tK ] I×D1.

This says that we can perform 1-dimensional M -surgeries rel. ∂WM ∪Image(ΨM ) on WM of isotropy

type (H)M so that the resulting surfaces gB′
K,i in the resulting M -manifold W ′

M are diffeomorphic

to I × D1 for all g ∈ NM (H) and i ∈ [1..tK ]. After this modification of FFFM , there is a product

NG(H)-embedding

ϕNM (H),H : I × (XH
0 ∩X((K)G,NM (H))) →WH

M,0

compatible with ΨM . By the hypotheses, we have Y(G,M,H) ∩ H(G,V, 1) ∩ Iso(G,V ∖ {0}) =

(K)G,M . Since X(UG(H)sol) ⊂ X(UM (H)∪(K)G,M ∪H(G,V, 0)), we can obtain the desired product

NM (H)-embedding ϕNM (H),H,U : I × (XH
0 ∩X(UG(H)sol)) →WM

H compatible with ΨM . □

Next we consider the case that H ∈ Iso(G,V ∖ {0}) and (A1) in Definition 2.5 (1) is fulfilled.

Under the hypothesis Y(G,M,H) 6= ∅, we set

k = dimV (Y(G,M,H))
(

= max{dimV K | K ∈ Y(G,M,H)}
)
.

Here k satisfies the inequality 2k + 1 < dimV H .

In the case Z(G,V,M,H)1 6= ∅, by Theorem 2.3 (D2) and Definition 2.5 (3), we see that either

(C1) or (C2) is satisfied. Recall that dim V H ≥ 5 in the case (C1) and dim V H ≥ 4 in the case

(C2). If Z(G,V,M,H) 6= ∅ and k ≥ 1 then we can modify fff (resp. FFFM ) so that fH (resp. FM
H) is

(k + 1)-connected by G-surgeries of isotropy type (H)G (resp. M -surgeries of isotropy type (H)M ).

(In order to make simultaneously fH and FM
H both (k+ 1)-connected, we need M -surgeries on FFFM

of isotropy types in (H)M,G.) Particularly, in the case where (C1) is satisfied, we can modify FFFM so

that FM
H is max(3, k + 1)-connected.

Proposition 5.8 (Case (A1, C2, Z, 1)). Suppose H ∈ Iso(G,V ∖ {0}). Suppose that the condition

(A1) in Definition 2.5 (1) and the condition (C2) in Definition 2.5 (3) both are fulfilled. Further

suppose Z(G,V,M,H)1 6= ∅. Then, up to modification of FFFM by 1-dimensional M -surgeries rel.

∂WM ∪ Image(ΨM ) of isotropy type (H)M , there is a product NM (H)-embedding ϕNM (H),H,Z :

I×(XH
0 ∩X(Z(G,V,M,H)1)) →WH

M,0 compatible with ΨM , i.e. ϕNM (H),H,Z ∪ΨM is a well-defined

embedding. Therefore there is a product M -embedding ϕM,H,Y : I × X([M,Y(G,M,H)]) → WM

compatible with ΨM , where the equality Y(G,M,H) = Z(G,V,M,H)1 ∪ (Y(G,M,H) ∩ H(G,V, 0))

holds.
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In the case of the proposition above, we have k = 1, dimV H − dimV (UM (H)) = 2,

Z(G,V,M,H)1 ∩H(G,V, 1) = Z(G,V,M,H)1 = Y(G,M,H) ∩H(G,V, 1), and

X(Z(G,V,M,H)1) ∖
◦
N = X(Z(G,V,M,H)1 ∩ Iso(G,V ∖ {0})) ∖

◦
N.

Proof. Let K ∈ Z(G,V,M,H)1∩Iso(G,V ∖{0}). NM (H)/H acts freely on NM (H) ·(XH
0 )K . By the

hypothesis, f1|XK : XK → Y K is a diffeomorphism. We can suppose without any loss of generality

that FM,1
H is transversal on WH

M,0 to I×Y K in I×Y H (here Y K ∼= D1). Let BK,i be the connected

component of (FM,1|WH
M,0

)−1(I × Y K) such that BK,i ∩XH
0 = AK,i. Then BK,i ∩BK,j = ∅ if i 6= j.

For K ′ ∈ Z(G,V,M,H)1 ∩ Iso(G,V ∖ {0}) with (K)G,M 6= (K ′)G,M , the inequality dimBK,i +

dimBK′,j = 4 < 5 ≤ dimWH
M,0 holds, and therefore, by the general position argument (up to

M -homotopic deformation of FM,1), we may suppose

(5.5) BK,i ∩BK′,j = ∅.

Let g ∈ NM (H) such that BK,i ∩ gBK,i 6= ∅. Then gBK,i = BgKg−1,j = BK,j for some j ∈

[1..tK ]. Since BK,i ∩ BK,j 6= ∅, we get i = j, and therefore BK,i = gBK,i and AK,i = gAK,i. By

Proposition 5.6 (6), g is an element of H. It means

(5.6) {g ∈ NM (H) | BK,i ∩ gBK,i 6= ∅} = H.

Since BK,i is a compact connected orientable 2-dimensional surface such that ∂BK,i
∼= ∂(I × D1).

BK,i is cobordant rel. ∂ to I×D1. Therefore by 1-dimensional NM (H)-surgeries on WM of isotropy

type {H} rel. ∂WM ∪Image(ΨM ), we can modify the connected components BK,i so that BgKg−1,i
∼=

I ×D1 for all g ∈ NM (H). By virtue of (5.6), 1-dimensional M -surgeries on WM of isotropy type

(H)M rel. ∂WM ∪ Image(ΨM ), we can modify gBK,i (= BgKg−1,j) so that gBK,i
∼= I ×D1 for all

g ∈ M . It shows that up to the modification above, we can obtain a product NM (H)-embedding

ϕNM (H),H,K : I×XH
0 (K) →WH

M,0 compatible with ΨM . Because of (5.5), there is a product NM (H)-

embedding ϕNM (H),H,Z : I × (XH
0 ∩ X(Z(G,V,M,H)1)) → WH

M,0 compatible with ΨM . Using

ϕNM (H),H,Z and ΨM , we can obtain a product M -embedding ϕM,H,Y : I ×X([M,Y(G,M,H)]) →

WM compatible with ΨM . □

Proposition 5.9 (Case (A1, C1, Z, 1)). Suppose H ∈ Iso(G,V ∖ {0}). Suppose that the con-

dition (A1) of Definition 2.5 (1) and the condition (C1) of Definition 2.5 (3) both are fulfilled.

Suppose Z(G,V,M,H)1 ∩ H(G,V, 1) 6= ∅. Further suppose that fH : XH → Y H and FM
H :

WM
H → I × Y H are (k + 1)-connected. Then, there is a product NM (H)-embedding ϕNM (H),H,Z :

I × (XH
0 ∩ X(Z(G,V,M,H)1)) → WH

M,0 compatible with ΨM . Therefore there is a product M -

embedding ϕM,H,Y : I ×X([M,Y(G,M,H)]) →WM compatible with ΨM .
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In the case of the proposition above, we have k = 1, dimV H − dimV (UM (H)) = 2,

Z(G,V,M,H)1 = Z(G,V,M,H)1 ∩H(G,V, 1) = Y(G,M,H) ∩H(G,V, 1), and

X(Z(G,V,M,H)1) ∖
◦
N = X(Z(G,V,M,H)1 ∩ Iso(G,V ∖ {0})) ∖

◦
N.

Proof. By the hypotheses, XH and WM
H are 1-connected. Since dim V H − dimV (UM (H)) ≥ 3,

XH
0 , Y H

0 and WH
M,0 are 1-connected, too.

Let K be an element of Z(G,V,M,H)1 ∩ H(G,V, 1) ∩ Iso(G,V ∖ {0}). For each i ∈ [1..tK ],

by virtue of the connectedness of Y H
0 , there exists an embedding ∂ιK,i : ∂(I × D1) → WH

M,0 such

that ∂ιK,i({0} × D1) = AK,i, ∂ιK,i(t, x) = ΦM (t, ∂ιK,i(0, x)) for all t ∈ I and x ∈ ∂D1, and

∂ιK,i({1} × D1) ⊂ ({1} × Y K) ∩WH
M,0. Since WH

M,0 is 1-connected and dimWM,0
H ≥ 6, ∂ιK,i is

bounded by an embedding ιK,i : ∂(I ×D1) →WH
M,0. Set BK,i = Image(ιK,i). Let

(5.7) πH
M,0 : WH

M,0 →WH
M,0/NM (H)

be the canonical projection. Recall dimWH
M,0/NM (H) ≥ 6 and dimBM,i = 2. Applying the general

position argument to

{πH
M,0 ◦ ιK,i | K ∈ Z(G,V,M,H)1 ∩H(G,V, 1) ∩ Iso(G,V ∖ {0})},

we can suppose without loss of generality that BK,i ∩ BK′,j = ∅ for all K, K ′ ∈ Z(G,V,M,H)1 ∩

H(G,V, 1)∩Iso(G,V ∖{0}), i ∈ [1..tK ], and j ∈ [1..tK′ ] unless BK,i = BK′,j (i.e. K = K ′ and i = j).

Therefore there is a product NM (H)-embedding ϕNM (H),H,Z : I × (XH
0 ∩ X(Z(G,V,M,H)1)) →

WH
M,0 compatible with ΨM . It yields a product M -embedding ϕM,H,Y : I ×X([M,Y(G,M,H)]) →

WM compatible with ΨM . □

Proposition 5.10 (Case (A1, C1, Y ∖ Z)). Suppose H ∈ Iso(G,V ∖ {0}). Suppose that the

condition (A1) of Definition 2.5 (1) and the condition (C1) of Definition 2.5 (3) both are fulfilled.

Suppose Y(G,M,H)∖ (Z(G,V,M,H)1∪H(G,V, 0)) 6= ∅. Further suppose that fH : XH → Y H and

FM
H : WM

H → I × Y H are (k+ 1)-connected. Set T = Y(G,M,H) ∖Z(G,V,M,H)1. Then, there

is a product NM (H)-embedding ϕNM (H),H,Y∖Z : I × (XH
0 ∩ X(T )) → WH

M,0 compatible with ΨM .

Therefore there is a product M -embedding ϕM,H,Y∖Z : I ×X([M, T ]) →WM compatible with ΨM .

In the proposition above, it holds that k ≥ 1, dimV H ≥ 4 and

dimV H − dimV (UM (H)) > dimV (T ) + 1 ≥ 2.

Proof. We identify X (resp. Y ) as {0} × X (resp. {1} × Y ) ⊂ WM,0. Set s = dimV (T ). Then

s ≥ 1, s ∈ {k − 1, k} and dimXH
0 (T ) = s. By the hypotheses, XH and WM

H are k-connected.

Since dimV H − dimV (UM (H)) > s + 1, XH
0 , Y H

0 and WH
M,0 are s-connected. Recall that ∂XH

0 ⊂
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Image(ΨM ) ∪ ∂X. Therefore there is a product NM (H)-embedding

∂µ : I × (∂XH
0 )(T ) →WH

M,0 ∩ (Image(ΨM ) ∪ ∂X).

Since Y H
0 and WH

M,0 are s-connected, there is a product embedding µ : I×XH
0 (T ) →WH

M,0 extending

∂µ. Consider the canonical covering projection πH
M,0 : WH

M,0 → WH
M,0/NM (H). Recall dim I ×

XH
0 (T ) = s+ 1 and

dimWH
M,0/NM (H) = dimV H + 1 > (2k + 1) + 1 ≥ 2(s+ 1).

Applying the general position argument, we can obtain a product NM (H)-embedding ϕNM (H),H,Y∖Z :

I × (XH
0 ∩X(T )) →WH

M,0 compatible with ΨM . □

If Z(G,V,M,H)1 ∖H(G,V, 1) 6= ∅, then k ≥ 2 and

Z(G,V,M,H)1 = Z(G,V,M,H))1 ∩H(G,V, k) = Y(G,M,H) ∩H(G,V, k)

(see Theorem 2.3 (D2) and Definition 2.5 (A1) (ii)).

Proposition 5.11 (Case (A1, Z, k ≥ 2)). Suppose H ∈ Iso(G,V ∖{0}). Suppose that the condition

(A1) of Definition 2.5 (1) is fulfilled, Suppose Z(G,V,M,H)1 ∖ H(G,V, 1) 6= ∅. Further suppose

that fH : XH → Y H and FM
H : WM

H → I × Y H are (k + 1)-connected. Then, there is a

product NM (H)-embedding ϕNM (H),H,Z : I × (XH
0 ∩ X(Z(G,V,M,H)1)) → WH

M,0 compatible with

ΨM and ϕM,H,Y∖Z in the previous proposition. Therefore there is a product M -embedding ϕM,H,Y :

I ×X([M,Y(G,M,H)]) →WM compatible with ΨM .

In the situation of the proposition, we have

Z(G,V,M,H)1 = Z(G,V,M,H)1 ∩H(G,V, k) = Y(G,M,H) ∩H(G,V, k),

dimV H > 2k + 1 (≥ 5), dimV H − dimV (UM (H)) ≥ k + 1 (≥ 3), and (C1) of Definition 2.5 is

fulfilled. Recall (iii) dim V L ≥ 2 for L ∈ Z(G,V,M,H)2 and (iv) dimV L1 − dimV ⟨L1,L2⟩ ≥ 2 for

L1, L2 ∈ Z(G,V,M,H)2 with L1 6= L2.

Proof. The spaces XH and WM
H are k-connected. Since dim V H − dimV (UM )(H))) = k + 1, XH

0

and WH
M,0 are (k − 1)-connected.

Note A = XH
0 ∩X(Z(G,V,M,H)1) is a k-dimensional manifold. There is a product embedding

∂ι : I × ∂A → WH
M,0 compatible with ΦM . Since WM

H is k-connected and dimWM
H > 2(k + 1),

there is a product embedding ι : I ×A→WM
H extending ∂ι. By the general position argument, we

can suppose without loss of generality that

(1) Image(ι) ∩WM (UM (G) ∖ Z(G,V,M,H)2)) = ∅,

(2) |Image(ι) ∩WM (Z(G,V,M,H)2)| <∞,



42 MASAHARU MORIMOTO

(3) Tz(WM ) = Tz(Image(ι)) ⊕ Tz(WM
L) for every z ∈ Image(ι) ∩WM (Z(G,V,M,H)2).

Recall dimWM
H ≥ 6 and dimWM

H − dimWM (Z(G,V,M,H)2) ≥ 3. For L ∈ Z(G,V,M,H)2 and

z ∈ Image(ι) ∩ WM (Z(G,V,M,H)2), there is a 2-dimensional disk ∆L,z in WM
H with ∂∆L,z =

I01∪ I12∪ I20 such that I01, I12 and I20 are diffeomorphic to I = [0, 1], and moreover I01∩ I20 = {z},

∆L,z ∩ Y H = I12, I20 ⊂ Image(ι), and

∆L,z ∖ ∂∆L,z ⊂ (Int(WM
H) ∖ (Image(ι) ∪WM (UM (H))).

Here we may assume ∆L,z ∩ ∆L,z′ = ∅ for all z′ ∈ Image(ι)L
′

with z′ 6= z, and ∆L,z ∩ ∆L′,z′ = ∅ for

all L′ ∈ Z(G,V,M,H)2 with L′ 6= L, z ∈ Image(ι)L and z′ ∈ Image(ι)L
′
. Observe Figure 5.1.

Image(ι)

z

XL

WM
L

Y H

∆L,z

Figure 5.1

Via the Whitney trick along the disk ∆L,z, we can remove the intersection point z by an isotopic

deformation of ι. Therefore, we can assume without loss of generality that Image(ι)∩WM (UM (H)) =

∅, and furthermore that Image(ι) ⊂WH
M,0.

Applying the general position argument to π ◦ ι, where π : WM
=H → WM

=H/NM (H) is the

canonical projection, we can obtain a product NM (H)-embedding ϕNM (H),H,Z : I × A → WH
M,0

compatible with ΨM and ϕM,H,Y∖Z in the previous proposition. □

Putting Propositions 5.7–5.11 together, we obtain the next theorem.

Theorem 5.12. Let G, V and (F ,F ′) be those in Theorem 2.3. Let fff be a G-framed map and let FFFL

be L-framed cobordisms stated in the first paragraph of this section, where L runs over max(S(G)sol)
∗.

Let K be a G-conjugation-invariant and upwardly closed subset of S(G)sol fulfilling the hypotheses

(K1) and (K2). Let H ∈ max(F∖K)∗∩ Iso(G,V ∖{0}) and M = ρmax(H). Then, up to G-surgeries
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rel. ∂ on fff of isotropy type (H)G and M -surgeries rel. ∂1WM ∪ ∂01WM ∪ Image(ΨM ) on FFFM of

isotropy types in (H)M,G, there is a product M -embedding ϕM,H,Y : I ×X([M,Y(G,M,H)]) →WM

compatible with ΨM . Therefore there is a product M -embedding ΦM,H,Y : I ×X(H(G,V, 0) ∪ KM ∪

[M,Y(G,M,H)]) →WM compatible with ΨM .

6. Proof of Theorem 2.4

We prove Theorem 2.4 by induction on the G-conjugacy classes (H)G contained in S(G)sol. Let

fff and {FFFL}L be those in the previous section, where L ranges over max(S(G)sol)
∗.

We quote the reflection method in the equivariant surgery theory.

Lemma 6.1 ([23, Lemma 6.1]). Let H and K be G-conjugation-invariant and upwardly closed subsets

of S(G)sol such that K ⊂ F , let M be an element of max(S(G)sol)
∗, and let H be an element of

S(M) ∖ (H ∪K) such that NG(H) ⊂M . Invoke the following two hypotheses.

(S1) There is a product M -embedding ΦM : I × NM (X(H ∪ KM ) ∪M · X>H , X) → WM and

(X,Y,WM ) has the (G,M)-tame singular set at H with respect to the restriction of ΦM to

I ×NM (M ·X>H , X).

(S2) There is an M -homotopy

HM : (WM , ∂0WM , ∂1WM , ∂01WM ) × I → (Z, ∂0Z, ∂1Z, ∂01Z) (where Z = I × Y )

rel. ∂1WM ∪ ∂01WM such that HM |WM×{0} coincides with FM and

HM |Image(ΦM )×{1} : Image(ΦM ) × {1} → HM (Image(ΦM ) × {1})

is a diffeomorphism.

Then there are

• a G-framed map fff ′ rel. ∂, where (as is described before) fff ′ is a pair (f ′, b′) of f ′ : (X ′, ∂X ′) →

(Y, ∂Y ) and b′ : εX′(R) ⊕ T (X ′) ⊕ εX′(Rℓ) → εX′(R⊕ V ⊕ Rℓ),

• a G-framed cobordism FFFG from fff to fff ′ rel. ∂ and VG(H),

• an M -framed cobordism FM from resGMFFFG

∪
resGMfff FFFM to FFF ′

M rel. ∂ and VM,G(H), where

FFF ′
M = (F ′

M , B
′
M ) with

F ′
M : (W ′

M , ∂0W
′
M , ∂1W

′
M , ∂01W

′
M ) → (Z, ∂0Z, ∂1Z, ∂01Z)

is an M -framed cobordism from resGMfff
′ to resGMidididY rel. ∂ and VM,G(H),

• a natural identification M -map : NM (X(H∪KM )∪M ·X>H , X) → NM (X ′(H∪KM )∪M ·

X ′>H
, X ′),

• a product M -embedding Φ′
M : I ×NM (X ′(H ∪KM ) ∪M ·X ′H , X ′) →W ′

M ,
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• a natural identification M -map : Image(ΦM ) → Φ′
M (I ×NM (X ′(H∪KM )∪M ·X ′>H

, X ′))

such that the diagram

I ×NM (X(H ∪KM ) ∪M ·X>H , X)
ΦM //

=

��

Image(ΦM )

=

��
I ×NM (X ′(H ∪KM ) ∪M ·X ′>H

, X ′)
Φ′

M |
// Φ′

M (X ′(H ∪KM ) ∪M ·X ′>H
, X ′)

commutes, and

• an M -homotopy

H′
M : (W ′

M , ∂0W
′
M , ∂1W

′
M , ∂01W

′
M ) × I → (Z, ∂0Z, ∂1Z, ∂01Z)

rel. ∂1W
′
M ∪ ∂01W ′

M

possessing the following compatible properties.

(1) H′
M |W ′

M×{0} coincides with F ′
M ,

(2) H′
M |NM (M ·W ′

M
H ,W ′

M )×{1} is a diffeomorphism, and

(3) H′
M |Image(ΦM )×I coincides with HM |Image(ΦM )×I .

In particular, X ′H is NG(H)-diffeomorphic rel. ∂ to Y H and f ′
H

: X ′H → Y H is NG(H)-homotopic

rel. ∂ to a diffeomorphism.

Proof. Recall

KM = [M,K ∩ (ρ−1
max(M) ∪ UM (ρ−1

max(M)))].

Since (H ∪K) ∩ VG(H) = ∅, the lemma follows from the proof of [23, Lemma 6.1]. □

Remark 6.2. If (H)G|M = (H)M , where (H)G|M = (H)G ∩ S(M), then we get the conclusions in

Lemma 6.1 for H replaced by arbitrary H ′ ∈ (H)G|M .

We can suppose without loss of generality that (fff, {FFFL}L) is adjusted on (H(G,V, 0),F(0)). For

L ∈ max(S(G)sol)
∗, we set T (L) = H(G,V, 0) ∪ KL.

Proposition 6.3. Let K be a G-conjugation-invariant and upwardly closed subset of F fulfilling the

hypotheses (K1) and (K2). Let H ∈ max(F ∖K)∗ ∖ Iso(G,V ∖ {0}) and M = ρmax(H). Then there

exist

• a G-framed cobordism FFFG = (FG, BG) from fff to fff ′ rel. NM (X(T (M)), X)∪∂X and VG(H),

where FG : WG → I × Y and fff ′ = (f ′, b′) with f ′ : (X ′, ∂X ′) → (Y, ∂Y ), and

• a family {FL | L ∈ max(S(G)sol)
∗} consisting of L-framed cobordisms FL from resGLFFFG

∪
resGLfff FFFL

to FFF ′
L rel. (I×NL(X ′(T (L)), X ′))#∪∂1WL∪∂01WL and VL,G(H), where (I×NL(X ′(T (L)), X ′))#
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stands for

(I ×NL(X(T (L)), X))
∪

{0}×NL(X(T (L)),X)

ΨL(I ×NL(X(T (L)), X)),

FFF ′
L is obtained by L-surgeries of isotropy types contained in (H)L,G on resGLFFFG

∪
resGLfff FFFL,

and FL is the trace of the L-surgeries,

such that (fff ′, {FFF ′
L}L) is adjusted on (H(G,V, 0),K ∪ (H)G), where L ranges over max(S(G)sol)

∗.

In the proposition above, f ′
H

: X ′H → Y H is NG(H)-homotopic rel. ∂ to a diffeomorphism, and

therefore X ′H is NG(H)-diffeomorphic to the disk D(V )H , for the subgroup H.

Proof. By the hypothesis, we have UG(H)sol ⊂ K and XK is diffeomorphic to a disk Dd for all

K ∈ UG(H)sol, where d = dimV K . By Proposition 5.4 we have UM (H) ⊂ KM , and WM
K is

diffeomorphic to ZK = I ×Dd for all K ∈ UM (H) (⊂ F ′).

Recall the hypothesis dim V H > 0. The hypothesis H 6∈ Iso(G,V ∖ {0}) implies that there is a

subgroup H ∈ Iso(G,V ∖{0})∩UG(H)sol such that V H = V H . By the condition (D1) of Theorem 2.3,

we have H ⊂ M and ρmax(H) = ρmax(H) = M . Particularly we have H ∩M = H > H . It holds

that XH = X=H qXH , and XH is diffeomorphic to the disk Dd, and that WM
H = WM

=H qWM
H ,

and WM
H is diffeomorphic to I ×Dd, where d = dimV H . Let W ′ be a copy of WM

H and observe

the NM (H)-cobordism W ′′ = W ′ ∪
XH WM

H . W ′′ is NM (H)-cobordant to I × Y H rel. ∂W ′′. By

the reflection method, i.e. Lemma 6.1, we can obtain a G-framed cobordism FFFG from fff to fff ′ rel. ∂

and VG(H), an M -framed cobordism FM from resGMFFFG

∪
resGMfff FFFM to FFF ′

M rel. ∂ and VM,G(H), and

an M -homotopy H′
M rel. ∂1W

′
M ∪ ∂01W ′

M and UM (H) from F ′
M to F ′

M,1 satisfying the condition

that

F ′
M,1

H
: (W ′

M
H
, ∂0W

′
M

H
, ∂1W

′
M

H
, ∂01W

′
M

H
) → (I × Y H , {0} × Y H , {1} × Y H , I × ∂Y H)

is a diffeomorphism. (Therefore f ′
H

: X ′H → Y H is NM (H)-homotopic to a diffeomorphism. Recall

NG(H) = NM (H).) It implies that F ′
M,1

H′
is an NM (H ′)-diffeomorphism for all H ′ ∈ (H)M and

that f ′
H′

: X ′H′
→ Y H′

is NM (H ′)-homotopic to a diffeomorphism for all H ′ ∈ (H)M , where the

equality NM (H ′) = NG(H ′) holds.

Next let L ∈ max(S(G)sol)
∗∖{M} and observe the L-framed cobordism FFF ′′

L = resGLFFFG

∪
resGLfff FFFL

from resGLfff
′ to resGLidididY rel. ∂. Let K ∈ K∗ such that ρmax(K) = L. Since K is G-conjugation

invariant as well as upwardly closed in S(G)sol and H ∈ max(F ∖K)∗, K is not G-subconjugate to

H. Therefore we have WG
K = I ×XK and X ′K = XK . If K ∈ S(L) then

(WG ∪X WL)K = (I ×XK) ∪XK WL
K ∼= WL

K ∼= I × Y K .
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If S(L) ∩ (H)G = ∅, then we can adopt FFF ′′
L as FFF ′

L desired in the proposition. Therefore we now

suppose S(L) ∩ (H)G 6= ∅. We must modify FFF ′′
L to achieve the property WL

H′ ∼= I × Y H′
for all

H ′ ∈ [L, (H)G ∩ UL(ρ−1
max(L))]. Decompose [L, (H)G ∩ UL(ρ−1

max(L))] to the disjoint sum

[L, (H)G ∩ UL(ρ−1
max(L))] =

⨿
i∈[1..m]

(Hi)L

such that Hi ∈ (H)G ∩ UL(ρ−1
max(L)) equipped with Hi,0 ∈ UL(ρ−1

max(L)) satisfying Hi,0 < Hi ≤ L.

By the definition, the group Mi = ρmax(Hi) = M does not coincide with L, and therefore Hi ∈

X (G, ρmax,Hi,0). By the condition (D2) in Theorem 2.3 and the condition (B1) in Definition 2.5 (2),

we get

dimV Hi ≤ 1.

The hypothesis H 6∈ Iso(G,V ∖ {0}) implies Hi 6∈ Iso(G,V ∖ {0}). Since K ⊃ H(G,V, 0), we get

dimV Hi = 1. There is a subgroup Ki ∈ UG(Hi) ∩ Iso(G,V ∖ {0}) such that V Ki = V Hi .

First consider the case of i such that Ki ∩ L > Hi. If K ∈ UL(Hi) then we see K ∈ KL because

UL(Hi,0) ⊂ UL(ρ−1
max(L)) and K ∈ K. By the hypothesis (K2), we get

W ′′
L
>Hi =

∪
K∈UL(Hi)

W ′′
L
K

= W ′′
L
Ki∩L

(∼= I ×XKi∩L)

(recall XHi = XKi∩L = XKi). We remark W ′′
L
Hi = W ′′

L
=Hi qW ′′

L
>Hi . Each connected component

of W ′′
L
=Hi is a closed oriented 2-dimensional surface and hence null-cobordant. By the condition

(B2) in Definition 2.5 (2), we have NG(Hi)∩L = Hi. We can perform L-surgeries on FFF ′′
L of isotropy

type (Hi)L rel. ∂ to remove W ′′
L
=Hi . This argument allows us to suppose W ′′

L
=Hi = ∅ whenever

Ki ∩ L > Hi.

Next we consider the case of i such that Ki ∩ L = Hi. In this case, we have dim V T = 0 for

all T ∈ UL(Hi). Thus we get Y (UL(Hi)) = Y G = {0}, which implies that X(UL(Hi)) = XL and

XL consists of only one point xL. In addition, we have W ′′
L(UL(Hi)) = W ′′

L
L ∼= I × {0}, because

K ⊃ H(G,V, 0). Recall that XHi ∼= Y Hi = D1. We have the decomposition W ′′
L
Hi = S q

⨿
j Sj

consisting of connected components, where S is the component containing X ′Hi∪∂W ′′
L
Hi∪Y Hi . Note

that S ⊃ W ′′
L
L

, that S is a compact orientable 2-dimensional surface with boundary diffeomorphic

to I×∂Y Hi , and that each Sj is a closed orientable 2-dimensional surface. Therefore we can perform

surgeries on W ′′
L
Hi rel. ∂ so as to achieve W ′′

L
Hi ∼= I × Y Hi (∼= I × X ′Hi). By the condition (B2)

in Definition 2.5 (2), we have NG(Hi) ∩ L = Hi. We can perform L-surgeries on FFF ′′
L of isotropy

type (Hi)L rel. ∂ to obtain FFF ′
L such that W ′

L
Hi ∼= I × Y Hi . Since W ′

L is an L-cobordism, we see

W ′
L
K ∼= I × Y K for all K ∈ (Hi)L = [L, {Hi}].

Putting all this together, we obtain the proposition. □
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Proposition 6.4. Let K be a G-conjugation-invariant and upwardly closed subset of F fulfilling the

hypotheses (K1) and (K2). Let H ∈ max(F ∖ K)∗ ∩ Iso(G,V ∖ {0}) and M = ρmax(H). Then the

same conclusion as Proposition 6.3 holds.

Proof. Since H ∈ F∗ ∖K, we have dimV H > 0. Recall the following.

• The map ΨL is a product L-embedding I × NL(X(H(G,V, 0) ∪ KL), X) → WL for L ∈

max(S(G)sol)
∗.

• The map ΦM,H,Y in Theorem 5.12 is a product M -embedding I × X(H(G,V, 0) ∪ KM ∪

[M,Y(G,M,H)]) →WM compatible with ΨM .

• X>H = X(Y(G,M,H) ∪ UM (H)) and UM (H) = KM ∩ UG(H)sol (see Proposition 5.4).

Therefore X(H(G,V, 0)∪KM )∪MX>H coincides with X(H(G,V, 0)∪KM∪[M,Y(G,M,H)]). There

is a product M -embedding

ΦM : I ×NM (X(H(G,V, 0) ∪ KM ) ∪MX>H , X) →WM

extending ΨM and ΦM,H,Y . Let fff ′, FFFG, FFF ′
M and Φ′

M be the resulting maps by Lemma 6.1.

To obtain the desired L-framed cobordism FFF ′
L for L ∈ max(S(G)sol)

∗ ∖ {M}, we set FFF ′′
L =

resGLFFFG

∪
resGLfff FFFL. We have to arrange FFF ′′

L so that W ′′
L
K ∼= I × X ′K for K ∈ (K ∪ (H)G)L. By

the hypothesis (K2), W ′′
L
K ∼= I × X ′K for K ∈ KL and X ′K ∼= Y K = D1 for K ∈ (H)G. By

Proposition 5.4, we see

(K ∪ (H)G)L =

{
KL ∪ [L, (H)G ∩ UL(ρ−1

max(L))] (H ∈ F ′)

KL (H 6∈ F ′)

If H /∈ F ′ then we have nothing to modify on FFF ′′
L. Therefore we now consider the case H ∈ F ′.

Decompose [L, (H)G ∩ UL(ρ−1
max(L))] to the disjoint union

[L, (H)G ∩ UL(ρ−1
max(L))] =

⨿
i∈[1..m]

(Hi)L

with Hi ∈ (H)G and Hi,0 ∈ ρ−1
max(L) such that Hi,0 < Hi ≤ L. Since Hi 6∈ H(G,V, 0) ⊂ K and

Hi ∈ X (G, ρmax,Hi,0), we get dimV Hi = 1. We remark the following.

• Hi ∈ Iso(G,V ∖ {0}).

• Y K = {0}, X ′K = {xK} and W ′′
L
K ∼= I for K ∈ UG(Hi)sol.

• Each connected component of (W ′′
L ∖

◦
N)Hi , where N = Image(ΨL), is a 2-dimensional

compact orientable surface of which the boundary is empty or diffeomorphic to ∂(I ×D1).

Therefore we can perform surgeries on W ′′
L
Hi rel. ∂ and W ′′

L
Hi ∩ N so that the resulting manifold

W ′′
L
Hi is diffeomorphic to I ×X ′Hi . Since NG(Hi)∩L = Hi, we can perform L-surgeries on W ′′

L rel.

∂ of isotropy types (Hi)L, i ∈ [1..m], so that the resulting manifold W ′
L satisfies W ′

L
Hi ∼= I ×X ′Hi .

Putting all this together, we obtain the lemma above. □
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By inductive argument on K using Propositions 6.3 and 6.4, we can obtain the next proposition.

Proposition 6.5. There exist

• a G-framed cobordism FFFG from fff to fff ′ rel. ∂ and S(G)nonsol, and

• L-framed cobordisms FL from resGLFFFG

∪
resGLfff FFFL to FFF ′

L rel. ∂1WL ∪ ∂01WL, where L ranges

over max(S(G)sol)
∗ and FFF ′

L is an L-framed cobordism from resGLfff
′ to resGLidididY rel. ∂,

such that (fff ′, {FFF ′
L}L) is adjusted on (H(G,V, 0),F).

Lastly we consider the case H ∈ S(G)sol ∖F . For H ⊴ N ∈ S(G), let G1(N,H) denote the set of

all K ∈ UN (H) such that K/H is hyperelementary, i.e. there is a cyclic group C ⊴ K/H such that

|(K/H)/C| is a prime power.

Proposition 6.6. Let H be an element of S(G)sol ∖ F and set N = NG(H). Suppose that fK :

XK → Y K is a homology equivalence for all K ∈ G1(N,H). Then a G-framed map fff ′ = (f ′, b′) rel.

∂ such that

(1) resGHfff
′
is H-framed cobordant rel. ∂ to resGHidididY and

(2) f ′
H

: X ′H → Y H is a homotopy (resp. homology) equivalence if dimV H ≥ 5 (resp.

dimV H = 3)

is obtainable by G-connected-sum operations associated with [G/G]− βG and G-surgeries of isotropy

type (H)G on fff .

Proof. First we remark that G1(N,H) ⊂ S(G)sol. Let L ∈ max(S(G)sol)
∗. Set Σ(fff) = fff

∪
∂fff idididY ,

Σ(idididY ) = idididY
∪

∂idididY
idididY , and Σ(FFFL) = FFFL

∪
I×resGL∂fff (I × resGLidididY ). Then Σ(FFFL) is an L-framed

cobordism from resGLΣ(fff) to resGLΣ(idididY ). Here we remark that Σ(idididY ) = idididS(R⊕V ). Recall that

Proposition 9.3 of [23] was obtained by equivariant connected-sum operations associated with [G/G]−

βG and G-surgeries of isotropy type (H)G on fff . (The keys of the proof were the equivariant surgery

theory [1, 3] and the induction theory [21, Theorem 13.5].) Therefore the proposition above follows

from [23, Proposition 9.3]. □

Theorem 2.4 follows from Propositions 6.5 and 6.6.
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