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Abstract

Let VL be the vertex algebra associated to a non-degenerate even lattice L, 6 the automor-
phism of V, induced from the —1 symmetry of L, and VL+ the fixed point subalgebra of V;, under
the action of 6. In this series of papers, we classify the irreducible weak VL+ -modules and show
that any irreducible weak V;"-module is isomorphic to a weak submodule of some irreducible
weak Vz-module or to a submodule of some irreducible §-twisted Vz-module. Let M (1) be the
fixed point subalgebra of the Heisenberg vertex operator algebra M (1) under the action of 6. In
this paper (Part 2), we show that there exists an irreducible M (1)*-submodule in any non-zero
weak V;"-module and we compute extension groups for M(1)*.
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1 Introduction

Let L be a non-degenerate even lattice of finite rank d, V7, the vertex algebra associated to L, 6 the
automorphism of Vi, induced from the —1 symmetry of L, and VLJr the fixed point subalgebra of V7,
under the action of . The fixed point subalgebras play an important role in the study of vertex
algebras. For example, the moonshine vertex algebra V7 is constructed as a direct sum of VI and
some irreducible V,f-module in [12] where A is the Leech lattice. The moonshine conjecture [7],
which is an unexpected connection between the monster group and modular functions, was proved
by Borcherds using V* in [6]. The aim of this series of papers is to classify the irreducible weak
VL+ -modules (see Definition 2.1 for the definition). Because of the large number of pages in the
original paper [18], we divide the paper into 3 parts in a series for publication. This paper is Part
2 and a continuation of Part 1 [19]. T will write the main result here again, which is stated in [19,
Theorem 1.1]:

Theorem 1.1. Let L be a non-degenerate even lattice of finite rank with a bilinear form { , ).
The following is a complete set of representatives of equivalence classes of the irreducible weak
V;-modules:

(1) Vi, A+ L€ LY/L with 2X € L.
(2) Vaur, Voo, A+ L€ LY/L with 2)\ ¢ L.
(3) VLTX’jE for any irreducible L/ P-module T\ with central character x.

In the theorem, L is the dual lattice of L, V)\:t+L ={u € Voair | 0(u) = +u} for \+ L € L+/L
with 2\ € L, L is the canonical central extension of L by the cyclic group (k) of order 2 with
the commutator map c(a, ) = k{*# for a, 8 € L, P = {#(a)a™" | a € L}, VLTX is an irreducible
O-twisted Vz-module, and Vgx’i = {u € VLTX | O(u) = +tu}. Note that in Theorem 1.1, VLTX’i
in (3) are V; -modules, however, if L is not positive definite, then V/\jj_L in (1) and Vy4r in (2)
are not V;'-modules (cf. [19, (2.18)]). See Section 1 of Part 1 [19] for the background and the
detailed introduction to Theorem 1.1. We note that since we do not assume any grading in the
definition of a weak module, Theorem 1.1 does not follow from [13, Theorem 8.1], which deals with
lower-bounded generalized modules for fixed point vertex algebras with some conditions. In fact,
if L is not positive definite, then the weak modules listed in (1) and (2) in Theorem 1.1 are not
lower-bounded generalized modules.

Let M (1) be the Heisenberg vertex operator algebra associated to h = C®yzL (see the explanation
under (2.35) for the definition) and M(1)" the fixed point subalgebra of M (1) under the action
of 0. The vertex operator algebra M(1)T is a subalgebra of V; and, as stated in [19, Section 1],
representations of M(1)" play a crucial role in the proof of Theorem 1.1. The irreducible M (1)*-
modules are classified in [9, Theorem 4.5] for the case of dimc hh = 1 and [10, Theorem 6.2.2] for the
general case as follows: any irreducible M (1)*-module is isomorphic to one of

M(1)%, M(1)(6)%, or M(1,)) = M(1,-)) (0# X € b). (1.1)

Here M (1)(0) is the irreducible f-twisted M (1)-module, M (1)* = {u € M(1) | fu = +u}, M(1)(0)* =
{u € M(1)(0) | u = f+u}, and M(1,)) is the irreducible M (1)-module generated by the vector e*
such that (a(—1)1)pe* = (@, A)e* and (a(—1)1),e* = 0 for all @ € b and n € Zsq (See (2.31)-
(2.55) in Section 2 for the precise definitions of these symbols). In the previous paper (Part 1),
we showed that when the rank of L is 1, for any non-zero weak VLJr -module M there exists a
non-zero M (1)T-submodule in M. In this paper (Part 2), we first strengthen and generalize this
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result to L of an arbitrary rank. Precisely, we show that for any non-zero weak VLJr -module M,
there exists an irreducible M (1)*-submodule in M (Proposition 3.5 and Corollary 4.12). We next
study extension groups and generalized Verma modules (see [8, Theorem 6.2] for the definition)
for M(1)" (Proposition 4.9, Corollary 4.10, and Lemma 4.11). We shall explain how to use these
results in Part 3. Let M be an irreducible weak V]-jr -module. By Corollary 4.12, there exists an
irreducible M (1)*-submodule K of M. If K = M(0)*, then the same argument as in Section 3
of the present paper shows that M is a VLJr -module. In this case, [20, Proposition 4.15] shows
that M is isomorphic to one of the irreducible weak V; -modules in Theorem 1.1 (3). Assume
K = M(1)* or M(1,)) with 0 # X € h. Since V;" is a direct sum of irreducible M (1)"-modules, for
any irreducible M (1)T-submodule N of V;", the V; -module structure of M induces an intertwining
operator I( ,z) : N x K — M ((z)) for weak M (1)*-modules (see Definition 2.2 for the definition).
We denote by @ the weak M (1)*-submodule of M that is the image of I( ,z). The same argument
as in Section 3 of the present paper shows that there exists an irreducible M (1)*-submodule R of
Q. Moreover, If R # @, then Q/R is an irreducible M (1)*-module and by Proposition 4.9 the exact
sequence 0 — R — Q — Q/R — 0 splits, namely Q = R ® Q/R as M(1)"-modules. Since V; is
a direct sum of irreducible M (1)"-modules, this leads to the result that M is a direct sum of irre-
ducible M (1)*-modules. Moreover, we find that the irreducible M (1)"-modules in the direct sum
are pairwise non-isomorphic. Using fusion rules (see the explanation under Definition 2.2) for the
irreducible M (1)"-modules obtained in [1, Theorem 5.13] and [4, Theorem 7.7], we can determine
the weak V;"-module M with such an M (1)*-module structure and thus M is one of the irreducible
weak V; -modules in Theorem 1.1 (1) and (2).

Let us briefly explain the basic idea to show Proposition 3.5, the main result in Section 3. Let V'
be a vertex algebra and M a weak V-module. For a € V and u € M, we define €(a,u) € ZU{—o0}
by

Ae(au)t 7 0 and a;u = 0 for all i > e(a,u) (1.2)

if Yyr(a,z)u # 0 and €(a,u) = —oo if Yar(a,z)u = 0. It is well-known that the vertex operator
algebra M(1)* is generated by homogeneous elements wl’ of weight 2, J( or H) of weight 4,
and Sp,(1,7) of weight r +1 (1 < i < d,1 < m <[ < d,r = 1,2,3) such that [wl[j},wm] =
[w,[j},Hlm] = [H,[f],Hlm] = 0 for any k,! € Z and any pair of distinct elements 7,5 € {1,...,d} (see
(2.59) and (2.61) for these symbols). Hence for any non-zero weak V;'-module M, it follows from
[19, Lemma 3.7] that there exists a simultaneous eigenvector u of {w%ﬂ,Hg]}f:l in M such that
el u) <1 and e(H u) < 3 for all i = 1,...,d. By induction on max{e(S;;(1,1),u) | i > j},
we get a simultaneous eigenvector of {wgﬂ,Hg]}?zl, which we denote by the same symbol u, such
that e(w[i],u) <1, e(HM,u) < 3, and €(Spn(L,7),u) < rforali=1,....,d,1 < m <1 < d,
and r = 1,2,3. Namely, u € Q1)+ (M) (see (2.3) for the definition). Since u is a simultaneous
eigenvector of {wgi], Hg] 4 A(M(1)*)u is of finite dimension, where A(M(1)%) is the Zhu algebra

i=11
for M(1)" (see (2.28)—(2.30) for the definition). Hence, by [8, Theorem 6.2] we have the result.
We next explain the basic idea to show Proposition 4.9, the main result in Section 4. The result

shows that in most cases the exact sequence
0-W-—=NSM-=0 (1.3)

splits for two irreducible M (1)"-modules W = ®ies472., Wi, M = @ieyrz-,M; and a weak M (1)F-
module N, where w = Z?Zl wl! is the conformal vector (Virasoro element) of M (1)t and M; :=
{u € M | wiu = iu} for i € C. Precisely, in Section 4 we deal with the case where M is a
general M (1)*-module in the exact sequence (1.3) in order to show Corollary 4.10, however, here
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we assume M is irreducible to simplify the argument. As in Part 1 [19], we first find some relations
for wld, H (i =1,...,d), Spn(1,7) (1 <m <1 <d,r =1,2,3) in M(1)T with the help of computer
algebra system Risa/Asir[16] ((4.12)-(4.15)). For ¢ = (¢U,... ¢ld), ¢ = (l,. .. ¢ldy € €7 let
v € M, such that (wgﬂ — ¢l = (Hg] — ¢y =0 for all i = 1,...,d. Assume (W, M,) 2
(M(1)",M(1)7),(M(1)=,M(1){). Using the relations (4.16)—(4.22) obtained by (4.12)—(4.15), we
can take u € N, such that 7(u) = v, (wgi] — ¢ty = (Hy — ¢y =0 foralli =1,...,d and
u € Qyr1y+ (Ny) (Lemmas 4.4 and 4.6). After studying the following two cases, we have the result:

(1) The case that M 2% W. Assume that the exact sequence (1.3) does not split. Since the
intersection of W and the M(1)"-submodule of N generated by w is not trivial, we have
d € v+Z>¢. By taking the restricted dual of (1.3), the same argument shows that v € d +Z>
and hence § = 7. Since M % W, we have N, = W, & M, as A(M(1)")-modules and hence
the exact sequence (1.3) splits. This is a contradiction (Lemma 4.7).

(2) The case that M = W and M € {M(1)*, M(1)(#)*}. Using the relations (4.16)—(4.22) again,
we have Ny, = M, & W, as A(M(1)")-modules and hence the exact sequence (1.3) splits
(Lemma 4.8).

Complicated computation has been done by a computer algebra system Risa/Asir[16]. Through-
out this paper, the word “a direct computation” often means a direct computation with the help of
Risa/Asir. Details of computer calculations such as (2.68), (4.12), (4.16), (4.37), etc., and (A2.1)-
(A2.36) in Appendix A2 can be found on the internet at [17].

The organization of the paper is as follows. In Section 2 we recall some basic properties of weak
modules for a vertex algebra. We also recall the Heisenberg algebra M (1) and its fixed point algebra
M(1)*. In Section 3 we show that for any non-zero weak V; -module M there exists a non-zero
submodule for M (1) in M. In Section 4 we study extension groups and generalized Verma modules
for M(1)T. In Appendix A2 we put computations of axb for some a,b € V;" and k = 0,1, ... to find
the commutation relation [a;, bj] = > 72 (;) (akb)itj—r- In Notation we list some notation.

2 Preliminary

We assume that the reader is familiar with the basic knowledge on vertex algebras as presented in
[5, 12, 14, 15).

Throughout this paper, V is a vertex algebra and we always assume that V' has an element w
such that wpa = a_s1 for all @ € V. For a vertex operator algebra V', this condition automatically
holds since V' has the conformal vector (Virasoro element). Throughout this paper, we follow the
notation and terminology of [19]. We will explain some of them. We note that if V' is a vertex
operator algebra, then the notion of a module for V viewed as a vertex algebra is different from the
notion of a module for V' viewed as a vertex operator algebra (cf. [14, Definitions 4.1.1 and 4.1.6]).
To avoid confusion, throughout this paper, we refer to a module for a vertex algebra defined in [14,
Definition 4.1.1] as a weak module. Here we write down the definition of a weak V-module:

Definition 2.1. A weak V-module M is a vector space over C equipped with a linear map

Yu(,z): VeocM— M(z)

a®@u— Yy(a,x)u = Z anpuz” " (2.1)
neZ

such that the following conditions are satisfied:
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(1) Yar(1,2) = idyy.

(2) Fora,beV and u € M,

T —x Ty —

x5 ( lxg 2)YM(a,x1)YM(b,x2)u—xalé(iTol)YM(b,xz)YM(a,m)u
12t

:%%(zlﬁmdnmmmmm. (2.2)

For n € C and a weak V-module M, we define M,, = {u € V' | wju = nu}. For a € V,, (n € C),
wt a denotes n. For a vertex algebra V' which admits a decomposition V = &,z V, and a subset U
of a weak V-module, we define

QuU) = {u cU ‘ a;u = 0 for all homogeneous elements a € V }

and 7 > wta — 1. (2:3)

For a vertex algebra V' which admits a decomposition V' = ®,,czV,,, a weak V-module N is called
N-graded if N admits a decomposition N = @22 (N (n) such that a;N(n) C N(wta —i—1+n) for
all homogeneous elements a € V, i € Z, and n € Z>(, where we define N(n) = 0 for all n < 0.
For a vertex algebra V' which admits a decomposition V = @®,czV,, a weak V-module N is called
a V-module if N admits a decomposition N = ®,,ccN,, such that dim¢ N, < oo for all n € C and
N, = 0 for n whose real part is sufficiently negative. We recall the definition of an intertwining
operator from [11, Definition 5.4.1].

Definition 2.2. Let V be a vertex algebra and let M, W, and N be three weak V-modules. An
intertwining operator of type ( MNW) is a linear map

I(,z): M ®@c W — N{z}
I(u,z)v = Zuavx_a_l,

aeC
u € M,v e W, and u, € Homc (W, N), (2.4)

such that the following conditions are satisfied:

(1) Forue M,ve W, and a € C,

Uarmv = 0 for sufficiently large m € N. (2.5)
(2) Forue M and a € V,
11— 1T —T
0SS (0 wn) I (uy2) — g 6 (=H) I (. 22)Y (0, 21)
oy —Xo
_1o,T2tx
:1%(21%memmwﬁ (2.6)
(3) For u € M,
wou, z) = L 1(u, ) 2.7)
o, - dz ) . .
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For irreducible weak V-modules M, W, and N, [ ( MNW) denotes the space of all intertwining

operators of type ( MNW) and we call its dimension the fusion rule of type ( MNW). In this paper,
for an intertwining operator I( ,z) from M x W to N, we consider only the case that the image of
I( ,x) is contained in N((x)). For AC M and B C W,

A - B denotes Spanc{a;b|a€ A,i € Z,be B} C N. (2.8)

For an intertwining operator I( ,x): M x W — N((x)), u € M, and v € W, we define ¢;(u,v) =
€(u,v) € ZU{—o0} by

U, )V 7 0 and w;v = 0 for all i > €7 (u, v) (2.9)

if I(u,z)v # 0 and €7(u,v) = —oo if I(u,z)v = 0. For a subset A of V' and a subset B of a weak
V-module M, let

A_B:=Spanc{a_ib|ac A,be B, and i € Z~o} C M (2.10)

and

1) (n)
A)B := Span a(_l-)---a(n)b n € Z>o,a\’,...,a\™ € A, b€ B, c M. 211
C i1

~in Uy.veyin € Zso
When B = {b}, we will simply write A_B and (A_)B as A_b and (A_)b, respectively.

Lemma 2.3. Let V = @22V, be a vertex operator algebra, A and B finite subsets of | J;—, Vi, M
a weak V-module, and U a finite dimensional subspace of M. Assume A-(A_)1 C (A_)1. For
each a € A and b € B, we choose €(a),e(b) € Z so that e(a) > max{{e(a,u) | u € U} U{-1}} and
€(b) > max{{e(b,u) | u € U} U{—1}}. For j € Z>o, we define

n € ZLx>o, a(l), ... ,a("_l) € A, a™ ¢ B,
> wi(a®) <. }‘HJ:

i=1

0(j) == max{ i(e(a(i)) —wt(a®) +1)
(2.12)

where Y1 (e(a®) — wt(aD) + 1) := 0 for n = 0.

(1) Assume A-((A_)B_1) C (A_)B_1. For eacha € A and b € B, we choose y(a),v(b) € Z>_;.
Then, for a homogeneous element c € (A_YB_1,u € U, and k € Z, ciu is a linear combination
of elements of the form

P p gD plmly (2.13)

where [, m € Zxo with 0 <1 < m, pM o pm e A g € ng(p@) (i =1,...,0), 05 €

Ly (p) 41 (i=141,...,m), g € B,7 € Z such that
> wt(p!) +wit(q) < wt(c) and (2.14)
=1
wi(e) —k—1=Y (wt(p)) — 0y = 1) + wt(q) — 7 — L. (2.15)
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In particular, csyi(c))u s a linear combination of elements of the form
(1) (m)
pe(p(n) o 'pe(p(m))Qe(q)u (2'16)
where m € Z>o, pM . pM e A, and ¢ € B. Moreover, for k > o(wt(c)),
cpu = 0. (2.17)

(2) Assume B-(A_)1 C B_(A_)1. Then, for a homogeneous element c € B_(A_)1 and v € U,
Cs(wi(c))U 18 a linear combination of elements of the form

qe(q)piam) - 'p£$3m>)u (2.18)
where m € Z>q, pM, . ...p™ € A, and q € B. Moreover, for k > 6(wt(c)),
cxu = 0. (2.19)
(3) Assume B-{(A_)1 C B_(A_)1 and A-(B_(A_)1) C B_{A_)1. Fora € A, we define
((a) := max{{e(a)} U{o(wta+wtb—1) —€(b) | b€ B}}. (2.20)

If acqyu € U for alla € A and u € U, then the subspace W := Spanc{b.pyu | b € B,u € U}
of M zs stable under the action of a¢(q) for all a € A. Moreover, for a E A and k > ((a),
aprW = 0.

(4) Assume B-(A_)1 C B_(A_)1, A-(B_(A_)1) C B_(A_)1, and B-(B_(A_)1) C B_(A_)1.
Foranya € A, b€ B, andu € U, we assume €(a,u) > wt(a) —1 and the value €(b) —wt(b)+1
is a constant independent of b € B, which we denote by p. We define W := Spanc{b.pyu | b €
B,u € U}. If awiq)—1u € U for all a € A and u € U, then for any homogeneous element
c€ B_(A)1, cyio)-1W CW and ¢t,W = 0 for all k > wt(c) — 1.

Proof. (1) Let ¢ := a(_li)1 -"a(_@)nb—mll € (A_)B_1 where n € Z>g, aM, ..., a™ € A, b e B, and
i1y yin,int1 € Zso. We shall show (2.13)—(2.15) by induction on wte. If e =0 or ¢ =b_;1
with b € B and i € Z~, then the results hold. Let n > 1. We define f := a(2) . (n) b
and note that wt(f) < wt(c). For k € Z, using [19, Lemma 2.2], we have

'Ln+1

Cru = (a(—lz)lf)ku

1 —s—1 1
< ) g)ftu+ E <i1_1>ftag)u
s<y(a s>y(aM)+1
5+t+ k stt+ir=k
)i — (1+i1— 1\ (@) +i1\, )
1 .
ey (T D L @ 1)

=0

In the second term in (2.21), by the induction hypothesis in the setting ¢, k, and u are replaced
by f, t, and agl)u, respectively, we find that ftagl)u is a linear combination of elements of the
form (2.13)—(2.15). In the third term in (2.21), since Wt(agl)f) = wt(c) — i1 — 1 < wt(c)
for | € Z>p, by the induction hypothesis in the setting ¢ and k are replaced by al(l) f and
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(1)

k — iy — I, respectively, we find that (a;” f)r—i,—ju is a linear combination of elements of the
form (2.13)-(2.15). Hence (2.13)—(2.15) hold.

We shall show (2.16) and (2.17). Let & > d(wtc)). We set v(a) = €(a) for a € A and
~v(b) = €(b) for b € B. Assume that in the expansion of ciu, the coefficient of an element of
the form (2.13) is not zero. Since pju = 0 for p € A and j > €(p), we have [ = m and hence
7 < e(q). By (2.15),

0=—wt(c) +k+1+ i(wt(p(i)) —0oi—1)+wt(q) —7—1

=1
> —wt(c) + d(wt(c) +1+Z (wt(pD) — o3 — 1) + wt(q) — 7 — 1
> —wit(e) + (D_(e(?) = wt(p™) + 1) + (e(q) — wt(g) + 1) — L+ wt(c)) + 1
=1

—I—Z (wt(pD) — o5 — 1) + wt(q) — 7 — 1
i=1

Z )—oi) +(elg) —7) =0
and hence k = §(wt(c)), e(p”) = o; for all i = 1,...,m and €(b) = 7. Here we have used
(2.14) and the definition (2.12) of 6(wt(c)). Thus, (2.16) and (2.17) hold.
(2) The same argument as in (1) shows the results.

(3) For j € Z~o, by the definition of §(j) we have §(j) —1 > §(j — 1) and hence 6(j) —i > (5 — 1)
foralli=0,...,j. Let w € U and k € Z>¢(,). For a € A and b € B,

— (k
akbe(b)u S be(b)aku + [ak, be(b)]u = be(b)aku + Z <Z> (aib)k+e(b),iu. (2.22)
1=0
For @ € Z>, since

k+eb)—i>C((a)+eb)—i>d(wta+wtb—1)—1i
>o0(wta+wtb—1—1) = d(wt(a;b)), (2.23)

we have the results by (2).

(4) For any a € A and u € U, since €(a,u) > wt(a) — 1, we choose €(a) = wt(a) — 1. For a
homogeneous element ¢ € B_{A_)1, by the definition (2.12) of 4,

d(wt(c)) = max{e(b) — wt(b) | b € B} + wt(c) = p + wt(c) — 1. (2.24)
For a € A and b € B, by (2.24),

d(wt(a) + wt(b) — 1) — €(b) = p+ wt(a) + wt(b) — 2 — €(b)
= €(b) — wt(b) + wt(a) + wt(b) — 1 — €(b)
=wt(a) — 1. (2.25)
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Since we have chosen ¢(a) = wt(a) — 1, {(a) = wt(a) — 1 in (2). By (2), the results hold for
a € A. For b/ € B, u € U, and j > wt(b) — 1, by the Borcherds identity (cf. [14, (3.1.7)]
putting u =b,v =b,1=—-1,m=j+ 1, and n = €(') in the symbol used there) we have

biblayu = < ; >(b—1+ib/)j+1+e(b’)iu- (2.26)
i=0

Since

S(wt(b_1250")) = p+ wt(b) + wt(t/) —i — 1
=e(t)) — wt (V') + wt(b) + wt(b') — i
= (wt(b) = 1)+ 1+€()—4
<j+1+e®) -1, (2.27)

the results hold for b € B by (2). Thus, for any homogeneous element ¢ € B_(A_)1, an

inductive argument on wt ¢ shows the results.
O

We recall the Zhu algebra A(V) of a vertex operator algebra V from [21, Section 2]. For
homogeneous a € V and b € V', we define

aob=Y" (W: a) ai_sb eV (2.28)

=0

and

axb=Y" <W: a) ai_1b € V. (2.29)

1=0

We extend (2.28) and (2.29) for an arbitrary a € V by linearity. We also define O(V) = Spanc{a o
b| a,be V}. Then, the quotient space

A(V) = M/O(V), (2.30)

called the Zhu algebra of V, is an associative C-algebra with multiplication (2.29) by [21, Theorem
2.1.1]. It is shown in [21, Theorem 2.2.1] that for a vertex operator algebra V' there is a one to one
correspondence between the set of all isomorphism classes of irreducible N-graded weak V-modules
and that of irreducible A(V')-modules.

We recall the vertex operator algebra M (1) associated to the Heisenberg algebra and the vertex
algebra V7, associated to a non-degenerate even lattice L from [14, Sections 6.3-6.5] and [10, Section
2.2]. Let b be a finite dimensional vector space equipped with a non-degenerate symmetric bilinear
form (, ). Set a Lie algebra

h=h®Cltt |eCC (2.31)
with the Lie bracket relations

(Bt v @t"] = m(B,7)6min0C, [C,h] =0 (2.32)
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for B,y € h and m,n € Z. For 5 € h and n € Z, B(n) denotes S R t" € 6 Set two Lie subalgebras
of b:

b= =EPhetaece and ho=EP oot (2.33)

n>0 n<—1

For B € h, CeP denotes the one dimensional Ezo-module uniquely determined by the condition that
fory €

N B _ (’y,ﬁ)eﬁ fori =0 B_ 3
(i) -e” = { 0 for i > 0 and C-e’ =¢€". (2.34)
We take an H—module

M(1,B) = % (h) Doy (o) CE = U (o) ®c Ce’ (2.35)

where % (g) is the universal enveloping algebra of a Lie algebra g. Then, M (1) = M(1,0) has a
vertex operator algebra structure with the conformal vector
| dimb
w=j > hi(~1)hj(-1)1 (2.36)
i=1

where {h1,...,hdgimp} is a basis of h and {h],.. .,hfﬁmh} is its dual basis. Moreover, M (1, 3) is
an irreducible M (1)-module for any § € h. The vertex operator algebra M (1) is called the vertex
operator algebra associated to the Heisenberg algebra ®oxnezb @ t" @& CC.

Let L be a non-degenerate even lattice. We define h = C ®z L and denote by L+ the dual of L:
Lt ={yeh|(B,7) € Zforall B € L}. Taking M(1) for b, we define Viyr = SgerrrM (1, ) =
%(H<0) Qc (@56A+L(Ceﬁ) for \+ L € L*/L. Then, Vi = Vo, admits a unique vertex algebra
structure compatible with the action of M (1) and is called the vertex algebra associated to L (cf.
[14, Section 6.5]). Moreover, for each A + L € L*/L the vector space Vi, is an irreducible weak
Vr-module which admits the following decomposition:

Vie= B (Vasr)n where (Vapr)n = {a € Vayp | wia = na}. (2.37)
ne(A\N) /247

Let L be the canonical central extension of L by the cyclic group (k) of order 2 with the
commutator map c¢(a, 3) = &{®P) for o, B € L:

0— (k) = L= L—0. (2.38)

Then, the —1-isometry of L induces an automorphism 6 of L of order 2 and an automorphism, by
abuse of notation we also denote by 6, of Vi, of order 2 (see [12, (8.9.22)]). In M (1), we have

O(h' (—ir) -+~ h"(=in)1) = (=1)"h}(=i1) - h"(=in)1 (2.39)
for n € Z>o, h',...,h" € b, and i1,...,i, € Z=g. We set
Vit ={a€V,|0(a)=a} and M(1)* = {a € M(1) | O(a) = a}. (2.40)
For a weak Vz-module M, we define a weak Vz-module (M o 6, Y09) by M 06 = M and

Yron(a,x) = Yar(0(a), z) (2.41)
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for a € V. Then Vyy o0 =V_y,p for A € L+, Thus, for A € L+ with 2\ € L we define
VA:|:+L ={u e Vayr | O(u) = tu}. (2.42)

Next, we recall the construction of #-twisted modules for M (1) and V7, from [12, Section 9]. Set a
Lie algebra

h[—1] = h @ tY/2C[t,t | @ CC (2.43)
with the Lie bracket relations
[C,h[-1]] =0 and [a®t™, B t"] =m(a, B)dm+noC (2.44)

for o, € h and m,n € 1/2+7Z. Fora € hand n € 1/2+ Z, a(n) denotes a @ t" € E Set two Lie
subalgebras of h[—1]:

h-1]s0= P bhet"aCC and b= € hot™ (2.45)
nel/2+N n€l/2+N

Let Clty, denote a unique one dimensional E[—l]zo—module such that

1
h(l)ltho forhehandiéiJrN,

C - 1liw = Loy (2.46)
We take an h[—1]-module
M(1)(0) = % (D]-1]) ®, (1., Cuc = % (h]~1]<0) ®c Cug. (2.47)
We define for o € b,
a@) = Y a@)z ! (2.48)
i€1/2+7

and for u = aj(—i1) - ag(—i)1 € M(1),

1 dilfl 1 dikfl

Yo(u,z) = g(il — 1)!(dxi1—1a1($)) s — 1)!(dxik—1a’“(x))

3 (2.49)

Here, for f1,...,08, € h and 41,...,i, € 1/2 + Z, we define ¢f1(i1) - - - Bn(in)g inductively by

oB1(i1)e = B1(i1) and
op (i a i vyo_ J oB2liz) - Bulin)oBi(in) ifdip >0,
210+ Balin)e = { A AR = (2.50

Let RV, ... pldimbl bhe an orthonormal basis of h. We define ¢y, € Q for m,n € Z>o by

o0

Z Cmn™Y" = — log(

m,n=0

(1+x)2 4+ 1 +y)/?
2

) (2.51)
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and
[e9) dim b
A, = Z Cmn Z R (m) b (n)z=mm, (2.52)
m,n=0 i=1

Then, for u € M (1) we define a vertex operator Yy;(1y(g) by
Yary o) (u, z) = Yo(e®u, z). (2.53)

Then, [12, Theorem 9.3.1] shows that (M (1)(6), Yas(1y(s)) is an irreducible f-twisted M (1)-module.
We define the action of 6 on M(1)(6) by

O(ht(—iy) - B (—in)lew = (=1)"RY(—=iy) - - R (—ip) 1o (2.54)
for n € Zsg, h',...,h" € b, i1,...,i, € 1/2+ Z=g and set
M1)(0)* = {u e M(1)(0) | fu = +u}. (2.55)

Set a submodule P = {f(a)a™" | a € L} of L. Let T be the irreducible L/P-module associated to
a central character x such that x(x) = —1. We set
VX = M(1)(0) @ T (2.56)

Then, [12, Theorem 9.5.3] shows that VLT X admits an irreducible f-twisted Vz-module structure
compatible with the action of M (1). We define the action of § on VLT X by

O(ht(—=iy) - h"(—ip)u) = (=1)"ht(=iy) - - - " (—in)u (2.57)
for n € Zso, h',...,h" € b, i1,...,i, € 1/2+ Z~po, and u € T, and set
VIR = {ue VX | 6(u) = +u}. (2.58)

Let Al ... Al be an orthonormal basis of h. For i = 1,...,d, we define the following elements
in M(1)*:

Wlil = éhm(_m,
w=wl 4.l
HI = %hm(—3)h["](—1)1 - %h[ﬂ(—z)%,
71 = (1)1 — 20311 4 DRl (21
= —9H + 4?1 — 301, (2.59)
For a € b, we define

E(a) =e* 4 0(e”). (2.60)
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We recall the following notation and some results from [10, Sections 4 and 5]: for any pair of distinct
elements 7,5 € {1,...,d} and r, s € Z~o,

Sii(r, s) = Wl (—r)All(—s)1,
E =58;;(1,2) + 255;;(1,3) 4+ 365;(1,4) + 16S;;(1,5),
Ej; = —165;;(1,2) 4+ 1455;5(1,3) + 195:5(1,4) + 85;5(1,5),
Aij = 455;5(1,2) + 190S;;(1, 3) 4 2408;;(1,4) + 965,;(1, 5). (2.61)

It follows from [10, Proposition 5.3.14] that in the Zhu algebra (A(M(1)"), ), A" = @; ;CE}; and
Al = EBi,j(CEfj are two-sided ideals, each of which is isomorphic to the d x d matrix algebra and
Avx At = Atx A* = 0. By [10, Proposition 5.3.12], for any pair of distinct elements 7,5 € {1,...,d},
we have A¥sxA;; = Ajjx A" = AtxA;; = Ajjx At = 0. By [10, Proposition 5.3.15], A(M (1)) /(A“+ A")
is a commutative algebra generated by the images of wll, Hl! and Aji where i = 1,...,d and
jke{l,...,d} with j # k.

For A e b, k=1,...,d, and any pair of distinct elements i,j € {1,...,d},

[k])2
WFlN — (A, ™) o,
2
N = 0,
Sij(la 1)1€>\ = _Sij(172)2€/\ = Sij(1>3)3e>\ = <)‘>hm><)‘>hm>€)\7 (262)
WUl (1)1 = 6,0 (— 1)1,
HFERU (—1)1 = 5,0 (—1)1,
Sij(1,1)1h(=1)1 = pll(—1)1
Sij(1,2)9hl(=1)1 = —2nl(—1)1,
Sii(1,3)3hl9 (1)1 = 3nld(—1)1, (2.63)
and
1
w[lk] ]-tw - EltW;
k -1
H;L) ]]—tw - ﬁltwa
Sii(1,1)114 = Si5(1,2)21ew = Sij(1,3)314w =0,
k.11, 1 9 19, 1
wg ]hb](_i)ltw = jkﬁh[j](_§)1tw>
K,, 1 15 4, 1
Hs[; ]hm(—g)ltw = 5jk§8h[j](—§)1tw,
o1 1, 1
Sig (1, Dk (=) 1w = ST (=)L,
o1 |
8ij(1,2)h (=) Lo = — R (=5) Law,
a1 15 11, 1
- bl_Z — Cplil_Z
Si;(1,3)3hV( 2)]—tw 16h ( 2)1tw- (2.64)
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For any pair of distinct elements i, j,k € {1,...,d}, [,m € Z, and r, s € Z~g, a direct computation
shows that

) _J_ —9 ]
[RE)(1), S5 (r, 8)m] = s <i> ( : mr+_r1+ ° >hm(l +m—r—s+1), (2.65)
w855 (1, 7)) = 7855 (1,7 + Vst + 1855 (1, 1) g1, (2.66)
r+1
[Sk](l 1)l7 z] 1 7‘ = TZ () zk 1 t H—m r—1+4t- (267)

We also have

S:i(2,1) = weSi; (1, 1) — Si;(1,2)
Sii(3,1) = zwpSij(1,1) — woSi;(1,2) + Si(1,3),

Sl-j(Q, 2) = wOSij(l, 2) — 2Sl-j(1, 3),

Si(3,2) = —wH S (1,1) + 2P 555(1,2) + wOS”(l 2) — 2wS;;(1,3),

Sij(?), 3) = %1000&)@251']‘(1, 1) + gw@zsij(l, 2)
— wow[_i]lSij(l, 2) + wow[_j]lsij(l, 2)
1 i
+ Jw05i5(1,2) + 20l S::(1,3) — w28, (1,3). (2.68)
For P C {1,...,d}, we define the subspace

L [i1] /- lin] n€Z>0,21,...,inE{l,...,d},jl,...,jn€Z>0,
M(1)p = Spang {H0(~j0) . H) (o)1 | fle (L,...n} | |{k | ix=1}] is odd} = P }

(2.69)
of M(1) and the subspace
M) :=M1)pnM1)" (2.70)
of M(1)*. Note that if | P| is odd, then M (1)} = {0}.
For P,P' C {1,...,d}, we define P& P’ := (PUP)\ (PN P) C{l,....d}.
Lemma 2.4.
(1) We have M(1)* _U|PI’DC|{1, Lay M(1)p.
(2) For P,P' C {1,...,d},
(M(1)p) - M(1)pr C M(1)pgpr and
(M(1)5) - M(1)} C M(l)PeP’ (2.711)

Proof. The result (1) follows from the definition of M (1)}. The result (2) follows from the fact that
for i€ {1,...,d} and j € Z, hll(j)M(1)p € M(1)giyep- O
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For P ={p1,...,pa} C {1,...,d} with p; > --- > po, we define

Bp := {hP(= 1)l (—py) el () pPd (e € {1,2,3))
= {Sp1,p2(1a 7‘1)71 T Sp%—l:pzz(la Tt)*ll | Tl Tt € {13 2, 3}} (2'72)

By (2.63), (2.65), (2.68), we know that
M(1)F = M(DE - (Bp) -1 (2.73)
and hence by (2.65) again, M (1)} is also spanned by the elements of the form
Sprpe(1,71) —s1 + = Spos_1por (1, 7¢) —s,, (2.74)

where a € M(1)%, s1,...,8; € Z=o, and 71,...,7¢ € {1,2,3}. By (2.63), (2.65), (2.68), and [19,
(3.4), (3.5), (3.7), (3.9), (3.10), (3.11)], M (1)} is spanned by the elements of the form

1 m
agl)l s a(fl:l SPLPQ(L Tl)*sl T Sth—l:th(]" Tt)*Stla (2'75)
where m € Zx, a®, . a™ e (WU U | 5 oe {1,...,d}Y, b, ..l sty ..., 80 € Zisg, and

r1,...,m € {1,2,3}. By (2.74), in the same way, we know that M (1)} is spanned by the elements
of the form

1 m
Sprpe (171 =1 Spou_y por (L 7e) sy} a1, (2.76)

where m € Zx, aV . a™ e (WU HU | 5 oe {1,...,d}}, L. lm,s1,..., 5 € Zsg, and
r1,...,1r € {1,2,3}.

Remark 2.5. Let u,v € M(1)", i,j € Z,p,0 € Z>-1, and p,q a pair of distinct elements in
{1,...,d}. Throughout this paper, if [u;,v;] = >3 (1) (Wkv)itj—k € M(l){*p gp» then we frequently
express this element as a linear combination of elements of the form

all a1, )l o) (2.77)

11 N

where k,l € Z>p, r =1,2,3,t € Z, and

(ain), .., (@®, i) € {(WF,m) | m < p}_ U{HEF, n) | n <o},
(O, 51), -, 00, 51) € {@H,m) [ m > p+ 14 U{HM, n) [ n >0+ 1}, (2.78)
For the calculation, we use [19, Lemma 2.2] and the data axb (k = 0,1,...) in Appendix A2. In
most cases, we obtain the explicit expressions of the results by using computer algebra system
Risa/Asir[16].
For example, we shall compute [Hlm, Si;i(1,1),,] for a pair of distinct elements 4,5 € {1,...,d}
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and l,n € Z. For m € Z>_1, by [19, Lemma 2.2], we have

@Si(L e = Y (r—DelISyM Dt Y (r = DSy(L )b

r<m r>m+1

r+s+2=n r+s+2=n

1

m + 2 j

# 0 ()) lsy D)as

t=0

= Y (r=Dufls .+ >0 (—r=1)8;;(1 1wl

r<m r>m+41
r+s+2=n r+s+2=n

m+ 2 m+ 2
+ ( 5 >Sij<172)n—2 +2< 3 )Sij(lal)n—Sa

@WAS;1L 2= Y WS+ Y Sy 2)wl)

r<m r>m—+1
r+st+l=n r+s+l=n

1
S (M) s,
; <0> (t +1 >(”t Sij(1,2))n-1-1
— Z wflSi;(1,2), Z S15(1,2) ol

r<m r>m—41
r+s+l=n r+s+l=n
m+1 m+1
- 2( A >Sij(1,3)n_1 - 2( ) )Siju, 2)p_s. (2.79)

By (A2.4) and (2.79), we have

3

[H[] Sij(1,1)n Z( > H[J]Sw L1))isn—rk

k=0
= (- QWU] 293 (L, 1) + Sij(1,2))14n

7 l
+418i;(1,3)14n-1 + ( ) i5(1,2)14n—2 + (3>Sij<171)l+n3

==2( > (—r=DwllS; 0+ > (—r = 1)S;(L 1) swl]
r<m r>m-+1
r4s+2=Il+n r+s+2=Il+n

m+ 2 m 4+ 2
+< 9 )Sij(172)1+n2+2< 3 >Sij(1a1>l+n3)

40 Y WS+ Y 5L 2)wY
r<m r>m+1
r4+s+l1=l4+n r4+s+1=l4+n

m+1 m+ 1
—2< 1 >Sij(173)l+n1_2< 5 )Sz‘j(172)l+n2)

N7 l
+418:5(1,3)14n-1 + <2> gSij(L 2)4n—2 + <3> Sii (1, 1)14n—3. (2.80)
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3 Modules for the Zhu algebra of M (1)" in a weak V;-module: the
general case

Let L be a non-degenerate even lattice of finite rank d and h := C ®z L. In this section, we shall
show that there exists an irreducible M (1)*-module in any non-zero weak VLJr -module (Proposition
3.5). Throughout this section M is a weak V;'-module.

Lemma 3.1. For a non-degenerate even lattice L of finite rank d, there exists a sequence of elements
Bi,...,Pa € L such that (B;, B;) # 0 fori=1,...,d and (B, Bx) = 0 for any pair of distinct elements
gk ed{l,...,d}.

Proof. Let 1, ..., 74 be a basis of Q®gz L such that (vy;,v;) # 0 and (v;,v,) =0foralli € {1,...,d}
and 7,k € {1,...,d} with j # k. . Since v1,...,74 € Q ®z L, there exists a non-zero integer m;
such that mvy; € L for all ¢ = 1,...,d. Then, the elements 5; = m~y; (i = 1,...,d) satisfy the
condition. O

Let A = 69?:1ZBZ- be a sublattice of L such that (5;,5;) # 0 fori=1,...,d and (8}, fx) = 0 for
any pair of distinct elements j, k € {1,...,d}. We have

Vi, ®-- @Vl CcVfF (3.1)
and take the orthonormal basis h[Y, ... hld of b defined by
A 1 A
bl = : gl (i=1,...,d). (3.2)

(Bl Bl

Since [hy], h,[%]] = 0 for any pair of distinct elements i,5 € {1,...,d} and I,m € Z, it follows by

induction on d using [19, Lemma 3.7] that there exists a simultaneous eigenvector u of {w%ﬂ, H g]}le
in a weak V;'-module M such that e(wl),u) <1 and e(H u) <3 foralli=1,...,d.

Lemma 3.2. Let U be a subspace of a weak M (1)"-module.

(1) Leti,j € {1,...,d} with i # j and k € Z such that k > €(Si;(1,1),u) for allu € U. If U is

stable under the action of ng], then
E(Sij(l,r+1),u) < k+r (33)
for all v € Z>g.

(2) Assume o € ChUY. Let i € {2,...,d} and t € Z such that t > e(E(a),u) for allu € U. If U
is stable under the action of S;1(1,1)1, then

G(Sil(l, l)oE(a),u) <t+1. (3.4)
Proof. (1) For l,m € Z and r € Z~g, by (2.66)
1 .
Sij(l,’l" + 1)l+m = E[wlm’ Sij(l, T)m] — lSij(l,T)H_m_l, (3.5)

which implies (3.3).

(2) Since S;1(1,1)nE(a) =0 for all m € Z~, the same argument as above shows the result.
0
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Lemma 3.3. Let U be a finite dimensional subspace of a weak M(1)"-module M such that for all
k=1,....d andu € U, e, u) < 1,e(H¥ vu) < 3, and wgk]u e U, H:[sk]u € U. For any pair of
distinct elements i,j € {1,...,d} we denote max{{e(S;;(1,1),u) | u e U} U{-1}} by €(S;;).
(1) Leti, j be a pair of distinct elements in {1,...,d}. We define W := Spanc{Si;(1,7)e(s,))4r—1u | 7=
1,2,3}. For any w € W and k = 1,...,d, we have e(w* w) < 1,e(H¥ w) < 3 and
wgk]w,Hgg]w ew.

(2) Assume €(Si;) < 1 for any pair of distinct elements i,j € {1,...,d}, namely U C Qprqy+(M).
For P={p1,...,pu} C{1,...,d} with p; > --- > pa, we define

SpU = Spanc{Sp, p, (1, 71)r, -+ Spor_1.p: (L, 7t)r,u | w € U and 1, ...,7 € {1,2,3}} (3.6)
and SU := Y pcq,..ay, SPU. Then, SU is an A(M(1)")-submodule of Qppq)+(M).

|P| is even
Proof. (1) We may take (4, j) to be (2,1). We define €(S) := €(S21(1, 1)), €(S21(1,2)) := €(S) + 1,
and €(521(1,3)) := €(S) + 2. By Lemma 3.2 (1), we have €(S21(1,7)) > €(S21(1,4),u) for
all i = 1,2,3. We define A := {wl, HI} | B := {S91(1,i) | i = 1,2,3}, e(wll) :=1 =
wt(wll) — 1 and e(HY) := 3 = wt(HU!) — 1 for i = 1,...,d. In order to apply Lemma 2.3
(3) to u, for a € A we shall compute ¢(a) defined in (2.20). Note that M(1)% = (A_)1 and
M(l)al} = B_(A_)1 = (A_)B_1 (see (2.70) for the definition of M(1)}). By Lemma 2.4
(2), we have A- (A_)1 C (A_)1,A-((A_)B_-1) C (A_)B_1,B-(A_)1 C B_(A_)1, and
A-(B_(A_)1) C B_(A_)1, where the symbols (A_)1,(A_)B_1, and B_(A_)1 are defined
in (2.10) and (2.11). For j € Z with j > min{wt(b) | b € B} = 2, by the definition (2.12) of §

I

6(j) = (S (1,1)) =2+ . (3.7)
For a € {w%ﬂ,Hg] ;-1:1 and j = 1,2, 3, since wt(a) > 2, we have

d(wt(a) +wt(S21(1, 7)) —1) — (S (1, 7)) = d(wt(a) +j) — (e(S21(1,1)) +5 = 1)
= e(S21(1,1)) = 2+ (wt(a) +j) — (e(Sa1(1, 1)) + 5 — 1) = wt(a) — 1 (3.8)

and hence ((a) = wt(a) — 1. Applying Lemma 2.3 (3) to u, we have ayiq)—1U C U and
arU =0 for a € A and k > wt(a) — 1.

(2) For P C {1,...,d} such that |P| is even, by using (1), an inductive argument on |P| shows
that e(w* u) < 1,e(HM, u) < 3, and wgk]u e SpU, Hgg]u € SpU forall k =1,...,d and
ue SpU. Let A:= {wl HI}  and

te Zzo,rl,...ﬂ“t S {1,2,3}
B = { ) (— )bl (=) - ple) (<) pl ()1 ( Pisspar € {1, d} such that }
p1 > > Pat
t e Zzo,rl,...,rt S {1,2,3}
= {8y (L) 1 Sy (170) 11 ‘ PLo-pu € {1 d} such that }. (3.9)
p1 > > pat
By Lemma 2.4, (2.75), and (2.76), we have A-(B_1) = (A_)B_1=B_(A_)1= M(1)". We
define €(u) := wt(u) — 1 for a homogeneous element u € M(1)*. Note that Spanc{bepyu | b €
B,ueU} =SU. Since A- (A_)1 C(A_)1and A- M(1)" = B- M(1)* = M(1)", the result
follows from Lemma 2.3 (4).
0
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Lemma 3.4. For a non-zero weak V;"-module M, there exists an irreducible A(M(1)T)-submodule
of Qury+(M).

Proof. Let hlY, ... hld be the orthonormal basis of b defined by (3.2). By the argument just
after (3.2), we can take a simultaneous eigenvector u of {wl],H 4 ' | such that e(wl! u) <1 and
e(HU u) < 3foralli=1,...,d We take a pair of distinct elements i,7 so that €(S;;(1,1),u) >
€(Sim(1,1),u) for any pair of distinct elements [,m € {1,...,d}. We may assume (i,7) = (2,1). We
define €(S) = €(S21(1,1)) := €(S21(1,1),u), €(S21(1,2)) := €(S) + 1, and €(S21(1,3)) := (S)

By Lemma 3.2 (1), we have €(S21(1,7)) > €(S21(1,7),u) for all i = 1,2,3. Hence if ¢(5) < 0, then
u € Qpg1y+ (M) and Cu is an irreducible A(M (1)")-module.

From now, we assume €(S) > 1. We define the subspace W := fo:l CS21(1,7)¢(§)4r—1u of M.
Let w € W and (j, k) a pair of distinct elements in {1,...,d}. We shall investigate €(S;x(1,1), w).
We note that €(Sjx(1,7),u) < €(S) +r—1 for all » > 1 by the definition of €(S) and Lemma 3.2. If
{j,k} n{1,2} = @, then

€(Sjr(1,1),w) < e(S;k(1,1),u) (3.10)

since Sjr(1,1);521(1,7)m = S21(1,7)mS;k(1,1); for all I,m € Z and r = 1,2,3. For j € {3,...,d},
r€{1,2,3}, and | € Z, by (2.67)

r+1
l
Sin (1, 1)1821 (1, 7) (s)r—1t = S21 (1, 7)e(s) -1 (1, Dyw+ 7Y <S> S25(1,8)e(s)—2+414su- (3.11)
s=1
Thus, €(Sj1(1,1), S21(1,7)¢(5)+r—11) < max{e(S;1(1,1),u),1} for r = 1,2,3 and hence
€(Sj1(1,1),w) < max{e(Sj1(1,1),u),1}. (3.12)

The same argument shows that for j € {3,...,d},
€(Sj2(1,1),w) < max{e(Sj2(1,1),u),1}. (3.13)
We set (j,k) = (2,1). For i € Z and r = 1,2, 3, by [14, Proposition 4.5.7] putting u = S21(1,1),v =
So1(L,r),p=1i,q=¢(S)+r—1,l=¢€(S)+ 1, and m = 0 in the symbol used there, we have
e(S)+1
S)+1
S21(1,1)iSo1(1,7) ()41t = Y <( Z )(521(1 D)i(e(8)+1)+5521 (1, 7))2e(5) 4r—ju-  (3.14)
§=0

By Lemma 2.4 (2), So1(1,1)i—(¢(s)+1)+5521(1,7) is an element of M (1 ). Since e(wll, u) < 1 and
e(HU ) < 3 for all i = 1,...,d, for any homogeneous element a € M(1)];, by using (2.75), an
inductive argument on wt a shows that a;u = 0 for all i« > wt(a) — 1. We see that for j € Z and
S Z>07

26(5) +r— j - (Wt((Sm(l, 1)i—(e(S)+1)+j521(17r))) — 1) = E(S) 41— 2. (3.15)
Thus, if €(S) > 2, then by (3.14), S21(1,1);S21(1,7)¢(5)4r—1u = 0 for all i > ¢(S) and hence
€(S21(1,1),w) < ¢(S) — 1. (3.16)

For any w € W and i = 1,...,d, it follows from Lemma 3.3 (1) that w%ﬂw,H?[,ﬂw e W, and
e(wl w) < 1, e(HI w) < 3. Thus, if €(S) > 2 then by (3.10), (3.12), (3.13), and (3.16), we can
take a simultaneous eigenvector v of {wm H } ' in W such that €(S21(1,1),v) < €(S21(1,1),u)
and €(S;;(1,1),v) < max{e(S;;(1,1),u),1} for any pair of distinct element 4,j € {1,...,d} with
{i,7} # {1,2}. Replacing u by this v repeatedly, we get a non-zero element u € Q1)+ (M). Now,
the result follows from Lemma 3.3 (2), O
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By Lemma 3.4 and [8, Theorem 6.2], we have the following result, which is already shown in
[19, Proposition 3.13] when rank L = 1:

Proposition 3.5. Let L be a non-degenerate even lattice of finite rank and M a non-zero weak
Vit -module. Then, there exists a non-zero M(1)T-submodule of M.

4 Extension groups for M(1)*

In this section we study some weak modules for M (1)" with rank d. As stated in Section 1, the
irreducible M (1)*-modules are classified in [9, Theorem 4.5] for the case of dim¢ch = 1 and [10,
Theorem 6.2.2] for the general case (see (1.1)). Results in this section will be used in Part 3 of
this series of papers to show that every irreducible weak VLJr -module is a direct sum of irreducible
M (1)*-modules. When d = 1, some of the results in this section have already been obtained in
[2, Section 5]. In some parts of the following argument, we shall use techniques in [2, Section 5].
Throughout this section, M is an M (1)T-module, W is an irreducible M (1)"-module, and N is a
weak M (1)"-module. In this section, we consider the following exact sequence

0—-W-—=NSM-=0 (4.1)

of weak M (1)"-modules. We shall use the symbols in (2.59) and (2.61). We note that [w%ﬂ,wm] =
[w%ﬂ,H;[f]] = [H;[;],Hg[)ﬂ] =0 foralli,j=1,...,d. Let B be an irreducible A(M(1)")-submodule of
M(0). For ¢ = (¢, ..., ¢l ¢ = (el ... ¢ld) € C? let v € B such that

(! = ¢y = (11" = efhyo =0 (42
forallt=1,...,d and we define
d ] ' d ) '
Wee = () Ker(w! — ¢y n () Ker(ay"! — €y nw. (4.3)
j=1 i=1

Lemma 4.1. Under the setting above, there exists uw € N such that
rw)=v, (1 = Myu, (HY - Myu e Wee (4.4)
and
(or = C2u = () — €2u =0 (45)
foralli=1,...,d.

Proof. Let u € N such that 7m(u) = v. Since (w[li] — ¢y, (H:[,f] — ¢l)u € W and the actions of
wgl] and H:[),l] on W are semisimple for all i = 1,...,d, the subspace U := Spanc{a) - a@mu | n €
Z>0,a(1);- - - Q) € {wgi},Hg]}f-l:l} of N is finite dimensional. For p = (pl)L,, 0 = (ol)L, € C?,
we define

there exists n € Z( such that } (4.6)

U,, = eU 4 . i . .
p’ {w ’ (wg]—p[z})"w:(Hé]—a[ﬂ)”w:()for alli=1,...,d.

and we take a decomposition U = @, ,ccalUpo. For any p,o € C?, we also take a linear map

77 € Spanc{aq) - a@y | n € Lz, a0y, a@m) € {wil, Hy |} such that f9]y, = idy,,
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and [Py, , = 0 for all (u,v) # (p,0). We write u = >, ccatps Where up, € Upy. We fix
ie{l,...,d}. Since (wgi] — ¢y € W, we have
(@l = My = ]! = ) frou = pro(l! — (hu e wnu,,. (47

Since the action of w[li] on W is semisimple,

(! = ! = Do = 0. (48)

Since u, s € U, s, there exists k € Z~( such that (wgi] — plihky, , = 0. When plil £ ¢l regarding

(w%ﬂ — pli)* and the left-hand side of (4.8) as polynomials in w%ﬂ — pll, and dividing the former by

the latter, we get (wgi] — plM)u, » = 0 and hence

_ 1 f ]
Upo = PR (Wi = CMNupe € W (4.9)

by (4.7). The same argument shows that
(Héi] _ J[i])(Hg] _ g[ﬂ)up’g =0 (4.10)

and if ol # €00 then w,, € W. Thus if (p,0) # (¢,&), then u,, € W and hence we can take
u=wuce € Uee. In this case, (4.4) and (4.5) hold by (4.8), and (4.10). O

Let u € N that satisfies (4.4) and (4.5). If (W, B) 2% (M (1)*, M(1)~(0)), then it follows from
[2, Lemma 4.8] that

e u) <1 and e(HY u) <3 (4.11)

forall e =1,...,d, where € = ey, .
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For a pair of distinct elements i,j € {1,...,d}, a direct computation shows that

0= 6w!,5,;(1,1) + 207 5,5(1,1)

- 4w0w¥]15ij(1, 1) + wowowoSi; (1, 1)

+ 4w 85(1,2) — 4wV 55(1,2)

— 3wowoSi;(1,2) + 6weS;;(1,3), (4.12)
0= 32w%,8,;(1,1) — 24H", 8;;(1, 1)

— 8wl Sii(1,1) + 24HY 55(1,1)

— 120wow!,S5(1,1) + 36wow) Si5(1, 1)

+ 72w0w0w[_i]15’ij(1, 1) — wowowowoSij(1, 1)

+ 1207851, 2) + 1205).9,5(1, 2)

— 72wow!™ S5;(1,2) — T2wow!) S55(1,2)

+ 18wowowoSi; (1, 2), (4.13)
0= 8wY,5;;(1,1) — 24HY) 5;5(1,1)

+ 5dwow'™, S5(1, 1) — 36wew} Si5(1,1)

— 36w0w0w[_i]15’ij(1, 1) + wowowowoSi;(1, 1)

+540,855(1,2) — 12010 5,5(1, 2)

+ 72w0w[_j]15’ij(1, 2) — 18wowowoSij(1,2)

+ 720 S35(1,3), (4.14)
0= 14w S5(1,1) + 121 8,1, 1) — 3w5L8,5(1,2) — 3607 S35(1,3). (4.15)

The following result is a direct consequence of (2.59), Lemma 2.4, and (2.75):

Lemma 4.2. Let K be an M(1)"-module such that K = M(1)* - K(0). Then, K is spanned by
al(ll)'--agg)b where n € Z>p, b € K(0), P e {WH JHE | E=1,...,d}U{S,1,r) | 1<m <1<
d,r=1,2,3} and ij € Licyyqi—o forj=1,...,n.

Lemma 4.3. Let U be a subspace of a weak M (1) -module which is stable under the actions of
wgﬂ,Hg]}?zl. Assume e u) < 1 and e(HW, u) < 3 for alluw € U and i = 1,...,d. Let
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i,j € {1,...,d} withi# j and €(S) € Z such that €(S) > €(S;j,u) for allu € U. Then, for uw € U

0= —€(S)(€(S) + 1)2Si5 (1, Degsyu = (€(S) +2)(3e(S) +1)Si5 (1, 2)e(s) 411
+4€(9) S35 (1, Doyt — 4835 (1, De(sywiu
—2(3¢(S) + 1) 4 (L, 3)e(s) 42t + 4555 (L, (s 1) 1 — 4835(1,2) sy awP . (4.16)
0= —€(S)(€(S) + 1)(3e(S)? + 27e(S) + 22)Sy5(1, 1) ()
— 2(3¢(5)* + 39¢(S5)? + 82¢(S) + 24)S;5(1,2) ()10
+ 8e(S)(3¢(S) + 11) Sy (1, sy + 8(3e(S) — 13)Si5 (1, L)yt
— 48(3¢(S) + 1)Si(1, 3)(s) 42 + B(3€(S) — 13)S5(1, 2) () 107
— 88;5(1,1) (5 Hi 'u+ 8S55(1, 1) (5 HY u
+8(3e(S) + 11)555(1, 2) (541604 u, (4.17)
0 = 2(3€(S)® + 21€(5)? + 42¢(:S) + 14)S55(1, 2)o(5) 414 — 8(3€(S) — 7)Sij (1, 1)o@ u
+ 4(18€(8) + )8 (1, 3)(s) 42 — B(3e(S) = )85 (1, D)e(sy 410t
— 8855(1, V() HE u + 3€(S) (€(S) + 1)2(e(S) + 0)S35(1, Desyu
— 12¢(S)(€(S) + 4)Sij (1, egsyonw = 36535 (L, 2)e(s) 101w

+24535(1,3) (52w, (4.18)
0= —S8i;(1,2)¢(s)+1u — 5S4 (1, 1)e(S)w£j}u = 8ij(1,3)¢(s)42u — 115;5(1, 2)6(3)+1w£ﬂu
+ QSij(l, 1)€(S)H:[3]]’LL — 65@'(1, 3)6(5)4’_20«)%}}%. (4.19)

If u is a simultaneous eigenvector of {wgﬂ,ng},Hg], H:L)j]} with eigenvalues {¢, ¢Vl el ebly.

(! = (M = (@ =y = (H) — yu = (B!~ Dhu =0, (4:20)
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then

0= —(e(S) — 1) ((18¢HT + 3)e(8)° + (—54¢1 + 6)e(S)*
+ (1 —36¢V! — 78¢l — 216¢UI¢ 4 216(¢1)2)e(S)?
+ (=24 4¢V! 4 22¢ M 4 744¢UICE 4 24(¢2)e(5)?
+ (12¢1 —192¢lI¢l) — 48(¢h2 — 1152¢ U1 (¢y2)e(S)
+ 384¢bl(¢lih? — 16<[j]<[i])
+8((9¢(8)* + 12¢(5)3 + (—18¢1 — 36¢1)e(5)? + (—24¢l — 1)e(S)
—4¢ll — gl — 24¢blcll 4 24(C[i})2)§[i]
= 8(((18¢17 + 3)e() + (=24¢1 + 1)e() +24(CH)? + (—24¢7 = 6)¢H —aclhy)ell, - (4.21)
0= —(e(S) = 1)((18H + 3)e(8)” + (—54¢V + 6)e(5)*
(1——36(M——78Cm«—216CMCU]+—2HXCJU2kQSF
+ (=2 + 4¢ll 4 22¢U] 4 744¢ T 4 24(cUN2)e(S)?
+ (12¢V1 — 192¢HI¢HT — a8 (¢l — 1152¢ 1 (¢V)?)e(S)
+ 384¢l(¢lh? — 16<[ilc[j])
A+M@dsf+1%@ﬁ (—18¢ — 36¢1ye(5)2 4 (—24¢lT — 1)e(S)
—4¢l — bl — 24¢0clT 4 24(c b)) )g[]

— 8(((18¢H + 3)e(S)? + (—24¢V! + 1)e(S) + 24(¢V)2 + (—24¢l — 6)cl) — 4¢lh)) el (4.22)
Proof. We first note that interchanging the positions of ¢! and ¢V!, and €[4 and €Ul in (4.21), we
get (4.22). Thus, these two equations (4.21) and (4.22) are essentially the same, however, we put
them here because they are convenient for later use. By Lemma 3.2, €(S;;(1,7),u) < €(S)+r—1 for
all 7 =1,2,... and u € U. We shall apply Lemma 2.3 (2) to (4.12) with A := {wl, WUl HE HUI},
B = {S;j(1,7) | r = 1,2,3}, e(wlF]) := wt(wlkl) — 1 = 1, e(HF]) := wt(HF) — 1 = 3 for k = i, j,
and €(S;;(1,7)) = €(S) +r —1 for r = 1,2,3. By Lemma 2.4, we have A- (A_)1 C (A_)1,A-
((A_)B_1) Cc (A_)B_-1,B-(A_)1 C B_(A_)1,and A-(B_(A_)1) C B_(A_)1, where the symbols
(A-)1,(A_)B_1, and B_(A_)1 are defined in (2.10) and (2.11). The weight of each term in (4.12)

is 5. The same argument as in (3.8) shows §(5) = €(S) 4+ 3, where § is defined in (2.12). By Lemma
2.3 (2), the (e(S) 4 3)-th action of (4.12) on u is a linear combination of elements of the form

1 (m)
qe(q)pe(p(l)) o pe(p<m))u (423)

where m € Z>o, pM, ..., p™ € A, and q € B. To obtain the explicit expression of the result (4.16)
we use computer algebra system Risa/Asir[16]. By taking the (e(S)+ 4)-th actions of (4.13)—(4.15)
on u, the same argument shows (4.17)-(4.19). Deleting the terms including S;;(1, 3)¢(g)+2u and
Sij(1,2)¢(s)42u from (4.16)—(4.19), we have (4.21) and (4.22). O

Lemma 4.4. Let
0—-W-—=NSM-=0 (4.24)

be an ezact sequence of weak M(1)*-modules where W is an irreducible M(1)"-module, N is
a weak M(1)*-module and M = @ieyiz.,M;i is an M(1)"-module. Let B be an irreducible
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A(M(1)*)-submodule of M, that is not isomorphic to W(0) and v a simultaneous eigenvector in B
of {w[f], H?EZ} Yo, with eigenvalues {1, €My

(wgi] _ C[i])v — (H?[f] _ g[i])v —0. (4.25)

If (W,B) 2 (M(1)*,M(1)=(0)), then there exists a preimage uw € N, of v under the canonical
projection Ny — M, such that

(Wil — ¢y = (HP — ey =0 (4.26)
foralli=1,...,d.

Proof. Using [2, Proposition 4.3] and eigenvalues of w%ﬂ and Hg] for i = 1,...,d on irreducible
M (1)*-modules in [3, Table 1], we see that the result holds if W = M (1)(0)* or B = M (1)(6)*(0).
We discuss the other cases. For v € B with (4.2) , we take u € N that satisfies (4.4) and (4.5).
Let B = Ce? for some A € h\ {0}. In this case ¢! = (A, hl1)2/2 and €l =0 fori=1,...,d. We
note that at least one of ¢!, ... ¢4 is not zero. Let W = M(1, ). Since B 2 W(0) as A(M(1)*)-
modules, we have u € b\ {0, £A}. Since ﬂ?zl Ker Hzgj] N M(1,u) = Ce* by [2, Proposition 4.3],

M(1, p)e ﬂ Ker(w [J] ¢y ncer. (4.27)

Assume
(w%ﬂ —¢Mu £ 0or Hzgi]u # 0 for some i € {1,...,d}. (4.28)

It follows from (4.4) that M (1, u)¢ (o,...0) # 0 and hence (A, RUIY = +(u, U] for all j =1,...,d by
(4.27). Thus, v = (A, \)/2 = (p, u)/Z By this and A # +pu, we see that there exists an A(M(1)")-
submodule of N(0) which is isomorphic to B @& M(1,)(0) = M(1,\)(0) ® M(1, 1)(0). Thus, we
have the result. If W = M (1)*, then the result follows from the fact that M(l)éc,(o,“.,o) =0.

If B=C1= M(1)*(0), then the same argument as above shows the result.

Let B = M(1)~(0), W = M(1,)) such that X\ € b\ {0}, and v = hUI(=1)1 for some j €
{1,...,d}. Since €l = §;; for all i = 1,...,d, it follows from [2, Proposition 4.3] that

M(1,M)ce © ChUI(=1)e. (4.29)

Suppose there exists i € {1 .,d} such that (Wl —8;;)u # 0 or (H —8;;)u # 0. Then, M(1,\)¢¢ #
0 and hence &, = (A, hlF1)2 /2 + 6;j; for all k =1,...,d, which contradicts that A # 0. The proof is
complete. O

We will prepare the following symbol for Lemmas 4.6 and 4.8:

Definition 4.5. Let R[z] be a polynomial ring over a commutative ring R. For two polynomials
A = ZdegAl Ay at, Ay = Z?E%AZ Asx' € R[z] with Ag; € R, we define a polynomial G(Ay, As) €
R|x] as follows. We first prepare indeterminates A1, ..., A1 degA;, 42,0, - -, A2 deg 4, Over C. We de-
A A~ A ~ ~ . ~ d A ~ . ~
fine R ::AC[AI’O’ e s Al deg Ay, A2,0, - - - 7A2,degx4AQ] and two polynonllals /}1 = Y e Ayt Ay =
Sdesd> 4,27 € R[z]. In the following, deg P is the degree of P € R[z] with respect to . If

(2
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deg A; > deg Ay, then we define A3 € R[z] by the remainder after dividing Agei:gdeg A2+ A by
) 2
Ay:

Agiigeﬁh;degfi2+1fil = BQAQ + 1213, Bg, Ag € E[l‘], deg Ag < deg 1212. (4.30)

Here we note that such an Aj exists uniquely since we took Agei‘ggdeg A2+1 A instead of Ap. If
) 2
deg Ay > deg A;, then we define A3 by A;. Defining Az := A3|AI,O:Al,o,Al,FALlv---vA270:A2»°""’

By = B2|A1,0=A1,0,A1,1=A1,1,--~7A2,0=A2,07~-- € R[IE]’ we have

Agf}fegh;degAz—‘rlAl = BoAo + A3, DBy, Az € R[m], deg Az < deg As. (4.31)

We replace A1 by As and Ay by As and repeat this operation as many times as possible, which is
the essentially Euclidean algorithm:

deg A —deg Agyq+1 '
Akfl,ngAekgH“ﬁ Ap = Bpp1App1 + Apyo, By, Apgo € Rz, deg Ao < deg Ay (K =0,1,...)

deg Ag—deg Ag41+1
d+1,deg Agy1

Aj = Bgt1A44+1, DBat1 € Rlx].
Then, we define
G(A1, Ag) := Agy1 € Rz]. (4.32)
Lemma 4.6. Let
0-W-—=NSM-=0 (4.33)

be an exact sequence of weak M(1)"-modules where W is an irreducible M (1)*-module, N is
a weak M(1)"-module and M = ®ieyyz.,M; is an M(1)"-module. Let B be an irreducible

A(M(1)")-submodule of My and v a simultaneous eigenvector in B for {wgi],Hg]}le with eigen-
values {¢, M}, :

(@ = ¢y = (@) - €l = 0. (4.34)
Let w € N, such that (w%ﬂ — ¢ = (H:,Ez] —&ihw =0 for all i = 1,...,d. If (W,B) %
(M(1)*,M(1)=(0)), then w € Qpra)y+ (V).

Proof. Assume (W, B) % (M (1)*,M(1)(0)). By Lemma 3.2 and (4.11), it is enough to show that
€(5;5(1,1),w) < 1 for any pair of distinct elements 7,5 € {1,...,d}. For such a pair i, j, we write
€(Si;) = €(Si;(1,1), w) for simplicity.

(1) Let B = M(1,)(0) for some A € b\ {0}. In this case €] = 0 for all i = 1,...,d. Assume
(A, \) # 0. Then, we may assume A € ChlY and hence (\, Ay = ¢l =0 foralli=2,...,d.
For i = 2,...,d, substituting ¢!/ =0 and ¢ = ¢l = 0 into (4.21) and (4.22) with j = 1, we
have

0 = €(Sin)*(e(Sin) — 1)(4(=9€(Sin) + 1)¢M+(e(Sin) + 1)(3¢(Sin)? + 3¢(Sin) — 2))  and
(4.35)
0 = e(Si)(e(Sin) — 1) ((216e(Sin)? + 24e(Sir) - 48)(1)?
+ (18¢(Si1)* — 54e(Si1)® — 78¢(Si1)? + 22¢(Si1) + 12)¢M
4 36(Sin) + 6¢(Si)® + €(Si1)? — 26(52-1)). (4.36)
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If we take A; to the right-hand side of (4.36) and Aj to the right-hand side of (4.35) and if we
regard A; and Ay as polynomials in the variable ¢[!)| then G(A;, Ay) in (4.32) is a non-zero
scalar multiple of

6(511)56(52'1 — 1)4(6(Si1) + 1)(26(51'1) + 1)
X (36(511) — 2)(36(311) + 1)2(36(Si1)2 + 36(511) — 2) (437)

Since G(A1, A2) = 0, we have €(S;1) < 1.

Assume (X, \) = 0. Then, we may assume 0 # (X, hl1)2 = —(X\ ANY2 and (X, nU]) = 0 for
all j = 3,4,...,d. By substituting ¢J = —¢l into (4.21) and (4.22), the same argument as
above shows that €(S21) < 1.

In both the cases of (A, A) # 0 and (A, A\) = 0, for the other i, j, since one of ¢ or ¢l is 0,

the same argument as above also shows that €(.S;;) < 1.

Let B = M(1)=(0). Assume W % M(1)". If d = 1, then the result is shown in [2, Theorem
5.5]. Assume d > 2. Let 4,5 be a pair of distinct elements in {1,...,d}. If (¢4, ¢ll) =
(¢b €lily = (0,0), then it follows from (4.11) and (4.21) that

0 = €(Sij)(e(Si) — 1)(e(Siz) + 1) (3e(Sij)* + 3e(Sij) — 2) (4.38)

and hence €(5;;) < 1.
Assume (¢, 1) = (0,0) and (¢l €1y = (1,1). It follows from (4.11) and (4.21) that

0 = (e(Si;) — 2)(e(Si;) — 1)(3€(Sij)* + 12¢(Si5)® — 11e(Si;)? — 20€(S;;) — 16) (4.39)
and hence €(S;;) =1 or 2. We further assume that €(S;;) = 2. By (4.16)—(4.19),
Sij(l, 2)311) == —QSij(l, 1)211) and Sij(]-, 3)411) == BSZ'j(]_, 1)211). (440)

We note that S;;(1,1)ow € W. Using commutation relations (see Remark 2.5) and (4.40), we
have

wgk}Sij(l, 1)210 == Hzgk]SU(l, 1)2’(1) =0 (441)
for all k = 1,...,d. It follows from [2, Proposition 4.3] that there is no non-zero element v
in any irreducible M(1)*-module except 1 € M(1)* that satisfies wgk}v = Hi)[,k}v = 0 for all
k=1,...,d. This is a contradiction.

The same argument as above shows the results for the case that B = M (1)*(0) or M(1)(6)*(0).

Lemma 4.7. For any pair of non-isomorphic irreducible M (1) -modules M, W such that (M, W) %
(M(1)*,M(1)7) and (M(1)~,M(1)"), Ext]l\/l(1)+(M, W) =0.

Proof. Let N be a weak M (1)*-module and

0—-W-—=NSM-=0 (4.42)

an exact sequence of weak M (1)T-modules. We write M = @Biey+z-oMi with M, # 0 and W =
Dics+z,Wi with Ws # 0. By Lemmas 4.4 and 4.6, there exists u € Qpry+ (V) such that 0 #
m(u) € M,.
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Assume WN(M (1) u) # 0. Since Ws € WN(M(1)*-u), 6 € y+Z>p. Since WN(M(1)*-u) # 0,
we have Ext}w(1)+(M, W) # 0 and hence Ext}\/1(1)+(ﬂ/', M) # 0 by [2, Proposition 2.5] and [4,
Proposition 3.5]. Thus, there exists a non-split exact sequence 0 — M — N — W — 0 of weak
M (1)"-modules. The same argument as above shows that v € § + Z>¢ and hence v = §. Since
M % W, N0) = Ny =2 M, dW;s as A(M(1)")-modules. Thus, the sequence (4.42) splits, a

contradiction.

O
Lemma 4.8. For M = M(1)*, M (1)~,M(1)(6)", and M(1)(6)", Ext}\/l(l)+(M, M) =0.
Proof. Let W be an M (1)"-module such that W = M, N a weak M (1)"-module, and
0-W-—=NSM—=0 (4.43)

an exact sequence of weak M (1)*-modules. We take v € M(0) and u € N as in (4.2), (4.4), and
(4.5). In the case of M = M(1)", the same argument as in the proof of [2, Proposition 5.1] shows
that Extj .y (M (1), M(1)") = 0.

For M = M(1)~ or M(1)(#)*, it is enough to show that N(0) = W (0) ® M (0) = M(0) & M(0)
as A(M(1)%)-modules. In the Zhu algebra A(M(1)"), we have

Wl s fl) = pli) il (4.44)

and recall that the following relations from [10, (6.1.11) and (6.1.10)]:

(Wl — 1) % (Wl — %61) * (wll — %1) « Hil =0 (4.45)
(132(wlh)? — 65wl — 70H 4 3) « HII =0 (4.46)

for i =1,...,d. Here, we note that H, in [10, Section 6] is equal to the image of —9H!9 under the
projection M(1)* — A(M(1)") for a = 1,...,d. Let A; be the quotient of the right-hand side of
(4.45) by HU and A, the quotient of the rlght hand side of (4.46) by HUI: A := (Wl — 1) % (w1 —
(1/16)1) * (wl! — (9/16)1) and Ay := 132(wl)? — 65wl — 70H 4 3. Tf we regard A; and Ay as

polynomials in wl, then G(A;, Ay) in (4.32) is a non-zero scalar multiple of

; : -1 ; 15
l{] _ [ _ [i] _
(H 1)« (H 128) x (H 128) (4.47)
and hence
. —1 : 15
(4] l{] _ {] _ —~ [ _ =9y =
HY « (H 1)« (H 128) (H 128) =0 (4.48)

forallt=1,...,d.

(1) Let M = M(1)(#)*. Since S;;(1,1)11¢w = 0 for any pair of distinct elements 4, j € {1,...,d},

Si;(1 ,1)1u € Cv in W. We note that w[l]ltw = (1/16)14, and Hg}ltw = (—1/128)1¢w. By
(4.45) and (4.48), wilw = (1/16)w and Hw = (=1/128)w for all w € N(0). We denote
€(Si;(1,1),u) by E(S) for simplicity. By (4.21),

0 = €(S)(11€(S)? — 15¢(S) + 6)(6€(S)> + 6€(S)? — 7e(S) + 1) (4.49)

and hence €(S) = 0. Thus, S;;

1,k)pu = 0 for all k£ € Z>; by Lemma 3.2 (1) and hence
N(0) = M(1)(0)*(0) & M(1)(0)*(0) as

A(M(1)")-modules.
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(2) Let M = M(1)~. We consider N(0). Since N(0)/W(0) = M(1)~(0), A*- N(0) # 0. Since

AL-N(0) € W(0), A¥x At = 0, and A%-w # 0 for any non-zero w € W (0), we have At-N(0)

=0.

For any pair of distinct elements i, j € {1,...,d}, since A*xA;; = 0 by [10, Proposition 5.3.12],

the same argument shows that A;; - N(0) = 0. We note that the eigenvalues for wl| N(O)

are

0 or 1, and those for H' |n(0) are also 0 or 1. We take a non-zero v € M(0) and u € N as in

(4.2), (4.4), and (4.5). We fix i = 1,...,d. By (4.48),

Hzgi]u =u or Hg]u =0. (4.50)

We study the following three cases:

(2-1) If Hzgﬂu = u, then it follows from (4.45) that w[l]u =u.

(2-2) The case that Hg]u =0 and (wgi] —1)%u = 0. Since (wp — 1)u € W(0) and there is no

non-zero vector w € M (1)~ (0) such that w%ﬂw = w and Hg[.i]

w = 0, we have (w%ﬂ—l)u =0.

(2-3) The case that H?[f]u = 0 and (wgi])lu = 0. Since 0 # u € M(0) = M(1)7(0), there
exists k such that H3k u # 0. The argument (2-1) above shows that H?Ek]u = u and

[K] k], i [7]

w; u = u. Since wj wj u = w; u, we have E};kwgl]u = wgl]u in W(0). By [10, Lemma

5.2.2], w%ﬂu = 0.

Thus A(M(1)*) - u = A% - u. Since A" is isomorphic to the matrix algebra, A" - u is an

irreducible A(M (1)*)-module. Thus N(0) = M(1)~(0) & M(1)=(0).

(3) In the case of M = M(1)()~, the same argument as in (2) above shows that N(0)
M(1)(0)~(0) ® M(1)(6)(0).

1

O

By Lemmas 4.7, 4.8, [2, Proposition 2.5], and [4, Proposition 3.5], we have the following result:

Proposition 4.9. If a pair (M, W) of irreducible M(1)"-modules satisfies one of the following

conditions, then Ext}\/[(l)+(M, W) = Ext}w(l)Jr(VV, M) =0.

(1) M = M(1,\) with X € b\ {0} and W 2 M(1, \).
(2) M = M(1)(9)*.

(3) M= MQ)* and W % M(1)".

(4) M= M(1)~ and W 2 M(1)*.

The following result is a direct consequence of Lemmas 4.4 and 4.6. Here we call the N-graded
module M (U) in [8, Theorem 6.2] the generalized Verma module associated with a module U for

the Zhu algebra.

Corollary 4.10. Let Q be an irreducible A(M(1)")-module such that Q % M(1)d = C1. Then the

generalized Verma module for M(1)" associated with ) is irreducible.

Proof. Let N = ®jes12,N; with N5 = be the generalized Verma module for M (1)* associated
with Q and W = Bicy+7-,Wi the maximal submodule of M such that Q N W = 0. We take v so
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that W, # 0 if W # 0. We note that v — 0 € Z~¢. Taking the restricted dual of the exact sequence
0—W — N — N/W — 0, we have the following exact sequence

0— (N/W) - N — W —0. (4.51)

We note that (N/W)" 2 M(1)" by [4, Proposition 3.5]. Assume W, # 0 and let B be an irreducible

A(M(1)*)-submodule of W!. By Lemmas 4.4 and 4.6, there exists a non-zero v’ € Qpy(1y+ (V).

For any homogeneous element a € M (1) such that woa = 0 and i € Z>ytq, it follows from [11,
5.2.4] that

0= <a’iu,a ’LU> = (_1)Wta<u,7 a2wta7i72w> (452)

for all w € N. Since wow! = wyJ =0 for all i = 1,...,d, it follows from Lemma 4.2 and (4.52)
that v’ = 0, a contradiction. O

Lemma 4.11. Let W be the generalized Verma module associated to the A(M(1)")-module C1 and
7 : W — M(1)% the canonical projection. Then, Kerm = (M (1)7)®* as M(1)*-modules for some
ke{l,...,d}.

Proof. The same argument as in [2, (6.1)] shows that there is a non-split exact sequence
0— M)~ - N— M1 =0 (4.53)

of M(1)*-modules. Thus, Kerm # 0. Let u € W such that w(u) = 1. Note that u € Q1)+ (N).

Since M(1), = 0, we have wgk]u = H?[)k]u = Sij(1,7),u = 0 for all K = 1,...,d, pairs of distinct

elements 7,7 € {1,...,d}, and r =1,2,3. Fori = 1,...,d, P®:H denotes the element obtained by
replacing w by wl and H by H in P®-H in [19, (3.27)]. We have shown in [19, Lemma 3.5] that
PEMH — . A direct computation shows that
0= POy = 144w — 3H 0 (4.54)
for all i = 1,...,d. Taking the 3rd action of (4.12) on u, we have
0= Sij(1,2)1u+5ij(1,3)gu (4.55)
for any pair of distinct elements 4, j € {1,...,d}. By (4.54), (4.55), and
Sij(l, 1)0u == *(Wosij(l, 1))1U == *Sji(l, 2)1U - Sij(l, 2)1’LL (456)

for any pair of distinct elements 4,5 € {1,...,d}, Ny is spanned by {w[[)j]u,Sij(l,Q)lu | i,7 =
1,...,d,i # j}. For distinct 4,5,k € {1,...,d}, by (4.54), (4.55), and commutation relations (see
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Remark 2.5), a direct computation shows that

i1, 1] 1

Wi ws —wo u,
wgz]w[]]u =0,
Hg]w([)j]u = w([)j]u,

HP Wl — 0,

S (L D = = Si5(1,2)1u
(1, 2)0wbu = 28;(1, 2)1u
S (1, )awg u = =35 (1, 21u,
wil855(1,2)1u = Si;(1,2)1u,
wlS5(1,2)1u =0,
HS:(1,2)u = Slj(1,2)1u,
HYS,(1,2)1u =
Sij(1,1)155(1,2)1u = —wéﬂu,
Si;(1,2)28:;(1,2)1u = 0,
S (1,3)35:;(1,2)1u = 0,
Skj(1,1)1535(1,2)1u = 0,
Skj(1,2)2535(1,2)1u =0,
Si;(1,3)35:;(1, 2)1u = 0,
Ski(1,1)155(1,2)1u = Ski(1,2)1u,
Ski(1,2)25:5(1,2)1u = —284;(1,2)1u,
Ski(1,3)35:5(1,2)1u = 3Sk;(1, 2) 1 u. (4.57)

Thus, by (2.63), for each j =1,...,d, the linear subjective map

M(1)=(0) = UY) = Span(c{w([)j]u, Si;(1,2)1u | i # j} sending hUl(—1)1 to w[ u and hll(-1)
—5i(1,2)1u for i # jis an A(M(1)")-homomorphism. Since M (1)~ (0) is an 1rreduc1ble A(M(l
module, if UY) # 0, then UY) = M(1)=(0) as A(M(1)1)-modules. Since ijl Ul = Ny
(W/(MQ)* - (XTI, U9))y = 0. Thus (W/(M(1)T - (X9, UY)) = M(1)* and hence Kerr =
M(1)*- (2?21 UY)). Now the result follows from Corollary 4.10.

o

1t
))-

(I

By Lemma 3.4, Proposition 3.5, Corollary 4.10, and Lemma 4.11, we have the following result.

Corollary 4.12. Let L be a non-degenerate even lattice of finite rank and M a non-zero weak
V;—module. Then, there exists an irreducible M (1)T -submodule of M.

Proof. By Lemma 3.4, there exists an irreducible A(M (1)")-submodule Q of Q1)+ (M). Let N be
the generalized Verma module for M (1)1 associated with © (Proposition 3.5) and f: N — M the
associated M (1)*T-homomorphism. If Q % C1, then by Corollary 4.10, N is irreducible and hence
so is f(N). If Q = C1, then by Lemma 4.11, M (1)~ C f(N) or f(N) = M(1)*. This completes
the proof. O
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Appendix A2

In this appendix, for some a,b € M(1)", we put the computations of aixb for k € Zsy. For
k € Z>p not listed below, aib = 0. Using these results, we can compute the commutation relation
[ai, b] = >0, ( )(akb)lﬂ . Let b ... nld be an orthonormal basis of h. The rest of this

appendix, i, j, k, [ are distinct elements of {1,...,d}.

wiS5(1,1) = S55(1,2)_11, wS5(1,1) = S55(1,1)_11, (A2.1)

w¥Si5(1,2) = 285(1,3) 11, wilS;;(1,2) = 28,;(1,2) 11, wlS;(1,2) = 25;(1,1)11, (A2.2)

wi85(1,3) = —w 551, 1) 11 + 205 8,5(1, 2)

ng]Sij(l,fi) =35,;(1,3)_11,

wb1S15(1,3) = 38,;(1,2) 11,

wiS5(1,3) = 38;;(1,1) 11, (423)
H535(1,1) = ~20383(1, 1) 11+ 47, 535(1,2) 11

HY1S;(1,1) = 45;,(1,3)

WS, - T,

HY'Si5(1,1) = Sy(1,1) 11, .

HY'S,5(1,2) = —6wew)S;(1,1) 11 + 6w, 5,;(1,2) 11
—4WQw ] S1](172)—11 + 12&)0&)[_}15'1‘]‘(1 2) 11
(

+w0w0woSU 1 2) 11—}—8(;.)H Sl](l 3)
)-1

— 6&)0&)05’”(1 3
= —6wS(1,1) 11 + 12w[_ﬂls,»j(1,2)_11,

(1,2)

as;(1,2) = ?Sij(l,?,),ll
(1,2)
(1,2)

Sij(1,1) 11, (A2.5)
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H([)Z]Sw(l, 1) = 2w[_j]251j(1, 1)_11 + wgwowoSij(l, 1)_11

i 7
Hé]SZ‘j(l, 1) = ngSij(l, 1)_11 +

HY'S,5(1,3) =

Hg]sw 1,3

H[J]S” ,

Si;(1,3) = w51,

60

HIS,;(1,3) = ?gw[ﬁ]gsij(l,z) 11+ 3

9

+ 7&)m 55i5(1,3) 11

29

— 12w0woS¢j(1 3) 11

i (

i

1,3
1,3
1,3

278
188
108

(1,3) =
ij(1,3)
i(1,3)
(1,3)

( )

wh S5 (1,1) = woSis(1,1) 11 = S35(1,2)

1,3)_11
(17 2)—11
1,1)_11,

wilSi5(1,1) = Si;(1,1)_41

w'Sij(1,2) = woSij(1,2)11 — 25;5(1,3)1 1

0 il g,.(1,2)_,

—12uwow}85(1,1) 11 + 12w, 5;5(1,2) 11
— 8w0wE]1S,~j(1, 2)_11 + 24&)0&)@15'1']‘(1, 2)_11
+ 20)0WOW05¢j(1, 2)711 + 160J[_i]15ij(1, 3),11

37 WV 555(1,1)_ 11+%w[_j]15ij(1,2)_11

1,

1)_11 — 2w[_j]1Sij(1, 2)_11 + W()Sij(l, 3)_11

— 4P} 855(1,2) 11 — BwowoSi;(1,2)_11

+ 6w05¢j(1,3)_11
H{I]SU(L 1) = 2(4)0(&)05@'(1, 1),11 — 4W05ij(1a 2),11 + 451']'(1, 3),11

Héi]S@-j(l, 1) = S;5(1,1) 41,

3

-7
— Si5(1,2) 11,

33

(A2.6)

(A2.7)

(A2.8)

(A2.9)

(A2.10)
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Hg]Sl-j(l, 2) = —6&}@25”(1, 2),11 + 40J00J[_i]15ij(1, 2)711 — 8w[_i]15¢j(1, 3)711
H{i]Sij(l, 2) = —4&)@251']‘(1, 1)1+ Sw[_j] Sz'j(l, 2>_11
+ QWOWOSZ‘]'<17 2)_11 - 800051']'(1, 3)_11
i 7 —14
HQHSZ](L 2) = gwoSij(l, 2),11 + TSij(l, 3),11

HYS,:(1,2) = Si5(1,2) 11, (A2.11)

H[g]Sij(l,?)) = ?H[_}lSij(l,Z)_ll + gw[_}SSij(l,Q)_ll
-1 i
+ Twow[_]QSij(l, 2)_11 + 2(,00(,00(,0[_}151']‘(1, 2)_11
4 i 7
+ gw[_] Sij(l 3)_11 — 4w0w[_] Sij(l 3)_
18,(1,3) = QWOW[J] Si;(1,1) 11 + 6w, 8;5(1,2) 11

1
1,2)_11 + dwow?, S5 (1, 2) 11
1

—4w0w 2
L2)_ 11—|—8w“ Si;(1,3)_4
)-1

(
Sij(
+ wowowo Sij (
1

— dwowo Si;(1,

. . 14 .
HQ[Z]SZ']'(L 3) = %w[_J]QSij(l, 1)_11 + Tw[_]]lSij(l, 2)_11 -+ ngSij(l, 3)_11

HY'S5(1,3) = Sy(1,3)11, (A2.12)
Sij(1,1)055(1,1) = wowﬂl + wow[_ﬂll,
Si;(1,1)185(1,1) = 2w 1 + 20811
Si;(1,1)25;;(1,1) =0,
5ij(1,1)35i;(1,1) = 1, (A2.13)
(1, 1)055(1,2) = 2H 1 — 2011 4 2020l 1 + 0w,
Sii(1,1)1555(1,2) = 2w 1+ wowl! 1,
Sii(1,1)28:;(1,2) = 4w 1,
Si;(1,1)35;;(1,2) = 0,
Sij(1,1)45i(1,2) = 21, (A2.14)
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Sij(l, 1)05@‘(1, 3) = 3w0HE]11 — on[_j]ll =+ wg’wg]ll =+ wgw[_j]ll,
Si;(1,1)18:5(1,3) = 3HY 1+ HI1 + w2l 1+ w2,
S5 (1,1)28:;(1,3) = 3wow!” 1,
Sij(l, 1)351‘]‘(1, 3) = 6w@11,
Sii(1,1)45;5(1,3) =0,
Sij(l, 1)55@‘(1, 3) = 31,
Sij(1,1)0Sk;j(1,1) = Ski(1,2) 11,
Sl] 171 1Sk:j(17]- - Sk:l 17 7117
Sz] 1 1)05kj(17 = QSkz(la )7117
Sii(1,1)18k;(1,2) = 284i(1,2) 11,
Sii(1,1)28k;(1,2) = 283;(1,1) 11,

Sij(1,1)0Sk;(1,3) = =30 Si(1, 1) a1 + wow} Spi(1,1)-11
+ wiSki(1,1) 11 +2w[f]18ki(1,2),11
— 354i(1,2) 31 + 3woSki(1,3) 11,
i(1,1)18k;(1,3) = 3Ski(1,3)_11,
5(1,1)28%;(1,3) = 35k(1,2) 11,
i(1,1)38k;(1,3) = 3Ski(1,1) 11,

S'L](lv 1)15]62(17 1) = Sk](l, 1)_1]_7

Sii(1,1)0Ski(1,3) = 3w 5 (1,1) 11 — 2wow!™ 84;(1,1) 11
+wdSi(1,1) 11+ 20 5,5(1,2) 11
— 3woSk;(1,2) 21 + 3wpSk;(1,3)-11,
11,

35

(A2.15)

(A2.16)

(A2.17)

(A2.18)

(A2.19)

(A2.20)

(A2.21)
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Sii(1,2)055(1,2) = —3w0HE}11 - on[ iy - wd w” 1 +w3wb] 1,

Si;(1,2)15;5(1,2) = —6H" 1 — 2H11 — 202wl 1 + w21,

Sii(1,2)25:5(1,2) = —6wow) 1,

Si(1,2)38:;(1,2) = —12w! 1,

Si(1,2)45:;(1,2) = 0,

Sij(1,2)5845(1,2) = —61, (A2.22)

Sii(1,2)08:5(1,3) = —SwE}lHE]ll — Qw%w[_igl -+ Zw[j] wm 1+ 8w[j]1H[_j]11
— Tw 2H[i] 1+ 2w2wm w[i] 1 — 2wj w[ 7] w[j] 1-— 3ngLj]11
— 19wiwt 1 + 2wdwl 1,

Sij(1,2)185(1,3) = —6woH) 1 — woHY}1 — w1+ wiwV 1,

Sij(1,2)28;;(1,3) = —IQHE]II — ZL(JJ(Q)(,.)@Il7

$15(1,2)3555(1,3) = —12wp0’y 1,

Sij(1,2)45(1,3) = —24w!’1

Sij(1,2)55i;(1,3) = 0,

Si(1,2)65i5(1,3) = —121, A223)

Sii(1,2)05%;(1,1) = —25k(1,3) 11,
Sij(1,2)18(1,1) = —25ki(1,2) 11,
Sij(1,2)25k;(1,1) = —28k;(1,1) 11, (A2.24)

Si(1,2)05k; (1, 2) = 6w™ Spi(1,1) 51 — 2wow™ S4i(1,1) 11
— wg’Ski(l, 1)_11 — 4w[_l€]15k1(1, 2)_11
+6S51i(1,2) 31 — 6woSki(1,3) 11
Si5(1,2)15(1,2) = =65k 11,

41, (A2.25)
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Si5(1,2)05k; (1, 3) = 16w S4;(1,1)_s1 — aH* 55(1,1) 11
+ 4dwow™ S (1,1) o1 + 2wew, S (1,1) 11
—16w0w[ 181i(1,1) 11 — wiSe(1,1) 11
—10w51:(1,2) 11 — 4wl 51:(1,2) o1
+ 2w0Ski(1,2) 51 — dwow!” Sii(1,2) 1
Si5(1,2)15k;(1,3) = 120" 84;(1,1) o1 — dwow!™ 514(1, 1),11
— 2w Ski(1,1) 11 — 8wt (1, 2) 41
+1254(1,2) 31 — 12w Sk (1, 3)_11
Si(1,2)28k;(1,3) = —128k;(1,3)
Sij(1,2)38k;(1,3) = —125k;(1,2) 11,
Sij(1,2)48k;(1,3) = —1285k;(1,1) 11,

Sii(1,2)05ki(1,1) = 28;,;(1,3) 11, Sii(1,2)15ki(1,1) = Sk;(1,2) 41

Si(1,2)05ki(1,2) = 6wt i (1,1) 11 — dwow!™ 84(1,1) 11
WS (1,1) 11 + 40 5,5(1,2) 11
_ 3w05k](1a 2)721 + GWOSkj(l, 3)711
Sij(1,2)25%:(1,2) = 25k;(1,2) 11

Sii(1,2)05ki(1,3) = —16w™ 5,.;(1,1) 51 + 40 5,,;(1,1) 11
— 98wow™ 81 (1,1) 21 + 34ww™ S4;(1,1) 11
+ 3w Sk (1, 1) 11 + 20 5,5(1,2) 1
+ 22w0w™ S (1,2) 11 — 4wd Sk (1,2) 11
+ 6woSk;(1,3) 21
Si(1,2)15ki(1,3) = 9w S (1,1) 11 — 6wow!™ S4;(1,1) 11
+ 3w Sk (1, 1) 11 + 6w 5,5(1,2) 11
(1,2)_51 + 9w Sk;i(1,3) 11
Sii(1,2)25%i(1,3) = 6Sk;(1,3)-11,
Si5(1,2)35%(1,3) = 35;(1,2) 11,

—QWOSkj 1,2
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Si(1,3)05:;(1,3) = 2wow!™ H 1 + 5wow!w™ 1 + wow w1 + 2wewl HV 1
—i—wSHH — wgw[_]lw[_l]ll wow[ J] wm 1-— 3w8H[_]]1

+ 7w5 H 11+ wgw@ll,
Sij(1,3)15(1,3) = 4w[_”1HE]11 + 50wl 1 4 w1 4 40l gl

—|—7w(2)HE]1 waH wull wOwme 1-3w gH[j]ll

+ 19w§w@11 + wow[_}ll,

Si;(1,3)25:(1,3) = 15woH 1 + bwdw! 1,
Si(1,3)35:;(1,3) = 30H" 1 + 1002w 1,
S (1,3)45:;(1,3) = 30wow!” 1,
Si;(1,3)55:(1,3) = 60w 1,
Si(1,3)65:(1,3) = 0,

Si;(1,3)78:(1,3) = 301,

S5 (1,3)08k;(1,1) = —3w™ 84:(1,1) 21 + wow™ Spi(1,1) 11
+wdSki(1,1) 11+ 2% 85(1,2) 11
— 35ki(1,2)_31 + 3woSki(1,3) 11
(1,3)15,5(1,1) = 385:(1,3) 11,
5(1,3)25%;(1,1) = 35k (1,2) 11,
(1,3)38k;(1,1) = 3Ski(1,1) 11,

N

Sii(1,3)0k; (1, 2) = —16w 84;(1,1)_s1 + 4H¥ 5,,,(1, 1)1
— dduwow™ Spi(1,1) 01 — 2wow!™, Sk (1, 1) 4
+ 16w 81 (1, 1) 11 + wiSpi(1,1) 11
+ 100 8 (1,2) 11 + 4w 811, 2) 01
— 2u0Ski(1,2) 51 + dwow Si(1,2)

Si5(1,3)15k;(1,2) = —12™ §4:(1,1) 51 +4w0w[_]15ki(1, 1),11
+ 2wl S (1, 1) 11 + 8wl §15(1,2) 11
—1253,(1,2)_31 + 12w Sk (1, 3)_11

Sii(1,3)25k;(1,2) = 1284;(1,3) 11,

Sij(1,3)38k;(1,2) = 125:(1,2) 11,

Sij(1,3)aSk;(1,2) = 125;(1,1) 11,
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Si(1,3)0k; (1, 3) = 30H" Si(1,2)_11 + 20w5 S1i(1,2) 11 — 30w, S4s(1,3) 11

Sii(1,3)154(1,3) = —4Ow[_k}15k¢(1, 1) 31+ 1OHH€{SM(1, 1)1
— 110wow™ Sji(1, 1) 21 — Buwow™, Sk (1, 1),11
+40w8w[k] Ski(1,1)_11 4+ 5woS;ﬁ( 1)1
+ 25w (1, 2) 11 + 100 81:(1,2) s
— 5woSki (1, 2) 51 + 10wew' S (1, 2)
Si(1,3)25k,(1,3) = =300 S4;(1,1) 91 + 1Ow0w[_}1Ski(1, 1)_11
+ 5w Ski(1,1)_11 + 20wt S5 (1, 2) 11
— 308ki(1,2)_51 + 30woSki(1,3)_11
17(1,3)35%;(1,3) = 305k (1,3)_11
17(1,3)4S);(1,3) = 30Sk(1,2)_11
17(1,3)550;(1,3) = 305k, (1,1)_11

»n n n

Sij(1,3)08ki(1,1) = 3w S4;(1,1) 11 — 2w} 851, 1) 111
+ WS (1, 1)1 + 20 855(1,2) 11
— 3woSk;(1,2) 21 + 3woSk;(1,3)-11
Sii(1,3)18ki(1,1) = Sk (1,3)-11

Sii(1,3)0ki(1,2) = —16w™ 5,.;(1,1)_s1 + 40 5,,;(1,1) 11
— 98wow!™ S (1,1) o1 + 34wl 55 (1,1) 11
+ 3w S (1, 1) 11 + 20 5,5(1,2) 01
+ 22w0w[_k]15kj(1, 2)_11 — 4w Sk;(1,2) 11
+ 6woSk;(1,3) 21
Si(1,3)15ki(1,2) = 6w S (1,1) 11 — dwow!™ S4;(1,1) 11
+ wdSi(1,1) 11 + 4™ 55(1,2) 11
— 3woSk;(1,2) 21 + 6wy Sk;(1,3)-11
Si(1,3)25ki(1,2) = 25;(1,3)_11
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Si(1,3)0ki(1,3) = —120w™ W) S4(1, 1) _o1 — 300wY,8,(1,1) 11
— 180H 5,,;(1,1) 91 — 60HL5,;(1,1) 41
+ 40w Wl 84 (1, 1) 11 + 240wewl 5,5(1,1) 11
— 90wRwY, Sk (1,1) 11 + 20wiw!) S (1, 1)1
+ 330w 8,,5(1,2) o1 + 780w S15(1,2) 31
—90H™ 8),;(1,2) 11 + 180H 5;;(1,2) 11
— 1200w S15(1,2) 11 — 135wt Sk;(1,2) 11
— 470w).8,5(1,3)_11 — 500w Sy;(1,3) o1
+ 75083;(1,3) 41,
Sii(1,3)15ki(1,3) = —8w™ 5,.:(1,1)_s1 + 20 5,,;(1,1) 11
— 49wow!™ Sk (1,1) o1 + 17wdw™ 85 (1,1) 11
9wt S (1, 1) 11 + it 5p5(1,2) 01
+ 1wow!™ 84(1,2) 11 — 6wd Sy, (1,2) 11
+ 9woSk;(1,3) 21,
S5 (1,3)25ki(1,3) = 9™ S5 (1,1) 11 — 6wow!™ S4;(1,1) 11
+ 3w Sk (1, 1)1 1 + 6w 5p5(1,2) 41
— 9woSk;(1,2) 21 + 9w Sk;(1,3)-11,
Sij(1,3)35ki(1,3) = 35k;(1,3)-11,
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Notation

|4 a vertex algebra.

U a subspace of a weak V-module.

Qy(U) ={uelU ‘ a;u = 0 for all homogeneous a € Vand i > wta — 1}.

b a finite dimensional vector space equipped with a nondegenerate symmetric
bilinear form ( , ).

R ... Ald an orthonormal basis of .

M(1) the vertex operator algebra associated to the Heisenberg algebra.

L a non-degenerate even lattice of finite rank.

d the rank of L.

%3 the vertex algebra associated to L.

0 the automorphism of V7, induced from the —1 symmetry of L.

M(1)* the fixed point subalgbra of M (1) under the action of 6.

VL+ the fixed point subalgbra of Vi, under the action of 6.

I(,x) an intertwining operator for M (1)*.

€(u,v) Ue(up)V 7 0 and w;v = 0 for all i > e(u,v) if I(u,r)v # 0 and €(u,v) = —o0
if I(u,x)v = 0, where I : M x W — N((x)) is an intertwining operator and
u€ M,veW (see (2.9)).

A(V) the Zhu algebra of a vertex operator algebra V.

A_B := Spanc{a_;b|a€ Abe B, and i € Z~} (see (2.10)).

(A_)B see (2.11).

w = (1/2) Yo, hl(=1)%1,

E(a) = e+ 6(e®) where a € b.

wl = (1/2)nld(=1)2.

HUI = (1/3)(h(=3)nll(=1)1 — Al (—2)%1).
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