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Abstract

We give a description of shape theory using finite topological T0-spaces (finite partially
ordered sets). This description serves as a first step towards developing computational
methods in shape theory for future works. Additionally, we introduce the notion of core
for inverse sequences of finite topological spaces and prove some properties.

1 Introduction

The theory of dynamical systems is a very active area of researching. This is due to its
wide variety of applications to other areas of science such as physics, biology or engineering
[25, 38, 42]. Due to the need for computational methods to study dynamical systems, the
theory of finite topological spaces [4, 29] has recently developed in this direction. Classical
topological methods in dynamical systems, such as the Conley index [13, 35, 43] or the Lef-
schetz fixed point theorem [26], have been adapted to this framework [27, 5, 11] (ordered
chronologically). This combinatorial approach has led to the development of persistence al-
gorithms that can be used to analyze data collected from dynamical systems [16, 17, 18].
Classical Morse theory [31] has also been adapted for finite spaces in [20, 32] and for simpli-
cial complexes in [21]. This reformulation of the Morse theory for simplicial complexes has
found interesting applications in computational aspects in a fruitful manner; see, for example
[15] or [24]. Therefore, it is natural to think that by adapting classical notions, we could
develop computational applications for the general study of dynamical systems, among other
areas.

Moreover, shape theory appears as a generalization of homotopy theory. It provides a
weaker classification of compact metric spaces than homotopy theory. Originally, it was de-
veloped to study global properties of compact metric spaces that do not necessarily have good
local properties. Since some dynamical objects, such as attractors, do not behave well locally,
shape theory has several applications in this area (for a recent account of this treatment, we
refer the reader to [40] and its references). For example, the Conley index can also be defined
using this theory [39]. There are different approaches to shape theory: the original approach
of K. Borsuk [7], the categorical approach of S. Mardešić and J. Segal [28], the categorical
approach of J.M. Cordier and T. Porter [14], and the intrinsic description using multivalued
maps by J.M.R. Sanjurjo [41]. In general, the main idea is to think about a topological space
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X as an inverse system of “easier” spaces approximating X, where the morphisms are given
in terms of these systems.

Recently, methods to reconstruct compact metric spaces using finite topological spaces
have been developed. For every compact metric space, an inverse sequence of finite spaces
and continuous maps between them was associated in [2]. Later, in [12], E. Clader constructed
an inverse sequence of finite spaces for every compact simplicial complex X, such that its in-
verse limit contains a homeomorphic copy of X which is a strong deformation retract. A
generalization of this result to compact metric spaces was given in [9] and [33], where com-
putational aspects are studied and a method to reconstruct algebraic invariants is proposed.
These methods are somewhat motivated by the recent theory of topological data analysis
[8, 19], which has grown very rapidly in recent years (e.g., see [37] and the references given
there). It is also worth noting that there is a more general method to reconstruct locally
compact, paracompact and Hausdorff spaces using Alexandroff spaces (partially ordered sets)
[6], but it is not suitable from a computational viewpoint because it generally uses non-finite
spaces.

Therefore, it is reasonable to ask whether shape theory can be described in terms of
these inverse sequences. This description can be considered a first step towards developing
computational aspects within the context of shape theory in future works, as has been done in
other areas discussed earlier. Previous results have highlighted various relationships between
finiteness and shape theory (see [10, 22, 23]). In [23], an intrinsic description of shape theory
is given using sequences of continuous maps defined on open dense subsets of the compact
metric spaces and having finite images. In [22], an intrinsic representation of Čech homology
of compacta is given in terms of inverse limits of discrete approximations. In [10], the authors
construct a category that classifies compacta by their shape and finite topological spaces by
their weak homotopy type.

The organization of this paper is as follows. In Section 2, we introduce the reformulation
of the intrinsic description of shape theory [41] that was given in [3], we also recall the method
to reconstruct algebraic invariants given in [9] and basic results in the theory of finite spaces.
In Section 3, we describe our combinatorial approach of shape theory, define the notion of core
for inverse sequences and obtain some shape invariants. In Section 4, we show the main result:
the shape category of compact metric spaces is isomorphic to a category whose morphisms
are described in terms of finite topological spaces (or finite partially ordered sets).

2 Preliminaries

Given a compact metric space (X, d), where d denotes the metric, we consider the so-called
hyperspace of X, 2X = {C ⊆ X|C is non-empty and closed}. Let B(U) = {C ∈ 2X |C ⊂ U}
for every open set U ⊆ X. Then the family B = {B(U)|U ⊆ X is open} is a base for the
upper semifinite topology on 2X . Moreover, X can be embedded in 2X because X is a T1-
space. It suffices to consider ϕ : X → 2X defined by ϕ(x) = {x}. The image of X under ϕ
is called canonical copy of X in 2X . For a complete exposition on this topic, see [36]. Define
Uε = {C ∈ 2X |diam(C) < ε}, where diam(C) denotes the diameter of C and ε is a positive real
value. We recall some properties of hyperspaces with the upper semifinite topology studied
in [3] and [33].
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Proposition 2.1. Let (X, d) be a compact metric space. Then the family U = {Uε}ε>0 is a
base of open neighborhoods of the embedding of X in 2X .

Lemma 2.2. Let X and Y be compact metric spaces and let h : X → 2Y be a continuous map.
Then the map h∗ : 2X → 2Y defined by h∗(C) =

⋃
c∈C h(c) is well-defined and continuous.

The following results use the construction Uε described above for two compact metric
spaces X and Y . We will denote them by Uε(X) and Uε(Y ), respectively. Note that in the
following result, we use the same notation as in [3, Theorem 4], although there is an abuse of
formal language because we are denoting the canonical copy of X in 2X and X as the same.

Theorem 2.3. Let X and Y be compact metric spaces. If H : X×[0, 1]→ 2Y and h : 2X → 2Y

are continuous maps such that H(x, 0) = h|X({x}), then there exists a map H : 2X × [0, 1]→
2Y satisfying the following properties:

1. H(C, 0) = h(C) for all C ∈ 2X .

2. H |X×[0,1] = H.

3. H is continuous.

4. If H(x, t) ∈ Uε(Y ) for all (x, t) ∈ X×[0, 1], then there exists γ > 0 such that H(Uγ(X)×
[0, 1]) ⊂ Uε(Y ).

Now, we recall the description of shape theory provided in [3], using the results obtained
in [41].

Definition 2.4. Given two compact metric spaces X and Y , a sequence of continuous func-
tions f = {fk : X → 2Y }k∈N is said to be an approximative map from X to Y if for every
neighborhood U of the canonical copy Y in 2Y there exists k0 ∈ N such that fk is homotopic
to fk+1 in U for all k ≥ k0.

Definition 2.5. Given two approximative maps f and g from X to Y , f is homotopic to g
if for each open neighborhood U of the canonical copy Y in 2Y there exists n0 such that fn is
homotopic to gn in U for every n ≥ n0.

Theorem 2.6. The set of all homotopy classes of approximative maps from X to Y is in
bijective correspondence with the set of shape morphisms from X to Y .

We adapt the notion of composition of multivalued maps in [41] to approximative maps.
Let [f ] : X → Y and [g] : Y → Z be two classes of approximative maps, f = {fk : X →
2Y }k∈N ∈ [f ], g = {gk : Y → 2Z}k∈N ∈ [g]. Let {εn}n∈N be a strictly decreasing sequence
of positive real values such that gn is homotopic to gn0 in Uεn0 (Z) for every n ≥ n0 and let
{νn}n∈N be a strictly decreasing sequence of positive real values such that diam(gn(K)) < εn
whenever K is a set in Y with diam(K) < νn. Now consider a sequence of indices k1 <
k2 < ... < kn < ... such that fk is homotopic to fkn in Uνn(Y ) for every k ≥ kn. We set
[g] ◦ [f ] = [{gn ◦ fkn : X → 2Z}n∈N]. From [41, Proof of Theorem 3] and [3, Proposition
18] it may be concluded that the composition of classes of approximative maps is a class of
approximative maps and it does not depend on the representatives of the homotopy classes
[f ] and [g].
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We obtain a category whose objects are compact metric spaces and whose morphisms
are the homotopy classes of approximative maps. The identity morphism is given by the
homotopy class of {in : X → 2X}n∈N, where in(x) = {x} for every n ∈ N and x ∈ X. Let
HN denote this category.

Theorem 2.7. The category HN is isomorphic to the shape category of compact metric
spaces.

Remark 2.8. It can be said that this approach substitutes the Hilbert cube for hyperspaces
in the original approach of K. Borsuk [7].

We now recall basic concepts and set notation of the theory of finite topological spaces.
We denote the category of finite partially ordered sets (or posets for short) by Poset. From
now on, we assume that every finite topological space is a T0-space without explicit mention,
and we will refer to them as finite spaces for short. Let X be a finite space and x ∈ X. We
denote by Ux the intersection of every open set containing x, which is again open. Similarly,
Fx denotes the intersection of all closed sets containing x, which is a closed set. We say that
x ≤ y if and only if Ux ⊆ Uy. With this relation we have that X is a finite poset. Suppose
(X,≤) is a finite poset. Then the family of lower sets of ≤ forms a basis for a T0 topology on
X. A lower set S of X is a set satisfying that if x ≤ y ∈ S, then x ∈ S. See [29] or [4] for
a complete introduction to the theory of finite spaces. In what follows, we treat finite posets
and finite spaces as the same object because indeed the category Poset and the category of
finite spaces are isomorphic (this can be deduced from [1]). If x, y ∈ X and x < y, then we
say that y covers x and x is covered by y. Note that a map f : X → Y between finite spaces
is continuous if and only if it is order-preserving.

The Hasse diagram of a finite poset X is a directed graph: the vertices are the points of
X and there is an edge (x, y) if and only if x < y and there is no z ∈ X satisfying x < z < y.
We omit the orientation of the edges and assume an upward orientation in subsequent graphs.

An important concept in the theory of finite spaces is the notion of weak homotopy
equivalence. We recall it here. A map f : X → Y is a weak homotopy equivalence if the
induced maps f∗ : πi(X,x) → πi(Y, f(x)) on the homotopy groups are isomorphisms for all
x ∈ X and all positive integer number i, where the map f∗ induces a bijection in dimension
0. Notice that every weak homotopy equivalence induces isomorphisms on singular homology
groups by a well-known theorem of J.H.C. Whitehead.

There is a functor K : Poset→ SimpComplex, where SimpComplex denotes the category
of simplicial complexes whose morphisms are simplicial maps. As usual, |K| stands for the
geometric realization of a simplicial complex K. For a finite poset X, K(X) denotes the order
complex of X. There is also a functor X : SimpComplex→ Poset. For a simplicial complex
L, X (L) denotes the face poset of L. The finite barycentric subdivision of a finite poset X is
defined by X (K(X)). The following two theorems are from [30].

Theorem 2.9. For each finite space X there exists a weak homotopy equivalence fX :
|K(X)| → X. For each finite simplicial complex K there exists a weak homotopy equiva-
lence fK : |K| → X (K).

Theorem 2.10. Let g : X → Y be a continuous function between finite spaces and let
fX : |K(X)| → X and fY : |K(Y )| → Y denote the weak homotopy equivalences of Theorem
2.9. Then g ◦ fX = fY ◦ |K(f)|.
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We recall briefly the method obtained in [9] to reconstruct algebraic invariants of X. We
say that a finite set A ⊂ X is an ε-approximation of X if for every x ∈ X there exists a ∈ A
such that d(x, a) < ε, where ε is a positive real value. Given an ε-approximation A of X, we
set Uε(A) = {C ⊂ A|diam(C) < ε}. Since A is a finite set, we obtain that Uε(A) is a finite
poset with the following relation: C ≤ D if and only if C ⊆ D. Thus, Uε(A) is a finite space.

Let (X, d) be a compact metric space and let {εn}n∈N be a sequence of positive real values
satisfying that εn+1 <

εn
2 . For every n ∈ N, consider an εn-approximation An of X. The map

qn,n+1 : U4εn+1(An+1) → U4εn(An) defined by qn,n+1(C) =
⋃
c∈C B(c, εn) ∩ An is continuous

(see [9]), where B(x, ε) denotes the open ball of radius ε and center x. We say that the inverse
sequence (U4εn(An), qn,n+1) is a finite approximation of X. Let H∗ denote the homological
functor, where we consider the singular homology with integer coefficients.

Proposition 2.11. ([9, Proposition 3.2]) Given a compact metric space (X, d) and a finite
approximation (U4εn(An), qn,n+1) of it. The inverse limit of (Hl((U4εn(An)), Hl(qn,n+1)) is
isomorphic to the l-dimensional Čech homology group of X.

Note that if X is a CW-complex, then the singular homology groups of X coincide with
the Čech homology groups of X. As for prerequisites, the reader is expected to be familiar
with the notion of pro-category. Particularly, we will use the categories pro-HTop and pro-
Top, where Top is the topological category and HTop is the homotopy category of topological
spaces. For more details about this topic, inverse systems and inverse sequences we refer the
reader to [28].

Remark 2.12. There is also a similar construction (U2εn(An), pn,n+1) that uses other bonding
maps . Let (X, d) be a compact metric space and let {εn}n∈N be a sequence of positive real
values such thatAn is an εn-approximation ofX, γn = sup{d(x,An)|x ∈ X} and εn+1 <

εn−γn
2 .

We define pn,n+1 : U2εn+1(An+1)→ U2εn(An) by

pn,n+1(C) =
⋃
c∈C
{a ∈ An|d(a, c) = d(An, c)}. (1)

We obtain that U2εn(An) is a finite poset with the subset relation and (U2εn(An), pn,n+1) is an
inverse sequence. This inverse sequence is the so-called Main Construction introduced in [2]
and is isomorphic to every finite approximation (U4εn(An), qn,n+1) of X in pro-HTop (see[9,
Section 5]).

3 Combinatorial description of shape theory and shape invari-
ants

The idea of the combinatorial description of the shape theory is to use finite approximations
of compact metric spaces to define morphisms between them. Given a compact metric space
(X, d), we construct an inverse sequence of finite spaces from finite samples of X, i.e., the
finite approximation of X introduced in Section 2. This construction is not unique since it
depends on the finite samples of X and the values of εn. However, in [9, Section 5], it is shown
that given two finite approximations of X, they are isomorphic in pro-HTop. Hence, we can
say that a finite approximation (U4εn(An), qn,n+1) of X is unique in a suitable category and
we denote it by T (X).
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We define the category E as follows. The objects of E are compact metric spaces. Given
two compact metric spaces X and Y , set E(X,Y ) = {(fn, f) : T (X) → T (Y )| (fn, f) is a
morphism in pro-HTop where T (X) = (U4εn(An), qn,n+1) is a finite approximation of X and
T (Y ) = (U4τn(Bn), rn,n+1) is a finite approximation of Y }. Let us recall that a morphism
(fn, f) : T (X)→ T (Y ) in pro-HTop is an equivalence class of morphisms of systems. With a
certain abuse of notation, we denote by (fn, f) one of the representatives of this class. This
representative consists of a function f : N → N and of morphisms fn : U4εf(n)(Af(n)) →
U4τn(Bn) in HTop, one for each n ∈ N, such that whenever n ≤ n′, then there exists m ∈ N,
m ≥ f(n), f(n′), for which fn ◦ qf(n),m = pn,n′ ◦ fn′ ◦ qf(n′),m.

It is easy to check that E is a category. This is because we are considering a subclass of
objects (we identify X with T (X)) from the category pro-HTop restricted to finite spaces,
where the morphisms are the same as in the pro-HTop category.

Let us illustrate in Figure 1 the situation described with the category E. Let X and Y be
two compact metric spaces. The space X is essentially a circle, and Y is a segment. For each
space, we consider a finite approximation, T (X) = (Xn, qn,n+1) and T (Y ) = (Yn, rn,n+1). We
have depicted the Hasse diagrams of the terms of the inverse sequence T (X) and X (above)
and T (Y ) and Y (below) . We also have represented a morphism (fn, f) : T (X)→ T (Y ).

Y
Y1 Y2 Y3 Y4r1,2 r2,3 r3,4 r4,5

X1 X2 X3 X4q1,2 q2,3 q3,4 q4,5

X

f1 f2 f3 f4

T (Y )

T (X)

(fn, f)

Figure 1: Schematic description of the combinatorial approach to shape theory.

We now state the main result and develop some notions and shape invariants.

Theorem 3.1. The category E is isomorphic to the shape category of compact metric spaces.

For finite spaces there exists the notion of core. We recall it for completeness.

Definition 3.2. Let X be a finite space and x ∈ X. It is said that x is a down (up) beat
point if Ux \ {x} (Fx \ {x}) has a maximum (minimum).

Proposition 3.3. If X is a finite space and x ∈ X is a beat point, then X \ {x} is a strong
deformation retract of X.

A finite space is a minimal finite space if it does not have beat points. The core of a
finite space X is the resulting space after removing one by one beat points until there are no
more. It is worth mentioning that the core of a finite space is unique up to homeomorphism,
and that two finite spaces are homotopy equivalent if and only if their cores are homeomorphic.
We generalize this notion to inverse sequences of finite spaces.
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Definition 3.4. Let (Xn, tn,n+1) be an inverse sequence of finite spaces. Suppose Cn is the
core of Xn and rn : Xn → Cn is a retraction satisfying that rn ◦ in = idCn and in ◦ rn is
homotopic to idXn, where in : Cn → Xn denotes the inclusion. We say that the core of
(Xn, tn,n+1) is (Cn, rn ◦ tn,n+1 ◦ in+1) and write C(Xn, tn,n+1) = (Cn, rn ◦ tn,n+1 ◦ in+1).

By Proposition 3.3, we deduce that every finite space and its core are isomorphic in HTop.
We prove the analogue result for inverse sequences of finite spaces and their cores.

Theorem 3.5. Let (Xn, qn,n+1) be an inverse sequence of finite spaces. Then (Xn, qn,n+1) is
isomorphic to C(Xn, qn,n+1) in pro-HTop.

Proof. We fix notation, C(Xn, qn,n+1) = (Cn, hn,n+1) where hn,n+1 = rn ◦ qn,n+1 ◦ in+1. There
is a natural morphism (in, i) in pro-HTop between (Cn, hn,n+1) and (Xn, qn,n+1) induced by
the inclusions, that is, i : N → N is the identity map and in : Cn → Xn is the inclusion.
It is trivial to check that (in, i) is a well-defined morphism since the following diagram is
commutative up to homotopy.

Cn Cn+1

Xn Xn+1

in in+1

hn,n+1

qn,n+1

We now construct a sequence {gn : Xn+1 → Cn}n∈N of continuous maps making the
following diagram commutative up to homotopy.

Cn Cn+1

Xn Xn+1

in in+1

hn,n+1

qn,n+1

gn

For every n ∈ N, define gn : Xn+1 → Cn by gn = rn ◦ qn,n+1. By the construction, we have
gn ◦ in+1 = rn ◦qn,n+1 ◦ in+1 and hn,n+1 = rn ◦qn,n+1 ◦ in+1, which yields the commutativity of
the first triangle. We also have that in ◦gn = in ◦rn ◦qn,n+1. Therefore, in ◦gn is homotopic to
qn,n+1 and we obtain the commutativity up to homotopy of the second triangle. By Morita’s
lemma (see [34] or [28, Chapter 2, Theorem 5]), we deduce the desired result.

Remark 3.6. Let (Xn, qn,n+1) be an inverse sequence of finite spaces. Suppose Ln is a strong
deformation retract of Xn for every n ∈ N. Following the same arguments used before, we
can obtain an inverse sequence where the terms are given by Ln. Repeating the proof of
Theorem 3.5, it can be deduced that this new inverse sequence is isomorphic to (Xn, qn,n+1)
in pro-HTop.

Example 3.7. We consider X1 = {A,B} with A < B. Let Xn+1 denote the n-th finite
barycentric subdivision of X1. The finite barycentric subdivision of X1 can be seen as the
poset given by the chains of X1, where the partial order is defined by the subset relation.
We have a natural inverse sequence (Xn, hn,n+1), where hn,n+1 : Xn+1 → Xn is given by
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h(x1 < ... < xm) = xm (see [4] or [29] for more details). It is easily seen that the core of Xn is
a space with one point for every n ∈ N. This implies that (Xn, hn,n+1) is isomorphic to (∗, id).
In Figure 2, we have the Hasse diagrams of the terms of both inverse sequences, as well as a
grayscale representation of the inclusion morphism (in, i) : C(Xn, hn,n+1)→ (Xn, hn,n+1).

X1 X2 X3 X4

C1 C2 C3 C4

i1 i2 i3 i4

Figure 2: Schematic illustration of the inverse sequence (Xn, hn,n+1) and its core, along with
the inclusion morphism (in, i).

The core of an inverse sequence may be used to show that two compact metric spaces have
the same shape, we give an example of this and also illustrate the way we can use different
constructions of finite spaces (see Remark 2.12).

Example 3.8. We consider the computational model of the topologist’s sine curve S, that
is,

S = a∞ ∪ (
⋃
n≥1

bn) ∪ (
⋃
n≥1

bn) ∪ (
⋃
n≥0

an).

where

bn = (
1

22n−1
,
1

2
)− (

1

22n−2
,
1

2
) n ≥ 1,

bn = (
1

22n
, 0)− (

1

22n−1
, 0) n ≥ 1,

an = (
1

2n
,
1

2
)− (

1

2n
, 0) n ≥ 0,

a∞ = (0,
1

2
)− (0, 0),

n ∈ N and (a, b)− (c, d) denotes the segment joining the point (a, b) with (c, d) (see Figure 3
for the topologist’s sine curve with the segments introduced earlier). The metric of S is the
one inherited as a subspace of R2. We obtain the Main Construction for S and study at the
same time its core. It is important to note that in the subsequent steps, we will omit the
computation of the sequence γn described in Remark 2.12. However, the sequence εn that we
will obtain is within the hypothesis of the Main Construction. We prefer to omit this part for
the sake of the exposition and to avoid extra computations.

Step 1. The diameter of S is
√
5
2 , so we can consider ε1 =

√
5, A1 = {(0, 14)} and U2ε1(A1) =

A1. The core of U2ε1(A1) is also A1. Note that there is a certain abuse of the language to
simplify the exposition when U2ε1(A1) and A1 are considered.
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b1b2b3b4

b1b2b3

a0a1a2a3a4a5a∞

x

y

Figure 3: The computational topologist’s sine, where the axis of R2 are with dashed lines.

Step 2. We consider ε2 =
√
2

23
< ε1

2 , the grid G2 = {( l
23−1 ,

k
23−1 ) ∈ R2|l, k ∈ Z} and the

intersection of G2 with S. There are two points in a3 that are at distance ε2 to G2 ∩S, which
are b1 = ( 1

23
, 1
23

) and b2 = ( 1
23
, 1
23

+ 1
22

). If we add (0, 1
23

) and (0, 1
23

+ 1
22

) to G2 ∩ S, then we
get an ε2-approximation

A2 = G2 ∩ S ∪ {(0,
1

23
), (0,

1

23
+

1

22
)}.

e1

e2

e3e4e5

e6

e7e8

e9

e10

e11

e12

e13

e14

e15

b1

b2

Figure 4: The ε2-approximation A2 of
S.

e5

e6

e7e8

e9

e10

e11

e12

e13

e14

e15

b2

b1

Figure 5: The set of points A′2 in S.

We write B2 = {x ∈ A2|x ∈ b1 \ {a1} or x ∈ a0}, that is, the points of A2 that lie to the
right of a1. It is easy to observe that U2ε2(A′2) is a strong deformation retract of U2ε2(A2),
where A′2 = A2 \{B2}. The last assertion is an immediate consequence of the construction we
made of A2 and the value that we have chosen for ε2. Suppose C ∈ U2ε2(A2) contains points
of the approximation that lie in B2, which means that C is of the form C = {ek, ek+1} or
C = {ek}. Then {e1} is an up beat point because F{e1} \ {e1} = {e1, e2}, so we can remove
it without changing the homotopy type of U2ε2(A2). Now, {e1, e2} is a down beat point since
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U{e1,e2} \ {e1, e2} = {e2}. Therefore, we can remove it. We can proceed recursively until

the point {e5}. This point satisfies that d(e5, e6), d(e5, e10) = 1
4 < 2ε2 =

√
2

22
, so {e5, e6},

{e5, e10} ∈ U2ε2(A2), which implies that {e5} is not an up beat point. On the other hand,
{e5, e6} and {e5, e10} are clearly not down beat points. A similar argument can be made with
the rest of the points in A2 that lie in a1. In addition, the map p1,2 trivially sends every
C ∈ U2ε2(A′2) to A1 (see (1) in Remark 2.12). In Figure 4, we present A2 and arcs in gray
with less thickness than the topologist’s sine curve to represent points of U2ε2(A2) that have
cardinality equal to 2. In Figure 5, we present A′2.

Step 3. We consider ε3 =
√
2

26
< ε2

2 , the grid G3 = {( l
26−1 ,

k
26−1 ) ∈ R2|l, k ∈ Z} and the

intersection of G3 with S. There are 16 points that are at distance ε3 to A3, these points lie
in a6. Specifically,

{( 1

26
,
2k + 1

26
)|k = 0, 1, 2..., 15}.

We add points of a∞ to get an ε3-approximation, i.e.,

A2 = (G3 ∩ S) ∪ {(0, 2k + 1

26
)|k = 0, 1, 2..., 15}.

We consider B3 = {x ∈ A2|x ∈ al with l = 0, 1, 2, 3 or x ∈ bi with i = 1, 2 or x ∈ b1 or
x ∈ b2 \ {a4} }, i.e., the points of A3 that lie to the right of a4. We enumerate from right to
left the points of A3, see Figure 6. We have that {e1} is only covered by {e1, e2}, so we can
remove it. Now, {e1, e2} only covers {e2}, so it is a down beat point and we can remove it. If
we continue in this fashion, we get that U2ε3(A′3) is a strong deformation retract of U2ε3(A3)
where A′3 = A3 \ {B3}. Suppose x is a point of A3 that lie in a4. Then there exist points in
a5 and a4 that are at distance less than 2ε3 to x. Notice that every C ∈ U2ε3(A′3) contains
points lying in a4 or a5. In Figure 7, we have depicted A′3.

Figure 6: The ε3-approximation A3 of S. Figure 7: The set of points A′3 in S.

Furthermore, the image of the map p2,3 : U2ε3(A′3) → U2ε2(A2) is U2ε2(A2) ⊂ U2ε2(A′2),
where A2 = {x ∈ A2|x ∈ a∞} (see (1) in Remark 2.12). On the other hand, after some routine
computations, we may conclude that U2ε2(A2) is contractible to {(0, 14)}.

Step n. We consider εn =
√
2

23n−3 , the grid Gn = {( l
23n−4 ,

k
23n−4 ) ∈ R2|l, k ∈ Z} and the

intersection of Gn with S. There are 23n−5 points that lie in a3n−3 such that the distance to
Gn∩S is exactly εn. If we add the following points to Gn∩S, then we get an εn-approximation

An = (Gn ∩ S) ∪ {(0, 2k + 1

23n−3
)|k = 0, 1..., 23n−4 − 1}.
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It is simple to show that U2εn(An) is homotopy equivalent to U2εn(A′n), where A′n = An \{Bn}
and Bn consists of points in An that lie to the right of a3n−5.

In addition, pn−1,n sends U2εn(A′n) to U2εn−1(An−1) ⊂ U2εn−1(An−1), where An−1 = {x ∈
An−1|x ∈ a∞}. It is routine to check that U2εn−1(An−1) is contractible to {(0, 14)}.

Shape of the topologist’s sine curve. By Remark 2.12, (U2εn(An), pn,n+1) is isomorphic to

every finite approximation of S. Additionally, (U2εn(An), pn,n+1|U2εn (An)
) is isomorphic to every

finite approximation of [0, 12 ] in pro-HTop. Thus, S and [0, 12 ] are isomorphic in the shape
category by Theorem 3.1.

We have obtained a more suitable description of shape theory. This description is based
on finite spaces derived from finite samples of compact metric spaces. Due to the relationship
between finite spaces and computational aspects (as pointed out in the introduction), this can
be seen as a starting point towards a computational shape theory for future works. From an
algebraic point of view, this result is not surprising (see Proposition 2.11). Nevertheless, every
finite connected space has trivial shape (see [10, Proposition 2.6]). Given a compact metric
space X and a finite approximation (U4εn(An), qn,n+1) of it, we can apply other functors. For
instance, the functor K considered in Section 2. In that manner, more connections with shape
theory can be found (see the notion of HPol-expansion in [28]).

Proposition 3.9. Let X be a compact metric space and let (U4εn(An), qn,n+1) be a finite
approximation of X. Then (K(U4εn(An)),K(qn,n+1)) is a HPol-expansion of X.

This result is an immediate consequence of [33, Theorem 12] and [9, Section 5]. It also
proves that we may obtain some shape invariants applying algebraic functors (see [28, Chapter
II]). Particularly, we obtain homology pro-groups, Čech homology, Čech cohomology and
shape groups.

By combining these techniques we may deduce whether two spaces are shape equivalent.
For instance, let us consider the Cantor set C and the topological subspace of R2 given by the
union along one edge of two squares, that is, Example 3.4 and Example 3.3, respectively, in
[9]. After applying homological functors to the finite approximations of these spaces it may
be observed that they are not shape equivalent (just looking at Table 1 and Table 2 in [9]).

To conclude this section, we define the notion of height for compact metric spaces. The
height of a finite space X, denoted by ht(X), is one less than the maximum number of elements
in a chain of X. The dimension of a finite simplicial complex L, denoted by dim(L), is the
maximum of dimension of the simplices of L. It is clear that dim(K(X)) = ht(X).

Definition 3.10. Let X be a compact metric space and let U = (Uεn(An), qn,n+1) be a finite
approximation of X. The height ht(U) of U is less or equal to some natural number m if
ht(Uεn(An)) ≤ m for every n ∈ N. We say that the height of X, denoted by ht(X), is
less or equal to m provided there exists an inverse sequence of finite spaces V = (Vn, tn,n+1)
isomorphic in pro-HTop to a finite approximation (Uεn(An), qn,n+1) of X satisfying ht(V ) ≤
m. We write ht(X) = n provided n is the least m for which ht(X) ≤ m.

Notice that if two compact metric spaces X and Y are isomorphic in E, then ht(X) =
ht(Y ). The shape dimension of a compact metric space X, denoted by sd(X), is defined
similarly using the dimension of simplicial complexes and HPol-expansions, see [28, Chapter
II, 1]. The following result is an immediate consequence of the definitions.

11



Proposition 3.11. Let X be a compact metric space. Then sd(X) ≤ ht(X).

Example 3.12. Let us consider the topologist’s sine curve S and the inverse sequences of
finite posets considered in Example 3.8. Then ht(S) = 0, which coincides with the shape
dimension of S.

Figure 8: The ε2-approximation D2 represented with disks and the ε3-approximation D3

represented with both disks and squares.

Example 3.13. Let us consider the computational model of the Warsaw circle W , that is,
consider the computational model of the topologist’s sine curve S from Example 3.8 and define
W as

W = S ∪ ((0, 0)− (0,−1

2
)) ∪ ((0,−1

2
)− (1,−1

2
)) ∪ ((1,−1

2
)− (1, 0)).

We can leverage the finite approximation obtained in Example 3.8 since S ⊂ W . Hence, we
will consider points from W \ {S} to obtain a finite approximation of W . Consider

Dn = An ∪ (Gn ∩W \ {S}),

where Gn = {( l
23n−4 ,

k
23n−4 ) ∈ R2|l, k ∈ Z}. By the construction, it is trivial that Dn is an

εn-approximation of W , where εn =
√
2

23n−3 . In Figure 8, we have represented the points of D2

with disks and the points of D3 with both disks and squares, along with the computational
model of the Warsaw circle. Consequently, U = (U2εn(Dn), pn,n+1) is a finite approximation
of W , and ht(U) ≤ 2. On the other hand, by the construction (see (1) from Remark 2.12),
one can deduce that the core of pn,n+1(U2εn(Dn)) has height 1 and it is not contractible.
Thus, this space is weak homotopy equivalent to a wedge of circles. Let us analyze the case
p2,3(U2ε3(D3)) to illustrate the previous comment. We enumerate the points of D2 \ {A2}
as d1, ..., d7 following the clockwise orientation. By the arguments given in Example 3.8,
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d1 d2 d3 d4 d5 d6 d7e1e2e3e4e5e6e7e8e9e10e11e12e13e14e15

{e15, e10, e14} {e13, e9, e14} {e8, e11, e12} {e12, e13, e9} Step 1

Step 2

Step 3

Figure 9: Hasse diagram of p2,3(U2ε3(D3)) showing the points removed step by step until de
core is reached.

p2,3(U2ε3(D3 ∩ (a3 \ {(18 ,
1
2)}))) is a finite model of the circle (see the dashed line in Figure 8

and the dashed part of the Hasse diagram in Figure 9):

e15 < {e15, e14} > e14 < {e14, e13} > e13 < · · · > e11 < {e11, d7} > d7 < {d7, d6} > d6 < · · ·
< {d2, d1} > d1 < {d1, e1} > e1 < {e1, e2} > e2 < · · · < {e9, e10} > e10 < {e10, e15} > e15.

Note the singletons are denoted without brackets for simplicity. We only need to study
p2,3(D3 ∩ a3), and clearly p2,3(D3 ∩ a3)) = {{e8, e11}, {e8, e11, e12}, {e12}, {e12, e13, e9},
{e13, e9}, {e13, e9, e14}, {e14}, {e15, e10, e14}, {e15, e10}}. Thus, p2,3(U2ε3(D3)) is the poset
represented by the Hasse diagram of Figure 9, where we have obtained its core step by step
and represented the finite model of the previously mentioned circle in dashed lines. It is clear
that (pn,n+1(U2εn(Dn)), pn,n+1) is isomorphic to U in pro-HTop, and its core has height 1, so
ht(W ) ≤ 1. On the other hand, ht(W ) cannot be zero; otherwise, we would get a contra-
diction. This would imply the existence of an inverse sequence whose terms are finite spaces
with height zero (particularly, these are antichains) isomorphic to an inverse sequence whose
terms are all weak homotopy equivalent to a wedge of circles. From this, we deduce that S
and W do not have the same shape because ht(S) = 0 and ht(W ) = 1.

Shape of the Warsaw circle. Observe that for every n > 1, U2εn(Dn) contains a finite
model of the circle, denoted by K, which is maximal in terms of cardinality (see the dashed
lines in Figure 8). Consider mn = |K|. Let S1 the unit circle in the complex plane with

the geodesic distance. Set En = {e
2πki
mn |k = 0, ...,mn − 1}. It is clear that En is a δn-

approximation of S1, where δn = 2π
mn

. Using the same map defined in Remark 2.12, we

obtain a finite approximation of S1. As it was done before, we have performed the Main
Construction omitting the sequence γn from Remark 2.12 for simplicity. With a certain
abuse of notation pn,n+1 denotes the bonding maps of the finite approximations of S1 and
W . Moreover, U2δn(En) is clearly homeomorphic to K. We will identify both spaces without
explicit mention and by abuse of notation we denote K by U2δn(En). Then, there is a natural
morphism in pro-HTop (in, i) : (U2δn(En), pn,n+1) → (U2εn(Dn), pn,n+1), where i : N → N is
the identity map and in : U2δn(En) → U2εn(Dn) is the inclusion map. We have the following
commutative diagram:
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U2δn(En) U2δn+1(En+1)

U2εn(Dn) U2εn+1(Dn+1)

in in+1

pn,n+1

pn,n+1

Define gn : U2εn+1(Dn+1) → U2δn(En) by gn(x) = pn,n+1(x) if x ∈ Dn+1 \ {a3n−3 \
{( 1

23n−3 ,
1
2)}} and gn(x) = {y ∈ Dn \ {a3n−4}|d(y, x) = d(y,Dn \ {a3n−4})} if x ∈ a3n−3 \

{( 1
23n−3 ,

1
2)}, and for every C ∈ U2εn+1(Dn+1), gn(C) =

⋃
x∈C gn(x). The map gn is clearly

well defined and continuous. Note that gn coincides with pn,n+1 on K. It is evident that
pn,n+1 = gn ◦ in+1 and in ◦ gn is homotopic to pn,n+1 because in(gn(C)) ⊆ pn,n+1(C) for
every C ∈ U2εn+1(Dn+1). By Morita’s lemma ([28, Chapter 2, Theorem 5]), we deduce that
(U2δn(En), pn,n+1) is isomorphic to (U2εn(Dn), pn,n+1) in pro-HTop, which gives that S1 and
W have the same shape, as expected.

4 Proof of Theorem 3.1

Given two compact metric spaces X and Y , we choose finite approximations for them, T (X) =
(U4δn(An), qn,n+1) and T (Y ) = (U4εn(Bn), qn,n+1). Note that, for the sake of exposition and
to simplify notation, we denote the bonding maps for both finite approximations T (X) and
T (Y ) by qn,n+1. This involves a certain abuse of notation, as the bonding maps for each
finite approximation are not necessarily the same. We prove that the set of morphisms in
pro-HTop between their finite approximations is in bijective correspondence with the set of
shape morphisms between X and Y . To this end, we first show some technical results.

Lemma 4.1. Let (X, d) be a compact metric spaces and let A be an ε-approximation of X.
Then, the map p : X → U4ε(A) defined by p(x) = {a ∈ A|d(x, a) = d(x,A)} is well-defined
and continuous.

Proof. The proof follows easily from [33, Lemma 2].

Lemma 4.2. Let X be a topological space and Y be a compact metric space. Suppose A is a
finite subset of Y . If f, g : X → Uε(Y ) (f, g : X → Uε(A)) are continuous maps where ε is a
positive real value and f∪g : X → Uε(Y ) (f∪g : X → Uε(A)) defined by (f∪g)(x) = f(x)∪g(x)
is well-defined, then f ∪ g is continuous and homotopic to f and g.

Proof. For simplicity, we denote the map f ∪g by h. We prove the continuity of h. Let x ∈ X.
If U is an open set containing h(x), then it also contains f(x) and g(x). From the continuity
of f and g, it follows that there exist open sets Vf and Vg containing x such that f(Vf ) ⊆ U
and g(Vg) ⊆ U . From this, we deduce the continuity of h.

We show that h is homotopic to f . Consider H : X× [0, 1]→ Z defined by H(x, t) = f(x)
if t ∈ [0, 1) and H(x, 1) = h(x), where Z is Uε(Y ) or Uε(A). It suffices to check the continuity
of H at points of the form (x, 1) where x ∈ X. Since h is continuous, for every open set
U containing h(x) there exists an open set V containing x such that f(V ) ∪ g(V ) ⊆ U .
Particularly, f(V ) ⊆ U . Hence, V × [0, 1] is an open set of X × [0, 1] containing (x, 1) and
satisfying that H(V × [0, 1]) ⊆ U , which gives the desired result. The proof to show that g is
homotopic to h is the same.
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In the following proposition, we present a constructive method to obtain a morphism in
pro-HTop induced by the homotopy class of an approximative map.

Proposition 4.3. Let (X, d) and (Y, l) be compact metric spaces. If [f ] : X → Y is the ho-
motopy class of an approximative map, then there exists a natural morphism T ([f ]) : T (X)→
T (Y ) in pro-HTop.

Proof. Set T (X) = (U4δn(An), qn,n+1) and T (Y ) = (U4εn(Bn), qn,n+1). Firstly, we prove that
for every n ∈ N, the map rn : U2εn(Y )→ U4εn(Bn) defined by

rn(C) =
⋃
x∈C
{b ∈ Bn|l(x, b) = l(x,Bn)}

is well-defined and continuous. If x, y ∈ rn(C) for some C ∈ U2εn(Y ), then there exist cx, cy ∈
C such that x ∈ rn(cx) and y ∈ rn(cy). We have l(x, cx), l(y, cy) < εn and l(cx, cy) < 2εn.
Hence, we obtain

l(x, y) < l(x, cx) + l(cx, cy) + l(cy, y) < εn + 2εn + εn,

which implies that rn is well-defined. We deduce that rn is continuous because rn = p∗n|U2εn (Y )
,

where pn is the continuous map considered in Lemma 4.1 and p∗n denotes the extension of pn
to the hyperspace of Y defined in Lemma 2.2.

We now prove the commutativity up to homotopy of the following diagram, where i denotes
the inclusion map.

U2εn(Y ) U4εn(Bn)

U2εn+1(Y ) U4εn+1(Bn+1)

rn

i

rn+1

qn,n+1

Consider C ∈ U2εn+1(Y ). If x ∈ qn,n+1(rn+1(C)), then there exist ax ∈ Bn+1 and bx ∈ C such
that x ∈ qn,n+1(ax) and ax ∈ rn+1(bx). We obtain

l(x, bx) < l(x, ax) + l(ax, bx) < εn +
εn
2
.

If y ∈ rn(i(C)), then there exists by ∈ C such that y ∈ rn(by). Since l(bx, by) < 2εn+1 < εn,
we have

l(x, y) < l(x, bx) + l(bx, by) + l(by, y) < εn +
εn
2

+ εn + εn.

Thus, the map h = rn ◦ (i ∪ qn,n+1) ◦ rn+1 : U2εn+1(Y )→ U4εn(Bn) is well-defined. Conse-
quently, the continuity of h and the commutativity up to homotopy of the previous diagram
follow from Lemma 4.2.

Let us consider f = {fk : X → 2Y }k∈N ∈ [f ]. By Proposition 2.1, U2εn(Y ) is an open
neighborhood of Y in 2Y for every n ∈ N. By Definition 2.4, there exists a natural number,
that we denote by sn, such that fm is homotopic to fm+1 in U2εn(Y ) for every m ≥ sn.
Let H denote the homotopy between fsn and fsn+1. By Theorem 2.3, there exists γn > 0
such that H(Uγn(X) × I) ⊆ U2εn(Y ). This gives the key to be able to define a morphism
(fn, f) : T (X) → T (Y ), where there is an abuse of notation: fk is used in the definition
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of approximative map, while fn will be used in the construction of a candidate to be a
morphism in pro-HTop. With a certain abuse of notation, we also denote by f the map
f : N → N defined by f(n) = min{l ∈ N|4δl < γn}, it is clear that f is well-defined and
satisfies that f(n) ≤ f(m) for every n ≤ m in N. For every natural number n, consider
fn : U4δf(n)(Af(n)) → U4εn(Bn) given by fn = rn ◦ f∗sn ◦ i, where f∗sn denotes the extension of
fsn to the hyperspace of X given in Lemma 2.2 and i : U4δf(n)(Bn) → Uγn(X) denotes the
inclusion map. By the construction, it is immediate to conclude that fn is well-defined and
continuous for every n ∈ N. Notice that the importance of the number γn can be seen in the
construction of f and the importance of the homotopy H will be seen when we check that
(fn, f) : T (X) → T (Y ) is a morphism in pro-HTop. To check that (fn, f) is a morphism in
pro-HTop we need to verify the commutativity up to homotopy of the following diagram.

U4δf(n)(Af(n)) Uγn(X) U2εn(Y ) U4εn(Bn)

U4δf(n+1)
(Af(n+1)) Uγn+1(X) U2εn+1(Y ) U4εn+1(Bn+1)

i f∗sn rn

i

q i

f∗sn+1 rn+1

i q

We check the commutativity up to homotopy of the first square. Notice that we will omit
the subscripts of the bonding maps qn,n+1 for simplicity. Consider C ∈ U4δf(n+1)

(Af(n+1)).
If x ∈ i(q(C)) = q(C), then there exists ax ∈ C such that x ∈ q(ax), which implies
d(x, ax) < 2δf(n) <

γn
2 . If y ∈ i(i(C)) = C, then d(y, ax) < 4δf(n+1) <

γn
2 . We ob-

tain d(x, y) < γn. Consequently, q(C) ⊆ q(C) ∪ C for every C ∈ U4δf(n+1)
(Af(n+1)), where

q ∪ i : U4δf(n+1)
(Af(n+1)) → Uγn(X) is well-defined and continuous. By Lemma 4.2, the

commutativity up to homotopy of the first square can be deduced. The second square is
commutative up to homotopy by the construction. The commutativity up to homotopy of
the third square was proved at the beginning.

If g ∈ [f ], then we can repeat the same construction to obtain (gn, g) : T (X) → T (Y ).
The counterparts of γn and sn in the construction of (fn, f) here are τn and hn, i.e., in the
construction of (gn, g) we obtain that τn and hn play the same role as γn and sn in the
construction of (fn, f). We prove that (fn, f) is equivalent to (gn, g) as morphisms in pro-
HTop. To do this, given a natural number n, we need to verify the commutativity up to
homotopy of the following diagram for some m ≥ f(n), g(n).

U4δf(n)(Af(n)) Uγn(X) U2εn(Y )

U4δm(Am) U4εn(Bn)

U4δg(n)(Ag(n)) Uτn(X) U2εn(Y )

i

i

f∗sn

id

rnq

q

i g∗hn

rn

We define m = max{f(n), g(n)}. Without loss of generality we can assume that γn ≤ τn
and m = f(n). We study the commutativity up to homotopy of the first square. Suppose
f(n) 6= g(n) because the other case follows easily. Consider C ∈ U4δm(Am). If y ∈ i(q(C)) =
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q(C), then there exists ay ∈ C such that y ∈ q(ay). We have d(ay, y) < 2δg(n) <
τn
2 and

d(x, ay) < 4δf(n) < 2δg(n) <
τn
2 for every x ∈ C. Thus,

d(x, y) < d(ax, ay) + d(ay, y) < τn,

and consequently i ◦ (q ∪ i) ◦ i : U4δf(n)(Af(n)) → Uτn(X) is well-defined. By Lemma 4.2, we
deduce the desired result. The commutativity up to homotopy of the second square follows
from the fact that f and g are homotopic approximative maps (see Theorem 2.3) and the
choices of sn and hn. For every m ≥ sn, hn we have that fsn is homotopic to fm in U2εn(Y )
and ghn is homotopic to gm in U2εn(Y ). The third square commutes trivially.

Given a morphism in pro-HTop, we construct a homotopy class of an approximative map
in the following result.

Proposition 4.4. Let (X, d) and (Y, l) be compact metric spaces. If (fn, f) : T (X) → T (Y )
is a morphism in pro-HTop, then there exists a natural homotopy class of an approximative
map E(fn) : X → Y induced by (fn, f).

Proof. Set T (X) = (U4δn(An), qn,n+1) and T (Y ) = (U4εn(Bn), qn,n+1). For the sake of the
exposition, we use the same notation for the bonding maps of T (X) and T (Y ). Firstly, we
consider pn : X → U4δn(An) defined by pn(x) = {a ∈ An|d(x, a) = d(x,An)} for every n ∈ N,
that is, the continuous map considered in Lemma 4.1. For simplicity, we omit some of the
subscripts of the maps. We prove that the following diagram commutes up to homotopy.

X

U4δn(An) U4δn+1(An+1)

pn pn+1

qn,n+1

If ax ∈ q(p(x)), then there exists bx ∈ An+1 with ax ∈ q(bx) and bx ∈ p(x). Hence, d(x, bx) <
δn+1 <

δn
2 and d(ax, bx) < 2δn. If cx ∈ p(x), then we get d(x, cx) < δn. Thus,

d(cx, ax) < d(cx, x) + d(x, bx) + d(bx, ax) < 3δn,

which implies that qn,n+1 ◦ (pn+1 ∪ pn) : X → U4δn(An) is well-defined. Applying Lemma 4.2
we get that the previous diagram commutes up to homotopy.

We construct a candidate to be an approximative map. Consider F = {Fk : X → 2Y }k∈N
given by Fk = fk ◦ pf(k) : X → U4εk(Bk). For every open neighborhood U of the canonical

copy of Y in 2Y , there exists 4εm such that U4εm(Bm) ⊂ U4εm(Y ) ⊆ U by Proposition 2.1. To
prove that F is an approximative map we check that Fm is homotopic to Fm+1 in U , which
is equivalent to show the commutativity up to homotopy of the following diagram.

X U4δf(m)
(Af(m)) U4εm(Bm)

X U4δf(m+1)
(Af(m+1)) U4εm+1(Bm+1)

pf(m) fm

id

pf(m+1)

q

fm+1

q
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The commutativity up to homotopy of the first square was proved at the beginning. The
second square commutes up to homotopy since (fn, f) is a morphism in pro-HTop. Thus
F is an approximative map. We denote by E(fn) the homotopy class generated by the
approximative map F . We verify that E is well-defined, that is, if (gn, g) is equivalent to
(fn, f) as morphisms in pro-HTop, then the induced approximative map G = {Gk = gk◦pg(k) :

X → 2Y }k∈N is homotopic to F = {Fk = fk ◦ pf(k) : X → 2Y }k∈N.

For every open neighborhood U of Y in 2Y there exists 4εn such that U4εn(Y ) ⊆ U by
Proposition 2.1. By hypothesis, for every n there exists m ≥ f(n), g(n) such that fn ◦ qf(n),m
is homotopic to gn ◦ qg(n),m. We have the following diagram.

X X X

U4δf(n)(Af(n)) U4δm(Am) U4δg(n)(Ag(n))

U4εn(Bn)

pf(n)

id id

pm pg(n)

fn

qf(n),m qg(n),m

gn

It is obvious that every square commutes up to homotopy. From here, we obtain that F
and G are homotopic.

Lemma 4.5. Let (X, d) and (Y, l) be compact metric spaces. If [f ] : X → Y is the homotopy
class of an approximative map, then E(T ([f ])) = [f ].

Proof. Let f = {fk : X → 2Y }k∈N denote the approximative map that generates [f ]. We
consider a representative (fn, f) of T ([f ]) induced by f and a representative f ′ = {f ′k : X →
2Y }k∈N of E(T (fn)) induced by (fn, f). Note that, as before, there will be a certain abuse of
notation, but the meaning of the maps can be deduced from the context. We will prove that
f ′ and f are homotopic approximative maps. By the proof of Proposition 4.3, f ′k = fk ◦ pf(k),
where fk = rk ◦ f∗sk ◦ i. By Proposition 2.1, for every open neigbhorhood U of Y in 2Y there
exists U4εn(Y ) ⊂ U . We check that the following diagram is commutative up to homotopy.

X U4δf(n)(Af(n)) Uγn(X)

U2εn(Y ) U2εn(Y )

U4εn(Y )

fsn

pf(n) i

f∗sn

i rn

id

Let x ∈ X. Then we know that diam(fsn(x)) < 2εn. We have d(x, a) < δf(n) < γn for
every a ∈ p(x). Thus, 2εn > diam(f∗sn(i(p(x)) ∪ {x})) = diam(f∗sn(i(p(x))) ∪ fsn(x)) so
h = fsn ∪ f∗sn ◦ i ◦ pf(n) : X → Uεn(Y ) is continuous and well-defined. By Lemma 4.2, we get
the commutativity up to homotopy of the first square. It is clear that diam(i(C)∪rn(C)) < 4εn
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for every C ∈ U2εn(Y ). Therefore, we can repeat the previous argument to show that rn is
homotopic to i.

By the construction and hypothesis, for every m ≥ sn, n we have that fm is homotopic to
fsn in U and f ′n is homotopic to f ′m in U , which gives the desired result.

Lemma 4.6. Let (X, d) and (Y, l) be compact metric spaces. If (fn, f) : T (X) → T (Y ) is a
morphism in pro-HTop, then T (E(fn, f)) = (fn, f).

Proof. We consider a representative (f ′n, f
′) of E(T (fn)), where (f ′n, f

′) is induced by an
approximative map F induced by (fn, f). Given n ∈ N, we need to verify that for every
l ≥ f ′(n), f(n) the following diagram commutes up to homotopy.

U4δf(n)(Af(n)) U4δl(Al) U4δf ′(n)(Af ′(n))

U4εn(Bn)

fn

qf(n),l qf ′(n),l

f ′n

Without loss of generality, we can assume that f ′(n) > f(n), sn ≥ n and f ′(n) ≥ f(sn).
Note that this is due to the construction provided in the proof of Proposition 4.3: sn can be
considered as large as we want (this guarantees sn > n), and γn can be considered as small
as needed (this guarantees that f ′(n) is as large as desired). Then, we need to check the
commutativity up to homotopy of the following diagram, where h = (fsn ◦ pf(sn))∗.

U4δf ′(n)(Af ′(n)) Uγn(X) U2εn(Y ) U4εn(Bn)

U4δf(n)(Af(n))

q

i h rn

fn

By the construction, h(C) =
⋃
c∈C fsn(pf(sn)(c)) for every C ∈ U4δf ′(n)(Af ′(n)). By the as-

sumptions made on sn and γn earlier (that give sn ≥ n and f ′(n) ≥ f(sn)), it is easy to deduce
that qf(sn),f ′(n) is homotopic to p∗f(sn) ◦ i because pf(sn)(i(c)) ⊆ qf(sn),f ′(n)(c) for every c ∈ C.

In addition, rn restricted to the image of h ◦ i is homotopic to qn,sn because rn(a) ⊆ qn,sn(a)
for every a ∈ C where C ∈ U4εsn (Bsn). Since (fn, f) is a morphism in pro-HTop, it follows
the commutativity up to homotopy of the diagram.

Theorem 4.7. Let (X, d) and (Y, l) be compact metric spaces. The set of shape morphisms
between X and Y is in bijective correspondence with the set of morphisms in pro-HTop between
T (X) and T (Y ).

Proof. We consider the constructions made in Proposition 4.3 and Proposition 4.4. Thus, the
result is an immediate consequence of Lemma 4.5 and Lemma 4.6.

The task is now to prove that T is indeed a functor.

Lemma 4.8. Let [f ] : X → Y and [g] : Y → Z be two approximative maps. Then T ([g]◦[f ]) =
T ([g]) ◦ T ([f ]).
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Proof. We consider {fn : X → 2Y }n∈N ∈ [f ], {gn : Y → 2Z}n∈N ∈ [g] and {gn ◦ fkn : X →
2Z}n∈N ∈ [g] ◦ [f ]. As done previously, we will omit some subscripts. With a certain abuse
of notation, we will use the same letter to denote different maps. However, the meaning
of the notation can be understood from the context. From the proof of Theorem 4.3, we
obtain that (rn ◦ f∗sn ◦ i, f) is a morphism in pro-HTop induced by {fn : X → 2Y }n∈N,
(rn ◦ g∗hn ◦ i, g) is a morphism in pro-HTop induced by {gn : Y → 2Z}n∈N and (rn ◦ h∗ln ◦ i, h)

is a morphism in pro-HTop induced by {gn ◦ fkn : X → 2Z}, where hn = g∗n ◦ f∗kn , T (X) =
(U4δn(An), qn,n+1), T (Y ) = (U4εn(Bn), qn,n+1) and T (Z) = (U4ψn(Cn), qn,n+1). It suffices to
show that (rn ◦ g∗hn ◦ i, g) ◦ (rn ◦ f∗sn ◦ i, f) is homotopic to (rn ◦h∗ln ◦ i, h), that is, the following
diagram commutes up to homotopy for some m ≥ h(n), g(f(n)).

Uρn(X) U4δl(n)(Al(n)) U4δm(Am) U4δf(h(n))(Af(h(n))) Uγn(X)

U2ψn(Z) U2εhn
(Y )

U4ψn(Cn) U2ψn(Z) Uτn(Y ) U4εhn (Bhn)

h∗ln

i q q i

f∗shn

rn rhn

rn g∗hn i

Without loss of generality we can assume that m = max{l(n), f(g(n))} = l(n) and γn ≥
ρn. Hence, the commutativity up to homotopy of the following diagram follows trivially.

U4δf(h(n))(Af(h(n))) Uγn(X)

U4δl(n)(Al(n)) Uρn(X)

i

q

i

i

We verify the commutative up to homotopy of the following diagram.

U2εhn
(Y ) U4εhn (Bhn)

U2ψn(Z)

rhn

g∗hn g∗hn

For every C ∈ U2εhn
(Y ), we obtain that diam(C ∪ rhn(C)) < 4εhn . Hence, g∗hn ∪ g

∗
hn
◦ rhn :

U2εhn
(Y )→ U2ψn(Z) given by g∗hn ∪ g

∗
hn
◦ rhn(C) = g∗hn(C) ∪ g∗hn(rhn(C)) is well-defined. By

Lemma 4.2, we deduce that the above diagram is commutative up to homotopy.
From the commutativity of the previous diagrams and the properties of approximative

maps, it follows that the first diagram commutes up to homotopy.

Lemma 4.9. Let [id] be the class of the identity morphism {idn : X → 2X}. Then T ([id]) :
T (X)→ T (X) is homotopic to the identity morphism in pro-HTop.

Proof. Set T (X) = (U4δn(An), qn,n+1). Consider (In, I) ∈ T ([id]) given by Proposition 4.3,
that is, In = rn and I : N→ N is the identity map. By the definition of rn it is easily seen that
In is the identity map. Therefore, it can be deduced that T ([id]) is the identity morphism in
pro-HTop.
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By combining previous results the proof of Theorem 3.1 is straightforward.
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Spain

E-mail address:pedro.chocano@urjc.es

M.A. Morón, Departamento de Álgebra, Geometŕıa y Topoloǵıa, Universidad Complutense
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