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ABSTRACT. In this paper, we show that for a given finitely presented
group G, there exist integers hg > 0 and ng > 4 such that for all
h > hg and n > ng, and for all 0 < ¢ < 2n — 2, there exists a genus-
(2h + n — 1) Lefschetz fibration on a minimal symplectic 4-manifold
with (x,c}) = (n,4) whose fundamental group is isomorphic to G. We
also prove that such a fibration cannot be decomposed as a fiber sum for
1<i<2n-2if h > (5n—3)/2. In addition, we give a relation among the
genus of the base space of a ruled surface admitting a Lefschetz fibration,
the number of blow-ups and the genus of the Lefschetz fibration.

1. INTRODUCTION

Briefly speaking, a genus-g Lefschetz fibration is a smooth fibration of
a 4-manifold over S? with regular fiber diffeomorphic to a closed orientable
surface of genus g, which may admit certain singular fibers. In 4-dimensional
topology, Lefschetz fibrations are fundamental and important objects to
study. From the result of [20], after some blow-ups, any closed symplectic
4-manifolds admit Lefschetz fibrations. Conversely, it was shown in [29] that
a 4-manifold admitting a Lefschetz fibration has a symplectic structure if
the fibers are nontrivial in homology. This is a generalization of an earlier
work of Thurston in [55] (more details can be found in [44, 29]).

In this paper, we study the geography of minimal symplectic 4-manifolds
admitting Lefschetz fibrations (see Section 1.1) and discuss the indecompos-
ability of the Lefschetz fibrations (see Section 1.2). Moreover, we investigate
Lefschetz fibrations on blow-ups of ruled surfaces (see Section 1.3).

More precise definitions of the terms in this introduction and statements
of the main results will be given in Section 2.

1.1. Lefschetz fibrations violating the Noether inequality. Let o(X)
and e(X) be the signature and the Euler characteristic of a closed oriented
smooth 4-manifold X, respectively, and we set x(X) := (o(X) + e(X))/4
(the holomorphic Euler characteristic) and c?(X) = 30(X) + 2e(X) (the
first Chern number). Note that x(X) € Z if X is a complex surface or a
symplectic 4-manifold. The geography problem for complex surfaces (resp.
symplectic 4-manifolds) is the characterization of pairs (, ¢?) corresponding
to minimal complex surfaces (resp. minimal symplectic 4-manifolds).
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It is well-known that every minimal complex surface of general type satis-
fies x > 0, ¢2 > 0 and 2x — 6 < ¢? < 9 (see, for example [13]). The last two
inequalities are called the Noether inequality and the Bogomolov—Miyaoka—
Yau inequality, respectively.

By using a result of Taubes [54], Liu [42] showed that every minimal sym-
plectic 4-manifold with b; > 1 satisfies c% > 0. It remains open whether any
minimal symplectic 4-manifold with ¢? > 0 satisfies x > 0 (more strongly,
e > 0 since ¢} + e = 12x) and the Bogomolov—Miyaoka—Yau inequality. On
the other hand, Fintushel and Stern [26] showed that for n — 1 > 3, there
exists a genus-(n — 1) Lefschetz fibration over S? whose total space is a
simply connected, minimal symplectic 4-manifold with (x,c?) = (n,n — 3).
Since this pair, (x,c?) = (n,n — 3), satisfies ¢ = x — 3, this symplectic
4-manifold violates the Noether inequality. Moreover, Gompf and Stipsicz
gave a simply connected minimal symplectic 4-manifold with = x and
y = ¢2 for most pairs (z,y) satisfying y < 2z — 6 (see [29]). Although the
examples in [29] admit Lefschetz pencil structures, it is not clear from the
construction that they admit Lefschetz fibration structures. Furthermore,
it is not clear if more recent exotic symplectic 4-manifolds constructed via
symplectic connected sums, knot surgeries and Luttinger surgeries [1, 7, 8]
admit Lefschetz fibration structures. For more about results concerning the
geography of symplectic 4-manifolds, see for example [29].

In this paper, we give a generalization of the result of [26] to (x, c3) = (n,1)
forn—1>3and 0 <i < 2n—1 (Theorem A in Section 2.3). Moreover,
we generalize Theorem A to Lefschetz fibrations with arbitrary fundamental
groups. More precisely, for a given finitely presented group G, there exist
integers hg > 0 and ng > 4 such that for all h > hg and n > ng, and
for 0 < i < 2n — 2, there exists a genus-(2h + n — 1) Lefschetz fibration
on a minimal symplectic 4-manifold with (x, ¢}) = (n,i) whose fundamental
group is isomorphic to G (see Theorem B in Section 2.3). This result is also
a generalization of a result of the first author and Ozbagci [6].

By the Enriques-Kodaira classification of complex surfaces (see, for ex-
ample, [13]), we see that there exists no minimal complex surface with
0 < ¢ < 2y — 6. Hence, the manifolds in Theorems A and B violat-
ing the Noether inequality cannot admit any complex structure with either
orientation. As a corollary, we obtain nonholomorphic genus-g Lefschetz fi-
brations for g > 3 (see Corollary 2 in Section 2.3). On the other hand, every
genus-2 Lefschetz fibration satisfies the Noether inequality (see Section 8).
Nakamura [46] studied the geography of genus-2 Lefschetz fibrations.

1.2. Indecomposable Lefschetz fibrations with minimal total spaces.
The fiber sum is one of the most important and natural operations to con-
struct new genus-g Lefschetz fibrations obtained by “summing” given genus-
g Lefschetz fibrations. It was shown by Stipsicz [52], and independently
by Smith [50], that every Lefschetz fibration over S? with a (—1)-section
is indecomposable with respect to fiber sum. Note that the total spaces
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of Lefschetz fibrations with a (—1)-section are nonminimal. Based on the
above-mentioned result of [52], Stipsicz conjectured that if a Lefschetz fi-
bration is decomposable, then its total space is minimal. This was proved
by Usher [56] (see also [48, 14]). On the other hand, it was shown in [4]
that the converse of the above-mentioned Stipsicz’s conjecture for genus-2
Lefschetz fibrations is false. We generalize this result (see Theorem C, Corol-
laries 3 and 4 in Section 2.3). More precisely, the fibrations in Theorem B
are indecomposable under the condition h > (5n — 3)/2 (see Theorem C in
Section 2.3).

We would like to emphasize that as far as the authors know, the mon-
odromies of all known indecomposable Lefschetz fibrations with minimal
total spaces have not been known and there have been no explicit examples
for fiber genus g > 3. In this paper, we give such examples for fiber genus
g > 21 (see Corollary 3 in Section 2.3) and the monodromies of the fibrations
in Theorem C.

To the best of our knowledge, all known explicit examples of indecompos-
able Lefschetz fibrations with minimal total spaces are constructed by Xiao
[57], and the fiber genera of all the fibrations are two. Note that their total
spaces are not simply connected (see Proposition 43 in Section 8). From
Theorems B and C, we obtain indecomposable genus-g Lefschetz fibrations
with minimal and simply connected total spaces for g > 21 (see Corollary 3
in Section 2.3).

As far as the authors know, up to isomorphism, there have been con-
structed only finitely many examples of indecomposable genus-g Lefschetz
fibrations whose total spaces are minimal for g = 2, and there have been no
such examples for g > 3. We give infinitely many isomorphism classes of such
genus-g Lefschetz fibrations for each g > 28 (see Corollary 4 in Section 2.3).
It was conjectured in [52] that if a Lefschetz fibration is indecomposable,
then it has a (—1)-section. However, there have been constructed some
indecomposable genus-g Lefschetz fibrations with nonminimal total spaces
and no (—1)-sections for each g > 2 (¢ = 2 [49], g = 2,3 [15] and g > 2
[16]), but the number of such examples is finite up to isomorphism as far
as the authors know. On the other hand, from Corollary 4, there are infin-
itely many indecomposable genus-g Lefschetz fibrations with minimal total
spaces for each g > 28.

1.3. Lefschetz fibrations on ruled surfaces. Ruled surfaces play an im-
portant role in the theory of Lefschetz fibrations. In fact, using (the mon-
odromies of ) Lefschetz fibrations on blow-ups of ruled surfaces, many inter-
esting examples have been obtained (see, for example, [47, 37, 38, 36, 35, 3,
4]). In this paper, we give a relation among the genus of the base space of
a ruled surface admitting a Lefschetz fibration, the number of blow-ups and
the genus of the Lefschetz fibration (see Proposition 6 in Section 2.3). We
prove Theorem C using Proposition 6.
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2. STATEMENTS OF THE MAIN RESULTS

In this section, we state the main results. For that, we review the basics
of 4-manifolds and Lefschetz fibrations. Throughout this paper, unless oth-
erwise stated, all manifolds are assumed to be oriented. Moreover, if we say
that two manifolds are diffeomorphic then we mean that they are orientation
preservingly diffeomorphic.

2.1. 4-manifolds. Let X be a closed, connected, oriented and smooth 4-
manifold. The symmetric bilinear form

Qx : Hy(X;7Z) x Hy(X;Z) - Z

defined by counting intersections with signs of oriented surfaces representing
homology classes of X is called the intersection form of X. We write b; (X)
(resp. b, (X)) for the number of positive (resp. negative) eigenvalues of the
intersection form ) x after diagonalizing it over R. It is well-known that Q) x
is unimodular (i.e., det @x = £1), and therefore we see that the second Betti
number by (X) is by (X)-+b5 (X). The signature o(X) of X is by (X)—by (X).
Note that the Euler characteristic of X is 2 — 2by(X) + b (X) + by (X) by
the Poincare duality, where b1 (X) is the first Betti number of X.

A symplectic manifold is a 2n-manifold together with a symplectic form
w, that is, w is a differential 2-form that is closed and nondegenerate. We
say that a 4-manifold is a complex surface if it admits a C2-atlas with holo-
morphic transition functions.

The connected sum X§CP? is called the blow-up of X, where CP? is the
complex projective plane CP? with the opposite orientation. It is a well-
known fact that the blow-up of a symplectic 4-manifold (resp. complex
surface) is also a symplectic 4-manifold (resp. complex surface).

We say that X is smoothly minimal if it does not contain any smoothly
embedded spheres of self-intersection —1 (equivalently, it is not the con-
nected sum of another manifold with CP?). A 2-dimensional submanifold S
in a symplectic 4-manifold with a symplectic form w is symplectic if w|g is
a symplectic form on S. A symplectic 4-manifold (resp. complex surface) is
said to be minimal if it does not contain any smoothly embedded spheres
of self-intersection —1 which are symplectic (resp. complex) submanifolds
of the ambient manifold. From a basic fact proved using Taubes’ Seiberg—
Witten theory [54, 41, 39], a symplectic 4-manifold (resp. complex surface)
is minimal if and only if it is smoothly minimal.

A rational surface is a smooth 4-manifold diffeomorphic to S? x S? or
CP24mCP? with m > 0. A ruled surface over a Riemann surface ¥ of
genus h > 0 is a smooth orientable S%-bundle over Y. Note that up to
diffeomorphism, there are only two orientable S?-bundles over ;. One is
the trivial bundle ¥, x S? and the other is the nontrivial bundle ¥, xS2.
In particular, the nontrivial bundle S?xS? is diffeomorphic to CP?4CP2.
Moreover, (¥, x S2)CP? and (X}, xS?)4CP? are diffeomorphic for h > 0.
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2.2. Lefschetz fibrations. Let X be a closed, connected, oriented and
smooth 4-manifold. A smooth map f : X — S? is called a genus-g Lefschetz
fibration if a regular fiber of f is diffeomorphic to ¥, and for each critical
point p and its image f(p), there are complex local coordinate charts agreeing
with the orientations of X and S? with respect to which f is of the form

f(z1,22) = z122.

Throughout this paper, we assume that f is injective on the set C' of crit-
ical points and relatively minimal, i.e., no fiber contains a sphere of self-
intersection —1.

For a genus-g Lefschetz fibration, any fiber containing a critical point
is called a singular fiber, which is obtained by collapsing a simple closed
curve, called the wvanishing cycle, in a nearby regular fiber to the critical
point. We say that a singular fiber is separating (resp. nonseparating) if the
corresponding vanishing cycle is a separating (resp. nonseparating) curve on
the regular fiber. For a genus-g Lefschetz fibration X — S? with m singular
fibers, we have the formula e(X) = 4 — 49 + m. We say that a genus-g
Lefschetz fibration X — S? is trivial if it has no singular fibers, and in this
case, X is diffeomorphic to ¥, x S? for g > 2.

Two Lefschetz fibrations f1 : X7 — S? and fo: X9 — S? are said to be
isomorphic if there exist orientation preserving diffeomorphisms H : X; —
Xy and h : S? — S? such that fo 0o H = ho fi. Note that if f; is isomorphic
f2, then the number of singular fibers and the genus of a regular fiber of f;
are equal to those of fs.

For a Lefschetz fibration f: X — S?, a map s : S? — X is called a (—k)-
section of f if f o s =idg2 and the self-intersection number of the homology
class [s(S?)] in Hy(X;Z) is equal to —k.

For i = 1,2, let f; : X; — S? be two genus-¢g Lefschetz fibrations. We
remove a fibered neighborhood of a regular fiber F; from each fibration and
glue the resulting 4-manifolds along their boundaries using a fiber-preserving
and orientation-reversing diffeomorphism ¢ : F} x S L Fy x S1. The result
is a new genus-g Lefschetz fibration f on X := X;fi4, X5 called the fiber sum
of f1 and fs. A Lefschetz fibration is called indecomposable if it cannot be
expressed as a fiber sum of nontrivial Lefschetz fibrations.

It is a well-known fact that the rational surface CP249CP? admits a non-
trivial genus-1 Lefschetz fibration. The elliptic surface E(n) is the n-fold
fiber sum of this fibration for n > 1. Kas [32], and independently Moishe-
zon [45], showed that if a 4-manifold admits a nontrivial genus-1 Lefschetz
fibration, then it is diffeomorphic to E(n) for some n (see also [43]).

By Theorem 10.2.18 and Remark 10.2.22 in [29], we see that if a genus-g
Lefschetz fibration f : X — S? is nontrivial, admits a section or satisfies
g > 2, then X is a symplectic manifold and the fibers are symplectic sub-
manifolds.
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2.3. Main results. The first main result of the present paper is the follow-
ing.

Theorem A. Letn—12> 3. For0 <i < 2n—1, there exists a genus-(n—1)
Lefschetz fibration f; : X; — S? such that

(a) X; is minimal, x(X;) =n, 3(X;) =i and ™ (X;) = 1,

(b) fi admits a (—2)-section.

To state Theorem B, we need to introduce the following notation.

Definition 1. For a finite set {x1,z9,..., 2N}, let Fy denote the free group
of rank N freely generated by {x1,z2,...,2n}. For w € Fy, we define ¢(w),
called the syllable length of w, to be
l(w) =min{s |w =z} 2?2, 1<i; <N, m; € Z}.

Let G = (x1,x9,...,2N | r1,72,...,7%) be a finitely presented group with
N generators and k relations. Define ¢ = max{l(r;) | 1 < i < k}. If
k =0, we define ¢y = 1 (¢, depends on the presentation, and our definition
of ¢, differs from that of [38]). We always assume that the relators r; are
cyclically reduced, that is, none of its cyclic permutations contains subwords
of the form z,z,! or z 'z, for v =1,2,... N.

Theorem B. Let G be a group with the presentation in Definition 1. Sup-
pose that two nonnegative integers n and h satisfyn—12> 3, 2n—8 > k and
h > N+/{, —1. Then, for any 0 <i < 2n— 2, there is a genus-(2h+n —1)
Lefschetz fibration fa;:Y; — S? such that

(a) Vi is minimal, x(Y;) = n, A(Y;) =i and m (V;) = G,

(b) fa, admits a (—2)-section.

As a corollary to Theorems A and B, we obtain the following result.

Corollary 2. For 1 < i < 2n — 7, the Lefschetz fibrations f; and fg; in
Theorems A and B are nonholomorphic, respectively.

We prove Theorems A and B and Corollary 2 in Section 5.2. The Lefschetz
fibrations in Theorems A and B are constructed by applying “lantern sub-
stitutions” (corresponding to the rational blowdown surgeries along spheres
of self-intersection —4) to the monodromy of the fiber sum of Lefschetz fi-
brations on rational or ruled surfaces. Some different examples of Lefschetz
fibrations via this approach are constructed in [9, 3, 5], which motivated us
to carry out this work.

The following is the third main result, whose proof is given in Section 3.

Theorem C. In the notation of Theorem B, we suppose that h > (5n—3)/2.
Then, fori=1,2,...,2n — 2, fq,; is indecomposable.

From Theorems B and C, we obtain Corollaries 3 and 4, which are proved
in Section 5.2.
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Corollary 3. Let h > 9 and n — 1 > 3 (therefore 2h +n — 1 > 21). Then,
up to isomorphism, there are at least 2n — 2 genus-(2h + n — 1) Lefschetz
fibrations such that they are indecomposable and that the total spaces are
minimal and simply connected.

Corollary 4. For g > 28, up to isomorphism, there are infinitely many
genus-g Lefschetz fibrations such that they are indecomposable and that the
total spaces are minimal.

Remark 5. Theorem A is a generalization of the result of [26] mentioned
in Section 1.1. The authors do not know whether Lefschetz fibrations in
Theorem A are indecomposable or not. On the other hand, the fibrations
given in [26], which are mentioned in the introduction, are decomposable.

Finally, we state the following proposition. The proof is given in Section 3.

Proposition 6. Let m,n and h be nonnegative integers satisfying h > n
(therefore h > 0). Then, RimCP? admits a nontrivial genus-(2h +n — 1)
Lefschetz fibration over S? if and only if m = 4n and m,n # 0, where Ry, is
a ruled surface over a Riemann surface ¥y, of genus h.

Remark 7. The condition h > n is sharp. In fact, if A < n, then there
are examples of genus-(2h + n — 1) Lefschetz fibrations on (3, x S?)mCP?
for m # 4n. For example, Xiao [57] gave a genus-2 Lefschetz fibration on
(X9 x S?)#3CP? (i.e., h = n = 1) whose monodromy was given in [17], and
Altunéz [10] constructed a genus-3k Lefschetz fibration on (), x S?)§6CP?
(i.e., h =k <n=2k+1). Counterexamples (to Proposition 6) in the case
h =0 can be found in [2, 16].

Remark 8. The condition that a Lefschetz fibration is nontrivial is essential.
For example, T2 x S? is obviously a (trivial) genus-1 Lefschetz fibration (i.e.,
1=h>n=0and m=0).

Proposition 6 is a generalization of the results in Section 4 of [53] and
Lemma 3.1 in [11]. Theorem C is proved using Proposition 6.

2.4. Outline of the paper. The outline of the paper is as follows. In
Section 3, we prove Proposition 6 and Theorem C. Section 4 presents pre-
liminaries for the proofs of Theorems A and B. In Section 5, the proofs of
Theorem A and Corollaries 2—4 are given. We also prove Theorem B, ex-
cept for the part of 71(Y;) = G. The proof of Theorem B is completed in
Section 6. In Section 7, we prove Propositions 25 and 26 in Section 4.3. In
the last section, we make some remarks on genus-2 Lefschetz fibrations.

3. PROOFS OF PROPOSITION 6 AND THEOREM C

It is well-known that there is a correspondence between certain words in
mapping class groups and Lefschetz fibrations, but we only use 4-manifold
theory in the proofs of Proposition 6 and Theorem C. For this reason, we
first prove Proposition 6 and Theorem C.
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Let ¥;,xS? be the nontrivial S2-bundle over Xj,. Since (X, x S?)4CP? is
diffeomorphic to (X, xS?)HCP?, the proof of Proposition 6 is divided into two
cases: Case 1. R, = X, x S? and m > 0 (Lemma 9); Case 2. Ry, = X5 xS?
and m = 0 (Lemma 11).

Lemma 9. Let m,n and h be nonnegative integers satisfying h > n (there-
fore h > 0). The 4-manifold (X5, x S*)4mCP? admits a nontrivial genus-
(2h +n —1) Lefschetz fibration over S? if and only if m = 4n and m,n # 0.

Proof. The “if” part follows from the genus-(2h +n — 1) Lefschetz fibration
on (2, x §)#4nCP? given in [27] (and its monodromy was given in [30, 58]).

We show the “only if” part. For a nontrivial genus-g Lefschetz fibration
X — $2, the inequality 4(b1(X) —g) +by (X) < 5b3 (X) was given in Lemma
3.2 in [53]. This gives 4(2h — g) + m < 4 for X = (2}, x $?*)#mCP?, and
therefore m < 4n by g =2h +n — 1.

In the rest of the proof, we prove that m > 4n, which is equivalent to
that the 4-manifold (X} x S?)fmCP? does not admit any genus-(2h +n — 1)
Lefschetz fibrations for m < 4n.

Let m < 4n. We denote by F' a regular fiber of a nontrivial genus-g
Lefschetz fibration on (X}, x S?)#mCP2.

Suppose that m > 0, and let e; be the homology class in Ha((X) X
S?)4mCP?; Z) of a complex projective line CP! of the i-th blow-up (i.e., in
the i-th CP? summand), which satisfies e; - e; = —1, 4 = 1,2,...,m. The
composition of the blow-down 7 : (35, x S2)tmCP? — ¥, x S? and the ruling
p: Y, x S? — ¥, gives a smooth map (po7)|p: F — Xp.

Let p and v be the homology classes of the trivial section and a fiber of
the ruling p, respectively. We orient the section and the fiber of p so that
w-v=1(@and p-p=v-v=0). After choosing an orientation on F, we
set [F] = ap+bv + > kie; in Ha((X x S?)#mCP?; Z) for some integers
a,b and k;. Then, the degree d of (pom)|r : F — X is equal to a. Here,
we consider a nonseparating singular fiber Fs. Note that the existence of
such a fiber is guaranteed from Theorem 1.3 in [51] (see also [40, 12]). Let
F, be the normalization of Fy, that is, F; is a Riemann surface obtained by
separating the two sheets which meet at the node of Fs. We denote by g(F)
the genus of Fs, and therefore g(Fs) = g — 1. Since (pon)|p : F — %,
and (pom)|p, : Fs — X5 have the same degree by [F| = [Fs] and the
degree of the normalization map ¢ : Fs — Fj is equal to 1, the composition
(pom)|r, 0q: Fs — ¥ has degree d. Therefore, by Kneser’s inequality [34],
we obtain

Pht(—1)—1}—1=(g—1)—1=g(Fy) — 13 [d|(h—1).
We note that h > 1, since if h = 1, then we obtain n > 1, which contradicts
the assumption h > n. By the assumption h > n, we have 3(h — 1) >
|d|(h — 1), and therefore we conclude that |d| = |a| < 2.

Since g = 2h+n—1>1 (from h > 1 and h > n > 0), by Theorem 10.2.18
in [29], the Lefschetz fibration equips (X x S?)fmCP? with a symplectic
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form w for which F' is a symplectic submanifold (here, we orient F' so that
w|p > 0). Moreover, there exists a compatible almost complex structure
J for which F' is a pseudo-holomorphic submanifold (or an embedded .J-
holomorphic curve). See Section 10.1 in [29] for the definitions and Lemma
3.1 in [40] for the proof. Then, by the same argument as in the proof of
Lemma 4.2 in [40], we have v-[F] = a > 0. This can be proved directly using
Proposition 3.2 in [59] stating that for any compatible (or more generally,
tamed) almost complex structure .J on Ry,#mCP? with m > 0, the homology
class v of a fiber of the ruling R, — X satisfies that v - [C] > 0 for any
embedded J-holomorphic curve C (or more generally, any J-holomorphic
subvariety C) in RytmCP? if h > 1, where Ry, is a ruled surface over 3j,.
By [F]? = 0 (being a fiber of a Lefschetz fibration), we get 2ab—>"1" | kZ =
0. Since the symplectic structure on (X;, x S?)#mCP? is essentially unique
(up to diffeomorphism and symplectic deformation) [41], we can assume
that F' is a symplectic submanifold with respect to the standard symplectic
structure, and hence, satisfies the adjunction formula. This gives

29 — 2 =K - [F] + [F)?

= (—2u+(2h—2)1/+26i> ~(au+by+Zkiei)+0

i=1 i=1

m
=2ah —2a—2b— Y ki,
i=1
where K is the canonical class, which (together with 2ab = >°I", k? and
a > 0) will provide the desired contradiction. If a = 0, then we have
k; = 0 as well, and consequently [F] = bv. By tubing |b| disjoint copies
of a sphere representing v, we see that [F| is represented by an embedded
sphere. This contradicts that ¢ > 0 and that F', which is a symplectic
surface, realizes the minimum genus in its homology class. In the case a = 1,
we get g+n—1=—2b—>"" k; (since 2h+n—1= g); using 2b = > 1" k?
this yields g+n—1-2 = =37, (kl + %)2, providing a contradiction since
g > 0 and m < 4n. For a = 2, the resulting equality is 2n = —2b—>"" | k;,
which (together with 4b = Y7 k?) gives 0 < 4n —m = —> 0 (k; + 1)?%,
which provides another contradiction.

Suppose that m = 0, and hence, ¥; x S? admits a nontrivial genus-g
Lefschetz fibration. We set [F] = ap + bv. Then, by an argument similar
to the case m > 0, we obtain h > 1, 0 < a < 2, 2ab = 0 and 29 — 2 =
2ah — 2a — 2b. Since we have [F] = bv if a = 0, an argument similar to the
case m > 0 shows that a # 0, and hence b = 0. If a = 1, then we get g = h.
By g = 2h+n — 1 and the assumption that A > n > 0, we obtain h = 1 and
n = 0, which contradicts h > 1. In the case a = 2, we get ¢ = 2h — 1. Then,
applying an argument similar to the case m > 0, we have

g(F) —1=(g-1)—1=2h—3>|d|(h—1) = |al(h— 1) = 2(h — 1),
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which is impossible.

From the arguments above, we see that the 4-manifold (X;, x S?)gmCP?
does not admit any genus-(2h + n — 1) Lefschetz fibrations for m < 4n.

Finally, suppose that m = n = 0, and hence, ¥}, x S? admits a nontrivial
genus-(2h — 1) Lefschetz fibration. Then, by an argument similar to the case
m > 0, we have g(Fs)—1=2h—3 > |d|(h—1) = |a](h—1), and hence h > 1
(by h >n =0) and |a|] < 1. An argument similar to the case m > 0 again
shows 0 < a (and therefore a = 0,1), 2ab = 0 and 2g — 2 = 2ah — 2a — 2b.
Moreover, applying an argument similar to the case m = 0, we have a # 0, 1,
a contradiction.

This proves the lemma. ([

Remark 10. The “only if” part of the proof of Lemma 9 is based on that
of Lemma 4.4 in [53] and that of Proposition 4.4 in [40]. The argument of
[53] requires the assumption that Lefschetz fibrations admit a section. In
[14, 11], the proofs without requiring the assumption were given. The proof
of Lemma 9 also does not need the existence of a section.

Lemma 11. Let n and h be nonnegative integers satisfying h > n (therefore
h > 0). Then, the nontrivial S*-bundle X, xS? over ¥, cannot admit a
nontrivial genus-(2h +n — 1) Lefschetz fibration over S?.

Proof. Suppose that ¥, xS? admits a nontrivial genus-g Lefschetz fibration
over S2. We denote by [F] the homology class of a regular fiber F' of this
Lefschetz fibration. Let g and v be the homology classes of the section
with self-intersection number 1 and a fiber of the ruling p : £, xS?* — 3,
repsectively. We orient the section and the fiber of p so that p-v(= p-p) =1
(and v - v = 0). After choosing an orientation on F, we set [F] = ap + bv
for some integers a and b. By an argument similar to the proof of Lemma 9,
we obtain 0 < a < 2. Since [F]? = 0, we get a® + 2ab = a(a + 2b) = 0.
The Lefschetz fibration equips ¥j, xS? with a symplectic form w for which
F is a symplectic submanifold. We orient F' so that w|r > 0. Since the
symplectic structure on ¥ xS? is essentially unique (up to diffeomorphism
and symplectic deformation) [41], we can assume that F' is a symplectic
submanifold with respect to the standard symplectic structure, and thus,
satisfies the adjunction formula. This gives

29 —2=K-[F]+[F]?

=(—2pu+ 2h—1)v)  (aup+bv)+0
= 2ah — 3a — 2b,

where K is the canonical class, which (together with a(a + 2b) = 0) will
provide the desired contradiction. We see that a # 0 by an argument similar
to the case of m < 4n and m # 0 in the proof of Lemma 9. Therefore, we
have a = —2b. If a = 1, then we get 1 = —2b, a contradiction. In the case
of a = 2 (therefore b = —1), we have g = 2h — 1. By an argument similar to
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the case of m < 4n, m = 0 and a = 2 in the proof of Lemma 9, we obtain
a < 1, a contradiction.
This finishes the proof. U

By Lemmas 9 and 11, we obtain Proposition 6.
The following lemma immediately follows from the definition of the fiber
sum operation and the Novikov additivity for the signature.

Lemma 12. Suppose that f : X — S? is a fiber sum of two genus-g Lefschetz
fibrations f1 : X1 — S% and fo : Xo — S%. Then, e(X) = e(X1) + e(X2) +
4(g—1) and o(X) = o(X1) + 0(X2). Therefore,

X(X) = x(X1) + x(X2) + (9= 1), G(X) =ci(X1) + ] (Xz) +8(g — 1).

Proposition 13. We set g = 2h+n—1, where h and n are positive integers
and n > 2. Let f : X — S? be a genus-g Lefschetz fibration with o(X) =
—8n+i and e(X) = 12n — i fori = 1,2,....2n— 2. If h > (5n — 3)/2
(therefore g > 1), then f is indecomposable for any i.

Proof. Let i = 1,2,...,2n — 2. Suppose that f : X — S? is a fiber sum of
two nontrivial genus-¢g Lefschetz fibrations fi : Z; — S? and fo : Zo — S2.
By the assumption and Lemma 12, we have

i=cd(X)=c(Z)+ G (Z2) +8(g - 1).

Since every nontrivial genus-g Lefschetz fibration Y — S? satisfies ¢2(Y) >
4(1 — g) (see Lemma 3.2 in [51]), we set ¢5(Z;) = i; +4(1 — g) for j = 1,2,
where 7; is a nonnegative integer. Therefore, we obtain ¢ = i1 + 7. By
i<2n—-2<29—-2(=2(2h+n—1)—2) and i; > 0, we see that i; < 2g —2
for j = 1,2, and hence
A(Zj) =ij +4(1 - g) <2(1 —g).

This gives that Z; and Z, are rational or ruled surfaces from Theorem 1
in [40]. Therefore, 0(Z;) < 0, except in the case that Z; is diffeomorphic
to CP2. Since c2(W) > 0 for W = CP?,CP*4CP?,S? x S? and g > 1, we
see that Z; is diffeomorphic to Ry, tn;CP? for j = 1,2, where nj and h; are
nonnegative integers and Rp,; is a ruled surface over ¥, .

By Z; = Ry, tn;jCP?, we have e(Z;) = 4 — 4hj + n; and o(Z;) = —n;.
Moreover, by 12n —i =e(X) = e(Z1) +e(Z2) +4(g—1), —8n+i=0(X) =
0(Z1) +0(Z2) and g = 2h +n — 1 (from the assumption and Lemma 12) ,
we get

ny + ng = 8n — 1,
hi+hy=2h=g—n+1.

For simplicity, suppose that h; < hg. Then, we have 2h = g—n+1 =
h1+he < 2ho, hence h < ho and g < 2ho+n—1. Here, note that 2hy < g by
Proposition 4.4 in [40]. Therefore, we set g = 2ho+k—1for k=1,2,...,n,

and Z5(= Ry, #n2CP?) admits a nontrivial genus-g Lefschetz fibration, where
g =2ho+k—1. Since ho > h > (5n—3)/2 > n by n > 2, we have hy > k by
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n > k. Therefore, Proposition 6 gives no = 4k. By hi+hs =2h=g—n+1
and g = 2hy +k — 1, we have g = 2h1 + (2n — k) — 1, and Z1(= Ry, tn,CP?)
admits a nontrivial genus-g Lefschetz fibration, where g = 2h; + (2n—k) —1.
Here, by 2hy < g, h1 + hy = 2h and g = 2h +n — 1, we obtain

2ho < g=2h+n—-1<= 2h;1 +2hes <2h1 +2h+n—-1
<= 4h < 2h1+2h+n —1,

and therefore h — (n — 1)/2 < h;. Moreover, using the assumption h >
(5n—3)/2, we get 2n—1 < hy, and therefore, 2n—k < hy for k =1,2,...,n.
Therefore, we obtain ny = 4(2n — k) by Proposition 6. From the argument
above, we have n; +ng = 4(2n — k) + 4k = 8n, which contradicts n; +ng =
8n — 1.

This finishes the proof. U

We prove Theorem C.

Proof of Theorem C. Let h and n be positive integers, and let n > 2. Using
X(X) = (0(X) + e(X))/4 and 3(X) = 30(X) + 2¢(X), it follows from
Proposition 13 that every genus-(2h 4+ n — 1) Lefschetz fibration f : X — S2
with x(X) = n and ¢?(X) = i is indecomposable for i = 1,2,...,2n — 2 if
h > (5n — 3)/2. Therefore, we see that the Lefschetz fibrations in Theorem
B satisfying the condition h > (5n — 3)/2 are indecomposable, which proves
Theorem C. (]

4. PRELIMINARIES FOR THEOREMS A AND B

4.1. Mapping class groups and positive factorizations. The mapping
class group arguments are used for the construction of Lefschetz fibrations
in Theorems A and B, and 4-manifold theory is used for the minimality of
the Lefschetz fibrations.

Let Eg be the compact oriented surface obtained by removing b disjoint
open disks from X,. The mapping class group of Zg, denoted by Fg, is
the group of isotopy classes of orientation preserving self-diffeomorphisms
of ZZ. We assume that diffeomorphisms and isotopies fix the points of the
boundary. To simplify notation, we write 3, = 22 and I'y = I‘g. Elements
of Fg are called mapping classes. For ¢1 and ¢9 in Fg, the notation ¢q¢9
means that we first apply ¢o and then ¢1. Let t. be the Dehn twist about
a simple closed curve ¢ on Zg. Note that ty) = dt.¢p~! for a mapping class
¢ in Fg and t .ty = tgt. if c is disjoint from a simple closed curve d on Eg.
We say that a mapping class ¢ in Fz is a half twist about c if it satisfies
¢? = t.. If a mapping class ¢ in Fg can be written as a product t,,, - - - ty,ty,
of Dehn twists about simple closed curves vy,...,v, on X7, then the word
ty, -ty ty, 1s called a positive factorization of ¢.

Let us consider a genus-g Lefschetz fibration f : X — S? with n singu-
lar fibers. The monodromy of a genus-g Lefschetz fibration f : X — S?
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comprises a positive factorization of id in I'y as
Ly, **  togte, = id € T'g,

where vy, ..., v, are the vanishing cycles of the singular fibers. Conversely,
we obtain a genus-g Lefschetz fibration over S? with the vanishing cycles
v1,...,0, from the above-mentioned positive factorization in I';. More de-
tails can be found in [44, 29].

Let 6 be the boundary curve of E;. When we consider the genus-g Lef-
schetz fibration f corresponding to a positive factorization t,,, - - - ty,t,, of id
in I'y, a lift of this positive factorization to I‘; as

k
t'u,/1 T tvétvi = té
shows the existence of a (—k)-section of f, where v/ is a simple closed curve

on E; mapped to v; under the inclusion Z; — 24. Conversely, such a positive

factorization of t’g gives a genus-g Lefschetz fibration with a (—k)-section.
The following theorem was given in [33, 44].

Theorem 14 ([33, 44]). Let f; : X; — S? be a genus-g Lefschetz fibration
corresponding to a positive factorization p; of id in I'y for g > 2 (i = 1,2).
Then, fo is isomorphic to fi if and only if ps is obtained from p1 by applying
a finite series of elementary transformations

t'Un e tvz‘+2tvi+1tvitvi—1tvi—2 e tUl A t'Un e tvi+2tvitt;1 (viJrl)t'Ui—lt'Ui—Q o 'tvlv
o toppto gy boto g to_o ooty €3 Ly, o 'tUi+2t’Ui+1ttvi(Ui_1)tvitvi—2 oy,

and simultaneous conjugations

t’l)n PPN t’l)zt'l)l <> t¢(vn) .. t¢(v2)t¢(’l}1)
for any ¢ inT,.

It is well-known that when we apply a cyclic permutation to the posi-
tive factorization of id (resp. t’g) corresponding to a Lefschetz fibration, the
Lefschetz fibration corresponding to the resulting positive factorization of
id (resp. tlg) is the same as the original one. For this reason, if a posi-
tive factorization pg of id in 'y (resp. t§ in Fély) is obtained from a positive
factorization p; of id in I'y (resp. tlg in F;) by applying a finite series of
elementary transformations, simultaneous conjugations and cyclic permuta-
tions, then we write

pP1 = p2.
Finally, we present a fundamental lemma to compute the fundamental

group of the total space of a Lefschetz fibration.

Lemma 15 (cf.[29]). Let f : X — S? be a genus-g Lefschetz fibration with
a section and corresponding to a positive factorization ty, - - -ty,ty, of id in
I'y. Then, the fundamental group m (X) is isomorphic to the quotient of
m1(2X4) by the normal subgroup generated by vy, ..., vy.
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4.2. Minimality. Let X and Y be symplectic 4-manifolds, and let Vx C
X and V3 C Y be embedded symplectic surfaces of genus g > 0 whose
homology classes satisfy [Vx]? + [V&]> = 0. We denote by N'Vx (resp.
NVy) the open disk normal bundle of Vx in X (resp. Vy in Y). For
any orientation-reversing diffeomorphism 1 : ONVx — ONVy between the
boundaries of N'Vy and N'Vy that is lifted from an orientation-preserving
diffeomorphism from Vx to Vy, the symplectic sum (or symplectic fiber sum,)
of X and Y along Vx and Vy is defined as

X#v=1, Y = (X - NVx) Uy (Y — NVy).

It was shown in [28] that there is a natural isotopy class of symplectic struc-
tures on X# v, -y, Y extending the symplectic structures on X — N'Vy and
Y — N'Vy. The minimality of symplectic sums is described by the following
theorem. We will use this theorem to verify that the total spaces of our
Lefschetz fibrations are minimal symplectic 4-manifolds.

Theorem 16 ([56], [21]). In the notation above, let M be the symplectic
sum of X andY along Vx and V3. Then, the following holds.

(i) If X \ Vx or Y \ Vy contains an embedded symplectic sphere of self-
intersection —1, then M is not minimal.

(i) If one of the summands is CP? with Viep2 an embedded sphere of self-
intersection 4 in the class [Vepz] = 2[H] € Hy(CP?;Z) and the other
summand (for definiteness, say X ) has at least 2 disjoint embedded
symplectic spheres E; of self-intersection —1 each meeting Vx posi-
tively and transversely in a single point with [E;] - [Vx| = 1, where
[H] is the homology class of the complex projective line H = {[x : y :
2] € CP? |z =0}, then M = X#v =V o CP? is not minimal.

(iii) If one of the summands (for definiteness, say Y ) is an S*-bundle
over a genus g surface and Vy is a section of this bundle, then M is
minimal if and only if X is minimal.

(iv) In all other cases M is minimal.

As a corollary, Usher showed the following result.

Corollary 17 ([56],[14], ([48], for the case g = 2)). Let f; be a genus-g
Lefschetz fibration for i = 1,2. Then, the total space of a genus-g Lefschetz
fibration obtained by fiber summing f1 and fo is minimal.

Next, we present a technique to get a new Lefschetz fibration from a given
Lefschetz fibration.

Definition 18. Let z,y, z be the interior curves on a subsurface Eé in X7
as in Figure 1, where m is a nonnegative integer, and let a,b,c,d be the
boundary curves of E% as in the figure. Then, the lantern relation

tatptety = totyts
holds in I'f* (see [19, 31]).
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FiGURE 1. The curves a,b,c,d, z,y, z on Eé.

Let t,tytctq be a product of four Dehn twists satisfying the lantern relation
tatptetq = totyt.. 1If there is a genus-g Lefschetz fibration corresponding
to a positive factorization p := t,, -« -ty tatptetats, - - -ty of id, we get a
new genus-g Lefschetz fibration corresponding to a positive factorization

/

p = ty, oty tatytaty, - - -ty of id by the lantern relation t,tptcty = tatyt..
Then, we say that p’ is obtained by applying a lantern substitution to p.

It was shown in [23] that a lantern substitution corresponds to a rational
blowdown along a sphere of self-intersection —4 (see [25] for the definition).

Theorem 19 ([23]). Let p and p’ be positive factorizations of id in T'y, and
let X and X' be the total spaces of Lefschetz fibrations corresponding to p
and p', respectively. If p' is obtained by applying a lantern substitution to p,
then X' is a rational blowdown of X along a sphere of self-intersection —4.
Therefore, o(X') = o(X)+ 1 and e(X') = e(X) — 1.

The following lemma is useful to show that the total spaces of Lefschetz
fibrations in Theorems A and B are minimal.

Lemma 20. In the notation of Theorem 19, if X is minimal, then X' is
also minimal.

Proof. Since we can apply a lantern substitution to p, p contains a sub-
word tqtpt.tq satisfying the lantern relation tqtpt.tq = t,t,t.. By perturbing
the Lefschetz fibration f : X — S?, we can arrange it so that the critical
points corresponding to the vanishing cycles a, b, ¢, d lie on the same singu-
lar fiber. Then, the singular fiber has a component, which is a sphere S of
self-intersection —4. In addition, S can be assumed to be symplectic with
respect to a Gompf-Thurston form (this follows from Corollary 23).

We can view the rational blowdown surgery along a symplectic sphere of
self-intersection —4 as the symplectic sum: we have X' = X HFS=V0 CP?,
where Vpp2 is an embedded sphere of self-intersection 4 in the class [Vpp2] =
2[H] € Ho(CP?;7Z), S is an embedded symplectic sphere of self-intersection
—4 in X and [H] is the homology class of the complex projective line H =
{[x:y: 2] € CP? |z = 0}. The lemma follows from Theorem 16 implying
that X’ is a minimal symplectic 4-manifold. O



16 ANAR AKHMEDOV AND N. MONDEN

We show that not only the above-mentioned sphere S of self-intersection
—4 but also a surface of self-intersection —n which is similarly obtained by
perturbing a Lefschetz fibration f is symplectic with respect to a Gompf-
Thurston form for any integer n > 2. This follows from Lemma 21 below.

Lemma 21. Let n > 2 be an integer. Suppose that g > 2. Let us consider
a genus-g Lefschetz fibration f : X — S? such that f is “not” injective on
the set of critical points and has only two types of singular fibers as follows:

(1) a fiber containing only one singular point,

(2) a fiber containing n singular points such that the corresponding van-
ishing cycles a1, as,...,a, on a regular fiber F are boundary curves
of a subsurface ¥} of genus h with n boundary components in F'.

Then, X admits a symplectic structure with symplectic fibers.

The proof is similar to that of Theorem 10.2.18 in [29] except for the part
corresponding to Exercise 10.2.19 in [29], so we give the following lemma,
which is a generalization of Exercise 10.2.19 in [29].

Lemma 22. In the notation of Lemma 21, there exists a closed 2-form (
on X such that fEC > 0 for any closed surface E contained in a fiber (with
the induced orientation), which can be an entire reqular fiber.

Proof. Let [F] € Hy(X;R) denote the homology class of a regular fiber.
Note that there is an element a € H35(X) with (a, [F]) > 0 since [F] # 0 in
Hy(X;R) by g > 2. Moreover, it follows immediately from Exercise 10.2.19
in [29] that there exists an element a € H2,(X) with (a,[F]) > 0 and
(a,[E]) > 0 for any closed surface E in the regular fibers and the singular
fibers satisfying the condition (1) in Lemma 21.

Suppose that a singular fiber satisfying the condition (2) in Lemma 21
admits a decomposition into (nonempty) m + 1 closed surfaces Fy U Fy U
-+ U Fy,, where Fp is the “core” surface corresponding to Xj. Note that
[Fi,] - [Fi,] = 0 for 0 < i1 < ig since there is no singular point between the
two surfaces corresponding to F;, and F;, from the property of singular fibers
satisfying the condition (2) in Lemma 21. If F{y and F; intersect transversely
at k;(> 0) points for ¢ = 1,2,...,m, then we see that

o [Fo] - [Fo] = —n;
[Fo] - [F] = —[F] - [Fi] = ks

[Fi,] - [Fiy] =0 for 0 < i1 < ig;
[Fo] - [Fo] = S (R - [F] (e n= 7 ko)
¢ 0< (@ [F]) = (a |Ufo B3| ) = Zfolas [F)).
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Then, we obtain the following symmetric matrix A:

—nNn kl /62 k‘3 km

kk =k 0 0 --- 0

ko 0 —ko O --- O
A= ([F]-[Fj]) =

ks 0 0 —kg--- O

km O 0 0 - —ky

Moreover, it is easy to check from the fourth equation above that rank A =
m. Therefore, for any rg,71,...,7, € R satisfying Z;'n:o r;j = 0, we can
choose constants sg, s1,...,5m € R such that (Z;’TL:O SJ[FJ]) [Fk] = 7,
0<k<m.

Here, we set

a =a+)_ s;PD[Fj] € H*(X;R),
=0
where PDI[F}| is the Poincaré dual of [F;] and s; € R. Note that we have

(PD[F;],[S]) = [Fj] - [S] for an oriented surface S. Since a regular fiber is
disjoint from F} (therefore [F}] - [F] = 0), we see that

(d,[F]) = (a,[F]) + <Z s PD[F}], [F]> = (a, [F]) > 0.
§=0

Moreover, we have
(@, [Fk]) = (a, [F]) + <Z s;PD[Fj], [Fk]> = (a, [FR]) + &
j=0

for k = 0,1,...,m. By choosing 7 suitably, we get (a’,[Fg]) > 0 for any
k (for example, we set r, = % — (a,[F}]), and then >} (ry = 0 from
(a,[F]) = X ola [F3]).

Since any closed surface F in the regular fibers and the singular fibers
satisfying the condition (1) in Lemma 21 are disjoint from F} (and therefore
[F;] - [E]=0) for j =0,1,...,m, we obtain

(d',[E]) = (a,[E]) + <Z s PD[F}], [E]> = (a, [E]) > 0.
3=0

By repeating this argument for every singular fiber satisfying the condition
(2) in Lemma 21, we get a cohomology class ¢ with the desired properties.
O
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Since the proof of Lemma 21 is similar to that of Theorem 10.2.18 in [29],
we omit it. From the construction of a symplectic 2-form w; on X (see the
proof of Theorem 10.2.18 in [29]), we obtain the following.

Corollary 23. In the notation of Lemma 21 and with the symplectic struc-
ture given in the same lemma, any closed surfaces contained in any fibers
are symplectic surfaces. In particular, the component corresponding to X}
is a symplectic surface of self-intersection —n, and therefore the sphere S of
self-intersection —4 in the proof of Lemma 20 is symplectic.

Remark 24. From Corollary 23, we see that various surgery operations
corresponding to substitution techniques of monodromies of Lefschetz fi-
brations are symplectic surgery operations (for example, substitutions of a
lantern relation, a star relation and a chain relation corresponding to a ra-
tional blowdown along a sphere of self-intersection —4, a star surgery and a
chain surgery, respectively, and so on).

4.3. Lifts of the hyperelliptic relation and Gurtas’ relation. In this
subsection, we present Propositions 25 and 26 below. These propositions
express that the Lefschetz fibration arising from the hyperelliptic relation,
which appears in [18], and Gurtas’ Lefschetz fibration given in [30] (and see
also [58]) have sections. Using these propositions, we show the existence of
sections of Lefschetz fibrations in the main theorems.

Proposition 25. Let ¢}, ¢}, co,cs,...,con—1 be the simple closed curves on
¥l | asin Figure 2, and let § be the boundary curve of ¥1 | as in the figure.
Then, the product i

7= tegn_1tean—n " 'tc3t62tc’1tc’1/t02t63 “legn_alenna

is the half twist hs about § such that hs(c}) = ¢ and hs(c;) = ¢; for2 <i <
2n — 1. Therefore, the following holds in TL | :

— t5.
C271,—4 6271,—2
FIGURE 2. The curves c;,c},ca,c3,...,con—1 on XL | and
the boundary curve § of X% ;.
Proposition 26. Let ¢}, c,ca,cs3, ..., can—1,Do, D1, D2, ..., Day, be the sim-

ple closed curves on E%anl as in Figure 3, and let § be the boundary curve
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of Z%anl as in the figure. Then, the product

O :=tey, 5 'tc3t62tc’1 tc’l’teztcs ey ot Dot D1 tDy Dy tean

is the half twist hj about 0 such that his(c}) = ¢ and h(c;) = ¢; for 2 <i <
2n — 1 and hly(D;) = Dj for 0 < j < 2h. Therefore, the following holds in

1 .
F2h—|—n—1 :

52

Do D- D4 l)zhczn_1

FIGURE 3. The curves ¢, cf,ca,¢3,...,con—1,¢5, 1,¢h, 1,9,

Do, D1, Do, ..., Do on E§h+n_1 and the boundary curve § of
1

E2h-|—n—1'

It is easily seen that the relations 7% = t5 and 9 = ts in Propositions 25
and 26 are lifts of the hyperelliptic relation n? = id and Gurtas’ relation 2 =
id (defined below), respectively. We postpone the proofs of Propositions 25
and 26 until Section 7. The propositions are proved by using the Alexander
method, that is, one first fixes a finite set of curves whose complement is a
disk on the surface and shows that the images of each curve under the half
twist hs and 77 (resp. hjs and 6) are isotopic.

Let 1 be the positive factorization of the hyperelliptic involution, which
is the image of % under the map ' _; — T',_1 induced by the inclusion
¥l — ¥,_1. Let Y(n,0) be the total space of the genus-(n — 1) Lefschetz
fibration corresponding to the positive factorization 72 of id in I',,_;. We see
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that e(Y'(n,0)) = 4 + 4n since this fibration has 8n — 4 singular fibers and
that (Y (n,0)) = —4n, using Endo’s signature formula [22]. It is well-known
that Y'(n,0) is diffeomorphic to CP2(4n + 1)CP?.

Let 6 be Gurtas’ positive factorization of a certain involution ¢ in I'ap 4,1
given in [30], which is the image of # under the map F%h in_1 — LPongn1 in-
duced by the inclusion E%lwn—l — Yop+n—1. For the rest of this subsection,
we give some remarks on ¢ and ¢. In [30], Gurtas showed that 6 is a positive
factorization of ¢ using the Alexander method, and hence #? is a positive fac-
torization of id in I'yp4,—1. This fact was also verified in [58], up to Hurwitz
equivalence. Let Y (n,h) denote the total space of the Lefschetz fibration
corresponding to the positive factorization 62 of id in I'gpip_1. It follows
that the 4-manifold Y (n, h) has a genus-(2h+n — 1) Lefschetz fibration over
S? with 4h + 8n — 4 singular fibers, all of which are induced by nonseparat-
ing vanishing cycles. Therefore, the Euler characteristic of the symplectic
4-manifold Y (n, h) is equal to e(Y (n, h)) = 4—4(2h+n—1)+ (4h+8n—4) =
4 — 4h + 4n. The signature o(Y (n, h)) was calculated to be —4n in [58].

We can also describe the Lefschetz fibration f on Y (n, h) corresponding to
the positive factorization 02 of id from a different viewpoint as follows. Let us
take a double branched cover of ¥}, x S? along the union of two disjoint copies
of ¥}, x {pt} and 2n disjoint copies of {pt} x S2. The deck transformation
of the double cover of ¥J;, branched over 2n points is the involution ¢. Then,
we obtain the branched cover with 4n singular points corresponding to the
number of the intersection points of the two horizontal genus h surfaces
and the 2n vertical spheres in the branch set. By desingularizing these 4n
singular points, we get (X5, x S?)#4nCP2. Note that by projecting onto the
S? factor, we obtain a horizontal fibration f’ : (35 x S?)§4nCP? — S? whose
generic fiber is the double cover of ¥, branched over 2n points. Thus, the
genus of a generic fiber of f’ is equal to n + 2h — 1. Moreover, each pair of
singular fibers of f’, arising from two disjoint copies of ¥; x {pt} in the branch
set of the double cover of ¥, xS?, can be perturbed into 4n+2h—2 Lefschetz
type singular fibers, which is equivalent to the positive factorization 6 of the
involution ¢, as shown in the proof of [58]. As an immediate corollary, the 4-
manifold Y (n, k) is in fact diffeomorphic to (X5 x $?)#4nCP?, and therefore
we obtain the Lefschetz fibration f.

4.4. A mapping class ¢ and a lantern relation. We give a lantern
relation and a mapping class ¢ in I'} | (resp. '}, +n_1), Which are used to
construct Lefschetz fibrations in Theorems A and B.

Suppose that n—1 > 3. Let v}, v{, w, z,y, z be the simple closed curves on
¥,y (resp. X3, ;) asin Figure 4, and let § be the boundary curve of £, _;
(resp. E%Hn_l) as in the figure. The simple closed curves ¢}, cf,ca, ..., c12
as in Figure 4 are the same as those in Figure 2 (resp. Figure 3). Then, we

have the following lantern relation

ter testestuy = tatyts.
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FIGURE 4. The curves o},v],w,z,y,2 on Xl | (resp.

¥ 3hin_1) and the boundary curve § of X} _; (resp. 3, . ;).

Let ¢ be a mapping class in 'L | such that

o(cy) = vy, o(cy) =y, P(c2) = cs, ¢(c3) = c5,
P(ca) = ca, P(cs5) = c3, ¢(cg) = ca, P(cr) = w,
P(ci) = ¢

fori =8,9,...,2n—1. If we consider ¢ as a mapping class in F%h-{—n—l’ then
we add the condition

¢(Dj;) = D,

for j =0,1,...,2h, where D; are the simple closed curves as in Figure 3.

4.5. Elementary lemmas. We construct some relations by applying el-
ementary transformations. These relations will be used to construct new
relations obtained by lantern substitutions in Section 5.2. We recall that
for two positive factorizations p; and ps, we write p1 = p2 when po is ob-
tained from p; by applying a finite series of elementary transformations,
simultaneous conjugations and cyclic permutations (see Section 4.1).

Let v1, ..., 7 be a sequence of simple closed curves on an oriented surface
such that ~; and +; are disjoint if [i — j| > 2 and ~; intersects ;41 at exactly
one point. We recall the following relations:

t t

vi by = ttwi('}’i-&-l) “lyio

by by = by - ttil (Vit1)
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Note that for |i — j| > 1, we have

bys » by = by - Ly
Using the braid relation t.,t,,,,t,, = t,, ., t,t4,,,, We obtain
(1)
(2) vmbymir bty by Sy byt by by
form<i<k-1.

t’th’Yk 1 't’Ym+1t’Ym ’ t%‘+1 = t%‘ ’ t'Yk:t’kal T t’ym+1t'yma
t

Lemma 27. For 2 < k, we have the following relations:

k
() Toy v+ byglyy oy o lygtyy = ttw ()’ Ty () (2) " By
k—1
(b) toyy t’YZt’Yl “lyy gty = ttwk_l("/k) a 'ttw (va)ttn (h2) "ty s

)
— 1k
(C) twtva vty byl oty = t'n - (72)tt§21(73) . 'ttrykl,l(’Yk)’
) ty

— 4k 1
(d by "ty by S8 ) (72)t ' 'tt;kl_l(yk)'
Proof. Below we denote the arrangement using the relation (i) by ﬂ) The

proof will be given by induction on k. Suppose that k = 2. Then, we have

(1 _
byt~ tyy — oy < bty =ty

t;gl (73) ’

2
Y2) t71‘
Hence, the conclusion of (a) holds for k = 2.
Let us assume inductively that the relation (a) holds for £ = i. Hence,

we have

by bty by oyt St () ey (), () B
Then,

1

Yi+1 "~ 't’Y2t’Yl ’ t%‘+1 o 't’Y3t — t t’Yz 10 t'Y?t’Yl ) t%‘+1t%‘ e t'YQt'Yl
Sy typg tyy bty e Epty

= tt% (ig1) “ by tyicg bty Tty
— %
= o, (i) U (00) P () Py (12) T P

This proves part (a). The proofs of (b), (c) and (d) are similar, and therefore
omitted. O

5. PROOFS OF THEOREMS A AND B

5.1. Hurwitz equivalent relations. The purpose of this section is to
prove Proposition 28 below. The Lefschetz fibrations corresponding to the
relations in Proposition 28 are used to construct Lefschetz fibrations in The-
orems A and B.

Let us consider the curves t (c2), t_,l( 2), te;(Civ1) and ¢t (cipr) on B

(resp. ZZthn ) for2 <i < 2n 2, and let & be the boundary curve of L,
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(resp. X3, 1) These curves are shown in Figure 5. For abbreviation, we
set

U1 = tCQn—ltCQn—Q o tC3t02tc’1tc’1’t02tC3 T tCQn—QtCQn—17
QQh = tDOtDltDQ e tD2h7

D=t 5ean—1) " tregleottey (co) bty (c2):

/.
D=t (can 1) treg(ea) " L2, (cs»tt'ﬁg—l(tcfl (c2))?
D’ .= oy o(can—1) " Tteg(ca) * tt%g(tc2(03))tt§§(tcfl (c2))
E:=1t-

o (02)75%_21(C:J,)ttc}1 (ca) """ ttc_21n,2(02n71)'

tc’l(cz) ‘ 7

tczn—.;(CZn—Z‘;) t;;l,4<C2TL—3)

tczrh;s(c27L—2) tzzlnf;;(c2n—2)

tczn,—z(czn— 1) thn,z(cz“_ 1)

FIGURE 5. The curves tu(c2), t;l(CQ), te;(ciy1) and
1

to(ciy1) on X}y (resp. X3, ;) and the boundary curve

6 of Xy (resp. £3, 1)

n—1

Proposition 28. The following relation holds in T'L_:

ts=(Upo1)? = thtQ{Z_ltd; -E-D",

C3 "¢
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and the following relation holds in I’%anl:
=2
ts =0 = Wy 1 torteytegtey, - (Q2h)2-tCQn_Q---tcgtCth/{
— 2n—1,2n—2 2
= tcg tC’:L ten E-(Qop)* - D

Note that the equality t5 = (¥,,_1)? (resp. t5 = ?2) in Proposition 28
follows from Proposition 25 (resp. 26) and 77 = ¥,,_1. Moreover, by an ar-
gument similar to the proof of Proposition 6.5 in [36] and using by by =

=2
tor-to, we see that 07 = Wy terteytey - tey, o (Q2n)? teyy oo testesten
We can also prove this fact using Proposition 26 (and therefore T - 6 =
0 - T), Con—1 = Q(an_l) = TQth02n71(CQn_1) = TQgh(an_l) (and there-
fore TQop « tey, | = tey, o - T2p) and the relations (3)—(5) below, where
T =tey, o tegtestotenteytey - bey, o Proposition 28 immediately follows
from Lemmas 29 and 30. Below we denote the arrangement using cyclic

. c.p.

permutations by —.

Lemma 29. The following holds in T} ;:
(U,_1)2=D- tﬁ,f e -ti,?_l -E,
and the following holds in F%hﬂhl.’
Uyt terteytes = tegy o (Q2n)? - teg s -+ tegterter
=D. tg,?_l e -ti{“Q “E - (Qap)?.
Proof. Note that t -t =tu -t by ¢; N = 0. From Figures 6 and 7,

we have ¥,,_1(c}) = ¢/ and ¥,,_1(¢;) = ¢; for 2 < i < 2n — 2. Similarly, we
obtain ¥,,_1(c]) = ¢|. This gives

(3) \Ijnfl : tc/1 = tclll : \Ilnf].v
(4) \Ij’n—l : tc’ll = tcll : \Iln—].v
(5) \Ijn—l : tci = tci : \I’n—l

for 2 <4< 2n—2.

FIGURE 6.
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tc2i—1
1O T
tcz'i
~o <«
tczi
— ~~
O~
t02i+1
o I o
FIGURE 7.

First, we show the former relation in Lemma 29. From the relations
above, we have

(W 1)? = W1 teyy g o testerterte, ey s

= ey, ytestel - W1 - tertey  tey, s

= toy,_; **tester ten,_y o testel tertes  ten, s tertes s,
By applying Lemma 27 (a) and (d) to the former and the latter parts of this
word, respectively, we obtain

begpoy 'tcztc/l “legpy - 'tCth’l ’ tC/IItCZ “leg oy tc’1t62 “rteg,

1

1

— 2n 2n—1
= tt02n72(02n71) T ttc2 (cs)ttcl1 (e2) * tc’l ) tc’l’ ) tc’l by toor o(C2n—1)

/
€1

Hen) e ea) T
=D 2ty -t E,

which gives the former relation in Lemma 29.
Next, we give the proof of the latter relation in Lemma 29. An argument
similar to the former relation in Lemma 29 gives

Wy tc’l’t02 oty o (Q2h)2 “tegn_o 't02tc’1’
g (PR tCth’l’ W - tc’l’tCQ “rteg, g (QQh)2

(6) =teg, o tCth’l W1 tc’lt02 ey, o (QQh)z'
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Here, we consider te,, ,  tete W1ty le, = ley, o in the relation (6),
which becomes

t

Cap—2 "7 tc2tc’1 “tegny e 7502750’1750’1’7562 ey tc’ltCQ R

By applying Lemma 27 (b) and (d) to the former and the latter parts of this
word, respectively, we obtain

tCQn—2 e tCth’l “teg,y tc2tc’1tc’1’t02 “legy g tc’ltCQ T tCQn—Q
_ 2n—1 2n—2
= e,y (can) ey (ea)bty (e2) "o ley

-t t t

tog o (c2n—1)

=D.-Z 1y, 2R
Cl Cl cl b]

t;,ll(cg) toy(c3)
and the lemma follows. U
Lemma 30. The following holds in I'apyp—1:
D- tg,?_ltc/l,ti,?_Q E- ()% = tﬁg—lt?—%d{ B (Qop)? - DY,

and the following holds in I'yy_1:

D'tzn't//'t2n_1'E:th't2n_1~t//-E-D”

¢ ey e — e e 51 :

Proof. Tt follows easily from Figure 8 that tt,., (CS)ttcfl (e2)(€1) = c3 , and there-
fore ttc2(c3)ttc,1 (c2) te) =teg by, (03)ttc/1 (co)- Therefore, without applying cyclic

FIiGURE 8.

permutations, we obtain

2n—1 2n—1
Dt =ty (ean1) " by (en)biey ()bt (e2) " By

_ 2n—1

=t (cano1) " ey (es) bty (ca) tes roy (ea)te (c2)

_ 2n—1
= ttCQn—z(CQn—l) o .tt64(05)tt63 (ca) tt%gil(tcz(03))tt3§71(tc’1 (c2)) tc3

— ]D)/ . t2n71
C3 °
Similarly, we obtain
2n — my! 42
D * tC{L = D * tC;L
without applying cyclic permutations. Using this, we have

D- ti,?_ltc/llti,ln_2 E-(Qop)? =D - tﬁ;“ltcgtj?* ‘B (Q9p)?

c.p. _ —
—5 12 1tc;ft§§‘ 2. E- (Qo)- D,
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and similarly
D- tg,f‘tdl/t?,:‘—l E=D". tzgtcllftﬁ,f—l B2 tggtdl,ti,?—l ‘E-D".
By ty - ter = ten - e, we obtain the required formula. O
5.2. Proofs of Theorems A and B. We now prove Theorem A.

Proof of Theorem A. First, we construct a genus-(n — 1) Lefschetz fibration
fi + X; — S%. From the former relation of Proposition 28, we have the
following lift in Prlz—l of the positive factorization n? of id in I',,_; defined in
Section 4.3:

_ 42n42n—1 1"
(7) ty =ttty - E- D,
Since ¢(c)) = vy, ¢(cf) = v{ and ¢(c3) = ¢5 (see Section 4.4), by applying
simultaneous conjugations by ¢ to the equation (7), we get

(8) ts = tor tor~ tuy - o(E) - (D).

Here, we set ¢(F) = ty(4,) " tg(a,) for a product F = t,, ---tq, of Dehn
twists. Moreover, by applying cyclic permutations to the equation (7) we
have

(9) ts = E- D"t 2 o,

€3 "¢y

Since ¢}, ¢/, e3, ¢5, v} are disjoint from each other, by combining the equations
(8), (9), we obtain

2 2n,2n—1 2n42n—1
ts =E D"t P b et s(E) - (D)

c3 ¢ c5 v
(10) =E- D//(tc’l t03tc5tv’1)Qniltc’l’tc‘%tcstv’l’ ) d)(E) ) ¢(]D>//)'
From the relation (10) and the lantern relation b beylestyy = talytz, we
obtain

(11) 1§ =E-D"(tatyts) (e, testestey) "™ teptestestuy - o(E) - (D)

for 0 < i < 2n—1. By letting f; : X; — S? be the genus-g Lefschetz fibration
corresponding to the positive factorization (11) of 2, we see that f; admits
a (—2)-section for 0 < i < 2n — 1.

Second, we show that X; is minimal for 0 < i < 2n — 1. We see that X
is obtained by fiber summing two copies of Y'(n,0) in Section 4.3 since both
(8) and (9) are lifts of the positive factorization n? of id in I',,_1. Therefore,
the minimality of Xg follows from Corollary 17. For 1 <i < 2n —1, X; was
obtained from X via i-times lantern substitutions (i.e., by i-times rational
blowdown surgeries along spheres of self-intersection —4). By Lemma 20,
we see that X; is minimal for any .

Third, we compute x(X;) and ¢3(X;) for 0 < i < 2n— 1. By Theorem 14,
Proposition 28 and Section 4.3, Y (n, 0) is diffeomorphic to CP?4(4n+ 1)CP2.
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Since X; is obtained by i-times rational blowdown along spheres of self-
intersection —4 to the fiber sum fy : Xg — S? of two copies of the genus-
(n—1) Lefschetz fibration Y (n,0) — S? by ¢, by Lemma 12 and Theorem 19,
we have

o(X;) =20(Y(n,0)) +i=—8n+1,
e(X;) = 2e(Y(n,0)) + 4{(n — 1) — 1} — i = 12n — 4,
and hence, we obtain
X(X;) =mn, A(X;) = i.

Finally, we compute the fundamental group m(X;) of X; for 0 < i <
2n — 1. Let us consider the genus-(n — 1) Lefschetz fibration f’: X’ — S2
corresponding to the positive factorization (7) of ¢5 in F711—1~ Since this fibra-
tion is isomorphic to the Lefschetz fibration f : Y (n,0) — S? by Theorem 14
and Proposition 28, we have m1(X’) = 71 (Y (n,0)) = 1 by Lemma 15. Here,
it is easy to check that the normal subgroup generated by the vanishing
cycles of f; contains that of f' fori =0,1,2,...,2n—1. This and Lemma 15
give m(X;) =1fori=1,2,...,2n — 1.

This is the desired conclusion. O

Remark 31. We can apply one more lantern substitution to the resulting
relation obtained by applying (2n — 1)-times lantern substitutions to the
relation (11) as follows. It is easy to see that ¢/ and v} correspond to ¢} and
vy under the inclusion X! | — 3, _;, respectively. Consequently, we get a
genus-(n — 1) Lefschetz fibration fa, : X, — S? (however, the existence of
a section of fo, is not guaranteed).

We next prove Theorem B.

Proof of Theorem B. For a given finitely presented group G, we give a map-
ping class pg in '3, defined in Section 6.2 such that pg(v}) = v},
pa(vy) = vf and pg(cs) = cs.

We construct a genus-(2h+n— 1) Lefschetz fibration fg; : ¥; — S?. From
Propositions 26 and 28, we have the following lift in F%h 4n_1 Of Gurtas’
relation in I'opqp_1:

2n—1,2n—2 2
(12) ts =tey 'ty “tey - E- () - D,
Moreover, by applying cyclic permutations to this equation, we have
_ 2 /. 42n—1,2n—2
ts=E- (Qgh) -D"- tcg tc’? tcll/.
From ¢(c)) = v}, ¢(cf) = v} and ¢(c3) = ¢5 (see Section 4.4), we get the

following lift of Gurtas’ relation by applying simultaneous conjugations by
pa¢ to the equation (12):

(13) ts = tor oty 5o (B) - (pao(Q20))? - oo (D),
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where

pao(2n) = tpio(Do)tpco(D1) *~ toaé(Dan):
pao(E) = Foaorz! e boaor (e ocotz! @) " Toaot), Ly (ernmn)
(D) = togotey (ean1) " Logtes (cs)tpadtes (ca)
ocordy T (tey (ea) Lpadtdy 1 (e2)
Here, since ¢}, ¢/, 3, ¢5,v] are disjoint from each other, we have
t??‘lti?‘%cll/tgg‘1tf};‘2tv,{ = (tertegtestor )" Ptentogtostyr.
Therefore, by combining the equations (12) and (13), we obtain
t5 =E(Qon)*D (ter testeste, )" tentestestor + pas(B)(pas(Qon))? pes (D).

From this relation and the lantern relation ter teslesty, = latyls, we obtain
tg :E(Q2h)2D/(txtytz)i(tc’lt%t%tv’l)2n727i

(14) tertestestor - peo (B) (peo(Q2n))?pes (D)

for 0 < i < 2n — 2. By letting fg; : ¥; — S? be the genus-g Lefschetz
fibration corresponding to the positive factorization (14) of ¢ in T'}, 1>
we see that fg; admits a (—2)-section for 0 <1i < 2n — 2.

By Theorem 14, Proposition 28 and Section 4.3, Y (n, h) is diffeomorphic
to (35, x S?)44nCP2. We see that fg o is obtained by fiber summing two
copies of the genus-(2h + n — 1) Lefschetz fibration Y (n,h) — S? since
both (12) and (13) are lifts of Gurtas’ relation. Moreover, the positive
factorization corresponding to fg,; is obtained by applying i-times lantern
substitutions to the positive factorization corresponding to fg,o. Therefore,
the proofs of x(Y;) = n, c2(Y;) = i and the minimality of Y; are similar to
the proof of Theorem A, and so we omit them.

If h > N+/;—1, then Theorem B follows from Proposition 34 in Section 6
that m1(Y;) =2 G for i = 0,1,...,2n — 2. We postpone the proof until
Section 6.

This is the desired conclusion. [l

Remark 32. It is easy to construct a mapping class p in Fglr such that
p(v]) = v, p(vf) =} and p(cs) = c5, for example, p = id. Therefore, from
the proof of Theorem B, we see that there is a genus-(2h + n — 1) Lefschetz
fibration on a minimal symplectic 4-manifold with (x,c?) = (n,i) for 0 <
1 < 2n — 2, where h and n are integers in Theorem B. From Proposition 13,
there are 2n — 2 indecomposable genus-(2h + n — 1) Lefschetz fibrations
with minimal total spaces. Hence, we obtain Theorem C except that the
fundamental group 7 (Y;) is isomorphic to G.

Remark 33. We can apply one more lantern substitution to the relation
(14) in “I'gp4n—1", but the fibration corresponding to the resulting positive
factorization does not guarantee the existence of a section. Therefore, we do
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not consider such a fibration since it is difficult to determine the fundamental
group.

Proof of Corollary 2. Since for 1 <14 < 2n — 7, the total spaces of Lefschetz
fibrations in Theorems A and B do not satisfy the Noether inequality, they

cannot admit any complex structure with either orientation. Therefore, the
fibrations are nonholomorphic. ([

Proof of Corollary 3. In the notation of Theorem B, if G = 1, then N =0
and k = 0 (therefore £;, = 1). This gives h > 0. Notice that k = 0 satisfies
the condition 2n — 8 > k in Theorem B for n — 1 > 3. Moreover, we
have h > 9 from the inequality h > (5n — 3)/2 in Theorem C. This proves
Corollary 3. O

Proof of Corollary 4. In the notation of Theorem B, let us consider G =
(x1 | M) =2 Zps. Then, we have N = 1, k = 1 and ¢ = 1, and therefore
h > 1in Theorem B. If n—1 > 4, then k£ = 1 satisfies the condition 2n —8 >
k. Therefore, by Theorem B, there exists a genus-g Lefschetz fibration on
Y; such that Y; is minimal and 71(Y;) = Zys for g = 2h +n —1 > 2h + 4.
Moreover, we have h > 12 from the inequality h > (5n — 3)/2 in Theorem
C. This proves Corollary 4. O

6. COMPUTATION OF FUNDAMENTAL GROUPS

In this section, we prove Proposition 34 stating that m(Y;) is isomorphic
to G, which was postponed in the proof of Theorem B in Section 5.2.

Proposition 34. Let fg; : Y; — S? be the genus-(2h+n—1) Lefschetz fibra-
tion corresponding to the following positive factorization of tg in F%,anl:

t5 = terB(Qon) D tey (tatytz) (te testesto ) 2
testor pad(B) (pao(R2n))pes (D),
where
Qop :=tpytpitp, - -ty
D=ty y(ecan-1) " Treg(en) " L2ty () e )

E .= ttfl )t t._

el el e NG,y (ean)

pad(2h) = tpo(Do)lpao(D1) *** Load(Dan):

pas(B) = tpcwgll (e2)tpadtzt(ca)bpaotat(cr) Yoot _y(can1)’

pcs(D) = Lo tegy_o(can—1) """ Lpatey (cs)bpdtey (ca)
ooty ey () TpaotZy 1 (e2)"

Then, m1(Y;) = G for 0 <i<2n—2.
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6.1. The fundamental group of 9,1, 1. In this subsection, we give a
presentation of the fundamental group of X9, 4, 1. This presentation is used
to compute the fundamental group of Y; in Proposition 34.

Fix a base point e € Y911, and let m(X2p1,—1) be the fundamental
group of Xop,4,,—1 at the base point . For a simple closed curve c on Xop, 451,
we identify ¢ with an element of 71 (Xop4,—1) by choosing a path from e to
some point on c. We use the same symbol for a loop based at e and its based
homotopy class. Similarly, we use the same symbol for a diffeomorphism and
its isotopy class, or a simple closed curve and its isotopy class. A simple
loop based at e and a simple closed curve will even be denoted by the same
symbol. It will cause no confusion as it will be clear from the context which
one we mean. For a and b in 71 (Xop4n—1), the notation ab means that we
first traverse a and then b.

Let ay,b1,...,a0n,b2n, 1, 51, - - - s On—1, Bn—1, 1, - - - » S2han_1 be the “sim-
ple closed curves” on Yop1p,—1 as shown in Figure 9, and we use the same
symbols for the “loops” obtained from the simple closed curves by choosing
the straight path from e as shown in the figure. Then, the fundamental
group m1(Xop+n—1) has the following presentation:

71 (X2nyn—1) = (a1,b1,. .., a2, ban, 21, 81, ., -1, Bn—1 | S2p4n—1 = 1).
Note that
Sp = b,;l e bl_l(alblal_l) e (akbkalzl)
for k < 2h and that
Sontk = B 4 Butisan(an—1Bn—10,1) -+ (an—gBn—rat})

for1<k<n-1.

a2)1

gzh 92/1 Sah+1 Sohin-2  S2h+n-1

FIGURE 9. The base point e in Xop,1,_1, the simple closed
curves a;, b;, aj, Bj, Sk, Sontk 0N Xopyn—1 and the loops
i, by, o, B, Sk, Soptk in Yopipn—1 based at e obtained from
the simple closed curves.

For simplicity of notation, we use the same symbols Dy, D1, ..., Doy and
€9,C3,...,Con—1 for the images in Yopy, 1 of the simple closed curves on
2§h+n_1 as in Figure 3 under the inclusion E%,H_n_l — Yoptn—1- Note that
the images of ¢] and ¢] as in Figure 3 under the inclusion are isotopic.
Let ¢; be the image of ¢] under the inclusion. Recall that for a simple
closed curve ¢ on Yopy,—1, we identify ¢ with an element of w1 (Xop4n—1)
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by choosing a path from the base point e to some point on ¢. Then, it is
immediate from Figure 10 that, up to conjugation, the following equalities
hold in 71 (Xop4pn—1):

(15) Do = (bibg---bap)e, 'y
(16) Dag—1 = (arbibir - - boni1—kSant1—kAont1—k)0, 1y for 1<k < b
(17)  Dag = (arbiy1bpr2 - - bon—kson—raonp1—k)a, y for 1 <k < h—1;
(18)  Dap, = (ansnant1)ey, q;

(19) C1 = Qi;

(20) ey =0 for 1<1<n—1;

(21)  co1 = alalj_ll for 2<1<n—-2;

(22)

Con—1 = ShOn—1.

Ficure 10. The simple closed curves Dy, D1,..., Do,
C1,C2y...,C2n—1 ON Xopipn—1 and the base point e.

6.2. A mapping class pg. In this subsection, we define a mapping class
pG in F%h +n_1 Such that pg¢ is used in Proposition 34, where ¢ is defined in
Section 4.4. In order to define p¢g, we present Proposition 35 below proved
in [36], which is based on the works [38, 6].

Let h' be a positive integer with h' < h. Let ay,by,...,ap,bap, a1,
Biy-- s Qn_1,Pn—1 (resp. a1,b1,...,ap,bp) be the “simple closed curves”
on Z%h+n—1 (resp. X},) as shown in Figure 11, and we use the same sym-
bols for the “loops” obtained from the simple closed curves by choosing the
straight path from e as shown in the figure. The based homotopy classes

of the loops are generators of the fundamental group mi(33,,, ;) (resp.
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m1(5},)) of B3, (resp. X},) at the base point e. The loops in £3,
(resp. Eh,) are contained in gp1,—1 (resp. Xp/), which is obtained by
gluing a disk to the boundary component of E%h +n (Tesp. ¥i).

Clzh Oén 1
1 b?h Bn -1 2 1

a1 ap’

bl bh'

FIGURE 11. The simple closed curves a;,b;,;,3; on
Z%thn . (resp. a;,b; on X},) and the loops a;,b;, a;, B in
S n_1 (vesp. a;, b in X},) based at e.

For simplicity of exposition, we assume that the nonnegative integer N
(resp. N + ¢, — 1) that appears in Proposition 35 satisfies N < h (resp.
N+, —1<h).

Proposition 35 (Proposition 7.1 in [36]). Let Fy be a free subgroup of
m1(XN) of rank N generated by the generators ay,...,an, and let ri,..., 1)
be arbitrary k elements in Fy represented as words in a1, ...,an. We write
U, = maxy<i<{l(r;)}, where £(r;) is the syllable length of r;. Then, there are
simple loops Ry, ..., Ry in ¥ni¢,—1 based at e with the following properties:
For each 1 <1 <k,
(i) Ry is freely homotopic to a simple closed curve which intersects
aN+e,—1 transversely at exactly one point, and
(ii) For the homomorphism A : w1 (X n1e,—1) = T1(EnN) defined by A(aj) =
aj for1 <j <N and X(c) =1 forc € {ant1,an+2,.-.,aN+0,—1,01,
ba,...,bnye,—1}, we have AN(R;) = 14, which is really an equality.

Using Proposition 35, we can obtain the following proposition.

Proposition 36. In the notation of Proposition 35, suppose that h > N +
b, —1 and 2n — 8 > k. Let w be the simple closed curve on E%h—i—n—l as in
Figure 4. Then, there are simple loops Ry, Ra,..., Ry in Z%anl based at
e with the following properties (see Figure 12):
(i) Ri,..., Ry are disjoint from Sopip_a4,
(ii) Ry intersects 156_21 (w) transversely at exactly one point and Ra, ..., Ry
do not intersect t.} (w),
(iii) Rg intersectsty,'(cg) transversely at exactly one point and Rs, ..., Ry
do not intersect t;*(cg),
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(iv) For each 3 < i < k, R; intersects tc_ii5 (cive) transversely at exactly
one point and Riy1, Rivo, ..., Ry are disjoint from tC_i-li—S (cite), and

(v) Let X : m(23,,,,_1) — m(Xn) be the homomorphism defined by
Maj) = a; for1 < j < N and Xc) =1 forc € {ant1, an+2,. .., an,
b1, ba,... by, a1,B1,...,an—1,Bn-1}. Then, for each 1 < i <k, we
have A\(R;) = r;, which is really an equality.

Ci e
t(_:'ll(c2) tgzl(czs)
t;;(64)
teX(co) fe(co)
A S2h+n-a t;‘}(c7)/ A S2h+n-4
tZ:(CS) R
t;xl(CQ)
tzs)l(clo) R4 4
. tc_jJ(Cu)

tgzlnf(,(CQn—S) 1M

L AT s
tcznf‘r’(02n_4) R Ron-o il
3 21n-11 M
\ -1
\ tczn—4(62n—3) — |
br v '
1 ; Copy-
th,,,_s(an_Q) AL 2n-3 R2n—8 -
B Rzn—g

2h 2h

t;zln72(02n7 1)

FIGURE 12. Simple loops Ry,..., Ry in E%h-ﬁ-n—l based at e.



GEOGRAPHY OF LEFSCHETZ FIBRATIONS AND THEIR INDECOMPOSABILITY 35

Proof. Let us consider the simple loops Ry,..., Ry in ¥ x4, 1 constructed
in Proposition 35. By removing an open disk from ¥y, 1 near the simple

closed curve an4¢,—1 and disjoint from all R;, we obtain E}V -1 (cf. Fig-
ure 13 (a)). Moreover, we embed E}VHFl into X3,,,,,_; in such a way that
foreach 1 <t < N 4 /£ — 1, the loops a¢, b; in E%V‘ka*l correspond to the
loops ay, by in E%h-i—n—l (cf. Figure 13 (b)). Then, we can modify Ry,..., Rk
so that each R; (i = 1,...,k) satisfies the properties of Proposition 36 by
replacing R; with a simple representative of Rop—1(Bn—1- - Bptafpt3) if
i = 2p—1, and Rgpay,, 5 if i = 2p, where ¢ = £1 (cf. Figure 12). This
finishes the proof. O

FIGURE 13. Modified loops Ry, ..., Ry in 33, based at e.

The first property in Proposition 36 is used to define a mapping class pg
in F%h 4n_1 in the next paragraph. The second, third and fourth properties
are used in the proof of Lemma 39 in the next subsection. Together with
this, we use the fifth property in the proof of Proposition 34.

We define the mapping class pg in F%h-l—n—l to be

PG = IR tRy * " tRLan 1 tanys " tan by Ty o " oy -

From the first property of R; for 1 < i < k, v| = ¢(c}), v{ = ¢(c]) and
c5 = ¢(c3) are disjoint from Ry, Ra, ..., Rg. Therefore, we see that

pa(vy) = i, pa(vy) = vf and palcs) = cs,



36 ANAR AKHMEDOV AND N. MONDEN

which were used in the proof of Theorem B in Section 5.2. Moreover, we
have

v = pad(cy), o) = pad(c)) and cs = pao(cs).

6.3. Proof of Proposition 34. We prove Proposition 34 in this subsection.

We note that ¢}, c] (resp. v}, v]) are mapped to ¢; (resp. as) under the
inclusion %3, — E2h+n 1. Similarly, ¢, (c2), tc_,ll(@) and tzgfl(tcfl (c2))
are mapped to t., (c2), ¢t} (c2) and 271 (tc, (c2)), respectively.

Let us consider the presentation of the fundamental group 71 (Xoptpn—1) of
Yon+n—1 at the base point e in Section 6.1. From the positive factorization
of t2 in Proposition 34 and Lemma 15, we see that 7 (Y;) has a presentation
with generators

a13b17a2ab27 s 7a2h7b2h)al)ﬂlaa2aﬁ27 s ,Oénfl,ﬁn,]_

and with relations

(23) soh4n—1 =1

(24) cr=z=y=z=a3=1;

(25) te;_y(ci) =1 for 4<j<2n—-1;
(26) t.' (c;) =1 for 2 <j<2n—1;
(27) 12 (te (c2)) = 127 (te () = 1;

(28) D=1 for 0 <k < 2h,
(29) padlte, ,(cj) = 1 for 4<j <21
(30) pao(t,, L) =1 for 2 <j<2n-—1;
<m>meWW%@ﬁ»=mw@?%%@9»=h

(32) pao(Dy) = for 0 <k <2h.

We prepare some lemmas to show Proposition 34.

Lemma 37. The following holds in m (Y;):

(33) a;j =1 for 1<j<n-—1;
(34) Bj=1 for 1<j<n-1;
(35) Sp = 1.

Moreover, we can replace the relations (24)-(27) by the relations (33) and
(34).
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Proof. 1t is easy to check that, up to conjugation, the following relations
hold in 71 (Xop4pn-1):

C1 = Qg3
te!(c2) = prar’t
tc; (caj1) = Bia oy
tearey (Cajra) = Bipiag ! ay;
tgz}l_z(c2n—1) = ShOp—10n-1
These and the relations (23)—(25) give the relations (33)—(35).
We suppose that the relations (33) and (34) hold. Then, since the curves

in the relations (24)—(27) are generated by «; and (3, we obtain the latter
part. O

The following lemma is used to show Lemmas 39 and 40. For simplicity,
take a base point in a regular fiber ¥, of a genus-g Lefschetz fibration f :
X — S2. Let 71(X) be the fundamental group of X at the base point. We
identify a simple closed curve ¢ on ¥, with an element of 7 (X) by choosing
a path in ¥, from the base point to some point on c.

Lemma 38 ([38]). Let ¢, z1,x9,...,x be simple closed curves on a regular
fiber 34 of a genus-g Lefschetz fibration f: X — S%. If ; =1 in m(X) for
i=1,2...,k, then the following holds in 7 (X):

toy - tayta, (¢) = C.

The following proof was suggested by the editor.

Proof. If z1 is disjoint from ¢, then we have t;, (¢) = c on £4(C X). Suppose
that z; intersects c. By the assumption, x; bounds an immersed disk D in
X. Then, ¢ and t,, (c) are homotopic in ¥, U D(C X) relative to the base
point e. This gives t;,(c) = ¢ in m(X). By repeating this argument, we
obtain the claim. O

Lemma 39. The following holds in w1(Y;):
(36) R;=1 for 1<j<k.
Moreover, we can replace the relations (29)—(31) by the relation (36).

Proof. We first show that the relation (36) holds. Let us consider the relation
(30).

Since each qﬁ(t;j,l_l(cj/)) is generated by aq, B1, ag, Bo,...,Qn_1, Bn_1
from the definition of ¢ (see Section 4.4), by Lemma 37 we have

(37) ot (cj)) =1
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in m1(Y;) for ' =2,3,...,2n — 1. By the definition of ¢, we have

(38) d(te (c7)) =ty (w);
(39) d(tz (cs)) =ty (cs);
(40) ote, (cj)) =tz (cp)

for 7/ =9,10,...,2n — 1.
Here, from the definition of ¢ (see Section 4.4) and Figures 4 and 9-12,
we see that the simple closed curve ¢(t(jj}71(cj/)) is also disjoint from the

simple closed curves a,, and by, for all m and for j' =2,3,...,2n — 1. This
gives

-1 —1
PG¢(tcj,_1(Cj’)) =tRr, - 'tRk;taN+1taN+2 e 'tahtbh+1tbh+2 o 't52h¢(tcjz_1(cj’))

=tr,tr, - tr(te, (cy)) = 1.

Hence,

(41) padlte, (cp) =tritr, - tro(to;  (cj)) =1

for j/ = 2,3,...,2n — 1. Since R; intersects tc_Ql(fw) transversely at exactly
one point and Ra,..., R do not intersect thI(w) from Proposition 36, by

the relation (38), up to conjugation, we obtain
1=tptr, tr, (s (c7))

=1RrtRy - tRk (tc_gl (w)>

= tr, (5, (w))
=to, (W) R,
where 1 = £1. By the relations (37) and (38), we have
R =1
Similarly, since Rs, ..., Ry do not intersect t,'(cg) from Proposition 36, by

the relation (39) we obtain
L =tptr,  tr,d(t, (cs))
=tpitr, tr,(ty' (cs))
= trytr, (ty, ' (cs))-

Since Ry intersects t,'(cg) transversely at exactly one point from Proposi-
tion 36, by Lemma 38, up to conjugation, we get

1 =tg,tr,(ty (cs))
= tR, (ty' (cs))
=t (cs) R,
where €9 = £1. By the relation (37), we have
Ry =1.
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Moreover, since R; intersects ¢(t;is(ci+6)) transversely at exactly one
point and R;11, Ri1o, ..., Ry are disjoint from tc_iis (ciye) for 3 <i < k from
Proposition 36, by the relations (40) and (41) we see that for ;' = 9,10, ..., k,

L=tp,tr, 'tngb(tc_/l 1(Cj/))
1
=tRitRy TRy (tc y 1(Cj'>)
1
= tthRQ o tR]'/_G (tc ./ 1(le))
in 71(Y;). Hence, we obtain
tR1tR2 e tRj/76 (tc_]/l_l (CJ,)) =1

in 7 (Y;) for j* = 9,10,..., k. Since Ry intersects t,!(cg) transversely at ex-
actly one point and Ry, ..., Ry are disjoint from tggl (c9) (see Proposition 36),
by Lemma 38, up to conjugation, we have

1 =tR tr,tr,(ty (co))
= tR, (te; (c9))
=t (co) RS,
where e3 = £1. From the relation (37), we have
Rs =1.
By repeating this argument, we obtain the former part of the claim.

We next show the latter part. Suppose that the relation (36) holds.
From Figures 4, 5 and 9-12, each of the simple closed curves ¢(, ! ) (¢r)),
i

O(te,_, (1)), P2 (tey (c2))) and (827 (te,(c3))) is disjoint from the sim-
ple closed curves a,, and b,, for all m. By Lemma 38, we can replace the
relations (29)—(31) by the relations

1= paod(te; ,(¢j)) =tr, -~ tr,(d(tc, _1( 1)) = d(te,_,(cj));
1= peoltel, (¢)) = tr, - tr (8t (cj)) = olte,  (ci));
1= pa(ter (te, (c2))) = try -~ tr, (B(E20 " (tey (c2)))) = G2 (tey (c2)));

(
1= pad(t2 (tey (c3))) = try -+ tr, (D(ton " (tey(c3)))) = G2 (tey (c3))).
Since ¢(t. 1, (cj)), d(te; (), G2 (tey(c2))) and G2~ (tey(c3))) are

generated by a1, 1, a2, B2,...,an—1, Bn—1, from Lemma 37 we obtain the
relations (29)—(31). O
Lemma 40. The following holds in mw1(Y;):

(42) AmAoh+1—m = 1 for 1 <m <h;

(43) Q=1 for N+1<m<h;

(44) by=1 for 1 <1< 2h.

Moreover, we can replace the relations (23), (28), (32) and (35) by the
relations (42)-(44).
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Proof. We first show the relation (42) by induction on m. By the relations
(28), ap—1 = 1 (the relation (33)), (35) and (18), we see that the relation
(42) holds for m = h. Suppose that we have aasp11-m = 1 for m < h.
Then, from the relations (28), a,—1 = 1 (the relation (33)), (35), Dapm—1 =1
(the relation (16)) and Day,,—2 = 1 (the relation (17)), we obtain

am—1bmbm+1 -+ ban— (m—1)S2n— (m—1)%2h+1—(m-1) = L
Ambmbm+1 - boht1-mS2h+1-mA2h+1—m = 1
for 2 < m < h, which give am-1a2441-(m-1) = 1. Therefore, we obtain the
relation (42) for 1 < m < h.
We next show the relation (43). From the definition of ¢ (see Section 4.4)
and Lemma 38, we see that
pG¢(Dj) = pG(Dj) = taN+1taN+2 e 'tahtbh+1tbh+2 by, (DJ)
for j = 0,1,...,2h. It is easy to check that from this, up to conjugation,
the following equalities hold in 71 (3op4p—1):
pG¢(D2m—1) = (ambmbm+1 te b2h+1—m52h+1—m02h+1—m)
’ b27hl+17m ’ agil T Qp c Am4-10m;
pG¢(D2m) = (ambm+1bm+2 ce b2h—m52h—ma2h+1—m)
. bQ_]‘Ll-I—l—m . a;il Sap - am+2am+1;
pcd(Dan—1) = (anbubpi1sn1an1) - bty - aply - an;
pcd(Dan) = (anspani1) by - 0ty
for N +1 < m < h — 1. Therefore, by the relations (28), a,—1 = 1 (the
relation (33)) and pg@(Dam—1) = pad(Dam) = 1, we get
bg_hl_;,_l_m “Qpc Gm1Qm = 1
bty G Aot = 1
b}:—fl—l ap = 1;
byl =1
for N4+ 1< m < h—1. This gives

Ay, = 1

for N+1<m<h.
Here, we show the relation (44). From the definition of ¢ (see Section 4.4),
Lemma 38 and the relation (43), we see that

pG¢(Dj) = pG<Dj) = t@N+1taN+2 o 'tahtbh+1tbh+2 o 'tb2h (DJ)
- tbh+1tbh+2 Ty, (Dj)
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for j = 0,1,...,2h. Once again, it is easy to check that from this, up to
conjugation, the following equalities hold in 71 (Xopn_1):

pcd(Do) = (biby - - bap) - a,_il;

P (Dam—1) = (Ambmbms1 -+ b2ns1-mS2ht1-mA2ht1-m) * Dy 1 _m = O 13
pG¢(D2m) - (ambm+lbm+2 te b2h7m32h7ma2h+lfm) . bg_hl_i_l_m . a;il
for 1 < k < h. By the relations «a,,_; = 1 (the relation (33)), (28) and (32),
we obtain
bZh—m—H =1

for 1 < m < h. From the relation (42), Da,,—1 = 1 (the relation (16)),
Do, = 1 (the relation (17)) and its proof, we get

bmbm1 -+ bont1-mS2h+1-m = 1;

bim+1bm+2 - - bop—mSon—m = 1.
These give bm32_h:/l_mb2h+1_m52h+1_m =1 for 1 < m < h. Therefore, by the
definition of s,, (see Section 6.1),

1= bmSQ_hl_mb2h+1—m(bg_hl_‘_l_m52h—m(a2h+1—m62h+1—ma2_hl+1_m))
= bma2h+1—mb2h+1—ma27hl+1,m
for 1 <m < h. Hence, by bop_p11 =1 for 1 < m < h, we have
=1

for 1 <1 < 2h.

Finally, we show the latter part. Suppose that the relations (42)-(44)
hold. From the arguments above, D;, pa$(D;) and s, are generated by ay,,
bm, ai, and ;. By the relations (33) and (34), we obtain the relations (23),
(28), (32) and (35).

This finishes the proof. O

We now prove Proposition 34.

Proof of Proposition 3. By Lemmas 37, 39 and 40, m1(Y;) has a presenta-
tion with generators

ar,bi,az,ba, ... agp, bop, 1, B, 09, B2, . .., a1, Bn—1
and with relations
(45) A G2ht1—m = 1 for 1<m<h;
(46) am =1 for N+1<m<h;
(47) b =1 for 1 <1< 2h;
(48) as=0Fs=1 for 1<s<n-—1;
(49) R;j=1 for 1<j <k

for 0 < i < 2n — 2. From the relations (45)—(48), we see that 71(Y;) is
generated by ay,...,ay. By the relations (46)—(49), and using the map A
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appearing in Proposition 36, we get a word representing the element r; for
1 < j < k. Moreover, the fifth relation gives r; = 1 for 1 < j < k. Therefore,
we see that 71 (Y;) has a presentation with generators ai, as,...,ayn and with
relations

ri=1 for 1 <5<k,

and hence 71 (Y;) is isomorphic to G for 0 <i < 2n — 2.
This finishes the proof. U

7. PROOF OF PROPOSITIONS 25 AND 26

This section gives the proofs of Propositions 25 and 26. In the figures
below, we denote the arrangement using the Dehn twist ¢, about a simple
closed curve ¢ and the arrangement using an isotopy by — and ~, respec-
tively.

7.1. Proof of Proposition 25. Let S; be the subsurface of 3, | of
genus n — 1 with two boundary curves 6 and ¢’ as in Figure 3, and let T'(.S})
be the mapping class group of S;. We consider the simple closed curves
A, o, comn, Chy 1, b,y and the arcs 7,791 on Sy C X3, as
in Figures 3 and 14. We denote by Hy (resp. Hg) the half twist about
§ (resp. &), hence t5 = H? (resp. ty = H}), satisfying Hs(c}) = o,
Hs(¢;) = ¢iy, Hs(ch,_1) = cb,_1 and Hs(Ton—1) = Ton—1 (resp. Hy(c}) = ¢},
Hsi/(c;) = ¢iy, Hy(ch, 1) = ¢, 1 and Hy (1) =7 ) for i = 2,3,...,2n — 2.
Therefore, we have Hgtcéniltcgnil = tc’zn71t0/2/n71H5 (resp. H5’tc’2n71tc’2’n71 =
tcgn,ltC’g’n,lH&) from the relation t4) = dtedp™! in Section 4.1. We first
show the following proposition.

Proposition 41. The following relation holds in T'(S7):
teyn s+ testester tertestes -+ - tey, , = HsHyt 't

2n—1 “2n—1
Proof. We prove the equation using the Alerander method. The collec-
tion {ca,c3,...,Con—2,7,Ton—1} “fills” 51 and satisfies the assumptions of
the Alexander method (see for example [24]). Therefore, from the above-
mentioned properties of Hs and Hy, it suffices to show that
(i) tc2n72 ce tc3tc2tc/1tclllt02t03 ce tc2n72 (Cl) = for i = 2, 3, cee ,277, - 3,
(ii) [P tc3tc2tc’1 tc’l’t02t63 “rteg, s (0271—2) = t‘?ﬁiqtc_/giq (0271—2>7

(ili) Zepp g+ t63t02tc’1tc’l’t02t03 ++ ey, (T) = Hs(7), and

(iV) SRS tcstcztc’l 75c’1’75t:2tc3 “rleg, o (7—2”*1) = H(5’(7—2n*1)'

First, we show (i). Note that ¢; is disjoint from ¢, if |[j — k| > 2 and
intersects ¢ at exactly one point if |j — k| = 1. Moreover, ¢; is disjoint from
¢y and ¢f for j = 3,4,...,2n — 2. Therefore, it follows easily from Figure 7
that for j =2,3,...,2n — 3, we have

t02n72 . t03t62tcatc’1’tcgtcg . tCznfz(Cj) = ¢j.
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) 1) 0 — ) 0
-
~Ton-4
Ton-3
Cin-1 ™ Tan-s
* 7-2/77,*1
0 0 20
FIGURE 14.
Next, we show (ii). Let x9,z3,...,22,—2 be the simple closed curves on
S1 as in Figure 14. Note that cop_o = To,_o. It is easy to check that
tegiy (T2i) = T2i-1,
tegi o (T2i-1) = 252
fori=2,...,n — 1 from Figure 15. This gives
tCths T tC2n—2 (CQH*Q) = tcztcs o 'tCQn—2 ($2n72) = Z2.
Let y2, 93, - .., Y2n—2 be the simple closed curves on S; as in Figure 14. Notice

that
Y2 = teytey(22),
teso(Yon—2) =ty 51 (con—2)
(cf. Figure 16). It is immediate that
tegi_o(Y2i—2) = Y2i-1,
tegs 1 (Y2i-1) = Yo
fori=2,3,...,n— 1 from Figure 17. This gives

tego  testeatey ey (12) = tey, o (Yon—2) =t 51 (con—2).

n—1 Can—

Therefore, we have

—1 -1
Legy o 'tc3tc2tc’1 tc’l’tCQtCS, o legy o (CQH—Q) = tleInfltC,anl (0271—2)'

The proof of (iii) is straightforward from Figure 18 since 7 and H;(T) are
disjoint from c3,cq, ..., Con_2.
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/@_/ Yon-2 /@/ ’@ Con-a "‘@'“ Cop-1

FIGURE 16.

Finally, we show (iv). Let 7o, 73,...,T2o,—1 be the arcs on S; as in Fig-
ure 14. It follows easily from Figure 19 that

bepi (T2i41) = T2i fori=1,2,...,n -1,

tegi o (T2i) = T2i—1 fori =2,3,...,n—1.
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—) I ——) ) )

.
Caj-2

.‘ O/ Yzi-2 O/ Yai-1
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FIGURE 18.
This gives
Leales " tegn_o (T2n—1) = T2.
Let 74,74, ...,Ty,_; be the arcs on S; as in Figure 14. It is easily seen that

Hg: (7-271—1) = Ténfl'

From Figure 20 we see that
teter(m2) = 5.
It is immediate that we have
tegs (Thi) = Thisa fori=1,2,...,n—1,
teasr (Toi1) = Toiga fori=1,2,...,n—2
from Figure 21. Therefore, we have

legn_ o 'tC:stCztc’ltc’l’ (TQ) = Tén,1 = H&’(T2n—1)'
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From the equations above, we obtain

tCQn—Z T t63t62tc’1tc’1’t02t63 e tCQn—Q (7—2”*1) = Hy (7—2”*1)'

) ) ————) ——0

Coiq
—_—

Caia

5

6/
FiGUuRrE 20.

This completes the proof. O
Next, we show Proposition 25.

Proof of Proposition 25. By gluing a disk to S; along &', we obtain 31 _; so
that the curves ), _; and ¢, _; are isotopic to cg,,—; in Figure 2. Therefore,
since hs is the image of HsHgs under the map I': ;| — I',,_ induced by the
inclusion 271171 — Ypn_1, from Proposition 41, we obtain

t62n72 . e t03tC2tC’1 tclllt62t83 e t02n72 — h(StC_Qi_l,
and thus
tegnoitesn—o " ‘tcgtcztc/ltc/lltcth3 oty otesn 1 = hs.

This finishes the proof. O
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Coi+q !

Cojy1

5/
FIGURE 21.

7.2. Proof of Proposition 26. This subsection gives the proof of Propo-
sition 26.

Let S5 be the subsurface of E;h o1 of genus 2h with two boundary
curves ¢, ; and ¢y, as in Figure 3, and let I'(S2) be the mapping class
group of Sy. We denote by Hj, the half twist about &', hence ty = (H})?,
satisfying Hj,(aj) = aap42—j, where a; and ¢’ are the simple closed curves
on Sy(C X3, ) as in Figure 22. We first show the following proposition.

Proposition 42. The following relation holds in T'(S3):

-1
tDotD1 Dy *+  tDoptean 1 = tcgn,ltcgn,l (Hfg’) J

where Dy, D1, ..., Doy, can—1 are the simple closed curves on Sa(C E%Mn_l)
as in Figure 3.

Qap, Q201 Qoo

FIGURE 22.

Proof. We prove the equation using the Alexander method. Let o be the arc
on Sy as in Figure 22, and let a1, ag, . .., asp11, a4, ay, , be the simple closed
curves on Sy as in the figure. Then, the collection {a1,as, ..., a4, aﬁlhﬂ, o}
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“fills” Sy and satisfies the assumptions of the Alexander method (see for
example [24]). Therefore, since t,  and ty  are in the center of I'(S2),
it suffices to show that

(i) tDotDlth ce. tDzhtC2n—1(aj) = A4ht2—j for 7=12... ,4h + 1,
(ii) tDotDitDs tDyy len, s (aZLthl) = (H(/S’)_l(all)’ and
(iii) tDotDi Dy  tDgy leny s (U) = tc’%fltcg’n,1 (U)

First, we show (i). It is easy to check that

tDy;_1tDy; (A2i) = Qapto—2i (j = 2i),
tDzi—ztD2¢—1(a2ifl) = A4p4+2—(2i—1) (] =2i—1,j 75 2h + 1)
for i =1,2,...,h from Figures 23, 24, 25 and 26. Moreover, we also see at
once that

tDthC}nfl(th"Fl) = G2p+1

from Figure 27. We notice that a; and as,42—; are disjoint from Dy and
Con—1 for i #2h + 1 and k # j — 1, and that a9y is disjoint from Dy, for
k # 2h. Therefore, for j =1,2,...,4h 4+ 1, we have

tDetDitDy Iy tesy—y (aj) = Q4p+2—j-

’ ”
0271- 1 CZTZ- 1

Qapi2-2i

FIGURE 23.

Next, we show (ii). This immediately follows from Figures 28 and 29.
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D2i

’ 2 ”
C2n—1 C27l—1

FIGURE 24.

’ ”
CQn-l C2’rl, -1

”
2N-1

Conr{ C

’ ”
Chn1Q Chnon

Qapi2-(2i-1)

FIGURE 25.

Finally, we show (iii). Let 01,09, ...,0p be the arcs on Sy as in Figure 30.
Note that

Oh = legy o (U)
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’ ” ’ "
CQ’IZ—I C2n—1 CQn—l CZTL—I

Aah+2-(2i-1)

O 0 -
D2i—1

’ ” ’ "
C2TL—1 CQTL—I C2n—1 2 0271—1

FIGURE 26.
7 n 7 ” 7 14
C2’I”L-1 C2n-1 C2n—1 C2n-1 C2’n—1 CQ?’L—l

FIGURE 27.

It follows easily from Figures 31 and 32 that
tDy; 1Dy, (03) = 041,
tpy(o1) =te,  tey  (0)
for ¢ = 2,...,h. This gives

tDotDitDy *  tDo tegn s (o) = tc’Qn_ltcgn_l (o).
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This completes the proof. ([

’ ”
C2n—1 C2n—1

FI1GURE 28.

FIGURE 29.
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FiGure 30.

’
C2’IL—1

FiGURE 31.

Next, we show Proposition 26.

Proof of Proposition 26. It follows immediately from Propositions 41 and 42
that

begpo t03t02tc’1 75c’1’75027563 “tegy otDetDIED, *  tDyy tern 1 = hg’

and the proof is complete. O

8. REMARKS ON GENUS-2 LEFSCHETZ FIBRATIONS

We give some remarks on genus-2 Lefschetz fibrations.

For abbreviation, a genus-2 Lefschetz fibration f : X — S? is said to be of
type (s, s) if f has sp nonseparating and s separating singular fibers. Then,
we see that e(X) = —4+ sg + s and 0(X) = —2s9 — £s using the signature
formula for genus-2 Lefschetz fibrations given by Matsumoto [44] (which is
generalized by Endo [22] to genus-g hyperelliptic Lefschetz fibrations). Then,
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it is easy to check that c?(X)—2x(X)+6 = s > 0, and hence every genus-2
Lefschetz fibration satisfies the Noether inequality 2y (X) — 6 < ¢3(X).

’ " ’ ”
cZn—l 027’7/—1 C2’/’1,—1 CQn-l

FIGURE 32.

All explicit examples of indecomposable genus-2 Lefschetz fibrations with
minimal total spaces have been constructed by Xiao [57] as far as the authors
know. Such examples are of types (6,7) and (12,19). In general, every
genus-2 Lefschetz fibration of type (so,2so — 5) is indecomposable (see [4]).
From the arguments in [4], we find that the total space is minimal except for
so = 4. Moreover, we can show that the total space of a genus-2 Lefschetz
fibration of type (sp,2s9 — 5) is not simply connected as follows (therefore
the total spaces of the above-mentioned examples given by Xiao are not
simply connected).

Proposition 43. If X admits a genus-2 Lefschetz fibration of type (so, 250 —
5), then b1 (X) > 2.

Proof. From the assumption that s = 2s9 — 5, we have
e(X) =3s90—9=2—2b1(X) 4 by (X) + b (X),
o(X)=—so+1=0b3(X)— by (X).

This gives 2 — 2b1(X) + 2b, (X) = 4s9 — 10. Here, by b, (Y) > s+ 1 for a

genus-2 Lefschetz fibration Y — S? of type (sg, s) (see, for example, Lemma
2.4 in [40]) and the assumption that s = 2s¢p — 5, we have b;(X) > 2. O
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