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Abstract. We define a totally geodesic immersion of irreducible type
from a symmetric space of compact type into a Grassmannian and clas-
sify such immersions. Any totally geodesic immersion is related to
a homogeneous vector bundle with the canonical connection and the
eigenspaces of the Laplace operator acting on the space of sections of
the bundle.

1. Introduction

The main purpose of the present paper is to classify totally geodesic sub-
manifolds of Grassmannians. This subject has been pursued by many au-
thors for a long time. For instance, Chen-Nagano have introduced a new
geometric idea ([1] and [2]), and Ikawa-Tasaki have made a detailed study of
the corresponding Lie algebras to classify those submanifolds in symmetric
spaces [10]. Instead of these methods, we exploit differential geometry of
vector bundles.

Since any Grassmannian Grp(W ) parametrizing p-subspaces of a vector
space W is a Riemannian symmetric space, totally geodesic submanifolds
are also symmetric spaces, say G/K, and the immersion f : G/K → Grp(W )
is G-equivariant. The well-known example is given by a flat torus and such
a flat torus is necessarily contained in a maximal torus. Hence we restrict
our concern to G/K being a Riemannian symmetric space of compact type.
Since the immersion f : G/K → Grp(W ) is G-equivariant, the vector space
W is considered as a representation space of G. If W is irreducible as G-
module, then f is called a totally geodesic submanifold of irreducible type.
We classify all totally geodesic submanifolds of irreducible type.

To do so, we use a vector bundle and a finite dimensional vector space
of sections when we describe a map into a Grassmannian. Such a map is
called the induced map (Definition 3.2). A famous example of an induced
map is the Kodaira embedding from an algebraic manifold into a complex
projective space, which is induced by a holomorphic line bundle and the
space of holomorphic sections.

As a result, we obtain

Main Theorem. (Theorem 4.21) Let (G = G1 × G2 × · · · × GΛ,K =
K1 ×K2 × · · · ×KΛ) be a symmetric pair of compact type with the standard
involution σ such that (Gλ,Kλ) is an irreducible symmetric pair, where Gλ
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is a simply-connected compact Lie group and Kλ is a connected subgroup of
Gλ for λ = 1, · · · ,Λ.

If f : G/K → Grp(W ) is a totally geodesic submanifold of irreducible type
into a complex Grassmannian, then,
(i) in the case when rankG = rankK, W is an irreducible G-module of
complete type, or
(ii) in the case when rankG > rankK, W = W1 ⊗ W2 ⊗ · · · ⊗ WΛ is an
irreducible G-module of complete type such that the irreducible Gλ-module
Wλ is self-conjugate when rankGλ > rankKλ.

Conversely, let W = W1 ⊗ W2 ⊗ · · · ⊗ WΛ be an irreducible G-module
of complete type. When rankGλ > rankKλ, suppose further that the irre-
ducible Gλ-module Wλ is self-conjugate. Then W has the unique general-
ized Cartan decomposition W = U0 ⊕ V0 for (G,K) with p = dimU0 and
q = dimV0 and we have a totally geodesic submanifold f : G/K → Grp(W )
of irreducible type as the mapping induced by (V = G×K V0 → G/K,W ).

Under these conditions, p and q satisfy

(p− q)2

dimW
=

∫
G
χϱ

(
gσ(g−1)

)
dg,

where χϱ is the character of G-representation (ϱ,W ) and dg is the normal-
ized Haar measure on G.

A generalized Cartan decomposition of a representation space of G for a
Riemannian symmetric pair (G,K) is defined in Definition 4.4, which plays
a significant role in this paper. The corresponding result in the case when
the target is a real Grassmannian is obtained in Theorems 4.32. We apply
a generalization of Theorem of Tsunero Takahashi (Theorem 2.10) [13] to
obtain a classification of totally geodesic immersions of the complex projec-
tive line CP 1 into Grassmann manifolds (Theorems 5.4 and 5.5). Theorem
2.10 relates a totally geodesic immersion of a symmetric space M into a
Grassmannian to a homogeneous vector bundle V → M with the canoni-
cal connection and the Laplace operator acting on the space of sections of
V → M . Every non-trivial irreducible homogeneous vector bundle on CP 1

is of complex rank one and it is easy to describe all eigenspaces of the Laplace
operator defined by the canonical connection on each irreducible homoge-
neous bundle in a similar method to a description of spherical functions (see
[14] and [16]). We discuss a totally geodesic immersion of a compact Lie
group into a Grassmannian in detail.

Our Main Theorem enables us to generalize Theorem 2.10 in the case
when the target is a symmetric space of compact type (Theorem 6.3, see
also Theorem 6.1 and Corollary 6.2). This generalization could justify the
subtitle of the paper.

The author would like to express his gratitude to Professor M.Takahashi
for many valuable comments and discussions. He also wishes to thank the
referee for the careful reading of the manuscript and for suggesting various
improvements.
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2. Preliminaries

We review some standard material, mostly in order to fix our notation
in this paper. Throughout this paper, all manifolds are supposed to be
connected. For a vector bundle V → M over a manifold M , Γ(V ) denotes
the space of sections of V → M .

2.1. A harmonic map. LetM andN be Riemannian manifolds. We define
the energy density e(f) : M → R of a map f : M → N as

e(f)(x) := |df |2,

where we use both Riemannian metrics on M and N to obtain the Hilbert-
Schmidt norm. Then, the tension field τ(f) of f is defined to be

τ(f) := trace∇df =
m∑
i=1

(∇eidf)(ei),

which is a section of the pull-back bundle f∗TN → M of the tangent bundle
TN → N , where e1, · · · , em is an orthonormal basis of the tangent space
TxM to M at x ∈ M and m = dimM .

Definition 2.1. [7] A map f : M → N is called a harmonic map if the
tension field vanishes identically (τ(f) ≡ 0).

The symmetric form ∇df with values in f∗TN → M is called the second
fundamental form. We say that a map f : M → N is a totally geodesic map
if ∇df ≡ 0. By definition, a totally geodesic map is a harmonic map.

If we suppose that f : M → N is an isometric immersion, then the tension
field is a mean curvature vector, the second fundamental form is the same as
that in submanifold geometry and a harmonic map is nothing but a minimal
immersion.

2.2. Geometry of Grassmannians. Though we condense definitions and
results in the following two subsections, readers may consult [13] for more
details.

LetW be a real vector space with an inner product (·, ·) and an orientation
or a complex vector space with a Hermitian inner product (·, ·). We call (·, ·)
a scalar product for short.

Let Grp(W ) be a Grassmann manifold of (oriented) p-planes in W . To de-
fine a Riemannian metric gGr on Grp(W ), let S → Grp(W ) be a tautological
vector bundle of rank p. We have an exact sequence of vector bundles:

0 → S
i−→ W

π−→ Q → 0,

where W → Grp(W ) is the trivial vector bundle of fiber W , and Q →
Grp(W ) is the quotient bundle, which is called the universal quotient bundle.
The scalar product gives a fiber metric on S → Grp(W ) denoted by gS and
the orthogonal complementary subbundle of i(S) in W can be identified
with Q → Grp(W ). Hence we also obtain a fiber metric on Q → Grp(W )
denoted by gQ. Consequently, we have two bundle maps i∗ : W → S and
π∗ : Q → W as the adjoint bundle maps of the indicated bundle maps. Since
the tangent bundle denoted by T → Grp(W ) is identified with S∗ ⊗Q, the
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Riemannian metric gGr is induced as the tensor product of gS∗ and gQ :
gGr = gS∗ ⊗ gQ, which is called the metric of Fubini-Study type.

We can define a connection ∇Q on Q → Grp(W ): if t is a section of
Q → Grp(W ), then we have

∇Qt = πd (π∗(t)) .

In a similar way, we can define a connection ∇S :

∇Ss = i∗d (i(s)) , s ∈ Γ(S).

In this context, since S → Grp(W ) is a subbundle of W → Grp(W ),
it is natural to introduce the second fundamental form H in the sense of
Kobayashi [11], which is a 1-form with values in Hom(S,Q) ∼= S∗ ⊗Q:

H(s) = πd (i(s)) , for s ∈ Γ(S).

The second fundamental form H gives an explicit identification of T with
S∗ ⊗ Q preserving the metrics and the connections, which yields that the
Levi-Civita connection is induced by ∇S and ∇Q. Hence we have

Lemma 2.2. The second fundamental form H can be regarded as the iden-
tity transformation of the tangent bundle T .

Corollary 2.3. The second fundamental form H is parallel.

The second fundamental form K is also defined as a 1-form with values
in Hom(Q,S) ∼= Q∗ ⊗ S:

K(t) = i∗d (π∗(t)) , for t ∈ Γ(Q).

For a vector w ∈ W , we have two sections s = i∗(w) and t = π(w), each
of which is called the section corresponding to w. Thus we obtain two linear
monomorphisms W → Γ(S) and W → Γ(Q) and W can be regarded as a
subspace of Γ(S) and Γ(Q). From the definition, we have

Proposition 2.4. If s and t are the sections corresponding to w ∈ W , then

∇Ss = −K(t), ∇Qt = −H(s).

Since gQ(H(s), t) = (di(s), π∗t) = − (i(s), dπ∗(t)) = −gS(s,K(t)), we
have

Lemma 2.5. The second fundamental forms H and K satisfy

gQ(H(s), t) = −gS(s,K(t)), for s ∈ Γ(S) and t ∈ Γ(Q).

Lemma 2.6. The second fundamental form K is also parallel.

From Lemma 2.2, we obtain

Proposition 2.7. For arbitrary real tangent vectors X and Y to Grp(W ),
we have

gGr(X,Y ) = −traceQHXKY = −traceS KXHY ,

in the case where W is a real vector space, and

gGr(X,Y ) = −2Re (traceQHXKY ) = −2Re (traceS KXHY ) ,

in the case where W is a complex vector space.
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A Grassmannian Grp(W ) with the Fubini-Study metric gGr is a Riemann-
ian symmetric space and the vector bundles S → Grp(W ) and Q → Grp(W )
can be regarded as homogeneous vector bundles on Grp(W ) with invariant
fiber metrics and connections.

2.3. Harmonic maps into Grassmannians. We introduce some results
in [13] which are needed in later chapters.

Let f : M → Grp(W ) be a smooth map. Pulling back Q → Grp(W ) to
M , we obtain a vector bundle f∗Q → M , which is denoted by V → M .
Though W also gives sections of V → M , the linear map W → Γ(V ) might
not be an injection. Even in such a case, W is still called a space of sections.

We fix a scalar product (·, ·) on a vector space W . If f : M → Grp(W ) is
a smooth map, then we also pull back the fiber metric and the connection on
Q → Grp(W ) to obtain a fiber metric gV and a connection ∇V on V → M .

In a similar way, the pull-back bundle f∗S → M is denoted by U → M .
The second fundamental forms are also pulled back and denoted by the

same symbols H ∈ Γ(f∗T ∗ ⊗ U∗ ⊗ V ) and K ∈ Γ(f∗T ∗ ⊗ V ∗ ⊗ U). If
we restrict bundle-valued linear forms H and K on the pull-back bundle
f∗T ∗ → M to linear forms on M , then H and K are nothing but the second
fundamental forms of subbundles U → W and V → W , respectively, where
W is a trivial vector bundle M ×W → M .

From now on, we assume that M is a Riemannian manifold. Then, we use
the Riemannian structure on M and the pull-back connection on V → M
to define the Laplace operator ∆V = ∆ = ∇V ∗∇V = −

∑m
i=1∇V

ei

(
∇V

)
(ei)

acting on Γ(V ) and a bundle endomorphism A ∈ Γ (EndV ) is defined as the
trace of the composition of the second fundamental forms H and K:

A :=

m∑
i=1

HeiKei ,

where m is the dimension of M and e1, e2, . . . , em is an orthonormal basis of
the tangent space to M . The bundle endomorphism A ∈ Γ (EndV ) is called
the mean curvature operator of f .

From Lemma 2.5 and Proposition 2.7, we obtain

Lemma 2.8. The mean curvature operator A is a negative semi-definite
symmetric (or Hermitian) operator.

Lemma 2.9. The energy density e(f) is equal to −traceA in the case when
W is a real vector space or −2traceA in the case when W is a complex
vector space.

We introduce a generalization of Theorem of Tsunero Takahashi [15]
which is shown in [13].

Theorem 2.10. Let M be a Riemannian manifold and f : M → Grp(W ) a
smooth map. We fix a scalar product (·, ·) on W , which gives a Riemannian
metric gGr on Grp(W ). We regard W as a space of sections of the pull-back
bundle f∗Q → M .

Then, the following two conditions are equivalent.

(1) f : M → Grp(W ) is a harmonic map.
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(2) There exists a bundle endomorphism Ã of the pull-back of the uni-

versal quotient bundle such that ∆t+ Ãt = 0 for an arbitrary t ∈ W .

Under these conditions, Ã = A, where A is the mean curvature operator of
f : M → Grp(W ) and

e(f) = −traceA (W is real), e(f) = −2traceA (W is complex).

3. Induced maps

In this section, we give a way of construction of maps into Grassmannians.

3.1. The map induced by a vector bundle and the space of sections.
We refer to [13] for geometric meaning of definitions in this subsection.

Definition 3.1. Let V → M be a vector bundle over a manifold M and
W a subspace of Γ(V ). An evaluation map ev : W → V is defined as
ev(t)(x) := t(x) ∈ Vx for t ∈ W and x ∈ M . The vector bundle V → M is
said to be globally generated by W if ev : W → V is surjective.

Definition 3.2. Let V → M be a real or complex vector bundle of rank q
which is globally generated by W of dimension N . If the real vector bundle
V → M has an orientation, we also fix an orientation on W . Then we have
a map f : M → Grp(W ), where Grp(W ) is a real (oriented) or complex
Grassmannian according to the coefficient field of V → M and p = N − q.
The map f is defined by

f(x) := Ker evx = {t ∈ W | t(x) = 0} ,
where the orientation of f(x) is induced by those of V → M and W . We
call f : M → Grp(W ) the map induced by (V → M,W ), or the map induced
by W , if the vector bundle V → M is specified.

From the definition of the induced map f : M → Grp(W ), the vector
bundle V → M can be identified with f∗Q → M .

Conversely, if f : M → Grp(W ) is a smooth map, then we obtain a vector
bundle f∗Q → M which is globally generated by W , where W is regarded
as a space of sections of the pull-back bundle. It is easily observed that the
map induced by W is the same as the original map f : M → Grp(W ). In
this way, every map f : M → Grp(W ) can be recognized as the map induced
by (f∗Q → M,W ).

Definition 3.3. Let f : M → Grp(W ) be a map and regard W as a space
of sections of f∗Q → M . Then the map f : M → Grp(W ) is called a full
map if the linear map W → Γ(f∗Q) is injective.

Notice that the notion of full map is the same as one in [4], [14] and [17]
if the target space is the sphere or the complex projective space.

Definition 3.4. Let f be a full map of M into Grp(W ) with the Fubini-
Study metric.

Then f : M → Grp(W ) is called a full map with trivial summand, if
(1) the pull-back of the universal quotient bundle is decomposed into V0 ⊕
V1 → M , where V0 → M is a trivial bundle with a flat connection, and
(2) W has a subspace W0 which consists of parallel sections of V0 → M and
does not induce any sections of V1 → M except the zero section.
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We call f a full map with no trivial summand, unless f is a full map with
trivial summand.

3.2. Equivariant maps. Let G be a compact Lie group and K a closed
subgroup of G. Let G/K be a compact reductive Riemannian homogeneous
space with decomposition of Lie algebra g of G: g = k ⊕ m, where k is the
corresponding subalgebra of K. We denote by e the unit element of G and
by [e] ∈ G/K the coset represented by e. Thus K is the stabilizer subgroup
at [e]. By Riemannian homogeneous space, we mean that a G-invariant
metric on G/K is fixed.

Let (ϱ, V0) be an orthogonal or unitary representation of K with a K-
invariant scalar product. The representation (ϱ, V0) is abbreviated by V0.
We can construct a homogeneous vector bundle V → G/K, V := G ×K V0

with an invariant fiber metric gV induced by the scalar product on V0. The
restriction of the action of G on V → G/K to K provides us with an action
of K on the fiber V[e] of V → G/K at [e]. Moreover V → G/K has the
canonical connection ∇ with respect to the decomposition g = k⊕m. (This
means that the horizontal distribution is defined as {Lgm ⊂ TGg | g ∈ G} on
the principal fiber bundle G → G/K, where Lg denotes the left translation
on G.) A Lie group G naturally acts on the space of sections Γ(V ) of
V → G/K, which has a G-invariant L2-scalar product.

The next lemma plays an important role in our classification of totally
geodesic immersions. Hence we introduce it with a proof [13].

Lemma 3.5. Let V = G×K V0 be a homogeneous vector bundle with an in-
variant fiber metric and W a G-subspace of Γ(V ) with the L2-scalar product.
If W globally generates V → G/K, then V0 can be regarded as a subspace of
W .

Proof. Since the evaluation map ev : W → V is G-equivariant and the scalar
product and the fiber metric are G-invariant, the adjoint map ev∗ : V → W
is also G-equivariant. Then the image of ev∗[e] is a K-module. We identify V0

with the fiber V[e] of V → G/K at [e]. SinceW globally generates V → G/K,
we can deduce that the image is a K-module equivalent to V0. □

We call a map f : G/K → Grp(W ) an equivariant map if we have an
orthogonal or unitary representation (ϱ,W ) such that f(gx) = ϱ(g)f(x),
where g ∈ G, x ∈ G/K. The image f(x) of x ∈ G/K represents a subspace
of W .

Let f : G/K → Grp(W ) be an equivariant map. Then f∗Q → G/K is a
homogeneous vector bundle with an invariant metric and an invariant con-
nection under the action of G. The mean curvature operator is an invariant
endomorphism of f∗Q → G/K. The evaluation map ev : W → V is also a
G-equivariant bundle map.

Lemma 3.6. Let f : G/K → Grp(W ) be an equivariant map which is not
a constant map. If W is an irreducible G-module, then f is a full map with
no trivial summand.

Proof. Suppose that f : G/K → Grp(W ) is an equivariant map, which is
not full. Then we have a subspace W0 of W which induces only zero section
on f∗Q → G/K and the restriction of the linear map W → Γ(f∗Q) to the
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orthogonal complement of W0 in W is injective. Since ev : W → G/K is
G-equivariant, W0 is a G-module.

Next, we suppose that an equivariant full map f : G/K → Grp(W ) has
a trivial summand. By definition, the pull-back of the universal quotient
bundle has a decomposition V0 ⊕ V1 → G/K, where V0 → G/K is a trivial
bundle with a flat connection and W has a subspace W0 which consists of
parallel sections of V0 → G/K and does not induce any sections of V1 →
G/K except the zero section. Moreover we suppose that such a flat vector
bundle V0 → G/K has a maximal rank. Since f is a full map, we have that
dimW0 = rankV0. We take the orthogonal complement denoted by W1 of
W0 in W . Then the maximality of the rank of V0 implies that the map
induced by (V1,W1) is a full map with no trivial summand. If t ∈ W0 and
g ∈ G, then gt ∈ W is also a parallel section, since the induced connection
is an invariant connection. Hence W0 is a G-submodule.

Since W is irreducible and f is not a constant map, W0 = {0} in both
cases. □

Let V = G ×K V0 be a homogeneous vector bundle of rank q over G/K.
Suppose that a G-subspace W of Γ(V ) globally generates V → G/K. Then
we have the map f0 : G/K → Grp(W ) induced by W , where p = dimW −q,

f0([g]) = {t ∈ W | t([g]) = 0} .

Since V0 ⊂ W by Lemma 3.5, we have the orthogonal complement of
V0 denoted by U0, which is also a K-module. Then the induced map f0 :
G/K → Grp(W ) is expressed as

f0([g]) = gU0 ⊂ W,

which is G-equivariant.
Let (ϱ,W ) be an orthogonal or a unitary representation of G. We restrict

the Lie group homomorphism ϱ to the subgroup K of G to obtain a repre-
sentation of K. Suppose that V0 is a K-invariant subspace of W . Then we
denote by ϱ(m)V0 or mV0 for short the subspace of W generated by m and
V0. With these understood, we have

Lemma 3.7. Let f0 : G/K → Gr(W ) be the map induced by (V,W ) where
W is a G-subspace of Γ(V ). Then the pull-back connection ∇V is gauge
equivalent to the canonical connection if and only if mV0 ⊂ U0.

For a proof, see [13].

4. Totally geodesic submanifolds of Grassmannians

First of all, notice that Corollary 2.3 yields the fundamental equation
∇H = H∇df and we can show the following (see [13]):

Theorem 4.1. A map f : M → Grp(W ) is a totally geodesic map if and
only if the second fundamental form H of the pull-back bundles is parallel.

Corollary 4.2. If f : M → Grp(W ) is a totally geodesic map, then the
mean curvature operator of f is parallel.
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Throughout this section, we suppose that (G,K) is a Riemannian sym-
metric pair of compact type and M = G/K denotes the corresponding
symmetric space. The associated standard involutions of G and g are de-
noted by the same symbol σ and the orthogonal decomposition induced by
σ is denoted by g = k⊕m.

4.1. A generalized Cartan decomposition. Let Grp(W ) be a Grass-
mannian with the Riemannian metric of Fubini-Study type. For an orthog-
onal direct sum decomposition of W :W = U0 ⊕ V0 with p = dimU0 and
q = dimV0, we define an automorphism Ip,q of W as

(4.1) Ip,q|U0 = IdU0 , and Ip,q|V0 = −IdV0 ,

and a standard involution σ̃ of AutW as

σ̃(S) = Ip,qSIp,q, S ∈ AutW.

Then we have a Riemannian symmetric pair (G̃ = AutW, K̃) of compact

type associated with σ̃ such that Grp(W ) = G̃/K̃ and an orthogonal de-

composition: g̃ = k̃⊕ m̃, which means that

so(W ) = so(p)⊕ so(q)⊕ m̃, or su(W ) = su(p)⊕ su(q)⊕ u(1)⊕ m̃.

Let f : M → Grp(W ) be a totally geodesic submanifold, where Grp(W ) is
equipped with the Riemannian metric of Fubini-Study type. According to f ,
we have an injective Lie algebra homomorphism denoted by ϱ : g → g̃ such
that ϱ(m) is a subspace of m̃ [8, p.224 Theorem 7.2]. The corresponding
Lie group homomorphism is denoted by the same symbol. Then f is a
G-equivariant mapping and so, G acts on W preserving the scalar product,
which is nothing but the representation ϱ : G → AutW . Hence the pull-back
of the universal quotient bundle denoted by V → M is also a homogeneous
vector bundle. Since f is a totally geodesic immersion, the pull-back of the
canonical connection is the canonical one on V → M (this is also proved by
Lemma 3.7). Let V0 be an associated K-representation with a homogeneous
vector bundle V → M , V := G ×K V0. Lemma 3.5 yields that V0 can be
regarded as a subspace of W . Then we take an orthogonal complement
denoted by U0 of V0 in W to obtain the direct sum of K-modules :W =
U0 ⊕ V0. Since ϱ(m) ⊂ m̃, we have that

ϱ(m)U0 ⊂ V0, ϱ(m)V0 ⊂ U0, U0⊥V0, U0 6= {0}, V0 6= {0}.

Consequently, f can be considered as the map induced by (V → M,W ) and
the pull back of the universal quotient bundle with the pull-back connection
is isomorphic to V → M with the canonical connection:f([g]) = ϱ(g)U0.
Since f is an immersion, neither U0 or V0 is a G-module.

Moreover, we have

Theorem 4.3. Suppose that f : M → Grp(W ) is a totally geodesic sub-
manifold. Let Q → Grp(W ) be the universal quotient bundle. Then we
have a decomposition f∗Q = V1 ⊕ · · · ⊕ VL invariant under the action of the
holonomy group of the canonical connection, such that W is an eigenspace
of the Laplacian of Vl → M and the mean curvature operator A is a scalar
multiplication on Vl → M for each l = 1, 2, · · · , L.
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Proof. We denote by V → M the pull-back bundle of Q → Grp(W ). Since f
is a totally geodesic immersion, V → M is a homogeneous vector bundle and
the pull-back connection on V → M is the canonical one. It follows from
Corollary 4.2 that A is parallel. Hence we have a decomposition of V → M
into eigenbundles of A which is preserved by the canonical connection. Then
each eigenbundle has an irreducible decomposition under the action of the
holonomy group and we thus have a decomposition: V = V1⊕ · · · ⊕VL such
that A is a scalar on each Vl → M . Since f is a harmonic map, Theorem
2.10 yields that W is an eigenspace of the Laplacian of Vl → M . □

Definition 4.4. Let (ϱ,W ) be an orthogonal or a unitary representation of
G. Then (ϱ,W ) is said to have a generalized Cartan decomposition (for the
symmetric pair (G,K)) if W has an orthogonal direct sum decomposition:
W = U0 ⊕ V0 of two K-modules U0 and V0 over the same coefficient field as
that of W under the restriction of the homomorphism ϱ to the subgroup K,
in such a way that

ϱ(m)U0 ⊂ V0, ϱ(m)V0 ⊂ U0, U0⊥V0, U0 6= {0}, V0 6= {0},

and neither U0 or V0 is a G-module. The decomposition W = U0⊕V0 is also
called a generalized Cartan decomposition, more accurately, a real general-
ized Cartan decomposition or a complex generalized Cartan decomposition
according to the coefficient field of W .

Remark. If the representation W is irreducible, then we do not need the
condition that neither U0 or V0 is a G-representation in the definition.

Remark. As we have already seen, if f : G/K → Grp(W ) is a totally geo-
desic submanifold, then we have a generalized Cartan decomposition for a
symmetric pair (G,K): W = U0 ⊕ V0. In this case, W = U0 ⊕ V0 is called a
generalized Cartan decomposition induced by f .

For making a description simpler without loss of generality, we suppose
that G/K is simply-connected. If M is not simply-connected, then we may
take a universal covering of M to obtain such a symmetric pair.

Thus, let (G,K) be a Riemannian symmetric pair of compact type, where
G is a simply-connected compact semi-simple Lie group and K is a connected
Lie subgroup of G throughout this section.

The de Rham decomposition yields that G/K = G1/K1 ×G2/K2 × · · · ×
GΛ/KΛ. Here, G = G1×G2×· · ·×GΛ is a direct product of Lie groups Gλ,
(λ = 1, · · · ,Λ) which are all simply-connected compact simple Lie groups
and K = K1×K2×· · ·×KΛ, where each Kλ is a connected Lie subgroup of
Gλ. We can regard (Gλ,Kλ) as an irreducible symmetric pair which has an
orthogonal decomposition: gλ = kλ ⊕mλ. Let eλ be the unit element of Gλ.
We fix ([e1], · · · , [eΛ]) ∈ G/K to obtain a totally geodesic submanifold iλ :
Gλ/Kλ → G/K. Then, we obtain fλ : Gλ/Kλ → Grp(W ) as a composition
of iλ and the mapping f : G/K → Grp(W ). With this understood,

Lemma 4.5. If f : G/K → Grp(W ) is a totally geodesic submanifold with
the induced generalized Cartan decomposition W = U0⊕V0 for (G,K), then
W = U0 ⊕ V0 is a generalized Cartan decomposition for each (Gλ,Kλ).

10



Proof. Since fλ : Gλ/Kλ → Grp(W ) is a composition of the inclusion and
the mapping f , it is a totally geodesic immersion. Then W = U0 ⊕ V0 is a
generalized Cartan decomposition for (Gλ,Kλ) induced by fλ. □

Next, let (ϱ,W ) be an orthogonal or unitary representation of G. Suppose
that W is decomposed into an orthogonal direct sum of K-modules U0 and
V0 which are the restriction of ϱ to K: W = U0 ⊕ V0. Since a vector bundle
V := G×K V0 → M is globally generated by W , we obtain a G-equivariant
mapping f : M → Grp(W ) which is the mapping induced by (V,W ). Using
the de Rham decomposition, we also obtain fλ : Gλ/Kλ → Grp(W ) as a
composite of the inclusion and f . Then the irreducibility of Gλ/Kλ yields
that fλ is an immersion or a constant mapping. By the definition of fλ, U0

is a Gλ-representation if and only if fλ is a constant mapping.

Proposition 4.6. Let (ϱ,W ) be an orthogonal or a unitary representation
of G. Suppose that the decomposition W = U0⊕V0 is a common generalized
Cartan decomposition of W for each (Gλ,Kλ), where W is regarded as a
representation of Gλ under the restriction. Then the map induced by (G×K

V0 → G/K,W ) can be regarded as a totally geodesic immersion.

Proof. We can deduce that ϱ : g → g̃ is an injection. Otherwise, Gλ acts
trivially on W for some λ. Since neither U0 or V0 is a Gλ-representation by
definition of a generalized Cartan decomposition, this causes a contradiction.

Since W = U0 ⊕ V0 can also be considered as a generalized Cartan de-
composition for (G,K), we see that{

ϱ(X) ∈ k̃, X ∈ k,

ϱ(ξ) ∈ m̃, ξ ∈ m,

and so,

σ̃ϱ(X) = ϱ(X), and σ̃ϱ(ξ) = −ϱ(ξ).

Since

ϱσ(X) = ϱ(X) = σ̃ϱ(X) for X ∈ k, and

ϱσ(ξ) = −ϱ(ξ) = σ̃ϱ(ξ) for ξ ∈ m,

we have

ϱσ = σ̃ϱ.(4.2)

It follows that any geodesic symmetry of G/K can be identified with that

of G̃/K̃ = Grp(W ) [8, p.224 Theorem 7.2]. □

If (ϱ,W ) is an orthogonal or a unitary representation of G, then the
composition ϱσ is also a representation of G, since σ is an automorphism of
G. Let (φ,W ′) be another G-representation. When ϱ and φ are equivalent
G-representations, we write ϱ ∼ φ or W ∼ W ′.

Corollary 4.7. Let (ϱ,W ) be an orthogonal or a unitary G-representation.
If W has a generalized Cartan decomposition for (G,K), then ϱσ ∼ ϱ as
G-representation.

Proof. From the definition of σ̃, (4.2) gives us ϱσ ∼ ϱ as representation. □
11



To classify all totally geodesic immersions of G/K into Grassmann man-
ifolds, we need to classify all representations of G which have a generalized
Cartan decomposition for (G,K) from Lemma 4.5 and Proposition 4.6.

We now suppose that f : G/K → Grp(W ) is a totally geodesic immersion.
Let W = U0 ⊕ V0 be the corresponding common generalized Cartan decom-
position for each (Gλ,Kλ). It may happen that W can be decomposed into
representation spaces of G in such a way that each of them has a common
generalized Cartan decomposition for an arbitrary (Gλ,Kλ). Suppose that

W = ⊕L
l=1Wl

is an orthogonal decomposition of W as G-representation such that

Wl = Ul0 ⊕ Vl0, Ul0 = Wl ∩ U0, Vl0 = Wl ∩ V0,

whereWl = Ul0⊕Vl0 is a common generalized Cartan decomposition for each
(Gλ,Kλ). According to the decomposition, f is decomposed into immersions
in an obvious way,

f =
(
f1, · · · , fL

)
: G/K → Grp1(W1)× · · · ×GrpL(WL) → Grp(W ),

where p = dimW − dimV0 and pl = dimWl − dimVl0. Since each subman-
ifold Grpl(Wl) (l = 1, · · · , L) of Grp(W ) is a totally geodesic submanifold,

each f l : G/K → Grpl(Wl) can be regarded as a totally geodesic immersion
into Grpl(Wl). In this case, f is said to be decomposable. If f is not a
decomposable mapping, then f is said to be indecomposable.

Hence we may focus our attention on full indecomposable totally geodesic
immersions with no trivial summand for classification. From Lemma 3.6, we
have

Lemma 4.8. Let f : G/K → Grp(W ) be a totally geodesic submanifold. If
W is an irreducible G-module, then f is a full indecomposable mapping with
no trivial summand.

However, in general, the eigenspaces of the Laplacian on homogeneous
vector bundles over G/K are not irreducible as G-module.

Definition 4.9. If f : G/K → Grp(W ) is a totally geodesic submanifold
and W is an irreducible G-module, then f : G/K → Grp(W ) is called a
totally geodesic submanifold of irreducible type.

We will classify all totally geodesic submanifolds of irreducible type.

4.2. The case where the target is a complex Grassmannian. Let W
be an irreducible unitary representation of G. Notice that we have W =
W1 ⊗W2 ⊗ · · · ⊗WΛ, where each Wλ is an irreducible representation of Gλ.

Definition 4.10. Let Wλ be an irreducible unitary representation of Gλ

for all λ = 1, · · · ,Λ and W = W1 ⊗ W2 ⊗ · · · ⊗ WΛ an irreducible unitary
representation of G = G1 × · · · ×GΛ. Then, W is called of complete type if
each Wλ is a non-trivial representation of Gλ.

Lemma 4.11. If f : G/K → Grp(W ) is a totally geodesic submanifold of
irreducible type, then W is an irreducible G-module of complete type.

12



Proof. From Lemma 4.5, W has a common generalized Cartan decomposi-
tion W = U0⊕V0 for each (Gλ,Kλ). If Wλ is a trivial representation of Gλ,
then U0 and V0 are also Gλ-modules, which contradicts the definition of the
generalized Cartan decomposition. □
Lemma 4.12. Let (ϱ = ϱ1 ⊗ · · · ⊗ ϱΛ,W ) and (ϱ′ = ϱ′1 ⊗ · · · ⊗ ϱ′Λ,W

′) be
irreducible representations of G. Then ϱ ∼ ϱ′ if and only if ϱλ ∼ ϱ′λ for each
λ = 1, · · · ,Λ.
Proof. We may take characters χϱ and χϱ′ of the G-representations, since
χϱ = χϱ1 · · ·χϱλ and χϱ′ = χϱ′1

· · ·χϱ′λ
. □

Theorem 4.13. Let (ϱ,W ) be an irreducible unitary representation of G
which is a simply-connected compact semi-simple Lie group. If ϱσ ∼ ϱ, then
W has a generalized Cartan decomposition for (G,K).

Proof. From the hypothesis, we have an automorphism C ∈ Aut(W ) satis-
fying ϱσ = CϱC−1. Since both representations preserve the Hermitian inner
product, we may assume that C∗ = C−1.

If C is a constant multiple of the identity transformation, then we have
ϱσ = ϱ. It yields that ϱ(ξ) = 0 for an arbitrary ξ ∈ m. However, since
G is semi-simple, the fact that k = [m,m] gives us ϱ = 0 and so we get a
contradiction.

Since σ is an involution, we have

ϱ(g) = ϱ (σσ(g)) = C (ϱσ(g))C−1 = C2ϱ(g)C−2.

Schur’s lemma yields that C2 = µIdW for some |µ| = 1, since C∗ = C−1.
Hence C is diagonalizable with

√
µ and −√

µ as eigenvalues. We denote by
U and V the eigenspaces of C with eigenvalues

√
µ and −√

µ, respectively.
For u ∈ U and k ∈ K, we have

Cϱ(k)u = Cϱσ(k)u = ϱ(k)Cu = ϱ(k) (
√
µu) =

√
µϱ(k)u.

This shows that ϱ(k)u ∈ U , and so U is a K-invariant subspace of W . In a
similar way, we deduce that V is also a K-invariant subspace of W .

Next, since C is a unitary automorphism of W , U is perpendicular to V .
Finally we claim

ϱ(m)U ⊂ V, ϱ(m)V ⊂ U.

To do this, notice that σ(ξ) = −ξ for ξ ∈ m. Then, for u ∈ U , we have
√
µϱ(ξ)u = ϱ(ξ)Cu = −ϱσ(ξ)Cu = −Cϱ(ξ)u.

It follows that ϱ(ξ)u ∈ V . The other claim is also shown in a similar way. □
Lemma 4.14. If an irreducible unitary representation W of G has a gen-
eralized Cartan decomposition for (G,K), then it is unique up to the order.

Proof. Suppose that W has two generalized Cartan decompositions. Corol-
lary 4.7 and Theorem 4.13 yield that we have two automorphisms C1 and
C2 of W such that

ϱσ = C1ϱC
−1
1 = C2ϱC

−1
2 .

It gives
C−1
2 C1ϱ = ϱC−1

2 C1.

Schur’s lemma yields C2 = λC1 (λ ∈ C\{0}) and so, the eigenspaces of C1

coincide with those of C2. □
13



Corollary 4.15. Let (ϱ,W ) be an irreducible unitary representation of G
satisfying ϱσ ∼ ϱ. Then we have that ϱσ = Ip,qϱIp,q, where Ip,q is defined in
(4.1) for the corresponding generalized Cartan decomposition W = U0 ⊕ V0

for (G,K).

Lemma 4.16. Let W = W1 ⊗ W2 ⊗ · · · ⊗ WΛ be an irreducible unitary
G-module of complete type. Then, W = U0 ⊕ V0 is the generalized Cartan
decomposition for (G,K) if and only if for any λ = 1, 2, · · · ,Λ, Wλ has the
generalized Cartan decomposition for (Gλ,Kλ).

Proof. Suppose that W = U0 ⊕ V0 is the generalized Cartan decomposition
for (G,K). It follows from Corollary 4.7 that ϱσ ∼ ϱ. We get ϱλσλ ∼ ϱλ
by lemma 4.12. From the completeness of W , Wλ is not a trivial repre-
sentation of Gλ. Theorem 4.13 yields that Wλ has the generalized Cartan
decomposition.

Conversely, we suppose thatWλ has the generalized Cartan decomposition
Wλ = Uλ ⊕ Vλ for all λ = 1, 2, · · · ,Λ. For example, in the case when Λ = 2,
we may put U0 = U1 ⊗ U2 ⊕ V1 ⊗ V2 and V0 = U1 ⊗ V2 ⊕ V1 ⊗ U2. We can
proceed in a successive way. □

Proposition 4.17. Let (G,K) be an irreducible symmetric pair of compact
type. If rankG = rankK, then all irreducible unitary representations of G
have the generalized Cartan decomposition.

Proof. Let (ϱ,W ) be an irreducible unitary representation of G and χϱ be the
character of (ϱ,W ). From the hypothesis, we can take a Cartan subalgebra
t of g in such a way that t ⊂ k ⊂ g. The corresponding maximal torus is
denoted by T and is contained in K. Hence all elements of T is fixed by the
standard involution σ. Consequently, we obtain

χϱσ(t) = χϱ(t), t ∈ T.

Since a character of a representation is completely determined by the re-
striction of a maximal torus, it follows that ϱσ ∼ ϱ. □

Lemma 4.18. Suppose that (G,K) is an irreducible symmetric pair of com-
pact type such that rankG = rankG/K. Then an irreducible unitary rep-
resentation ϱ of G has generalized Cartan decomposition if and only if the
dual representation of ϱ is equivalent to ϱ as representation.

Proof. The assumption allows us to take a Cartan subalgebra t of g in such
a way that t ⊂ m ⊂ g. On the corresponding maximal torus T , we have
χϱσ(t) = χϱ(t

−1). In general, χϱ(t
−1) = χϱ∗(t), where ϱ∗ is the dual repre-

sentation of ϱ. Corollary 4.7 and Theorem 4.13 yields the result. □

Remark. The proofs of Proposition 4.17 and Lemma 4.18 show that ϱ ∼ ϱ∗,
if rankG = rankK = rankG/K. Such irreducible symmetric spaces of
compact type are

Sp(n)/U(n), E7/SU(8), E8/SO(16), F4/Sp(3)SU(2), G2/SO(4).

Hence all unitary representations of Sp(n), E7, E8, F4 and G2 are self-
conjugate, (though it may be well-known).

14



Proposition 4.19. Suppose that (G,K) is an irreducible symmetric pair
of compact type such that rankG > rankK. Then an irreducible unitary
representation ϱ has the generalized Cartan decomposition if and only if the
dual representation of ϱ is equivalent to ϱ as representation.

Proof. It follows from [8, Theorem 5.6, p.424] that the standard involution
σ is an outer automorphism. Then, from [8, Theorem 5.4, p.423] and [8,
Theorem 3.29, p.478] with its proof, we see that σ induces a symmetry
on the Dynkin diagram with respect to a vertical axis for g = su(n) or e6
and that with respect to a horizontal axis for g = so(2n) (n 6= 4). In the
remaining two cases (G/K = S7 or Gr3(R

8)), we have g = so(8). Then the
standard representation C8 has the generalized Cartan decomposition for
both. Hence σ also induces a symmetry of the Dynkin diagram with respect
to a horizontal axis. Considering the induced action on the set of dominant
integral weights, we can deduce that ϱσ is a dual representation of ϱ. □

Remark. When rankG = rankK, [8, Theorem 5.6, p.424] provides us with
another proof of Proposition 4.17. In this case, the standard involution
is inner and so, the weights of an irreducible representation are preserved
under the action of σ. It follows that ϱσ is equivalent to ϱ.

Theorem 4.20. Let (ϱ,W ) be an irreducible unitary representation of G
which has the generalized Cartan decomposition W = U0 ⊕ V0 for (G,K)
with p = dimU0 and q = dimV0. The character of (ϱ,W ) is denoted by χϱ.
Then we have

(4.3)
(p− q)2

dimW
=

∫
G
χϱ

(
gσ(g−1)

)
dg,

where dg is the normalized Haar measure on G.

Proof. Since W has the generalized Cartan decomposition, Corollaries 4.7
and 4.15 yield that an automorphism Ip,q of W satisfies ϱσ = Ip,qϱIp,q.

Schur’s lemma yields that we have λ ∈ C such that

(4.4) λIW =

∫
G
ϱ(g)Ip,qϱ(g

−1)dg.

Taking the trace of both sides, we obtain

λ dimW = p− q.

It follows from ϱ(g)Ip,qϱ(g
−1) = ϱ

(
gσ(g−1)

)
Ip,q that∫

G
ϱ(g)Ip,qϱ(g

−1)dg =

∫
G
ϱ
(
gσ(g−1)

)
Ip,qdg =

∫
G
ϱ
(
gσ(g−1)

)
dgIp,q,

and (4.4) yields that

λIp,q =

∫
G
ϱ
(
gσ(g−1)

)
dg.

Taking the trace again, we obtain the result. □

Remark. The integral in Theorem 4.20 can be described as an integral on a
maximal torus T of the symmetric space G/K.

15



First of all, since the function χϱ

(
gσ(g−1)

)
is K-invariant, we have∫

G
χϱ

(
gσ(g−1)

)
dg = vol(K)

∫
G/K

i∗Cχϱ(x)dv,

where iC : G/K → G is the so-called Cartan embedding [g] → gσ(g−1) and
dv is the induced volume form on G/K. Since i∗Cχϱ(x) is invariant under
the isotropy action of K on G/K, we obtain∫

G/K
i∗Cχϱ(x)dv =

1

W (G/K)♯

∫
T
i∗Cχϱ(t)D(t)dt

=
1

W (G/K)♯

∫
T
χϱ(t

2)D(t)dt,

where W (G/K) is the Weyl group of G/K, D(t) is the so-called density
function [16, p.124] and dt is the induced volume form on a maximal torus
T of G/K.

Theorem 4.21. Let (G = G1×G2× · · ·×GΛ,K = K1×K2× · · ·×KΛ) be
a symmetric pair of compact type with the standard involution σ such that
(Gλ,Kλ) is an irreducible symmetric pair, where Gλ is a simply-connected
compact Lie group and Kλ is a connected subgroup of Gλ for λ = 1, · · · ,Λ.

If f : G/K → Grp(W ) is a totally geodesic submanifold of irreducible type
into a complex Grassmannian, then,
(i) in the case when rankG = rankK, W is an irreducible G-module of
complete type, or
(ii) in the case when rankG > rankK, W = W1 ⊗ W2 ⊗ · · · ⊗ WΛ is an
irreducible G-module of complete type such that the irreducible Gλ-module
Wλ is self-conjugate when rankGλ > rankKλ.

Conversely, let W = W1 ⊗ W2 ⊗ · · · ⊗ WΛ be an irreducible G-module
of complete type. When rankGλ > rankKλ, suppose further that the irre-
ducible Gλ-module Wλ is self-conjugate. Then W has the unique general-
ized Cartan decomposition W = U0 ⊕ V0 for (G,K) with p = dimU0 and
q = dimV0 and we have a totally geodesic submanifold f : G/K → Grp(W )
of irreducible type as the mapping induced by (V = G×K V0 → G/K,W ).

Under these conditions, p and q satisfy

(p− q)2

dimW
=

∫
G
χϱ

(
gσ(g−1)

)
dg,

where χϱ is the character of (ϱ,W ) and dg is the normalized Haar measure
on G.

Let SkC2 denote the k-th symmetric power of the standard representation
C2 of SU(2) and Cl an irreducible representation of U(1) with weight l.

Theorem 4.22. If f : CP 1 → Grp(S
kC2) is a totally geodesic immersion

of irreducible type, then we have

|p− q| =

{
0, k : odd

1, k : even
, q := k + 1− p.
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Proof. We consider the corresponding symmetric pair (SU(2),U(1)) to CP 1.
Let

SkC2 = Ck ⊕Ck−2 ⊕ · · · ⊕C−(k−2) ⊕C−k

be a weight decomposition with respect to U(1). Then m acts on Cl in
such a way that mCl ⊂ Cl+2 ⊕ Cl−2. To obtain the generalized Cartan
decomposition of SkC2 for (SU(2),U(1)), we may put

U0 = Ck ⊕Ck−4 ⊕ · · · , V0 = Ck−2 ⊕Ck−6 ⊕ · · · .

Theorem 4.21 yields the result. □

4.3. The case where the target is a real Grassmannian. In this sub-
section, suppose that a Riemannian symmetric pair (G,K) is irreducible.

Let WC be a unitary representation of G. We induce a Hermitian inner
product on W ∗

C, which is also a unitary representation of G. Then the direct

sum WC ⊕ W ∗
C denoted by W̃ has the induced Hermitian inner product

by WC and W ∗
C in such a way that WC is perpendicular to W ∗

C. Then

W̃ = WC ⊕W ∗
C is a unitary representation of G.

Definition 4.23. Let W̃ = U0 ⊕ V0 be a generalized Cartan decomposi-
tion. It is called a decomposition induced by WC if WC has the (complex)
generalized Cartan decomposition WC = U ′

0 ⊕ V ′
0 and so W ∗

C also has the
generalized Cartan decomposition W ∗

C = U ′′
0 ⊕ V ′′

0 such that

U0 = U ′
0 ⊕ U ′′

0 , V0 = V ′
0 ⊕ V ′′

0 .

Lemma 4.24. Let WC be an irreducible unitary representation of G and
WC ⊕ W ∗

C is denoted by W̃ . Suppose that W̃ = U0 ⊕ V0 is a generalized
Cartan decomposition for (G,K).

(i) If U0 ∩WC 6= {0}, then it is a decomposition induced by WC.

(ii) If W̃ = U0 ⊕ V0 is not a decomposition induced by WC, then, U0, V0,
WC and W ∗

C are equivalent K-representations.

Proof. (i) Let U1 := U0∩WC 6= {0}. Since both U0 and WC are K-modules,
so is U1. Since WC is an irreducible G-representation, mU1 6= {0} ⊂ WC.
By the definition of generalized Cartan decomposition, mU1 ⊂ V0. Thus we
have mU1 ⊂ WC ∩ V0 and V1 := WC ∩ V0 6= {0}. For the same reason,
m2U1 ⊂ WC ∩ U0 = U1. Eventually we have m2lU1 ⊂ U1 and m2l+1U1 ⊂ V1

(l ∈ Z≧0) and can deduce that U1⊕V1 is a G-representation. It follows from
the irreducibility of WC that WC has a generalized Cartan decomposition
WC = U1 ⊕ V1.

Next we take the orthogonal complements U⊥
1 of U1 in U0 and V ⊥

1 of V1 in
V0. Since U⊥

1 (⊂ U0) ⊥ V0, we have U⊥
1 ⊥ V1. It follows from U⊥

1 ⊥ U1 ⊕ V1

that U⊥
1 ⊂ W ∗

C. In a similar way, V ⊥
1 ⊂ W ∗

C. Consequently, W
∗
C also has a

generalized Cartan decomposition W ∗
C = U⊥

1 ⊕ V ⊥
1 .

Since U0 = U1 ⊕ U⊥
1 and V0 = V1 ⊕ V ⊥

1 , W̃ = U0 ⊕ V0 is an induced
decomposition.

(ii) Suppose that W̃ = U0 ⊕ V0 is not a decomposition induced by WC.
From (i), we have that

U0 ∩WC = {0}, U0 ∩W ∗
C = {0}, V0 ∩WC = {0}, V0 ∩W ∗

C = {0}.
17



Let π1 : W̃ → WC and π2 : W̃ → W ∗
C be the orthogonal projections,

respectively. Notice that πi(i = 1, 2) are G-equivariant homomorphisms.
Hence, πi|U0 : U0 → WC or W ∗

C and πi|V0 : V0 → WC or W ∗
C are injective

homomorphisms. In particular, dimU0 ≦ dimWC and dimV0 ≦ dimWC.
However, dimU0 + dimV0 = 2dimWC by definition and the equalities hold.
Consequently, π1|U0 : U0 → WC and π2|U0 : U0 → W ∗

C are K-equivariant
isomorphisms. □

From now on, we assume that W is an orthogonal G-module. The com-
plexification of a real vector space W is denoted by WC. Obviously, we
have

Lemma 4.25. If W = U0 ⊕ V0 is a real generalized Cartan decomposition,
then WC has a complex generalized Cartan decomposition WC = UC

0 ⊕V C
0 .

Lemma 4.26. Let W be an irreducible orthogonal G-representation. If WC

is an irreducible unitary G-module, then
(i) we have a totally geodesic and totally real submanifold Grp(W ) of

a complex Grassmannian Grp(W
C) and a totally geodesic immersion f :

G/K → Grp(W ), where p satisfies (4.3) or
(ii) we have a totally geodesic submanifold f : G/K → GrN (WC), where

dimWC = 2N and the image of f is not contained in any totally real sub-
manifold GrN (W ) of GrN (WC). Moreover, W has a K-invariant complex
structure and WC = W1,0 ⊕ W0,1 is the generalized Cartan decomposition
induced by f .

Proof. Since WC is the complexification of W , WC has a G-invariant real
structure denoted by r and we have a totally geodesic and totally real sub-
manifold Grp(W ) of a complex Grassmannian Grp(W

C) for an arbitrary

p such that 1 ≦ p ≦ dimW . The real structure gives WC ∼ WC∗
as G-

representation. It follows from Propositions 4.17 and 4.19 that WC has the
complex generalized Cartan decomposition WC = UC

0 ⊕ V C
0 and dimUC

0

can be computed by the dimension formula (4.3).
Since r is an invariant real structure, we get a complex generalized Cartan

decomposition r(WC) = WC = r(UC
0 ) ⊕ r(V C

0 ). From Lemma 4.14, the
complex generalized Cartan decomposition of WC is unique up to the order.
The uniqueness yields that r(UC

0 ) = UC
0 or r(UC

0 ) = V C
0 .

If r(UC
0 ) = UC

0 and so, r(V C
0 ) = V C

0 , then the real structure gives us a
real generalized Cartan decomposition W = U0 ⊕ V0. The real generalized
Cartan decomposition W = U0 ⊕ V0 yields a totally geodesic immersion
f : G/K → Grp(W ) as the induced mapping from Proposition 4.6, where
p = dimU0.

If r(UC
0 ) = V C

0 , then dimUC
0 = dimV C

0 and we have W = {u+ r(u)|u ∈
UC
0 } = {v + r(v)|v ∈ V C

0 }. Since r respects the Hermitian inner product h

(which means that h(r(w1), r(w2)) = h(w1, w2)), W is perpendicular to the
set

√
−1W = {u − r(u)|u ∈ UC

0 } = {v − r(v)|v ∈ V C
0 } with respect to the

inner product Re h on WC. Consequently, the real isomorphism UC
0 → W

given by u 7→ u+ r(u) provides us with a K-invarinat complex structure of
W , and thus UC

0 = W1,0. The complex generalized Cartan decomposition
of WC yields a totally geodesic immersion f : G/K → GrN (WC), where
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N = dimUC
0 . If W has a real generalized Cartan decomposition, then the

complexification gives a complex generalized Cartan decomposition of WC,
which is WC = UC

0 ⊕ V C
0 by the uniqueness of the complex generalized

Cartan decomposition (Lemma 4.14). However we have already seen that
UC
0 ∩ W = {0}, which is a contradiction. Hence f(G/K) is not contained

in any totally real submanifold GrN (W ). □
Suppose that W is an irreducible orthogonal G-module and WC is not

irreducible. This means that W has a G-invariant complex structure J and
WC = W1,0 ⊕W0,1 is a G-irreducible decomposition.

Lemma 4.27. Let W be an irreducible orthogonal G-module. We suppose
that WC is not irreducible. If W has a real generalized Cartan decomposition
W = U0 ⊕ V0, then U0 is a complex subspace of W or U0 ∩ JU0 = {0}.

Proof. Let U1 = U0∩JU0. Since the complex structure J is alsoK-invariant,
U1 is a complex K-module. By the definition of a generalized Cartan de-
composition, V1 = mU1 is contained in V0. Since J is G-invariant and U1 is
a complex subspace, V1 is also a complex subspace.

We claim that mV1 ⊂ U1. Otherwise, the generating subspace over R by
U1 and mV1 is again a complex subspace and sits in U0. It contradicts the
definition of U1.

Hence, U1 ⊕ V1 is a G-module, and the irreducibility of W yields that
U1 ⊕ V1 = W or U1 ⊕ V1 = {0}, in other words, U1 = U0 or U1 = {0}. □
Lemma 4.28. Let W = U0 ⊕ V0 = U ′

0 ⊕ V ′
0 be two real generalized Car-

tan decompositions of an irreducible orthogonal G-module W . Then U ′
0 is

equivalent to U0 or V0 and V ′
0 is equivalent to U0 or V0 as K-modules.

Proof. We put U1 = U0 ∩ U ′
0 which is a K-representation. Let V1 = mU1.

It follows from the definition of a generalized Cartan decomposition that
V1 ⊂ V0∩V ′

0 . In a similar way, we obtain mV1 ⊂ U0∩U ′
0, and so, mV1 ⊂ U1.

This yields that U1⊕V1 is a G-representation. The irreducibility of W gives
U1 ⊕ V1 = {0} or U1 ⊕ V1 = W .

If U1 ⊕ V1 = W , then U1 = U0 = U ′
0 and V1 = V0 = V ′

0 .
We can change the roles of U0 and V0 to get (U0 ∩ V ′

0)⊕ (V0 ∩ U ′
0) = {0}

or (U0 ∩ V ′
0)⊕ (V0 ∩ U ′

0) = W . The latter condition yields that U0 = V ′
0 and

V0 = U ′
0.

From now on, we suppose that

(4.5) U0 ∩ U ′
0 = {0}, U0 ∩ V ′

0 = {0}, V0 ∩ U ′
0 = {0}, V0 ∩ V ′

0 = {0}.
In addition, assume that dimU0 ≦ dimV0. Let π1 : W → U0 and π2 :
W → V0 be the orthogonal projections, which are K-equivariant. From
(4.5), we have that π1|U ′

0
: U ′

0 → U0 and π1|V ′
0
: V ′

0 → U0 are injective
K-equivariant homomorphisms. Then a dimension count gives dimU0 =
dimV0 = dimU ′

0 = dimV ′
0 , and so, π1|U ′

0
and π1|V ′

0
are K-equivariant iso-

morphisms.
A similar method yields that π2|U ′

0
and π2|V ′

0
are K-equivariant isomor-

phisms and thereby our claim is proved. □
For a complex vector space W , WR denotes the underlying real vector

space of W .
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Lemma 4.29. Let W be an irreducible unitary G-module with no invariant
real structure. Then W has a complex generalized Cartan decomposition if
and only if WR has a real generalized Cartan decomposition WR = U0 ⊕ V0

with U0 being a complex subspace of (WR, J). Under these conditions, it is
a unique real generalized Cartan decomposition of WR up to isomorphism.

Proof. Let W = U0 ⊕ V0 be a complex generalized Cartan decomposition.
We can regard it as a real generalized Cartan decomposition. Since WR is
irreducible as real G-module from the assumption, Lemma 4.28 yields that
it is a unique real generalized Cartan decomposition up to isomorphism.

Conversely, if WR = U0 ⊕ V0 is a real generalized Cartan decomposition
with U0 being a complex subspace of (W,J), then V0 is also a complex
subspace. Since the complex structure is invariant, W = U0 ⊕ V0 can be
regarded as a complex generalized Cartan decomposition. □
Lemma 4.30. We suppose that W is an irreducible unitary G-module with
no invariant real structure. Then W has a complex generalized Cartan de-
composition W = U0 ⊕ V0 with p = dimU0 if and only if we have a natural
inclusion of Grp(W ) into a real Grassmannian Gr2p(W

R) and a totally ge-
odesic immersion f : G/K → Grp(W ) → Gr2p(W

R). Under the conditions,
p satisfies the dimension formula (4.3).

Proof. The complex generalized Cartan decomposition can also be regarded
as the unique real generalized Cartan decomposition (Lemma 4.29). Lemma
4.5 and Proposition 4.6 yield the result. The uniqueness of a complex gen-
eralized Cartan decomposition (Lemma 4.14) gives the value of p. □
Remark. A totally geodesic immersion into a real Grassmann manifold f :
G/K → Grp(W ) → Gr2p(W

R) in Lemma 4.30 is called a trivial extension of
a totally geodesic immersion into a complex Grassmannian G/K → Grp(W )
(to a real Grassmannian).

It follows from Proposition 4.17 that every irreducible unitary G-module
has a unique complex generalized Cartan decomposition, if rankG = rankK.

In the case when rankG > rankK, an irreducible unitary representation
W has a generalized Cartan decomposition if and only if W ∼ W ∗ as repre-
sentation, in other words, W has a real structure or a quaternion structure
(Proposition 4.19).

In these cases, Lemmas 4.26, 4.28 and 4.30 yield that we have no essen-
tially new totally geodesic immersion, when we regard a unitary represen-
tation as orthogonal one.

However, we need to take account of the case where a complex irreducible
representation W is not equivalent to W ∗ as representation, when rankG >
rankK.

Lemma 4.31. Let (G,K) be a symmetric pair of compact type satisfying
rankG > rankK and W an irreducible unitary representation of G with an
invariant complex structure J such that W 6∼ W ∗ as G-module. We denote
by r the induced invariant real structure on the complexification WC of W .

Then W has a real generalized Cartan decomposition W = U0⊕V0 or WC

has a complex generalized Cartan decomposition WC = U0 ⊕ V0 satisfying
JU0 = V0, JV0 = U0, rU0 = V0 and rV0 = U0, if and only if W has
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a K-invariant real or quaternion structure compatible with the Hermitian
inner product on W . Moreover, under these conditions, we have dimCW =
dimR U0 = dimR V0 in the case when W = U0⊕V0, or dimCW = dimC U0 =
dimC V0 in the case when WC = U0 ⊕ V0.

Proof. Suppose that W has a real generalized Cartan decomposition W =
U0 ⊕ V0 and hence the complexification gives a complex generalized Cartan
decomposition WC = UC

0 ⊕ V C
0 . The hypothesis W 6∼ W ∗ and Proposition

4.19 yield that W has no complex generalized Cartan decomposition. Thus
the complex generalized Cartan decomposition of WC is not the decomposi-
tion induced by W . Since W is a unitary representation, WC = W ⊕W ∗ as
G-module. Then it follows from Lemma 4.24 that W , W ∗, UC

0 and V C
0 are

all equivalent unitary representations of K. Since UC
0 is a complexification

of U0, W ∼ UC
0 provides us with a K-invariant real structure on W .

Next, suppose that WC has a complex generalized Cartan decomposition
WC = U0 ⊕ V0 satisfying JU0 = V0, JV0 = U0, rU0 = V0 and rV0 = U0.
In a similar way, we conclude that WC = U0 ⊕ V0 is not the induced de-
composition and W , W ∗, U0 and V0 are all equivalent unitary representa-
tions of K. We define a complex linear automorphism j : WC → WC as
j|U0 =

√
−1IdU0 and j|V0 = −

√
−1IdV0 . We immediately have j2 = −1 and

j is K-invariant.
If u ∈ U0, then Ju ∈ V0 from JU0 = V0, and we see that

jJu = −
√
−1Ju = −J(

√
−1u) = −Jju.

We also have that jJv = −Jjv for v ∈ V0 and hence jJ = −Jj.
Under the same notation, it follows from rU0 = V0 and rV0 = U0 that

jr(u) = −
√
−1r(u) = r(

√
−1u) = rj(u)

and jr(v) = rj(v). Consequently, j can be restricted to W as a K-invariant
quaternion structure on W .

Conversely, suppose that W has a K-invariant real structure rK compat-
ible with the Hermitian inner product on W . We have already seen that ϱσ
is equivalent to ϱ∗, where ϱ : G → AutW is a representation (see a proof
of Proposition 4.19). Let h be a G-invariant Hermitian inner product on
W . Using h and rK , we identify W with W ∗ as w 7→ ϕw = h(·, rK(w)) ∈
W ∗ for w ∈ W , which provides us with W ∼ W ∗ as K-modules. Then
we can construct an equivalent representation of G on W ∗ to (ϱσ,W ) as
ϱσ(g)ϕw = ϕϱσ(g)w = h(·, rKϱσ(g)w). On the other hand, it follows from

the definition of contravariant representation that ϱ∗(g)ϕw = ϕw(ϱ(g
−1)·) =

h(ϱ(g−1)·, rKw) = h(·, ϱ(g)rKw). Since ϱσ ∼ ϱ∗, there may exist a unitary
transformation C ∈ U(W ) such that rKϱσrK = CϱC−1 without loss of gen-
erality. If k ∈ K, then Cϱ(k)C−1 = rKϱσ(k)rK = rKϱ(k)rK = ϱ(k) and
thus C is K-equivariant. It follows from σ2 = 1 that rKϱrK = CϱσC−1 and

(rKC)2ϱ(rKC)−2 = rKCrKCϱC−1rKC−1rK = rKCϱσC−1rK = ϱ.

Schur’s lemma yields that (rKC)2 = µId for some constant µ ∈ C.
Since rK respects a Hermitian inner product, we have

h
(
(rKC)2w1, (rKC)2w2

)
= h (CrKCw1, CrKCw2)

=h (rKCw1, rKCw2) = h (Cw1, Cw2) = h(w1, w2).
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We get |µ|2 = 1.
We use rKC = µC−1rK to obtain

µId = (rKC)(µC−1rK) = µrKCC−1rK = µId.

Consequently, we have

(rKC)2 = ±Id.

If (rKC)2 = Id, and so rKC is a K-invariant real structure on W , then
we can put

U0 := {w ∈ W |rKC(w) = w} , V0 := {w ∈ W |rKC(w) = −w} ,

because rKC 6= Id, otherwise we get a contradiction ϱσ = ϱ. Since an
inner product on W is given as the real part of h and rK respects h, U0 is
perpendicular to V0. If ξ ∈ m and u ∈ U0, then

ϱ(ξ)u = −ϱ(σ(ξ))rKC(u) = −rKCϱ(ξ)u,

and so, ϱ(ξ)u ∈ V0. In a similar way, we obtain ϱ(ξ)v ∈ U0 for arbitrary
ξ ∈ m and v ∈ V0. Consequently, W = U0 ⊕ V0 is a real generalized Cartan
decomposition.

If (rKC)2 = −Id, in other words, j = rKC defines a quaternion structure
on W , then j can be extended as complex linear transformation on WC.
We can put

U0 :=
{
w ∈ WC|j(w) =

√
−1w

}
, V0 :=

{
w ∈ WC|j(w) = −

√
−1w

}
.

Since h can be extended to obtain a Hermitian inner product on WC and
rK respects h, U0 is perpendicular to V0. If ξ ∈ m and u ∈ U0, then

jϱ(ξ)u = −ϱ(ξ)rKC(u) = −ϱ(ξ)
√
−1u = −

√
−1ϱ(ξ)u,

and so, ϱ(ξ)u ∈ V0. In a similar way, we obtain ϱ(ξ)v ∈ U0 for arbitrary
ξ ∈ m and v ∈ V0. Consequently, WC = U0 ⊕ V0 is a complex generalized
Cartan decomposition, which is not an induced decomposition. It is easily
shown that JU0 = V0, JV0 = U0, rU0 = V0, and rU0 = V0.

Finally suppose that W has a K-invariant quaternion structure j com-
patible with the Hermitian inner product on W . In a similar way, we have
jϱσj−1 = CϱC−1 for some C ∈ U(W ) and (j−1C)2 = Id or (j−1C)2 = −Id.

The proof goes through word-for-word, if we replace rK by j−1. If j−1C
defines a K-invariant real structure on W , then we obtain a real generalized
Cartan decomposition of W .

If j−1C defines a K-invariant quaternion structure on W , then we obtain
a complex generalized Cartan decomposition of WC, which is not an induced
decomposition. It is now clear that JU0 = V0, JV0 = U0, rU0 = V0, and
rU0 = V0. □

Theorem 4.32. Let (G,K) be an irreducible Riemannian symmetric pair
of compact type and W an irreducible orthogonal representation of G.

(i) If W has no G-invariant complex structure, then
(i-a) we have a totally geodesic and totally real submanifold Grp(W ) of

Grp(W
C) and a totally geodesic immersion f : G/K → Grp(W ), where p

satisfies the dimension formula (4.3) for WC, or
22



(i-b) we have a totally geodesic submanifold f : G/K → GrN (WC), where
dimWC = 2N and the image of f is not contained in any totally real sub-
manifold GrN (W ) of GrN (WC). In this case, W has a K-invariant complex
structure.

(ii) Suppose that W has a G-invariant complex structure J and so, (W,J)
is a unitary N -dimensional representation of G.

(ii-a) If rankG = rankK, or W ∼ W ∗ in the case where rankG >
rankK, then we have a totally geodesic immersion f : G/K → Gr2p(W )
which is a trivial extension of the totally geodesic immersion induced by the
complex generalized Cartan decomposition of (W,J) to a real Grassmannian
Gr2p(W ), where p satisfies the dimension formula (4.3) for (W,J). When
rankG > rankK, W has a G-invariant quaternion structure,

(ii-b) If rankG > rankK and W 6∼ W ∗, then W has a K-invariant real
or quaternion structure compatible with the Hermitian inner product on W .
Moreover,

(ii-b-1) we have a totally geodesic immersion f : G/K → GrN (W ), or
(ii-b-2) we have a trivial extension of a totally geodesic immersion f :

G/K → GrN (WC) induced by the complex generalized Cartan decomposition
WC = W1,0 ⊕W0,1 to a real Grassmannian Gr2N (W ⊕W ).

Conversely, let f : G/K → Grp(W ) be a totally geodesic immersion into
a real Grassmannian of irreducible type.

If rankG = rankK, then it is one of the two cases (i-a) and (ii-a) up to
isometry of a real Grassmannian.

If rankG > rankK, then it is one of the three cases (i-a), (ii-a) and
(ii-b-1) up to isometry of a real Grassmannian.

Proof. In the case (i), we may apply Lemma 4.26. For (ii), Lemma 4.30
yield the result (ii-a). When W has a G-invariant complex structure J
and W ∼ W ∗ in the case where rankG > rankK, W has a G-invariant
quaternion structure, since W is an irreducible orthogonal representation.
If W 6∼ W ∗, then Lemma 4.31 yields the result. Lemmas 4.14 and 4.28
assures the uniqueness. □

5. Examples

In this section, we suppose that (G,K) is an irreducible Riemannian sym-
metric pair of compact type, where G is a simply-connected compact simple
Lie group and K is a connected subgroup of G.

Theorem 5.1. Suppose that W is an irreducible unitary representation of
G such that W = U0 ⊕ V0 as unitary K-module, where both U0 and V0 are
irreducible K-representations.

Then W = U0 ⊕ V0 is the complex generalized Cartan decomposition, if
(i) rankG = rankK or (ii) rankG 6= rankK and W ∼ W ∗ as G-module.

Proof. In both cases,W has a generalized Cartan decomposition from Propo-
sitions 4.17 and 4.19. The uniqueness of the decomposition (Lemma 4.14)
gives the result. □
Theorem 5.2. Suppose that W is an irreducible orthogonal representation
of G such that W = U0⊕V0 as orthogonal K-module, where both U0 and V0

are irreducible K-modules.
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Then W = U0 ⊕ V0 is a real generalized Cartan decomposition, if
(i) the complexification WC is an irreducible G-module and UC

0 and V C
0 are

irreducible K-modules,
(ii) rankG = rankK and W has a G-invariant complex structure,
(iii) rankG 6= rankK, W has a G-invariant complex structure and W ∼ W ∗

as unitary G-representation, or
(iv) rankG 6= rankK, W has a G-invariant complex structure such that
W 6∼ W ∗ as unitary G-representation, and W has a K-invariant real struc-
ture and no K-invariant quaternion structure.

Proof. In case of (i), we have that WC ∼ WC∗
as G-module. It follows

from Propositions 4.17 and 4.19 that WC has a complex generalized Cartan
decomposition. The uniqueness (Lemma 4.14) yields the result.

In cases of (ii) and (iii), W has a unique complex generalized Cartan
decomposition W = U1⊕V1. If U1 or V1 has a K-invariant real structure or
is not irreducible as complex K-module, then W has at least 3 irreducible
real K-modules, which is a contradiction. Hence we have U1 = U0 and
V1 = V0.

In the final case, Lemma 4.31 and its proof imply that W has a real gener-
alized Cartan decomposition W = U1 ⊕ V1 such that dimCW = dimR U1 =
dimR V1. Lemma 4.28 gives the result. □
Example. We take a quaternion projective space HPn = Sp(n+1)/Sp(1)×
Sp(n) and a complex irreducible representation space C2n+2 of Sp(n+1). As
Sp(1)×Sp(n)-representations, we have C2n+2 = C2⊕C2n or R4n+4 = R4⊕
R4n. These are generalized Cartan decompositions from Theorems 5.1 and
5.2. Theorems 4.21 and 4.32 imply that HPn → Gr2(C

2n+2) → Gr4(R
4n+4)

is a totally geodesic embedding.
This example can be generalized to compact quaternion symmetric spaces.

In this context, C2n+2 can be considered as a space of twistor sections of an
associated vector bundle with C2 (see [12]).

For example, we take a compact quaternion symmetric space G2/SO(4)
and a real irreducible representation R7 of G2. There exists a decomposi-
tion R7 = R3 ⊕ R4. We can use Theorem 5.2 to deduce that it is a gen-
eralized Cartan decomposition. We obtain a totally geodesic submanifold
G2/SO(4) → Gr4(R

7) (see also [12]).

Example. Let us consider a Hermitian symmetric space Sp(n)/U(n). We
pick an irreducible representation C2n of Sp(n). We have a decomposition
C2n = Cn⊕Cn∗

as a U(n)-module. Theorems 5.1 and 5.2 yields that it is a
generalized Cartan decomposition. We obtain a totally geodesic submanifold
Sp(n)/U(n) → Grn(C

2n) → Gr2n(R
4n).

Example. We take a compact symmetric space SU(n)/SO(n) and an ir-
reducible representation Cn of SU(n). We have a decomposition Cn =
Rn⊕Rn as real SO(n)-module. Since Cn has an SO(n)-invariant real struc-
ture and no SO(n)-invariant quaternion structure, Theorem 5.2 implies that
Cn = Rn⊕Rn is a real generalized Cartan decomposition. Hence we obtain
a totally geodesic submanifold SU(n)/SO(n) → Grn(R

2n).

Finally, we give a totally geodesic submanifold of non-irreducible type,
which is indecomposable.
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Example. We take a compact symmetric space SU(2n)/Sp(n) and irreducible
representations C2n and C2n∗

of SU(2n). We put W = C2n ⊕ C2n∗
with

the induced Hermitian inner product. As Sp(n)-module, C2n is equivalent
to C2n∗

, because of the symplectic form ω on C2n.
To be more precise, let h be an invariant Hermitian product and j :

C2n → C2n the quaternion structure such that ω(u, v) = −h(u, jv). As
usual, su(2n) = sp(n) ⊕ m denotes the orthogonal decomposition. Since
the standard involution is given by σ(g) = jgj−1 for g ∈ SU(2n), we have
jξ = −ξj for an arbitrary ξ ∈ m.

We define

U0 =
{
(u, ω(·, u)) ∈ W |u ∈ C2n

}
V0 =

{
(u,−ω(·, u)) ∈ W |u ∈ C2n

}
.

Then it is clear that U0⊥V0.
We claim that W = U0 ⊕ V0 is a complex generalized Cartan decomposi-

tion. Indeed, for an arbitrary ξ ∈ m, we have

ξ (u, ω(·, u)) = (ξu,−h(−ξ·, ju)) = (ξu,−h(·, ξju))
= (ξu, h(·, jξu)) = (ξu,−ω(·, ξu)) ,

which shows that mU0 ⊂ V0. In the same way, we have mV0 ⊂ U0. Conse-
quently, we get a totally geodesic submanifold SU(2n)/Sp(n) → Gr2n(C

4n).
Since W = (C2n)C and C2n has an Sp(n)-invariant quaternion structure,

this example is also interpreted by Theorem 4.32.

5.1. The complex projective line. We use the same notation as in The-
orem 4.22. Let O(k) = SU(2) ×U(1) C−k be a homogeneous line bundle
associated with C−k, k ∈ Z. Since an irreducible unitary representation
space S2kC2 has an invariant real structure, we can take an irreducible or-
thogonal representation as the invariant real subspace of S2kC2 denoted by
SkC2

R.
Then from [14] and [16], we have

Theorem 5.3. We have a decomposition of Γ(O(k)) in the L2-sense:

Γ(O(k)) =

∞∑
l=0

S|k|+2lC2.

Moreover, S|k|+2lC2 is an eigenspace of the Laplacian induced by the canon-
ical connection with an eigenvalue |k| + 2l(|k| + l + 1). In particular, each
eigenspace of the Laplacian is an irreducible SU(2)-module.

Theorem 5.4. If f : CP 1 → Grp(W ) is a full indecomposable totally geo-
desic submanifold with no trivial summand into a complex Grassmann man-
ifold, then we have W = SkC2 for some k ∈ Z≧1 and

p =

{
l, if k = 2l − 1

l or l + 1, if k = 2l.
(5.1)

Moreover, if k is even, say 2l, then we have a totally real submanifold
Grp(S

2lC2
R) of Grp(S

2lC2) and f can be considered as a full indecomposable
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totally geodesic submanifold with no trivial summand into a real Grassman-
nian Grp(S

2lC2
R).

Conversely, for any irreducible unitary representation SkC2 of SU(2), we
can construct a totally geodesic submanifold of irreducible type f : CP 1 →
Grp(S

kC2), where p is determined by (5.1).

Proof. Let f : CP 1 → Grp(W ) be a full indecomposable totally geodesic
submanifold with no trivial summand into a complex Grassmannian mani-
fold. Theorem 2.10 yields that the pull-back of the universal quotient bun-
dle is decomposed into an orthogonal direct sum of line bundles with the
canonical connections: f∗Q = O(k1) ⊕ · · · ⊕ O(kq). From Lemma 3.5, the
corresponding K-module denoted by V0 = C−k1⊕· · ·⊕C−kq can be regarded
as a K-submodule of W . Let su(2) = u(1)⊕m be the orthogonal decompo-
sition of the corresponding Riemannian symmetric pair (SU(2),U(1)). We
denote by W1 the SU(2)-module generated by C−k1 in W . Since f is a full
map with no trivial summand, W1 is not a trivial representation of SU(2).
From the definition of generalized Cartan decomposition, ⊕sm

2sC−k1 is a
subspace of V0. Suppose that ⊕sm

2sC−k1 is a proper subspace of V0. This
means that there exists j = 1, · · · , q such that C−kj⊥ ⊕s m

2sC−k1 . Thus
the SU(2)-submodule generated by C−kj is perpendicular to W1. Then we
deduce that f is decomposable or have a trivial summand, which is a con-
tradiction. Hence we have that W = W1.

Next, using Theorem 2.10 again, we deduce that W is an eigenspace of
the Laplacian acting on Γ(O(k1)). Theorem 5.3 yields that each irreducible

representation S|k1|+2lC2 (l ∈ Z≧0) appears exactly once in the spectral
decomposition of Γ(O(k1)). Consequently, we can deduce that W = W1 =
SkC2 for a suitable k > 0.

Since S2lC2
R has no U(1)-invariant complex structure, the result follows

from Theorems 4.21, 4.22 and 4.32. □
When we regard a unitary representation SkC2 as an orthogonal repre-

sentation, it is denoted by SkC2R .

Theorem 5.5. If f : CP 1 → Grp(W ) is a full indecomposable totally geo-
desic submanifold with no trivial summand into a real Grassmann manifold,
then we have
(i)W = S2kC2

R for some k ∈ Z≧1 and p = k or k + 1, or

(ii) W = S2k−1C2R, p = 2k and f is a trivial extension of CP 1 →
Grk(S

2k−1C2) to a real Grassmannian Gr2k(S
2k−1C2R).

Conversely, for any irreducible orthogonal representation S2kC2
R of SU(2),

we can construct a totally geodesic submanifold of irreducible type f : CP 1 →
Grp(S

2kC2
R), where p = k or k + 1.

Proof. Suppose that f : CP 1 → Grp(W ) is a full indecomposable to-
tally geodesic submanifold with no trivial summand into a real Grassmann
manifold. We consider a composition of f and a totally real submanifold
i : Grp(W ) → Grp(W

C), which is denoted by f̃ = i ◦ f : CP 1 → Grp(W
C).

Then f̃ is a full totally geodesic submanifold with no trivial summand of
Grp(W

C). Let f̃ = (f1, · · · , fL) : CP 1 → Grp1(W1) × · · · × GrpL(WL) be
a decomposition into indecomposable mappings. Theorem 5.4 implies that
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each G-representation Wl is an irreducible submodule of WC. Since the
real structure r of WC with respect to W is G-invariant, r(W1) is also an
irreducible G-module. Hence we can assume that r(W1) = W1 or r(W1) =
W2. The indecomposability of f yields that WC = W1 if r(W1) = W1 or
WC = W1 ⊕W2 if r(W1) = W2.

If WC = W1, then WC has an invariant real structure and so, W =
S2kC2

R. Since S
2kC2

R has no K-invariant complex structure, Theorems 4.22
and 4.32 imply that p = k or k + 1.

When WC = W1 ⊕ W2 and r(W1) = W2, we can conclude that W has
an invariant complex structure such that W1,0 = W1. Then W has a unique
complex generalized Cartan decomposition from Proposition 4.17 and so,
fi : CP 1 → Grpi(Wi), (i = 1, 2) is uniquely determined. Since i ◦ f =
(f1, f2), f2(x) = rf1(x) for any x ∈ CP 1, where fi(x) is now regarded as a
subspace of Wi. This means that we can identify f : CP 1 → Grp(W ) with
f1 : CP 1 → Grp1(W1). Consequently, f is a trivial extension of f1 and it
follows that p = 2p1, where p1 is determined in Theorem 4.22.

But in the case when W = S2kC2, we have already seen that the image
of f1 : CP 1 → Grk(S

2kC2) is in a totally real Grassmannian Grk(S
2kC2

R)

of Grk(S
2kC2). Hence f is considered as a composition:

CP 1 → Grk(S
2kC2

R) → Grk(S
2kC2) → Gr2k(S

2kC2R).

However, the imaginary part
√
−1S2kC2

R of S2kC2R gives only a zero sec-
tion, which contradicts the assumption that f is a full map. It follows that
W = S2k−1C2.

Now the converse implication follows from Theorem 4.32. □

5.2. Compact Lie groups. We assume that G is a simply-connected com-
pact simple Lie group in this subsection. For G-representations (ϱi,Wi),(i =
1, 2), we define a representation (ϱ,W1 ⊗W2) of G×G as

ϱ(g, h)(w1 ⊗ w2) = (ϱ1(g)w1)⊗ (ϱ2(h)w2), g, h ∈ G, wi ∈ Wi.

The representation (ϱ,W1 ⊗W2) is denoted by (ϱ1 ⊠ ϱ2,W1 ⊠W2).
First of all, we consider a totally geodesic immersion into a complex Grass-

mannian of irreducible type.

Lemma 5.6. We regard G as a symmetric space with a symmetric pair
(G × G,G). Let ϱ = ϱ1 ⊠ ϱ2 be an irreducible unitary representation of
G×G, where ϱ1 and ϱ2 are irreducible unitary representations of G. Then
ϱ has a generalized Cartan decomposition if and only if ϱ1 ∼ ϱ2.

Proof. In this case, σ(g, h) = (h, g), where σ is the corresponding standard
involution of G × G. Hence we have ϱσ(g, h) = ϱ1(h) ⊠ ϱ2(g). The result
follows from Corollary 4.7 and Theorem 4.13. □

Theorem 5.7. If W is an irreducible unitary representation of G, then W⊠
W = S2W ⊕ ∧2W is the generalized Cartan decomposition for (G×G,G).
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Proof. Let ϱ : G×G → Aut (W ⊠W ) be a representation. For w1, w2 ∈ W
and X ∈ g, we have

2ϱ(X,−X)(w1 · w2) = ϱ(X,−X)(w1 ⊗ w2 + w2 ⊗ w1)

=ϱ(X)w1 ⊗ w2 − w1 ⊗ ϱ(X)w2 + ϱ(X)w2 ⊗ w1 − w2 ⊗ ϱ(X)w1

=2 {ϱ(X)w1 ∧ w2 − w1 ∧ ϱ(X)w2} ,

and so, ϱ(m)
(
S2W

)
⊂ ∧2W . In a similar way, it can be shown that

ϱ(m)
(
∧2W

)
⊂ S2W . □

Theorem 5.8. A map f : G → Grp(W̃ ) is a totally geodesic immersion
into a complex Grassmannian of irreducible type if and only if there exists
an irreducible unitary representation W of G such that W̃ = W ⊠ W and
p = dimS2W or p = dim ∧2 W

Remark. Theorem 5.8 is also obtained by Rawnsley (unpublished, see also
[6]).

Next, we consider a totally geodesic immersion into a real Grassmannian
of irreducible type.

Lemma 5.9. Let W be an irreducible orthogonal representation of G × G
and WC the complexification of W . Suppose that WC = W1 ⊠ W2 is an
irreducible unitary representation of G×G and so, has an G×G-invariant
real structure r, where (ϱi,Wi) (i = 1, 2) are irreducible unitary representa-
tions of G. Then W has a real generalized Cartan decomposition if and only
if we have ϱ1 ∼ ϱ2. Under these conditions, W = (S2W1)

R ⊕ (∧2W1)
R is

the unique real generalized Cartan decomposition.

Proof. We suppose that W has a real generalized Cartan decomposition.
Lemma 4.25 yields that WC has a complex generalized Cartan decomposi-
tion. Then Lemma 5.6 gives us ϱ1 ∼ ϱ2.

Conversely, if ϱ1 ∼ ϱ2, then we have a complex generalized Cartan decom-
position WC = S2W1⊕∧2W1. Since r(W

C) = r(S2W1)⊕ r(∧2W1) is also a
complex generalized Cartan decomposition and dim S2W1 6= dim ∧2 W1,
the uniqueness of a complex generalized Cartan decomposition (Lemma
4.14) yields that S2W1 = r(S2W1) and ∧2W1 = r(∧2W1). Then W =
(S2W1)

R ⊕ (∧2W1)
R is a real generalized Cartan decomposition.

Now Lemma 4.14 yields the uniqueness of the statement. □
Suppose again thatW is an irreducible orthogonal representation of G×G.

If the complexification WC is not irreducible, then W itself has a G × G-
invariant complex structure and so, W can be regarded as an irreducible
unitary representation of G×G. Hence, we may assume that W = W1⊠W2,
where Wi are irreducible unitary G-modules and W has no G×G-invariant
real structure.

Lemma 5.10. An irreducible unitary G×G-representation W = W1 ⊠W2

has a G × G-invariant real structure if and only if both W1 and W2 have
G-invariant real structures or have G-invariant quaternion structures.

Proof. If W = W1 ⊠W2 has an invariant real structure, then we have W1 ⊠
W2 ∼ W ∗

1 ⊠ W ∗
2 as representation. Then we get W1 ∼ W ∗

1 and W2 ∼ W ∗
2
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as G-modules. Since W1 and W2 are irreducible modules, W1 and W2 have
real structures or both have quaternion structures.

The converse is trivial. □

Lemma 5.11. Let W = W1⊠W2 be an irreducible unitary representation of
G×G, where Wi are irreducible unitary G-modules and suppose that W has
no G×G-invariant real structure. We regard W as an irreducible orthogonal
G×G-module.

Then W has a real generalized Cartan decomposition W = U0⊕V0 and U0

and V0 can also be regarded as a complex subspace if and only if W1 = W2.
Then W = S2W1 ⊕ ∧2W1 is the unique real generalized Cartan decomposi-
tion.

Proof. From the proof of Lemma 4.28, the complex generalized Cartan de-
composition of W is the unique real generalized Cartan decomposition of
W when we regard W as an orthogonal G×G-module. Then Theorem 5.7
yields the result. □

Lemma 5.12. Let W = W1 ⊠W2 be an irreducible unitary representation
with an invariant complex structure J of G×G, where (ϱi,Wi) (i = 1, 2) are
irreducible unitary G-modules and suppose that W has no G×G-invariant
real structure. We regard W as an irreducible orthogonal G × G-module.
Suppose that ϱ1 6∼ ϱ2. We denote by r the induced invariant real structure
on the complexification WC of W .

Then W has a real generalized Cartan decomposition W = U0 ⊕ V0 or
the complexification WC has a complex generalized Cartan decomposition
WC = U0 ⊕ V0 satisfying JU0 = V0, JV0 = U0, rU0 = V0 and rV0 = U0, if
and only if W has a G-invariant real structure or a G-invariant quaternion
structure compatible with the Hermitian inner product on W .

Moreover, under these conditions, we have dimCW = dimR U0 = dimR V0

in the case when W = U0 ⊕ V0, or dimCW = dimC U0 = dimC V0 in the
case when WC = U0 ⊕ V0.

Proof. It follows fromϱ1 6∼ ϱ2 that W 6∼ W ∗ as G × G-module. Then we
apply Lemma 4.31 to obtain the result. □

Corollary 5.13. Let W1 be an irreducible unitary representation of G which
is not self-conjugate and W = W1 ⊠W ∗

1 a unitary representation of G×G.
We denote by H(W1) the set of Hermitian endomorphisms of W1 and by
SH(W1) the set of skew-Hermitian endomorphisms of W1.

If W is regarded as an orthogonal representation, then W = H(W1) ⊕
SH(W1) is a unique real generalized Cartan decomposition for (G×G,G).

Proof. The action on W of G×G is given by ϱ(g, h)A = gAh−1 for (g, h) ∈
G×G and A ∈ EndW1. Since, for X ∈ g, H ∈ H(W1), we have

ϱ(X,−X)H = XH +HX,

(XH +HX)∗ = −HX −XH = −(XH +HX),

we obtain ϱ(m)H(W1) ⊂ SH(W1). A similar method gives ϱ(m)SH(W1) ⊂
H(W1). Thus W = H(W1)⊕ SH(W1) is a real generalized Cartan decompo-
sition.
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Since W1 is not self-conjugate, neither is W . This yields that W is ir-
reducible as an orthogonal representation of G × G. Lemma 4.28 yields
W = H(W1)⊕ SH(W1) is the unique real generalized Cartan decomposition
up to isomorphisms. □
Remark. Notice that the statement of Corollary 5.13 is still valid except
uniqueness if W1 is self-conjugate. In this case, W is not irreducible as an
orthogonal representation of G×G.

As a result, we obtain a classification of a totally geodesic immersion of
a compact Lie group into a real Grassmannian of irreducible type, which is
almost the same as in Theorem 4.32. The main difference is that we can see
the exact value of p and the generalized Cartan decomposition explicitly.
Instead, we apply our results to SU(2).

Theorem 5.14. Let SkC2 be the k-th symmetric power of the standard
representation C2 of SU(2). Then we have a totally geodesic immersion of
irreducible type of SU(2) into a complex Grassmannian Grp(C

N ) if and only

if CN = SkC2 ⊗ SkC2 (N = (k + 1)2) and

p =
(k + 1)(k + 2)

2
, or

k(k + 1)

2
.

Moreover each totally geodesic immersion of irreducible type into a complex
Grassmannian Grp(C

N ) can factor through a totally geodesic immersion of
irreducible type of SU(2) into a real Grassmannian Grp(R

N ) which is a
totally real submanifold of Grp(C

N ). The real subspace RN can be obtained

by the invariant real structure of SkC2 ⊗ SkC2.

Theorem 5.15. Let SkC2 be the k-th symmetric power of the standard
representation C2 of SU(2). Then we have a full totally geodesic subman-
ifold with no trivial summand of SU(2) into a real Grassmann manifold
Gr(k+1)2(S

kC2 ⊗ SkC2), where SkC2 ⊗ SkC2 is regarded as an orthogonal
representation of SU(2)× SU(2).

Proof. The result follows from the Remark after Corollary 5.13. □

6. A generalization of Theorem 2.10

First of all, we give an example of real generalized Cartan decomposi-
tion. Let (G,K) be a Riemannian symmetric pair of compact type with the
orthogonal decomposition g = k ⊕ m. We denote by m the dimension of
G/K.

Example. The decomposition g = k⊕m is a real generalized Cartan decom-
position of g. We have a totally geodesic immersion i : G/K → Grm(g),
which is the map induced by a vector bundle G×K k → G/K and g.

This example yields a generalization of Theorem 2.10.

Theorem 6.1. Let (G,K) be a Riemannian symmetric pair of compact type
and f a mapping of a Riemannian manifold M into G/K.

Then, the following two conditions are equivalent.

(1) f : M → G/K is a harmonic map.
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(2) There exists a bundle endomorphism A of the pull-back bundle with
the pull-back connection of a homogeneous vector bundle G×K k →
G/K with the canonical connection, such that ∆t + At = 0 for an
arbitrary t ∈ g.

Under these conditions, A is the mean curvature operator of i ◦ f .

Proof. We can consider a composition i ◦ f : M → G/K → Grm(g). Since i
is a totally geodesic immersion, (1) is equivalent to the condition that i◦f is
a harmonic map. On the other hand, the pull-back of the universal quotient
bundle by i is the homogeneous bundle G ×K k → G/K. Then Theorem
2.10 implies the result. □

Of course, we can replace the role of k by m. Then the vector bundle
G ×K m → G/K is nothing but the tangent bundle T (G/K) → G/K of
G/K and g is the space of the Killing vector fields on G/K.

Corollary 6.2. Let (G,K) be a Riemannian symmetric pair of compact
type and f a mapping of a Riemannian manifold M into G/K.

Then, the following two conditions are equivalent.

(1) f : M → G/K is a harmonic map.
(2) There exists a bundle endomorphism A of the pull-back bundle with

the pull-back connection of T (G/K) → G/K with the Levi-Civita
connection such that ∆t+ At = 0 for an arbitrary pull-back section
t ∈ g of Killing vector field on G/K.

Under these conditions, A is the mean curvature operator of the composite
of f and the totally geodesic immersion of G/K into a real Grassmann
manifold induced by (T (G/K) → G/K, g).

It is now obvious that we have a more abstract generalization of Theorem
2.10. To do so, let W = U0 ⊕ V0 be a generalized Cartan decomposition of
G-representation space W for (G,K). We denote by i : G/K → Grp(W ) the
induced totally geodesic immersion, where p = dimU0. Hence the pull-back
of the universal quotient bundle with the pull-back connection is isomorphic
to the homogeneous vector bundle G ×K V0 → G/K with the canonical
connection.

Theorem 6.3. Let (G,K) be a Riemannian symmetric pair of compact type
and f a mapping of a Riemannian manifold M into G/K.

Then, the following three conditions are equivalent.

(1) f : M → G/K is a harmonic map.
(2) For any orthogonal or unitary G-representation W with a general-

ized Cartan decomposition W = U0 ⊕ V0, there exists a bundle en-
domorphism A of the pull-back bundle with the pull-back connection
of a homogeneous vector bundle G×K V0 → G/K with the canonical
connection such that ∆t+At = 0 for an arbitrary t ∈ W .

(3) There exists an orthogonal or a unitary G-representation W with a
generalized Cartan decomposition W = U0 ⊕ V0 and a bundle endo-
morphism A of the pull-back bundle with the pull-back connection of
a homogeneous vector bundle G ×K V0 → G/K with the canonical
connection such that ∆t+At = 0 for an arbitrary t ∈ W .
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Under these conditions, A is the mean curvature operator of i ◦ f , where i
is the map induced by (G×K V0 → G/K,W ).

Example. We pick a symmetric pair (SU(2) × SU(2), SU(2)). Let (ϱ,C2) be
the standard representation of SU(2). Then W denotes the direct sum of
two copies of C2: W = C2 ⊕ C2. We define a representation (φ,W ) of
SU(2)× SU(2) as

φ(g, h)(u, v) = (ϱ(g)u, ϱ(h)v) .

Then we have a generalized Cartan decomposition of W = U0 ⊕ V0 for
(SU(2)× SU(2), SU(2)), where

U0 =
{
(u, u) ∈ W |u ∈ C2

}
, V0 =

{
(v,−v) ∈ W | v ∈ C2

}
.

The associated homogeneous vector bundles with U0 and V0 are isomorphic
to the spin bundle H → S3. Thus we have a direct sum of vector bundles:
W = H⊕H. We denote by H the second fundamental form of H in W [11]
which can be regarded as a 1-form with values in EndH.

Let f be a harmonic map of a Riemann surface M into S3. In this
case, f is a harmonic map if and only if (∇Zdf) (Z) =

(
∇Zdf

)
(Z) = 0 for

Z ∈ T1,0M (see, for example, [5]). The pull-back of the second fundamental
form H is decomposed according to the bidegree: f∗H = Φ + Ψ, where
Φ ∈ Ω1,0 (f∗EndH) and Ψ ∈ Ω0,1 (f∗EndH). Since ∇H = H∇df [13], f is
a harmonic map if and only if Φ is a holomorphic 1-form [3]. The Gauss
equation of vector bundles ([11] or see also [13]) yields that

R(Z,Z) = ΦZΦ
∗
Z
− Φ∗

Z
ΦZ ,

where R is the curvature of the pull-back bundle of H → S3. The equations

∂Φ = 0, R = [Φ,Φ∗]

are deeply considered in Hitchin [9] which are obtained as a dimensional
reduction of the self-dual Yang-Mills equation in R4.
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