Whitehead products in moment-angle complexes

By Kouyemon IRIYE and Daisuke KISHIMOTO

Abstract. In toric topology, to a simplicial complex K with m vertices, one associates two spaces, the moment-angle complex Z_K and the Davis-Januszkiewicz space DJ_K. These spaces are connected by a homotopy fibration $Z_K \to DJ_K \to (\mathbb{C}P^\infty)^m$. In this paper, we show that the map $Z_K \to DJ_K$ is identified with a wedge of iterated (higher) Whitehead products for a certain class of simplicial complexes K including dual shellable complexes. We will prove the result in a more general setting of polyhedral products.

1. Introduction

1.1. Moment-angle complex

In the seminal work on quasitoric manifolds in toric topology [4], Davis and Januszkiewicz constructed a certain space from a simple convex polytope (or equivalently, a dual simplicial convex polytope) as a topological analogue of the hyperplane arrangement appearing in the theory of toric varieties so that every quasitoric manifold is obtained as the quotient of the space by a certain torus action. Later on, the construction of this space is generalized to any simplicial complex as follows. Let K be a simplicial complex on the vertex set $[m] = \{1, \ldots, m\}$. The moment-angle complex Z_K is defined as the union of subspaces $Z(\sigma) = \{(z_1, \ldots, z_m) \in (D^2)^m | |z_i| = 1 \text{ for } i \notin \sigma \}$ of $(D^2)^m$ for all $\sigma \in K$, where $D^2 = \{z \in \mathbb{C} | |z| \leq 1\}$.

The moment-angle complex is now a fundamental object not only as a source of quasitoric manifolds but also as an object connecting toric topology with a broad area of mathematics including algebraic geometry, algebraic topology, combinatorics, commutative algebra, and geometry. In particular, recent development of the study on the homotopy type of Z_K in connection with combinatorics and commutative algebra is significant [7, 8, 10, 11].

1.2. Object of study

Davis and Januszkiewicz [4] also constructed a supplementary space from a simple convex polytope, and it was also generalized to any simplicial complex. The supplementary space associated with a simplicial complex K is called the Davis-Januszkiewicz space and denoted by DJ_K, which is defined as the union of subspaces $DJ(\sigma) = \{(x_1, \ldots, x_m) \in (\mathbb{C}P^\infty)^m | x_i = * \text{ for } i \notin \sigma \}$ of $(\mathbb{C}P^\infty)^m$ for all $\sigma \in K$, where $* \in \mathbb{C}P^\infty$ is a basepoint.

By definition, there is a natural action of torus $(S^1)^m$ on Z_K, and the Davis-Januszkiewicz space DJ_K is homotopy equivalent to the Borel construction of this torus acting on Z_K. This space is a fundamental object in toric topology.

2010 Mathematics Subject Classification. Primary 55Q15; Secondary 55P15.

Key Words and Phrases. moment-angle complex, Davis-Januszkiewicz space, polyhedral product, Whitehead product, fillable complex, shellable complex.
action. Then in particular, there is a fundamental homotopy fibration
\[Z_K \xrightarrow{\tilde{w}} DJ_K \rightarrow (\mathbb{C}P^\infty)^m. \]

The object of study in this paper is the fiber inclusion \(\tilde{w} \).

1.3. Problem

For a finite set \(V \), let \(\Delta^V \) denote the simplex with vertex set \(V \) and \(\partial \Delta^V \) be its boundary. When \(K = \partial \Delta^2 \), i.e. \(K \) consists of two vertices, we have \(Z_K = S^3 \) and \(DJ_K = \mathbb{C}P^\infty \vee \mathbb{C}P^\infty \) by definition, and the homotopy fibration (1) coincides with Ganea’s homotopy fibration
\[S^3 \rightarrow \mathbb{C}P^\infty \vee \mathbb{C}P^\infty \rightarrow (\mathbb{C}P^\infty)^2. \]

Then in particular, the map \(\tilde{w} \) is the Whitehead product of the bottom cell inclusion \(S^2 \rightarrow \mathbb{C}P^\infty \) with itself. More generally, when \(K = \partial \Delta^m \) for general \(m \), the map \(\tilde{w} \) is the higher Whitehead product of \(m \)-copies of the bottom cell inclusion \(S^2 \rightarrow \mathbb{C}P^\infty \). Thus the following problem naturally arises.

Problem 1.1. For which simplicial complex is the map \(\tilde{w} \) described by higher Whitehead products?

Grbić and Theriault [6] previously studied this problem by introducing a new class of simplicial complexes that they call directed MF-complexes. However, there is a gap in the proof of the main theorem [6, Theorem 13.5]. In Step 4 of the proof, it is claimed that since a subset \(R' \subset H_*(\bigvee_{\beta \in J} S^{|\beta|}; \mathbb{Z}) \) coincides with a subset \(R \subset H_*(\bigvee_{\beta \in J} S^{|\beta|}; \mathbb{Q}) \) and \(R \) generates \(H_*(\bigvee_{\beta \in J} S^{|\beta|}; \mathbb{Q}) \) over \(\mathbb{Q} \), \(R' \) generates \(H_*(\bigvee_{\beta \in J} S^{|\beta|}; \mathbb{Z}) \) over \(\mathbb{Z} \), where an ambiguous term "degree one map" used in the proof can only mean an injective integral map. It is impossible to get such an integral generation as long as we use a rational homology calculation without any implication on integral homology as in [6].

In this paper, we show that the map \(\tilde{w} \) is identified with a wedge of iterated higher Whitehead products by applying the fat wedge filtration technology for polyhedral products developed in [11], which is completely different from the method of Grbić and Theriault [6]. The class of simplicial complexes that we consider includes directed MF-complexes, and so our result implies that the main theorem of Grbić and Theriault [6] itself is correct.

1.4. Polyhedral product

In [2], Bahri, Benderly, Cohen, and Gitler unified and generalized the construction of \(Z_K \) and \(DJ_K \), and introduced a space called a polyhedral product. Polyhedral products enable us to study the homotopy theory of \(Z_K \) and \(DJ_K \) with a wide viewpoint and rich homotopy theoretical techniques.

In our case, the map \(\tilde{w} \) can be defined in a more general setting using polyhedral products so that we will study this generalized map \(\tilde{w} \) in what follows. However, in this introduction, we will state our result only in terms of \(Z_K \) and \(DJ_K \) for readability.

1.5. Totally fillable complex

Now we introduce a simplicial complex for which we are going to study the map \(\tilde{w} \). We set notation. Let \(L \) be a simplicial complex with vertex set \(V \). Let \(|L| \) denote the
geometric realization of L. For a non-empty subset $I \subset V$, define the full subcomplex of L on I by $L_I = \{ \sigma \in L | \sigma \subset I \}$. A subset $\sigma \subset V$ is called a minimal non-face of L if it is not a simplex of L and all of its proper subsets are simplices of L. In particular, if we add minimal non-faces to L, then we get a new simplicial complex.

Definition 1.2. A simplicial complex K is called fillable if there is a collection of minimal non-faces $\{\sigma_1, \ldots, \sigma_r\}$ such that $|K \cup \sigma_1 \cup \cdots \cup \sigma_r|$ is contractible. If any full subcomplex of K is fillable, then it is called totally fillable.

Example 1.3. A typical example of totally fillable complexes is a skeleton of a simplex, and a typical example of simplicial complexes which are not fillable is a square graph.

The collection of minimal non-faces $\{\sigma_1, \ldots, \sigma_r\}$ in the above definition is called a filling of K and denoted by $\mathcal{F}(K)$, where there are possibly several fillings of a fillable complex K. The class of totally fillable complexes includes dual shellable complexes which are especially important in combinatorics, where we refer to Section 2 for the definition of shellable complexes. As mentioned above, we will see that directed MF-complexes that were considered in the previous work [6] are dual shellable, and so they are totally fillable.

1.6. Statement of the result

The key to study the map \tilde{w} for a totally fillable complex K is the following homotopy decomposition of Z_K which was obtained in [11].

Theorem 1.4. Let K be a totally fillable complex on the vertex set $[m]$ with fillings $\mathcal{F}(K_I)$ for $\emptyset \neq I \subset [m]$. Then there is a homotopy equivalence

$$Z_K \simeq \bigvee_{\emptyset \neq I \subset [m]} \bigvee_{\sigma \in \mathcal{F}(K_I)} S^{|\sigma| + |I| - 1}.$$

Let $\tilde{a}_i : S^2 \to DJ_K$ be the inclusion of the bottom cell of the i-th CP^∞ in DJ_K. For $\sigma \subset [m]$ with $|\sigma| \geq 2$, let \tilde{w}_σ be the higher Whitehead product of \tilde{a}_i for $i \in \sigma$ if it is defined, where we refer to Section 3 for the definition of higher Whitehead products. Now we state our result.

Theorem 1.5. Let K be a totally fillable complex on the vertex set $[m]$ with fillings $\mathcal{F}(K_I)$ for $\emptyset \neq I \subset [m]$. The equivalence of Theorem 1.4 can be chosen so that the composite

$$S^{|\sigma| + |I| - 1} \to \bigvee_{\emptyset \neq I \subset [m]} \bigvee_{\sigma \in \mathcal{F}(K_I)} S^{|\sigma| + |I| - 1} \simeq Z_K \xrightarrow{\tilde{w}} DJ_K$$

is the iterated Whitehead product

$$\cdots [\tilde{w}_\sigma, \tilde{a}_{i_1}, \tilde{a}_{i_2}, \ldots, \tilde{a}_{i_k}],$$

where i_1, \ldots, i_k is a certain ordering of $I - \sigma$.
Remark 1.6. The equivalence in Theorem 1.4 and iterated Whitehead products in Theorem 1.5 depend on the choice of fillings $\mathcal{F}(K_I)$ for all $\emptyset \neq I \subset [m]$.

Remark 1.7. Recently, Abramyan [1] showed that in general, $\tilde{\omega}$ is not necessarily a wedge of iterated Whitehead products even if Z_K is homotopy equivalent to a wedge of spheres.

Throughout this paper, we assume that spaces have non-degenerate basepoints.

Acknowledgement: The authors were partly supported by JSPS KAKENHI (No. 26400094 and No. 17K05248).

2. Fillable complex

Throughout this paper, let K be a simplicial complex on the vertex set $[m]$. We will assume that a totally fillable complex K is given specific fillings $F(K_I)$ of K_I for all $\emptyset \neq I \subset [m]$ unless otherwise is specified.

2.1. Deletable complex

In [11], it is proved that dual shellable complexes are totally fillable. The proof there actually shows that dual shellable complexes are in a certain subclass of totally fillable complexes, which we introduce here. A simplicial complex K is called deletable if there are facets $\sigma_1, \ldots, \sigma_r$ such that $K - \{\sigma_1, \ldots, \sigma_r\}$ is collapsible, where r can be 0, i.e. K itself can be collapsible. K is called totally deletable if K itself and $lk_{K_V}(v)$ are deletable for any $\emptyset \neq V \subset [m]$ and $v \in V$, where $lk_L(w) = \{\sigma \in L \mid w \not\in \sigma, \sigma \cup w \in L\}$ is the link of a vertex w of a simplicial complex L.

Let L be a simplicial complex with ground set S, where the ground set is a superset of the vertex set and possibly they are different. The Alexander dual of L with respect to S, denoted L^\vee, is the simplicial complex consisting of $\sigma \subset S$ such that $S - \sigma$ is not a simplex of L. If we do not specify the ground set, then the Alexander dual will be taken over the vertex set. The following dictionary is useful, which is proved in [11]. For a vertex v of L, let $dl_L(v) = \{\sigma \in L \mid \sigma \subset S - \{v\}\}$ be the deletion of v.

Proposition 2.1. Let L be a simplicial complex with ground set S.

1. $(L^\vee)^\vee = L$, where the Alexander duals are taken over S.
2. $\sigma \subset S$ is a facet of L if and only if σ^\vee is a minimal non-face of L^\vee, where $\sigma^\vee = S - \sigma$.
3. For any $v \in V$, $dl_L(v)^\vee = lk_{L^\vee}(v)$, where the Alexander duals of $dl_L(v)$ and L are taken over $S - \{v\}$ and S, respectively.

The following is proved in [11].

Proposition 2.2. If K is collapsible, then $|K^\vee|$ is contractible.

Then by Proposition 2.1 one gets:

Corollary 2.3. Dual (totally) deletable complexes are (totally) fillable.
2.2. Shellable complex

Recall that K is called shellable if there is an ordering of facets $\sigma_1, \ldots, \sigma_k$ of K, called a shelling, such that $\langle \sigma_1, \ldots, \sigma_{i-1} \rangle \cap \langle \sigma_i \rangle$ is pure and $|\sigma_i| - 2$-dimensional for $i = 2, \ldots, k$, where $\langle \tau_1, \ldots, \tau_r \rangle$ means the simplicial complex generated by simplices τ_1, \ldots, τ_r and a simplicial complex is called pure if its facets have the same dimension. Shellable complexes were originally introduced as a combinatorial criterion for Cohen-Macaulayness and are now one of the most important classes of simplicial complexes in combinatorics.

Example 2.4. Any skeleton of a simplex is a shellable complex, where any ordering of its facets is a shelling.

As is seen in [3, 11], if K is shellable, then K is deletable and the link of any of its vertices is shellable. Then by Proposition 2.1 we get the following.

Proposition 2.5. Shellable complexes are totally deletable.

By Corollary 2.3, we obtain:

Corollary 2.6. Dual shellable complexes are totally fillable.

Example 2.7. Any skeleton of a simplex is shellable as in Example 2.4, and its Alexander dual is again a skeleton of a simplex which is obviously totally fillable.

Example 2.8. Let K be the following simplicial complex with six vertices.

Then K is collapsible, so it is deletable. Moreover, for any vertex v, $\text{lk}_K(v)$ is either the interval graph or the disjoint union of the interval graph and one point. Then $\text{lk}_K(v)$ is shellable for any vertex v, implying that K is totally deletable. However, we see that K itself is not shellable by looking at the middle edge which is a facet. So the class of deletable complexes is strictly larger than that of shellable complexes.

2.3. Directed MF-complex

In the previous work [6], Grbić and Theriault introduced a simplicial complex called a directed MF-complex and studied the map w for a directed MF-complex K. A simplicial complex K is called a directed MF-complex if there is a filtration of subcomplexes $\emptyset = K_1 \subset K_2 \subset \cdots \subset K_r = K$ such that for $i = 1, \ldots, r$, $K_i = K_{i-1} \cup \partial \Delta^n$, and $K_{i-1} \cap \partial \Delta^n$ is a common face of K_{i-1} and Δ^n.

Example 2.9. The k-skeleton of an n-dimensional simplex for $k > 0$ is a directed MF-complex if and only if $k = n - 1$.

We shall show that directed MF-complexes are dual shellable. For this, we will use the following lemma.
Lemma 2.10. Suppose that there is an ordering of minimal non-faces $\sigma_1 < \cdots < \sigma_r$ of K such that for any $i < j$, there is $k < j$ satisfying that $\sigma_k \cup \sigma_j \subset \sigma_i \cup \sigma_j$ and $|\sigma_k \cup \sigma_j| = |\sigma_j| + 1$. Then the ordering of facets $\sigma_1^\vee < \cdots < \sigma_r^\vee$ of K^\vee is a shelling.

Proof. The assumption is equivalent to that for any $i < j$, there is $k < j$ satisfying that $\sigma_k^\vee \cap \sigma_j^\vee \supset \sigma_i^\vee \cap \sigma_j^\vee$ and $\sigma_k^\vee \cap \sigma_j^\vee$ is $(m - |\sigma_j| - 2)$-dimensional. Then we get that for $j \geq 2$, $(\sigma_1^\vee, \ldots, \sigma_{j-1}^\vee) \cap \langle \sigma_j^\vee \rangle$ is pure and $(m - |\sigma_j| - 2)$-dimensional, completing the proof. □

Proposition 2.11. Directed MF-complexes are dual shellable.

Proof. Let K be a directed MF-complex. Then there is a filtration $\emptyset = K_0 \subset K_1 \subset \cdots \subset K_r = K$ such that $K_i = K_{i-1} \cup \partial \Delta^{|\sigma_i|}$ and $K_{i-1} \cap \partial \Delta^{|\sigma_i|}$ is a common face of K_{i-1} and $\Delta^{|\sigma_i|}$. The filtration induces an ordering $\sigma_1 < \cdots < \sigma_r$. We consider an ordering of the vertex set induced by this ordering of simplices with $v < w$ whenever $v \in \sigma_i$ and $w \in \sigma_{i+1}$.

Let I be the set of all 1-dimensional minimal non-faces of K and put $\{\tau_1, \ldots, \tau_s\} = \{\sigma_1, \ldots, \sigma_r\} - I$, where $\tau_1 < \cdots < \tau_s$. Then all minimal non-faces of dimension > 1 are included in $\{\tau_1, \ldots, \tau_s\}$. Consider the lexicographic ordering on I such that $\{k, l\} < \{k', l'\} \in I$ if $k < k'$ or $k = k', l < l'$. Then the ordering $I < \tau_1 < \cdots < \tau_s$ satisfies the condition of Lemma 2.10, where $I \cup \{\tau_1, \ldots, \tau_s\}$ is the set of all minimal non-faces of K. Thus the proof is done. □

Summarizing, we have obtained the implications:

directed MF \Rightarrow dual shellable \Rightarrow dual totally deletable \Rightarrow totally fillable

2.4. Homotopy type

It is observed in [11] that if K is fillable, then $|\Sigma K|$ is homotopy equivalent to a wedge of spheres. Here we consider the naturality of this homotopy equivalence which will be used later. For a fillable complex K, we put $\overline{K} = K \cup_{\sigma \in \mathcal{F}(K)} \sigma$, where $\mathcal{F}(K)$ is defined in Section 1.

Proposition 2.12. If K is fillable with filling $\mathcal{F}(K)$, then there is a homotopy equivalence

$$|\Sigma K| \simeq \bigvee_{\sigma \in \mathcal{F}(K)} S^{[\sigma]-1}$$

such that for a fillable subcomplex L of K with filling $\mathcal{F}(L)$ satisfying $\mathcal{F}(L) \subset \mathcal{F}(K) \cup K$, the square diagram

$$
\begin{array}{ccc}
|\Sigma L| & \overset{\sim}{\rightarrow} & \bigvee_{\tau \in \mathcal{F}(L)} S^{[\tau]-1} \\
\downarrow & & \downarrow \\
|\Sigma K| & \overset{\sim}{\rightarrow} & \bigvee_{\sigma \in \mathcal{F}(K)} S^{[\sigma]-1}
\end{array}
$$

commutes, where $\overline{\mathcal{g}}|_{S^{[\tau]-1}}$ is the inclusion for $\tau \in \mathcal{F}(K) \cap \mathcal{F}(L)$ and the constant map
Since $|K|$ is contractible, there is a homotopy equivalence $|CK| \to |K|$ which restricts to the identity map of $|K|$. Then we get the desired homotopy equivalence by pinching $|K|$ to a point. The assumption on L is equivalent to that L is a subcomplex of \overline{K}, so one gets the commutative square in the statement.

2.5. Contraction ordering

We define a contraction ordering of vertices of a fillable complex. Let V be a finite set and $S \subset V$ be a subset with $|S| \geq 2$. Let L be a simplicial complex with vertex set V obtained by attaching trees T_1, \ldots, T_k to $\partial \Delta^S$ by their roots. Let V_i be the vertex set of T_i and $r_i \in V_i \cap S$ be the root of T_i. Then one has $V = S \cup (V_1 - r_1) \cup \cdots \cup (V_k - r_k)$. An ordering $v_1 < \cdots < v_n$ of $V_i - r_i$ is called a local contraction ordering if the full subcomplex $(T_i)_{v_i < v_2 < \cdots < v_n}$ is connected for any $j = 1, \ldots, n$. An ordering of $V - S$ is called a contraction ordering if it is the union of local contraction orderings of $V_i - r_i$.

Note that a deformation retract of $|L|$ onto $|\partial \Delta^S|$ is given by a contraction ordering.

For a finite set V and its non-empty subset S, let $\Delta(V, S)$ be the simplicial complex which is the disjoint union of $\partial \Delta^S$ and vertices $v \in V - S$.

Proposition 2.13. If K is fillable and $\sigma \in F(K)$, then there are trees T_1, \ldots, T_k such that there is a subcomplex of \overline{K} with vertex set $[m]$ obtained by attaching T_1, \ldots, T_k to $\partial \Delta^\sigma$ by their roots.

Proof. Choose any maximal tree of \overline{K}. Then since \overline{K} is connected, the vertex set of T is $[m]$. If we remove all edges of $\partial \Delta^\sigma$ from T, then we get a collection of trees which gives a desired subcomplex.

Then we can define a contraction ordering of $[m] - \sigma$ for a fillable complex K and $\sigma \in F(K)$.

3. Polyhedral products and the map w

3.1. Polyhedral product

Let $(X, A) = \{(X_i, A_i)\}_{i=1}^m$ be a collection of pairs of spaces. The polyhedral product of (X, A) associated with K is defined in [2] as

$$Z(K; (X, A)) = \bigcup_{\sigma \in K} (X, A)^\sigma \subset \prod_{i=1}^m X_i,$$

where $(X, A)^\sigma = Y_1 \times \cdots \times Y_m$ such that $Y_i = X_i$ for $i \in \sigma$ and $Y_i = A_i$ for $i \notin \sigma$. The most fundamental property of polyhedral products, first observed in [5], is the following which we will use implicitly, where we omit the proof because it is obvious. For $\emptyset \neq I \subset [m]$, let $(X, A)_I = \{(X_i, A_i)\}_{i \in I}$.

Proposition 3.1. For $\emptyset \neq I \subset [m]$, $Z(K_I; (X, A)_I)$ is a retract of $Z(K; (X, A))$.

If all (X_i, A_i) are (D^2, S^1) (resp. $(\mathbb{C}P^\infty, *)$), the resulting polyhedral product is the moment-angle complex Z_K (resp. DJ_K). Hereafter, let $X = \{X_i\}_{i=1}^m$ be a collection of
pointed spaces. We will generalize the map \(\tilde{w} : Z_K \to DJ_K \) to the polyhedral products

\[
Z_K(X) = Z(K; (CX, X)) \quad \text{and} \quad DJ_K(X) = Z(K; (X, *))
\]

which are generalization of \(Z_K \) and \(DJ_K \), respectively, where \((CX, X) = \{(CX_i, X_i)\}_{i=1}^m\) and \((X, *) = \{(X_i, *)\}_{i=1}^m\). Here we remark that the same notation \(Z_K(X) \) is used in [6] to express a different polyhedral product \(Z(K; (CX, CX)) \), where \(CX = \{CX_i\}_{i=1}^m \).

3.2. Decomposition of the map \(\tilde{w} \)

As in [11], there is a homotopy fibration

\[
Z_K(\Omega X) \xrightarrow{\tilde{w}} DJ_K(X) \to \prod_{i=1}^m X_i
\]

which specializes to the homotopy fibration (1). We decompose the map \(\tilde{w} \) to clarify the point of our study.

Let \(\Omega X_i \to PX_i \to X_i \) be the path-loop fibration. Then for each \(i \), there is a pair of fibrations \((PX_i, \Omega X_i) \to (X_i^{[0,1]}, PX_i) \to (X_i, X_i)\), where the second map is the evaluation at 1, and as in [5, 11], this induces a homotopy fibration

\[
Z(K; (PX, \Omega X)) \to Z(K; (X^{[0,1]}, PX)) \to \prod_{i=1}^m X_i.
\]

The maps \(CX_i \to PX_i, (s, l) \mapsto [t \mapsto l((1-s)l)] \) and the evaluations \(X_i^{[0,1]} \to X_i \) at 0 induce homotopy equivalences \(Z(K; (PX, \Omega X)) \simeq Z_K(\Omega X) \) and \(Z(K; (X^{[0,1]}, PX)) \simeq DJ_K(X) \). Then by applying these homotopy equivalences to (3), one gets the homotopy fibration (2). Hence one gets the following. Let \(w : Z_K(X) \to DJ_K(\Sigma X) \) be the map induced by the maps of pairs \((CX_i, X_i) \to (\Sigma X_i, \Sigma X_i)\), where \(\Sigma X = \{\Sigma X_i\}_{i=1}^m \) and \(CX_i \to \Sigma X_i \) is the pinch map.

Proposition 3.2. The map \(\tilde{w} : Z_K(\Omega X) \to DJ(X) \) is the composite of maps

\[
Z_K(\Omega X) \xrightarrow{\tilde{w}} DJ_K(\Sigma X) \to DJ_K(X),
\]

where the second map is induced from the evaluation maps \(\Sigma \Omega X_i \to X_i \).

Thus we study the map \(w \) and apply its properties to understand the map \(\tilde{w} \). By definition, the map \(w \) has the following naturality.

Proposition 3.3. For a subcomplex \(L \) of \(K \) on the same vertex set \([m] \), the following diagram commutes.

\[
\begin{array}{ccc}
Z_L(X) & \xrightarrow{w} & DJ_L(\Sigma X) \\
\downarrow & & \downarrow \\
Z_K(X) & \xrightarrow{w} & DJ_K(\Sigma X)
\end{array}
\]
3.3. Higher Whitehead product

Suppose that K consists only of two vertices, where $m = 2$. Then we have $Z_K(X) = X_1 * X_2$ and $DJ_K(\Sigma X) = \Sigma X_1 \cup \Sigma X_2$ so that the map $w: Z_K(X) \rightarrow DJ_K(\Sigma X)$ is by definition the (generalized) Whitehead product of the inclusions $\Sigma X_i \rightarrow DJ_K(\Sigma X)$ for $i = 1, 2$, where $X * Y$ means the join of spaces X and Y.

Suppose next that $K = \partial \Delta^{|m|}$ for general m. Then we have $Z_K(X) = X_1 * \cdots X_m$ and $DJ_K(\Sigma X)$ is the fat wedge of ΣX_i, which is the subspace of $\prod_{i=1}^m \Sigma X_i$ consisting of points (x_1, \ldots, x_m), where at least one x_i is the basepoint. Porter [15] defined the universal higher Whitehead product of the inclusions $a_i: \Sigma X_i \rightarrow DJ_K(\Sigma X)$ for $i = 1, \ldots, m$ by the map $w: Z_K(X) \rightarrow DJ_K(\Sigma X)$ in this special case that K is the boundary of $\Delta^{|m|}$.

We finally consider general K. Suppose that $\sigma \subset [m]$ is a minimal non-face of K. Then there is the inclusion $DJ_0\Delta^\sigma(\Sigma X_\sigma) \rightarrow DJ_K(\Sigma X)$, where $X_\sigma = \{X_i\}_{i \in \sigma}$. Let $a_i: \Sigma X_i \rightarrow DJ_K(\Sigma X)$ be the inclusion for $i = 1, \ldots, m$. Then the higher Whitehead product of the inclusions a_i for $i \in \sigma$ is defined as the composite $Z_K(X_\sigma) \xrightarrow{w} DJ_0\Delta^\sigma(\Sigma X_\sigma) \rightarrow DJ_K(\Sigma X)$, which we write w_σ.

4. Fat wedge filtration

4.1. Definition

For a collection of pointed spaces $Y = \{Y_i\}_{i=1}^m$, let $T^i(Y)$ be the subspace of $\prod_{j=1}^m Y_j$ consisting of points (y_1, \ldots, y_m) such that at least $m - i$ of y_j are the basepoints, where $T^i(Y)$ are called the generalized fat wedge of Y_i. Put $Z^i_K(X) = Z_K(X) \cap T^i(CX)$. Then there is a filtration

$$* = Z^0_K(X) \subset Z^1_K(X) \subset \cdots \subset Z^m_K(X) = Z_K(X)$$

which we call the fat wedge filtration of $Z_K(X)$. The fat wedge filtration of $Z_K(X)$ is studied in [11]: the fat wedge filtration connects the homotopy type of $Z_K(X)$ and the combinatorics of a simplicial complex K, and produces application of homotopical technique to combinatorics.

4.2. Cone decomposition

In [11], it is shown that if all X_i are suspensions, then the fat wedge filtration of $Z_K(X)$ is a cone decomposition with explicitly described attaching maps. We recall this result here. Let $\mathbb{R}Z_K$ be the polyhedral product $Z_K(X)$ such that all X_i are S^0, which we call the real moment-angle complex. We first recall from [11] properties of the fat wedge filtration of $\mathbb{R}Z_K$. We denote the i-th filter of the fat wedge filtration of $\mathbb{R}Z_K$ by $\mathbb{R}Z^i_K$.

Theorem 4.1. For any $\emptyset \neq I \subset [m]$, there is a map $\varphi_{K_I}: |K_I| \rightarrow \mathbb{R}Z_{K_I}^{|I|-1}$ satisfying the following properties:

1. $\mathbb{R}Z^i_K$ is obtained from $\mathbb{R}Z^{i-1}_K$ by attaching cones by φ_{K_I} for $|I| = i$ so that $\mathbb{R}Z^i_K = \mathbb{R}Z^{i-1}_K \cup_{I \subset [m], |I| = i} C|K_I|$.

2. If L is a subcomplex of K, then the following diagram commutes, where the vertical
arrows are the inclusions.

\[|L_i| \xrightarrow{\varphi_{L_i}} RZ_{|L_i|}^{-1} \]
\[|K_i| \xrightarrow{\varphi_{K_i}} RZ_{|K_i|}^{-1} \]

3. Let \(\tilde{K}_I \) be the simplicial complex obtained from \(K_I \) by adding all of its minimal non-faces. Then \(\varphi_{K_I} \) factors through the inclusion \(|K_I| \to |\tilde{K}_I| \).

The fat wedge filtration of \(Z_K(X) \) is not a cone decomposition in general unlikely to \(RZ_K \) in Theorem 4.1. However, as mentioned above, it is indeed a cone decomposition whenever all \(X_i \) are suspensions. This is proved in [11] only for the moment-angle complex \(Z_K \), but it can be proved in the general case by the same construction using higher Whitehead product. We demonstrate it here. Define a map \(\tilde{\Phi}: I^m \times \prod_{i=1}^m X_i \to \prod_{i=1}^m CX_i \) by \(\tilde{\Phi}(t_1, \ldots, t_m, x_1, \ldots, x_m) = ((t_1, x_1), \ldots, (t_m, x_m)) \).

Then \(\tilde{\Phi} \) restricts to a map \(\Phi: \mathbb{R}Z_K \times \prod_{i=1}^m X_i \to Z_K(X) \) such that

\[\Phi^{-1}(Z_K^{m-1}(X)) = (\mathbb{R}Z_K \times T^{m-1}(X)) \cup (\mathbb{R}Z_K^{m-1} \times \prod_{i=1}^m X_i). \]

If \(X = \Sigma Y \) for \(Y = \{Y_i\}_{i=1}^m \), then there is the higher Whitehead product \(\omega: Y^{*[m]} \to T^{m-1}(X) \), where \(Y^{*[m]} = Y_1 \ast \cdots \ast Y_m \). Now we define the map \(\overline{\varphi}_K: |K| \ast Y^{*[m]} \to Z_K^{m-1}(X) \) by the composite

\[|K| \ast Y^{*[m]} = (C|K| \times Y^{*[m]}) \cup ([K] \times C(Y^{*[m]})) \]
\[\xrightarrow{(C|K| \times \omega) \cup (\varphi_K \times C\omega)} (\mathbb{R}Z_K \times T^{m-1}(X)) \cup (\mathbb{R}Z_K^{m-1} \times \prod_{i=1}^m X_i) \]
\[\xrightarrow{\Phi} Z_K^{m-1}(X). \]

Theorem 4.2. If \(X = \Sigma Y \), then the fat wedge filtration of \(Z_K(X) \) is a cone decomposition such that

\[Z_K^i(X) = Z_K^{i-1}(X) \cup \bigcup_{I \subset [m], |I| = i} C([K_I] \ast Y^{*I}), \]

where the attaching maps are \(\overline{\varphi}_{K_I} \).

It is shown in [11] that if \(\varphi_{K_I} \simeq \ast \) for any \(I \), then \(\overline{\varphi}_{K_I} \simeq \ast \) for any \(I \) as a consequence of a more general result, where \(\varphi_{K_I} \) is as in Theorem 4.1. We will prove this fact by a more direct argument, which enables us to consider the naturality among null homotopies.

Proposition 4.3. If \(\varphi_K \) is null homotopic, then so is \(\overline{\varphi}_K \). Moreover, if a null homotopy of \(\varphi_K \) restricts to that of \(\varphi_L \) for a subcomplex \(L \subset K \), then we may choose a null homotopy of \(\overline{\varphi}_K \) such that it restricts to that of \(\overline{\varphi}_L \).

Proof. Suppose that \(\varphi_K \simeq \ast \) and we fix a null homotopy. Then the map \((C|\varphi_K \times \omega) \cup \)
Whitehead products in moment-angle complexes

\((\varphi_K \times C\omega)\) in the definition of \(\varphi_K\) is homotopic to the composite

\[
(C|K| \times Y^{*[m]}) \cup (|K| \times C(Y^{*[m]}) \to (\Sigma K| \times Y^{*[m]}) \cup (\ast \times C(Y^{*[m]}))
\]

\[
\frac{(f \times \omega) \cup (\ast \times C\omega)}{(R\mathcal{Z}_K \times T^{m-1}(X)) \cup (R\mathcal{Z}_K^{m-1} \times \prod_{i=1}^{m} X_i)}
\]

for a map \(f: |\Sigma K| \to R\mathcal{Z}_K\) defined by gluing \(C\varphi_K\) and the null homotopy of \(\varphi_K\). Then \(\Phi(R\mathcal{Z}_K \cup \prod_{i=1}^{m} X_i) = \ast\), the map \(\varphi_K\) factors through the map \(f \wedge \omega: |\Sigma K| \wedge Y^{*[m]} \to R\mathcal{Z}_K \wedge T^{m-1}(X)\). Note that \(f \wedge \omega = (f \wedge 1_{Y^{*[m]}}) \circ (1_{\Sigma K} \wedge \omega) = (f \wedge 1_{Y^{*[m]}}) \circ (1_{K_I} \wedge \omega)\). For \(\Sigma \omega \simeq \ast\), one gets \(\Sigma(1_{K_I} \wedge \omega) \simeq \ast\) so that \(\varphi_K \simeq \ast\) as desired. The naturality of null homotopies is obvious by the above deformation of maps. \(\square\)

4.3. Homotopy decomposition

We apply Theorem 4.2 to obtain a homotopy decomposition of \(Z_K(X)\) together with its naturality. To this end, we will use the following simple lemma, where the proof is easy and omitted.

Lemma 4.4. If a map \(\varphi: A \to X\) is null homotopic, then there is a homotopy equivalence

\[
\epsilon_\varphi: X \cup \Sigma A \xrightarrow{\sim} X \cup \varphi CA
\]

which is natural with respect to \(\varphi\) and its null homotopy.

By Theorem 4.2, Proposition 4.3 and Lemma 4.4, one gets:

Corollary 4.5. Suppose that \(X = \Sigma Y\). If \(\varphi_{K_I} \simeq \ast\) for any \(\emptyset \neq I \subset [m]\), then there is a homotopy equivalence

\[
\epsilon_K: Z_K(X) \xrightarrow{\sim} \bigvee_{\emptyset \neq I \subset [m]} |\Sigma K_I| \wedge \hat{X}_I,
\]

where \(\hat{X}_I = \bigwedge_{i \in I} X_i\). Moreover, if \(L\) is a subcomplex of \(K\) with vertex set \([m]\) such that a null homotopy of \(\varphi_{K_I}\) restricts to that of \(\varphi_{L_I}\) for any \(\emptyset \neq I \subset [m]\), up to homotopy, then there is a homotopy commutative diagram

\[
\begin{array}{ccc}
Z_L(X) & \xrightarrow{\epsilon_L} & \bigvee_{\emptyset \neq I \subset [m]} |\Sigma L_I| \wedge \hat{X}_I \\
\downarrow & & \downarrow \\
Z_K(X) & \xrightarrow{\epsilon_K} & \bigvee_{\emptyset \neq I \subset [m]} |\Sigma K_I| \wedge \hat{X}_I,
\end{array}
\]

where the vertical arrows are inclusions.
5. Main theorem and its proof

5.1. Main theorem

We first show the homotopy decomposition of $Z_{K}(X)$ for a totally fillable complex K. By Theorem 4.1, we have:

Lemma 5.1. If K is totally fillable, then $\varphi_{K_{i}} \simeq *$ for any $\emptyset \neq I \subset [m]$.

For a totally fillable complex K, we put

$$W_{K}(X) = \bigvee_{\emptyset \neq I \subset [m]} \bigvee_{\sigma \in F(K_{i})} \Sigma^{|\sigma|-1} \hat{X}^{I}_{K_{i}}.$$

Then by Proposition 2.12, Corollary 4.5 and Lemma 5.1, one gets the following homotopy decomposition which specializes to Theorem 1.4 by putting $X_{i} = S^{1}$ for all i.

Theorem 5.2. If K is totally fillable and $X = Y$, then there is a homotopy equivalence

$$\epsilon_{K}: Z_{K}(X) \xrightarrow{\sim} W_{K}(X).$$

Remark 5.3. As is seen in [11], the assumption $X = Y$ in Theorem 5.2 is redundant to get the decomposition. But under this assumption, we can construct ϵ_{K} explicitly as above, which gives us its naturality that will be used to prove the main theorem.

Remark 5.4. The homotopy equivalence ϵ_{K} depends on the choice of $F(K_{i})$ and contraction ordering of $I - \sigma$ for $\sigma \in F(K_{i})$.

Now we state the main theorem. For a totally fillable complex K, we fix a contraction ordering of $I - \sigma$ for $\sigma \in F(K_{i})$ and $\emptyset \neq I \subset [m]$. Let $a_{i}: X_{i} \to DJ_{K}(X)$ be the inclusion for $i = 1, \ldots, m$ as above. Now we state the main theorem.

Theorem 5.5. Suppose that $X = \Sigma Y$ and K is a totally fillable complex. Then for $\sigma \in F(K_{i})$, the composite

$$\Sigma^{|\sigma|-1} \hat{X}^{I}_{K_{i}} \to W_{K}(X) \xrightarrow{\epsilon_{K_{i}}^{X}} Z_{K}(X) \xrightarrow{w} DJ_{K}(\Sigma X)$$

is the iterated Whitehead product

$$[[\cdots [w_{\sigma}, a_{i_{1}}], \cdots], a_{i_{k}}]$$

up to permutation of the smash factors of $\Sigma^{|\sigma|-1} \hat{X}^{I}_{K_{i}}$, where $i_{1} < \cdots < i_{k}$ is a contraction ordering of $I - \sigma$ and w_{σ} is the higher Whitehead product defined in Section 3.

Remark 5.6. As in Remark 5.4, a different choice of $F(K_{i})$ and contraction ordering may produce a different equivalence ϵ_{K} so that the appearing Whitehead products may change.

Let $\tilde{a}_{i}: S^{2} \to DJ_{K}$ be the inclusion of the bottom cell of the i-th $\mathbb{C}P^{\infty} \to DJ_{K}$. For
a minimal non-face σ of K, let \tilde{w}_σ be the composite
\[Z_{\partial \Delta^\sigma} \xrightarrow{w_\sigma} DJ_K(S^2) \to DJ_K, \]
where the second arrow is induced from the bottom cell inclusion $S^2 \to \mathbb{C}P^{\infty}$. Then \tilde{w}_σ is the higher Whitehead product of \tilde{a}_i for $i \in \sigma$. The following is immediate from Theorem 5.5 and the naturality of (higher) Whitehead products.

Corollary 5.7. If K is a totally fillable complex, then for $\sigma \in \mathcal{F}(K_I)$, the composite
\[S^{[\sigma]+|I|-1} \to \bigvee_{\emptyset \neq I \subseteq [m] \sigma \in \mathcal{F}(K_I)} S^{[\sigma]+|I|-1} \xrightarrow{\iota^I} Z_K \xrightarrow{\tilde{w}} DJ_K, \]
is the iterated Whitehead product
\[[[\cdots [\tilde{w}_\sigma, \tilde{a}_{i_1}], \cdots], \tilde{a}_{i_k}], \]
where $i_1 < \cdots < i_k$ is a contraction ordering of $I - \sigma$.

5.2. Proof of Theorem 5.5

Let ϵ_K be the homotopy equivalence of Theorem 5.2. The following naturality of ϵ_K is obvious by its construction.

Corollary 5.8. The homotopy equivalence ϵ_K retracts to $\epsilon_K[I]$ for any $\emptyset \neq I \subset [m]$.

Corollary 5.9. Suppose that K is totally fillable and $X = \Sigma Y$. The homotopy equivalence ϵ_K satisfies a homotopy commutative diagram
\[\begin{array}{ccc}
Z_{\Delta([m], \sigma)}(X) & \longrightarrow & Z_K(X) \\
\downarrow \iota^I & & \downarrow \epsilon_K \\
W_{\Delta([m], \sigma)}(X) & \xrightarrow{g} & W_K(X)
\end{array} \]
for $\sigma \in \mathcal{F}(K)$, where g restricts to the identity map of $\Sigma^{[\sigma]-1} \Sigma|I|$.

Proof. The null homotopy of φ_K, is given by the contraction of $|K_I|$ which restricts to a contraction of $|\Delta([m], \sigma)|$ given by a contraction ordering. Then the corollary follows from Corollary 4.5. □

For $k < m$, put $\tilde{Z}(k) = (Z_{\Delta([m-1],[k])}(X_{[m-1]}) \times X_m) \cup \ast \times CX_m$ and $\tilde{Z}(k) = \tilde{Z}(k) \cap T^n(CX)$. Then the following is clear from the definition of φ_K.

Proposition 5.10. If $X = \Sigma Y$, then for each $I \subset [m]$ with $I \neq \emptyset, \{m\}$, the map $\varphi_{\Delta([m],[k])}$ restricts to a map $\tilde{\varphi}_I : \Delta([m-1],[k]) \ast \ast \ast \to \tilde{Z}(k)$ such that
\[\tilde{Z}(k) = \tilde{Z}(k-1) \bigcup_{I \subset [m], |I| = i} C(\Delta([m-1],[k]) \ast \ast \ast), \]
where the attaching maps are $\tilde{\varphi}_I$.

As mentioned above, $\Delta([m],[k])$ is totally fillable. Put $\mathcal{F}(\Delta([m-1],[k])_I) = \mathcal{F}(\Delta([m],[k])_I)$ for any $\emptyset \neq I \subset [m-1]$. Then any null homotopy of $\mathcal{F}_\Delta([m],[k])$, given by a contraction ordering induces a null homotopy of $\tilde{\varphi}_I$. Put

$$\tilde{W}(k) = \bigvee_{\emptyset \neq I \subset [m-1]} \bigvee_{\sigma \in \mathcal{F}(\Delta([m],[k])_I)} (\Sigma|\sigma|^{-1}\tilde{X}^I \vee \Sigma|\sigma|^{-1}\tilde{X}^{I \cup \{m\}}).$$

Then by Proposition 5.10, one gets:

Corollary 5.11. If $X = Y$, then any null homotopy of $\mathcal{F}_\Delta([m],[k])$, given by a contraction ordering induces a homotopy equivalence $\tilde{\varphi}: \tilde{Z}(k) \to \tilde{W}(k)$ satisfying a homotopy commutative diagram

$$
\begin{array}{ccc}
\tilde{Z}(k) & \xrightarrow{\tilde{\varphi}} & \mathcal{F}_\Delta([m],[k])(X) \\
\downarrow{\tilde{\varphi}} & & \downarrow{\mathcal{F}_\Delta([m],[k])} \\
\tilde{W}(k) & \xrightarrow{\mathcal{F}_\Delta([m],[k])} & \mathcal{F}_\Delta([m],[k])(X),
\end{array}
$$

where the horizontal arrows are inclusions.

We will use the following lemma to show the naturality of the homotopy equivalence $\tilde{\varphi}$. To state the lemma, we set notation. Let $A \wedge B = (A \times B)/(\ast \times B)$. Let $\pi: CB \to \Sigma B$, $q: A \ast B/CB \to \Sigma A \wedge B$, $r: A \ast B \to A \ast B/CB$, and $p': A \wedge \Sigma B \to A \wedge \Sigma B$ be the obvious projections. Then q and q are homotopy equivalences, and $q = q \circ p'$. Put $p = p^{-1} \circ p'$.

Lemma 5.12. Given a map $f: (CA,A) \to (V,W)$, there is a homotopy commutative diagram

$$
\begin{array}{ccc}
A \wedge \Sigma B & \xrightarrow{f \times 1} & W \wedge \Sigma B \\
\downarrow{p} & & \downarrow{1} \\
A \ast B & \xrightarrow{f} & (V \times \ast) \cup (W \times \Sigma B),
\end{array}
$$

where f is the composite $A \ast B \xrightarrow{f \times \pi} (V \times \ast) \cup (W \times \Sigma B) \xrightarrow{\text{proj}} (V \times \ast) \cup (W \times \Sigma Z)$.

Proof. Let $c_t: CA \to CA$ be a contraction. Since $(A \ast B, (CA \times B) \cup (\ast \times CB))$ is an NDR-pair [14], $(A \ast B/CB, CA \times B)$ is an NDR-pair too. Then by applying the homotopy extension property, we get an extension $h_t: A \ast B/CB \to A \ast B/CB$ of a contraction $c_t \times 1: CA \times B \to CA \times B$ such that h_0 is the identity map of $A \ast B/CB$. Thus there is
a homotopy commutative diagram
\[
\begin{array}{ccc}
A \times CB & \xrightarrow{f \times \pi} & W \times \Sigma B \\
\downarrow h_1 \circ j & & \downarrow \\
A \ast B/\ast CB & \xrightarrow{f \times \pi} & (V \times \ast) \cup (W \times \Sigma B)
\end{array}
\]
such that a commuting homotopy is
\[
(f \times \pi) \circ h_1 \circ j,
\]
where \(j: A \times CB \to A \ast B/\ast CB \) is the inclusion. By definition, the map \(h_1 \) decomposes as
\[
(4) \quad A \ast B/\ast CB \xrightarrow{\text{proj}} A \times \Sigma B \xrightarrow{\tilde{r}'} A \ast B/\ast CB.
\]

Since the first arrow of (4) is homotopic to \(q \) and \(h_1 \) is homotopic to the identity map, \(r' \) is homotopic to \(q^{-1} \).

For \(k \geq 2 \), let \(\tilde{q} \) be the composite of maps
\[
\Sigma^{k-1} X^{[m]} \xrightarrow{\tilde{r}^{-1}} (\Sigma^{k-2} X^{[m-1]} \ast X_m) \xrightarrow{\text{proj}} (\Sigma^{k-1} X^{[m-1]} \times X_m) \cup (* \times CX_m).
\]

Proposition 5.13. If \(X = \Sigma Y \), then the homotopy equivalence \(\tilde{e} \) of Corollary 5.11 satisfies a homotopy commutative diagram
\[
\begin{array}{ccc}
\Sigma^{k-1} X^{[m]} & \xrightarrow{\tilde{q}} & (\Sigma^{k-1} X^{[m-1]} \times X_m) \cup (* \times CX_m) \\
\downarrow & & \downarrow \\
\tilde{W}(k) & \xrightarrow{\tilde{e}^{-1}} & (W_{\Delta([m-1],[k])}(X_{[m-1]}) \times X_m) \cup (* \times CX_m) \\
\downarrow & & \downarrow \\
\tilde{Z}(k) & = & (\Sigma^{k-1} X^{[m-1]} \times 1) \times 1
\end{array}
\]

where \(k \geq 2 \) and the upper vertical arrows are inclusions.

Proof. Let \(w_k: Y^{[k]} \to T^{k-1}(\Sigma Y^{[k]}) \) denote the higher Whitehead product. Then \(w_k = w_{k-1} \times \pi \) for the projection \(\pi: CY_k \to \Sigma Y_k \). Then by Lemma 5.12, we get a
homotopy commutative diagram

\[
\begin{array}{ccc}
Y^{*[m-1]} \times \Sigma Y_m \xrightarrow{w_{m-1} \times 1} T^{m-2}(\Sigma Y_{[m-1]}) \times \Sigma Y_m \\
p \downarrow \downarrow \downarrow \downarrow \\
Y^{*[m]} \xrightarrow{w_m} T^{m-1}(\Sigma Y)/\Sigma Y_m,
\end{array}
\]

where \(w_k \) is the composite of \(w_k \) and the projection \(T^{k-1}(\Sigma Y_{[k]}) \to T^{k-1}(\Sigma Y_{[k]})/\Sigma Y_k \).

Put \(L = \Delta([m-1],[k]) \). Then by the definition of \(\varphi_{L_1} \), one gets a homotopy commutative diagram

\[
\begin{array}{ccc}
|L| \ast Y^{*[m-1]} \times \Sigma Y_m \xrightarrow{\varphi_{L_1} \times 1} Z^{m-2}(X_{[m-1]}) \times X_m \\
p_1 \downarrow \downarrow \\
|L| \ast Y^{*[m]} \xrightarrow{\varphi \circ \varphi} \tilde{Z}^{m-1}(k)/CX_m,
\end{array}
\]

where \(p_1 \) is induced from \(p \) and \(\tilde{\varphi} : \tilde{Z}^{m-1}(k) \to \tilde{Z}^{m-1}(k)/CX_m \) is the projection which is a homotopy equivalence, and the right vertical arrow is the inclusion. Thus by the definitions of \(\tilde{\varphi} \) and \(\epsilon_L \), one obtains a homotopy commutative diagram

\[
\begin{array}{ccc}
\Sigma^{k-1}X^{*[m-1]} \times X_m \xrightarrow{W_L(X_{[m-1]})} W(X_{[m-1]}) \times X_m \xrightarrow{\epsilon_L \times 1} \tilde{Z}(k)/CX_m \\
p_2 \downarrow \downarrow \\
\Sigma^{k-1}X^{[m]} \xrightarrow{W(k)} \tilde{W}(k) \xrightarrow{\tilde{\epsilon}^{-1}} \tilde{Z}(k),
\end{array}
\]

where \(p_2 \) is induced from \(p \). Since \(p_2 \circ \tilde{\varphi} \simeq 1 \), the proof is completed. \(\square \)

Lemma 5.14. If \(X = \Sigma Y \) and \(2 \leq k < m \), then the composite

\[
\Sigma^{k-1}X^{[m]} \rightarrow W_M(X) \xrightarrow{\epsilon_M} \tilde{Z}_M(X) \rightarrow DJ_M(\Sigma X)
\]

is the iterated Whitehead product \([[\cdots [w_k, a_{k+1}], \cdots], a_m] \), where \(M = \Delta([m],[k]) \).

Proof. Put \(L = \Delta([m-1],[k]) \). By Proposition 5.13, we see that there is a homotopy
commutative diagram

\[
\begin{array}{c}
Σ^{k-1} \hat{X}[m] \\
\downarrow \bar{\prod} \\
Σ^{k-1} \hat{X}[m-1] \vee ΣX_m \xrightarrow{\text{proj}} (Σ^{k-1} \hat{X}[m-1] \times X_m) \cup (\ast \times CX_m) \xrightarrow{\text{proj}} W_L(X_{m-1}) \vee ΣX_m \\
\downarrow \epsilon_L^{-1} \vee 1 \\
Z_L(X_{m-1}) \vee ΣX_m \xrightarrow{\text{proj}} Z(k) \\
\downarrow w \vee 1 \\
DJ_L(ΣX_{m-1}) \vee ΣX_m \\
\end{array}
\]

where \(\bar{\prod}\) is the Whitehead product of the identity maps of \(Σ^{k-1} \hat{X}[m-1]\) and \(ΣX_m\). On the other hand, by Corollaries 5.9 and 5.11 there is a homotopy commutative diagram

\[
\begin{array}{c}
\bar{W}(k) \\
\downarrow \epsilon^{-1} \\
\bar{Z}(k) \\
\downarrow w \\
DJ_L(ΣX_{m-1}) \vee ΣX_m \xrightarrow{\text{proj}} DJ_M(ΣX).
\end{array}
\]

Then by juxtaposing the above two diagrams, one gets that the composite in the statement is the Whitehead product of the identity map of \(ΣX_m\) and \(w \circ \epsilon_L\). Thus the proof is completed by induction on \(m\). □

Proof of Theorem 5.5. The proof is done by Theorem 5.2, Corollary 5.9 and Lemma 5.14, where the induction in the proof of Lemma 5.14 is done by a contraction ordering. □

6. Example

Let \(K\) be the following 1-dimensional simplicial complex with five vertices.

![Diagram of a 1-dimensional simplicial complex with five vertices]

We explain how to apply Corollary 5.7 to this simplicial complex \(K\). We first have to show that \(K\) is a totally fillable complex, so we check that all non-contractible full subcomplexes of \(K\) are fillable. Non-contractible full subcomplexes of \(K\) are \(K\) itself and
K_I for

\[I = \{1, 4\}, \{1, 5\}, \{2, 4\}, \{2, 5\}, \{3, 5\}, \{1, 2, 3\}, \{1, 2, 4\}, \{1, 2, 5\}, \{1, 3, 5\}, \{2, 3, 5\}, \{1, 4, 5\}, \{2, 4, 5\}, \{1, 2, 3, 4\}, \{1, 2, 3, 5\}, \{1, 2, 4, 5\}, \{1, 3, 4, 5\}, \{1, 3, 5\} \]

where

\[K_{i,j} = \partial \Delta^{(i,j)}, \quad K_{1,2,3} = \partial \Delta^{(1,2,3)}, \quad K_{p,q,r} = \Delta^{(p,q,r)} \sqcup \{r\} \]

for \((i, j) = \{1, 4\}, \{1, 5\}, \{2, 4\}, \{2, 5\}, \{3, 5\}, \{1, 2, 3\}, \{1, 2, 4\}, \{1, 2, 5\}, \{1, 3, 5\}, \{2, 3, 5\}, \{1, 4, 5\}, \{2, 4, 5\}, \{1, 2, 3, 4\}, \{1, 2, 3, 5\}, \{1, 2, 4, 5\}, \{1, 3, 4, 5\}, \{1, 3, 5\} \)

Next we choose fillings of these K_I. Each of $K_{i,j}$ for $(i, j) = (1, 4), (1, 5), (2, 4), (2, 5), (3, 5)$ and K_I for $I = \{1, 2, 3\}, \{1, 2, 3, 4\}, \{1, 2, 3, 5\}, \{1, 2, 4, 5\}, \{1, 3, 4, 5\}$, has the unique filling such that

\[\mathcal{F}(K_{i,j}) = \{ij\}, \quad \mathcal{F}(K_I) = \{123\}. \]

In the remaining cases, there are several choices of fillings, and here we choose

\[\mathcal{F}(K_{1,2,3,5}) = \{123, 35\}, \quad \mathcal{F}(K_{1,2,4,5}) = \{24\}, \quad \mathcal{F}(K_{p,q,r}) = \{qr\} \]

for $(p, q, r) = (1, 2, 4), (1, 2, 5), (1, 3, 5), (2, 3, 5), (4, 5, 1), (4, 5, 2)$.

Next we choose contraction ordering. This is needed for $35 \in \mathcal{F}(K_{1,2,3,5})$, $24 \in \mathcal{F}(K_{1,2,4,5})$, $123 \in \mathcal{F}(K)$. For $35 \in \mathcal{F}(K_{1,2,3,5})$, there are two contraction ordering $1 < 2$, and we choose $1 < 2$. For $24 \in \mathcal{F}(K_{1,2,4,5})$, there are also two contraction ordering $1 < 5$ and $5 < 1$, and we choose $1 < 5$. For $123 \in \mathcal{F}(K)$, there is only one contraction ordering $4 < 5$.

With this choice of fillings and contraction ordering, we get a homotopy equivalence

\[\epsilon_K : S^3_{1,4} \vee S^3_{1,5} \vee S^3_{2,4} \vee S^3_{2,5} \vee S^3_{3,5} \vee S^4_{1,2,4} \vee S^4_{1,2,5} \vee S^4_{1,3,5} \vee S^4_{2,3,5} \vee S^4_{1,4,5} \vee S^4_{2,4,5} \vee S^5_{1,2,3,4} \vee S^5_{1,2,3,5} \vee S^5_{1,2,4,5} \vee S^5_{1,3,4,5} \cong Z_K, \]

where the indices of spheres indicate the corresponding full subcomplexes. Then through this homotopy equivalence, we obtain

\[w|_{S^3_{1,4}} = [\tilde{a}_i, \tilde{a}_j] \quad w|_{S^3_{1,5}} = [[\tilde{a}_q, \tilde{a}_r], \tilde{a}_p] \quad w|_{S^3_{2,4}} = \tilde{w}_{1,2,3} \]

\[w|_{S^3_{2,5}} = [\tilde{w}_{1,2,3}, \tilde{a}_5] \quad w|_{S^3_{3,5}} = [[\tilde{a}_3, \tilde{a}_5], \tilde{a}_1, \tilde{a}_2] \quad w|_{S^3_{1,2,3,4}} = [[\tilde{a}_2, \tilde{a}_4], \tilde{a}_1, \tilde{a}_5] \]

\[w|_{S^3_{1,2,3,5}} = [\tilde{w}_{1,2,3}, \tilde{a}_4, \tilde{a}_5] \]

for $(i, j) = (1, 4), (1, 5), (2, 4), (2, 5), (3, 5)$ and $(p, q, r) = (1, 2, 4), (1, 2, 5), (1, 3, 5), (2, 3, 5), (4, 5, 1), (4, 5, 2)$.

References

Kouyemon IRIYE
Department of Mathematical Sciences, Osaka Prefecture University, Sakai, 599-8531, Japan
E-mail: kiriye@mi.s.osakafu-u.ac.jp

Daisuke KISHIMOTO
Department of Mathematics, Kyoto University, Kyoto, 606-8502, Japan
E-mail: kishi@math.kyoto-u.ac.jp