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" Preface
McKean and I determined all possible boundary conditibns
at 0 for the Brownian-motion in (0,») and discussed the coh—
struction of the sample functions of the Markov processes
corresponding to the boundary conditions [3]. The jumping-in

measure k appearing in the boundary condition has to satisfy '

1y IO(bA D)k(db) < = |

This conditions turns out to be

<

(2) fo(s(b)/\l)kcdb)w

for the diffusion in (0,») with the generator
© Ik

if we have

(4) s(0) > -, m(0,1) <= and s(x) = «,

as we discussed in that paper. f}.

QA few years ago J. Lamperti raised the following question in
connection with this work on branching processes.

" What condition should the jumping-in measure k satisfy in

case m(0,1) = = in (4)?

By intuitive argument I conjectured that the condition

would be
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w -0
deb(lae Ojk(db) <@, 0 = hitting time for 0 or

equivalently

(5) j:(jzm(g,l)dsgmgjk(db) <w .

The purpose of this lecture is to solve this problem for the
~general Markov process with reasonable conditions by introducing
‘the notion of the Poisson point process attached to the Markov
process and to derive (2) and (5) as its special cases.

Let Y,(a) be a homogeneous Lévy process with paths increas-
ing only with jumps. Then

wy, ot e hnca

(6) E(e t) = e

where n is the Lévy measure of the process and

-

(-]

(7) fo(uA 1)n(du) < wA.

Let D, be the discontinuity points of . Y, and consider the

random set

G(w) = {(t, Yt+(é.u)-Yt_(w)) , tEDw}

This is a countable set in T x U , T =U = [0,») . It is well
known that
(a) The number H(EAG) of points in EAG is Poisson -

distributed with the mean :

: fEdt n(du)
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for every Borel set E in T X U, ( A random variable = 00 is regarded
as Poisson ditributed with mean = @) and

(b) 1¥(Ein G), i = 1,2,...,n are independent for disjoint Borel
sets B, in TXU.

These two conditions characterize the probability law of the random
set Gy o |

Instead of considering the randombset Gw we can consider the

point process X.(w) where Xt(ﬂﬂ) is defined only on D, and
Xt<u))4: Yt+(u)) - Y¢_(w) for t € QQ .
for each . Then G, is the graph of the path of X. . A point
process in general is a random process whose sample function is defined
oniy on a countable subset of the time interval depending on the sample.
The values of a point process need not be real. We can consider
a point process whose values are taken from a general measurable

space U. Let n be an arbitrary ¢-finite measre on U. Then a point

pProcess whose values are in U is called a Poisson point process with

characteristic measure n , if its graph G = GX satisfies the cond-

itions (a) and (b) mentioned above. We can define Poisson point processes
in a qualitative way and derive (a) and‘(b) from the definition,as
we shall do in this note.

Id case the total measure n(U) is finite, the domain of the
peint
definition of the sample functiocn of the Poissonlprocess with
characteristic measure n is a discrete set a.s. and its structure

is simple. This was discussed by K.Matthes,J.Kersten and P.Franken[4].
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It is a generalization of the point process arising frc

compoEFd Poisson procegfi//lf f:U~ U1 is measurabl
if Xn is a Poisson poin.t_.-procesg?nr;:hucharacteristic m
n ; then the composition f-.X is also a Poisson point
with characteristic measure nf ' .

Let X, ‘be a Markov-processkon a iocally compact
- space S and a(eg) be a fixed state. Let A(t) be
time process of X, at a . Then A"l(t) is a homoge
Lévy process with increasing paths. guch that Pa(A'l(
= 1

Let Xg be a Markov process obtained by stopping

the hitting time Oa of X, for a . o, 1is the same
hitting time og of Xg for a .

Let U be the space of all yight continuous funct
with left limits. We will define a point process X
+ U by
DX (= the domain of xw) = the set of all di
" :
‘amd nuity points of |
P -1, . - ~] _a-1
X @)= X(s+A™ 7 (t-)) if § '€ AY(EN-AT (v
AZh
= a if s > A-l(t+)—- ATt
for téD‘
w -

(See the pictures in Section 2 in Chapter II.) We can 1
strong Markov property of X, to prove that X, is a 1
point process : T » U .

Let us introduce a functions e : U+ S by

e(u) = u(0)
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i
Then e:X and—h¥%—are also a Poisson point process and its
characteristic measure is denoted by k .and is called the -

jumping-in measure of X, . Then the characteristic measure

ny of X proves to be

ny (V) =~jsk(db)Pb(X?€ V) , VcUu

‘When X? denotes the sample path of the stopped process Xg .

Let h(u) = inf {t ; u(t) = a} . Then h.X 1is also a
Poisson point process with characteristic measure nx-}f1

and the jﬁmp part of A“l(t) is equal to

tGDx

Using (6) we have

[}

] (tAL)ng-h™1(dt) < =
0

jsk(db)ﬁb(og/u) <o .

Since the construction of a Poisson point process with a given
characteristic . measure is easy, we can discuss the construction
of the Markov process X, from its stopped process, its jumping-
in measure and its stagnancy rate (= the coefficient of t in

the continuous part of A'l(t)) if Xt has no continuous exit

from a .
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To discuss the case that a continuous exit from .a is
allowed; we will be faced with a more difficult problen, |
Roughly speaking; if we can determine all possible processes
Xt with continuous exit only for their stopped process Xg
given (for eXample,one-dimensional diffusion case), then we can
determine all possible processes with bofh continuous exit and
.discontinuous exit. However, we will not diScuss: this problem

in this note.
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Chapter 1 Poisson point processes

1 Point functions

Throughout this note we will use the following notations,

An interval of the type [K, r) , - 00 <,€ <r £ is called a time

interval and is denoted by T, Tl’ T .o T 1is regarded as a measurable

2’

. L . - Y ¢ jf
space associated with the topological ¢-algebra ‘;r on I. Jg, ot
are used respectively for those of Tl’ T2, coo

U, U 9) e denote measurable spaces which are respectively associated

with U, i%j t%, seo , They are called phase spaces. In case Ul(:‘Uz, we

assume ﬁl = Ulrﬁziz (= trace (-algebra of U2 on Ul) unless the contrary

is explicitely stated.
The product space T X U is regarded as a measurable space associated

with the product G'-algebra X W

1,1, Definition A point function p : T'—> U is defined to be a map

from a countable subset Dp into U. Dp is called the domain of p,

We admit an empty set for Dp. In this case p 1is called the trivial

point function. If Dp has no accumulation point in T, p is called
discrete.

1,2, Definition The graph G(p) of a point function p : T — U is
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defined to be
G(p = ¢, p(t) : t enp}.
G = G(p) is a countable subset of T X U such that every t-section of
G i.e, {u : (tl‘J) &€ G } is empty or a singleton, Conyersely every countable
subset of T X U with this property corresponds to a unique point function
T = U.
For a point function p : T2 U and a set EC T XU we write N(p, E)

for the number of points in G(p) /\ E.

Suppose that TlC T, and U, C U, Then every point function : T, -3 Uy
is regaded as a point function : T, - u,.

Let f : U—> Ul' Then for P : T — U we can define a point function
f.p by

D =D , (f-p)(t) = f(p(t)). £ t €D
£.p P p P or f.p °

Let Os be a tramlation : Ost =t+s on (-%0,00 ), 05 induces a set
translation,

& .B:{t+s: teB}.

S

Os induces also a translation of a point function. Let p be a point
function : T = U, Then Os'p is a point function : Q;IT —> U defined by
D = -D . = + > D .
Gs , ( QS p(t) = p(t +s8) for t € b, .p

Let p be a point function : T=» U and ECTX U. Then G(p)N E
corresponds to a unique point function which is called the restriction of P

to E, piE in notation, For TlCT, the restriction p'Tl)(U is\called

the domain restriction of p to Tl' P 4 'l‘l in notation, Similarly for
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Ulc U, the restriction p T X U1 is called the range restriction of p

to U, b, Tj‘ .

Let p, and p, be point function : T —> U. If G(pl)CG(pz), then

p2 is called an extension of p and we write p2 ‘Dpl to indicate this
relation. 1If

pl(t) = pz(t) for t G’Dpln Dpz,
then p, and p, are called consistent. If {4 pp} IS$ a countable family of
point functions: T —» U consistent with each other, then L”)G(pn) corresponds
to a unique point function : T —2> U which is called the join of Ppn: \n/pn
in notation.
The space P(T, U) of all point functions : T —> U is regarded as a

measurable space associated with the J-algebra ”)(T, U) generated by the sets

{péﬂ) : N(p, E) :k_}, E € JXZ{, k=0, 1, 2, «++,00.

1f T,C T, and U C U,, then P(Tl, Ul)C E(TZ, U)), namely P(Tl, u)

is a subset of P(Tz, U2) and

K _'|'
P(Tl, vy =Pa, va 70(1‘2, v
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2 Point processes

Let (Q. B, p) be a complete probability measure space. We write

and P tor Per, vy ana Pz, v

2.1, Definition A function X .Q.—?P measurable 'B‘TJ "is called a point

process (or a ramdom point function): T — U on (, B, p). The value of

X at w , X, in notation, is called a sample point function of X.

A point process X : T—U on @@, B, p) is a random variable with .
values in .(,?. 'P). Therefore all notions concerning random valuables such
as probability law, independence etc. are defined for point processes.

It follows from the definition that a map X :[() —>P is a point process
if and only if N(X, E) is measurable in w for every E,

It is to be noted that if T, CT and U1C U, then every point process
: T1 - Ul is also regarded as a point process : T = U,

We can prove the following theorem by routine.

2.2. Theorem Two processes Xl, X, : T U have the same probability law,

2

if we have

P(N(xl, Ei)z k. , i=1, 2, -°n) = P(N<X2’ E) =k i=1, 2y **n)

i i’
for every n, every ‘Zki} and every disjoint -{Ei} .

The operations on point functicns defined in Section 1 are also def:lnéd
for point processes in the obvious sample-wise way. For{ example, the
restriction X I E 1is defined by

x | B), =%, | E
It is obvious that if E € J XU, then X | E is a point process : T — U.
Similarly for after operations.

A point process X : T —> U 1is called discrete if X 1is a discrete

point function a.s. X : T —> U 1is called ¢-descrete if we have an



increasing sequence {UH}CM such that X { Un is discrete for every n

and that
x=x| Uu a.s.
“ n

X : T=> U is called differential if X | T,» 1=1,2 -'n are

independent for {Tl( disjoint.
lJ
X : T—> U is called stationary if GT(X ,A Tl) and X l G;ITI have

the same probability law as for as both T1 and (};lTl are included in T,

)
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3. Poisson point processes

3.1. Definition A point process X : T = [6,00) —> U is called a Poisson

point process, if it is g¢-discrete, differential and stationary.
The name '"Poisson point process" 1is justified by the following theorem.

3.2. Theorem Let X be a Poisson point process. Then we have the follow-

ing properties.
S AVEY ¢ . - . . *)
a. For E € )X{.,, NEX, E) is Poisson distributed.
b. For E, E, -+, E ¢€7JX{{ disjoint, N'X, E;), 1=1, 2 *:+n
are independent.
- f‘z
Proof. Since X 1is ({-discrete, we have an increasing sequence %Un} C

such that X =X | U is discrete and that X = X| /U a.s. Therefore
n

P(N(X, E) = 1im N(X_, E)) = 1.
n> n

and so our theorem holds if it holds for Xn' Thus it is enough to discuss
the case that X 1is discrete.
write E[t] for the set %(s, u) €E : s < t}. Then Y(t) = N(X, E[t]),

t € T, 1is a stochastic process whose sample function increares only by
jumps = 1 a.s. It is obvious that Y(0) = 0. Since X 1is differential,
Y(t) £s an additive process. We will prove that

P(Y(t-) = Y(t+)) =1 for each t (Y(0-) = 0).
Consider the process *

z(t) = Nx, [0, t) xU).
Since X 1is differential and stationary, Z(t) is an homogeneous additive
process with increasing sample functions.

@t = Ee 2,

*) The random variable = is regarded to be Poisson distributed with mean



Then

-(Z(t+s)-Z(t) e—Z(t)

@ (t+s) = E(e ) E( ) = y(s) F(t).

. -at 1
since 0 < F(t) $1, Gty =e " with 0 £ a< e,

Thus
E(e—(Z(t+)~Z(t—))) = 1im E(e~(Z(t2)°Z(t1))
tyrt

tobt

)

= %;ﬁ?t(f(tz_tl) = 1.
tolt
Therefore
P(Z(t+) - Z(t-) = 0) = 1.
Since 0 £Y(t+) - Y(t-) < Z(t+) - Z(t-) 1is obvious, we have P(Y(t+) - Y(t-)
= 0) = 1. Thus Y(t) 1is an additive process with no fixed discontinuities

such that its sample function increase< only by Jjump = 1 a.s. and that

Y(0) = 0. Therfore Y(t) is Poisson distributed for each t. Since

I}

N(X, E) 1im Y(t), N(X, E) 1is also Poisson distributed. This proves a.

to
To prove b, consider the stochestic processes
Yi(t) = N(, Ei t ), i=1, 2, «°+, n
n
Y(t) =2 i Yi(t).
Since X is differential, Y(t) 1is an additive process. Since each Yi(t)
is continuous in probability as proved above, Y(t) 1is also continuous in
probability. Since Yi(t) increases only by jump = 1, Yi(t) is the
number of jumps =i of the gample function of Y before t. Therefore
Yi(t)’ i=1, 2, *++, n are independent (Special case of the Lé&vy decompo-
sition theorem [ _J)). Letting t T, we obtain b.

Now we will inverstigate the structure of Poisson point processes. Let

X : T—> U be a Poisson point process. Then N(X, E) 1is Poisson distributed.
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Set
mE) = E(NX, B)) , E € JxIU.
Since N(X , E) 1is a measure in E for every W, m’E) 1is also a measure.
Let {Un} C Ul ve a gequence in the definition of the o"fdescreteness of X.
Then for V €{[, we have
m( (t, t,) X V) = m( [t;+s tzrs)x V)
mC [t ) XV)+ Mty t )X V) =m([t, t )X V)
and §¢©
mC [t t,)X V)= (t,t nw)
where
nv)=m¢ (0, 1) X V),
It is obvious that n 1is a ¢-finite measure on U and that m(dt du) =

dten(du).

3.3. Definition The measure n 1is called the characteristic measure of

X.

The following theorem that follows at once from Theorems 2.2 and 3.2
shows that the characteristic measure nX of a Poisson point process
characterizes the probability law PX.

3.4 Theorem Let Xl, X2 be two Poisson point processes. le = sz
N ! —_
if and only jf nxl = nxz.

Let us prove the existence theorem for Poisson point processes.

3.5 Theorem For a ¢-finite measure n on (U, #) given, there exists




a Poisson porcess X with rix = n.

Proof Since n is ¢ -finite, we have a sequence .{Uh }C_‘_ M such that
n(Uh) <ec0 and that U= khJUh' Let m be the product measure of the
Lebesjue measure on T and the measure n on U, 1i,e. m(dt du) = dt n(du).
Let V., = Ek—l. k) XUh. Then we have
TXU= 1&'{1 V. (disjoint union)
and
4 =
mv, ) = 0w ) <{w.
Consider a system of independent random variables
Nkh’ kK, h=1, 2, «++ , th)&, kK, h, A= 1, 2, e+
such that Nen is Poisson distributegl with mean m(th) = n(Uh) and that
X is distributed as follows
kKhx
= ( .
P(k)\CE) m(Vk nE)/ka),
the existence of such a system is well-known.
Let -ﬂ"l : TXU—T be the projection map. First we will prove that
{T(l(xkn/\)} k, n, A are all different a.s. Since an)\é [k—l, k) X U
a.s. for every k, n, , it is enough to prove that

P(TL (xkhA = T 1 %en

!4
But
PO (X)) = TTl(XgJ-,J)
P X et ,, tooXu  x,. e[t £y Xu,)
o"—‘l kh A o’ T hy “hipe -1’ J

S
=3 ?(_xk;h;/\e[tq_l, te) XU )P X

=1 L ,‘A

s C
=I o te = 5 > 0 (s oo,

(9)

)) = 0 except for (k, h, A) = (’l, j.r‘).
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)
Thus we have proved that 3 TL(X are all different a.s,

. kh\)«kh,\

Therefore the set

G(w) =-{xkn N A=1, 2,..., Nkh(“’) ; k, h=1, 2,... }

defines a point function X, depending on w ,
Now we wilil prove that X is a Poisson point process, First we will
prove that N(X, E), E €J X1, is Poisson distributed. Since N(X, E) is
0 -additive in E, we can assume with no loss of generality that E is

included in some Vi + For t € l:o, 1) we have
N

kh "
y ,
rTT g Xpn ) ;}

I
(ng]
ge)
~
4
I
X

Yy =0 kh L,\l
s ) 1
0 X
= 5 PN :V)ﬂE[tEkhAJ
kh
Y=¢ A=
e v 2%
=z e —= ¢Li+a-Lyn c=mV, ), d= mE
1% c c kh
v=0 '
—et 2+ - Ly
_ =c ¢ ¢ -d(t - 1)
= e e = e

This proves that N(X, E) is Poisson distributed with mean d = m(E),
Next we will prove that it . EB ceIyxum =1, 2,..., o« are disjoint,

then N(X, E)), B=1, 2,..., « are independent, i.e,

B

@ NG,EQ K N(X,E_) « -m(E))(t -1)
E(’Tt y = T Bt B y(=T[ ¢ B B 7y,
=1 =1 P B=1
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Since the ¢ -algebras mkn generated by {Nkh’ lel, lez, cee },
k, n=1, 2, ... are independent and N(X, E) is (¢ -additive in E, we
can assume that '{EB}B is included in some th . By adjoining Eo =
- L/bEB if necessarily, we can assume that
o
=\’ E (disjoint union).

V.. =
kn =T B

Write 1B for the indicator of EB and surpress (k, h) in Nkh’ an and

an for typographical symplicity.

x N(XE) % -:
E{TT tg E[T( tg INEIN

g=1 B=1
N
o %llB(X)
=S P(N=y)E|l T[] t°°
v B=1
Y o« 1 (x.)
=2P(sz)ElV‘[ meP J
v L)\:l =1

1 X

1% .
3 )
_seN=uo [ B[ TP * J
=1 f=1

o
=§P(N:¢/)TTEt P(X € E))

=1 B=1 g P

4
o em() mw) 2 mEH v
= i CT ot oo
v L

m(E)

IO B s "
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T (t -Lm(E) _
5 B B 1 e(tB Dn(E)
B

= e

It is now easy to prove that X 1is a Poisson point process with nx = n,
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4. The structure of Poisson point processes (1) the discrete case

4.1, Theorem, Let X be a Poisson point process :

T = ':0, o)) —>» U ., We assume that X is discrete, namely that

nX(U) < 0o . Let
= ' T < -
D, {T @ <Tw< Ty ...}
and
Z(w =X (TLw) , i=1,2,,..
1 ) 1
Then
_ _tnx(U)
(a) P( Ti -4, S>t) = e (fo =0)
i=1,2,,
= = c
(b) P, € V) = n (V) /n (U v ¢ U
i=1,2,
d 7 .- _ 7
(C) ‘-ly 2 Z-l’ ES Lz 9000y ,;l ’52!"° are
independent ,

Proof Let o, 20 and V. € W, i=1,2,...,k We use the notation

?b(t):&t_lj_};
p i P ’

where Ca] = the greatest integer <t, Then
k

- oy Ts :
E[e 1.2_111 ’i \% ,i=1,2,...,k]

X i i
_121 o ?Sp T, . 1 ]
— — (3 —_—
= 1lim E [e , §o€ev,, 1'T1-1>“;T’i_1’2""’k
P00 k ‘
5 o, =k 4
- O | e -1
_ 2 ip i — Vi _
= 1lim J i e 171 P(;ﬂiéVi ,Tf‘j_(?.i—l.z,...k)

p>@ Yy <V
o<V < <<V
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But _
€ Vil T<-——-yl
Vv & - ’ :12’. o!k)
P(gi ’ p - p "
I’l-—l Vi -'911 v’l
= P(N(X, s T)XV):]"N(X’[_ ,;“)X(U-Ui))=0,
V-1 y _ <
NX, | ——, _.)XU)-o for Y#Vl l/k, V--V;()
- n_(V.) - (U - V.))
= rfe X1 —n(V.) e P “x
i
1
 engu—- — (U)
X ’f e p x (by Theorem 3,2)
14
7'/1.. X
<V
- [
- e 'k nX(U) -TEr 1 )
p i:ll an i
Therefore k ]
’ _Z o .[ ) . eV., i=l,2,,,,,k
E [ell i g’1 1
k V, ) k
-3 «, —- - =K n_() 1.k
= lim 5 eigl ip e P x T'll'nx(vi) (-5—)
. i=
k -2 o, t -t )
=717 <v>§f 5 e 1f1 TiT1 TRX at ... dt, .
i=1 0gt <... <ty
:—C _T i =
Set 6; i i-1 ? i 1,2,... . Then we have
k
-2 Bld;
(1) E(e i7l .3 €V, ,1=1,2,... K
k. o0
k nX(V )
~X 4 eBis -8 ¢1D)
'tT- nX(U) TT'Jr X nx(U) ds ;
i=1 :
0
in fact,
the left side of (1)
k
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k-1
-2 @B, =B, DT, -8 T ]
:E[ei:]_ i i+17 T i k "k ' {i é'vi L i=1,2,....k
k-1
k 5 -2 (B,- B, Dt - Bt =t nx(U)
— e j=1 1 i+17 i k'k k
=TT %y j e e at,...dt
B 0(t € ...<t
- 1‘ “ ok -t %{(Uj
:‘ﬁ‘ n (V) 5 S S e_izlsi(ti- ES U dty...dty
=1 : 0<t, < ...t
-~ 1 " k k k
K , -2 B, s, -(3s,)n,
= 7]; n (V) 3 < \S eifl b 1o im? X ds,... ds
= S19S9s s skZO
= the right side of (1)
Setting V. =V , V. =U (i #i)) and all B, = 0 in (1)
10 i o i
we have
V)
(2) PC 5 €WV = «nX(U) ,
0 X

proving (b)

Setting Bio = g3, Bi =0 (i# io) and all Vi = U in (1)
we have 0
BV, ( W)
(3) E(e 10y = ) P sy n (U) ds ,

¢
proving (a)

Using (2) and (3) we can write (1) as follows ;

k
" =2 P, T,
ELei:11 ol f_év,, i=1,2,...,k]
1 1
k k
:TTP(fieV)”E[e_gigl ,
i=1 i=1 i

which proves (a) ,
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In view of this theorem we can give a new contruction of a Poisson

point process X with nx= n for a given bounded measure n on U

4 2. Theorem Let 61, 6;,,.., ?ﬁ, 3%,... be independent such that
pC o, >t =t 2D

and that
P(F,€ V) =n) /ad) ;

the existense of such a family ﬂ 6;, ii} i is well~known,

Now set
= kY = -+ 7 ¢
xw(t) 55 for t D’l 2+ R N
¢ e ~
= i 5 + ¥ 5 + 5 + 0
DX % 1’ 1 2 1 2 3 ’""" }°

Then X 1is a Poisson point process with ng =n

Proof It suffices by the definition of Poisson point processes to
prove the following fact,

0 - . ’
Let t <t <, < ...<tp

and

U =

q
1=

vy . . . 4
. Vs (disjoint) , Vi € Ul.

Then

N(X, [t t) xvj) ,i=1,2,,..p, 3=1,2,... q,

i-1’

are independent and each one is Poisson distributed with mean

(ti - ti—l) n(Vj)

By our assumption the process

Y(t) = 0 t<0’i

1

' = '3 o ' =
k l+ 2+,_,+ k""t< l+ 2+”,+ K1 ? k 1,2,3
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is a Poisson process with parameter = n(U) independent of the family

(5., 5,...0

Take an arbitrary family of non-negative integers :

’ 1:1,2,..., p,j=l,2,...q

ij
and set
i
VizZ"gij, /"i: 5V,
J o=l
Then
r = £ i< £ <
PN, ([t 4, £ X V) Vij, 1<i€p , 1<j<q)
=Pt -yt > =Y, H(3 , 5 U SR VI
i i-1 i j /Mi—l+l /‘di—1+2 }Li ij
1<idp, 1£j%q)
where ‘.#‘j( Etx—l—l""' EB) dexctes tne number of points in
{faﬂ....ia} nv,
This is equal to
- = <£i < g = <
POY(t)-Y(t, ) =V, 1£i<p) PB( #j( g/“i-l+l,“” E/ui Vij, 1 <i <p,
1<j<q)
T V) TIecH (£ £ 5=V
= TPt D= Y(t, ) =V) PO _( =V, 1£i=qQ
i=1 1 1-1 Yoam 3 THAaT A4 +
i
_ p -(ti-ti_l)n(U) ((ti-tiL)n(U)).A
T e Y. 1
=1 i
[ :
X ‘F]‘ i , n(Vi))Vil (_r_l_(VJl)viq
4=1 V11! '}iq! n(v) n(U)

V..

((tj- tit) n (Vj_)') +J
i=1 3= 1j |

p q -(t -ti—“l)n(vi)
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from which we can easily derive the fact mentioned above,

5 The structure of Poisson point processes (2) the general case,

e

As an immediate consequence of the definition of Poisson processes

we have

5,1, Theorem, Let X be a Poisson point process T = [G)‘w) —>U

and V& ?/(: . Then the image restriction Y= X ,T V is a Poisson point
process : T — V

If n (V) < ¢ | then nY(V) = n,(V) <X and therefore discrete,

X

In view of this fact we have

5,2, Theorem, A general (= (f -discrete) Poisson point process is the

union of an extcending gequence of discrete Poisson point processes,

The characteristic measure of the original process is the limit of the

characteristic measures of tr=: discrete Poisson point processes
Proof Let X be a 4 -discrete Poisson point process : T —> U .,

Then we have
U 10, U ell, rup<w.

Let Xk =X ‘T Uk . Then Xk is a discrete Poisson point process and

Xk+1 is an extension of Xk for kx =1,2,, ..,

we have obviously

X = \/Xk’ and nX=lim nX H
k ko k

completing the proof
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As an immediate consequence of Theorem 3,2 we have

5,3, Theorem, Let X be a general (= § -discrete) Poisson point

process : T =[0,00)—"'§ U, and

U = %{/Uk (disjoint), U, € L], n () <0,

Then Xk =X i U;{ , k=1,2,,,. are independent discrete Poisson
r
point processes, and
X = X
Ux,
k
In view of this fact we can give a new contruction of a general

T tase !

Poisson point processes .1 th any given Lchenideusldc mvasice
v

5.4, Theorem, Let n be a U -finite measure on U
such that

v=(Ju, (aisjoint) , [ €[, nc U <o,
k

Let Xk be a Poisson point process with characteristic measure

nxk( =) = n( ¢ o~ Uk) for k = 1,2, .. and suppose that '{Xk } "

are independent . (Such a requence {Xk } x can be contructed by virtue

of Theorem 4,2 and the existence theorem of the product measure) .,

Then X = \/X], is a Poisson point process with n, =n .,
Yk

6 Transformation of Poisson point processes,

Let X : T~ U be a Poisson point process and f : U —> U
Lfie Cc»n\PC‘}'\ LVCV\’
be measureble u/ Z‘l . Then) fox is a point process,



(20)

6.1, Theorem, If foX is ¢ -discrete, then fp X is a Poisson point

-1
process, and nex = nxf

0,
Proof It is obvious that fo X is differential and statréary, Since

R

fp X 1is & -discrete by the assumption, f@ X 1s a Poisson point process,

Since the number of points in the set
ft it € Dpox N [o, 1) , (£oX ()€ vl} , vle‘V;
is the same as that in the set
. ' =1
{t:tcnxn[o,l),xwef(vl)},vlev;,

we have

7, Summable point processg§

Let X be a point process : T 2[3., r) — [0, o)

7.1, Definition, X is called summable if

P( S X, < ®@) =1 for every s €T ,
't

Suppose that Xt is a summeble point process,
Then

X t€T

= > ,
27X 2

is a stochastic process with values in the space of incereasing

S

non-negative right continuous functions and

D

< the set of all discontinuity points of X

t

Xt = St - St— for t € Dx
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7.2 Definition, St is called the integrated process of X

P

7.3 Theorem, A Poisson point process X : T = [e, r) — [0, 0)

is summable if and only if its integrated process is a homogeneous a

. . / .
incereasing Levy process (= a subordinator)

Proof Obvious by the definitions
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8, The strong renewal property of Poisson point processes.

Let X be a Poisson process T-—é U on (£, ®: P). Recall

that P 1is complete, namely that @ =8§p . Write pst for the P-completion
of the ¢ -algebra @LX \dE’ t)] and P, for @ot' It is obvious
that @t increeses with t, Since X 1is differential, @t and ‘ptw

are independent.

8,1, Theorem., ‘@t is right continuous, 1i,e,

B,o=\ B, e
t syt B
Proof. Set @t_’_ = /M @s . It is enough to prove that every bounded
s>t

Tﬁt_’_-measurable function £ is P, -measurable. f is obviously Beiam
measurable, Therefore we can find & continuous function g on

k
{0, 1, 2,000, oo]; , k being some finite integer, and {Ei' i=1, 2,404y k}
C F xW such that

E, Clo, t+1n XU

and that

(a) El f _'(f)(N<X’ El)go.ni N(x) Ek) ‘ < E .

Since X 1is (~discrete, we have il;}; }61}; such that n('Up) < o0

and that X =X ‘r VU &5.- (an increasin; S.:i‘uehca
P P

Then

N(X, E)) = lim N(X, E, ALo, t+DATUMN.
i p
p—y 2

Since g 1is continuous, we can assume that every Ei in (a) 1is included
. ” . - +
in LO, t + 1) X Up . .Write E (s) for [0, s) XU and E (8) =

[s, @) X U. Then
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P(N(X, E) # N(X, E, N E (1)) + N(X, E, AE@ + 5

< PINKX, [t, t + &) X Up) #Z 0)
- ( )
ontU

=1l e

—> 0 as §— 0.

Therefore we can assume that every Ei in (a) included either in E (t)
or in E+(t + 8§) for some ¢ > 0 independent of i, Suppose that

E,joee, E, CE (t) and E,
J J+

<+
1 o« ECE G +8), since P is

1

continuous, we have

y
® E| ¢, E)yenr, NCX, B - él g, h, |<E,

where each ga is a continuous function of N'(X, Ei)’ i <£j and h.x
is a continuous function of N(X, Ei)’ j < i<k, Then gy is

@t-measuréble and hoc is 631:+5’ . = measurable. Since @tﬁ- CBt+5 ,
pﬁ_ d', w 18 independent of @H—c" Therefore every goc is independent

of agt+' Then we have

2¢ > Elt-zgh |
- a '
- ELE('f -z gochoc'.btg:!

s 4
> E |EB(f - 2 e 1B |
= E|ft-3 gaE(ha)}
[+ 4

because f and g, Bare Bt_’_—measurable and hoc is independent of

'ﬁt+ . Since i gocE(hoc) is @t—measurable, it is now easy to complete

the proof of the pt—measurability of f,
Stopping times and 'stopped J-algebras are defined as in the theory

of Markov processes,
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8,2 Definition

20
A random time = 7¢( U;\ is called a stopping time with respect
to {pt}t 1f ( T=t)e P For avery t.

The stopped G -algebra 2B¢ by a stopping time ¢ 1is defined by
-

By :{B €B, :BN(T st)ebt}.
Since X 1s differential and stationary, it is easy to verify the

repewal property :
P(B N (0.X €M) = P(BYPX €M, B B, MEP

for every t fixed,
+ +
Let &' Dbe the topological ¢-algebra on T = (O, ) and ’P
the (¢ -algebra generated by the sets
1 +
--‘Lf €P : N(f, E) = k K=0,1, 2,004, ; EEY x .

8,3, Theorem ‘strong renewal property)., If g 1is a stopping time with

respect to %'(ﬁt} such that
PO o <on) =1 ,

then

(1) PBACHXEM =PBPXEMN , BEP M€ ’70+
' 1 J , .

+

Proof, Since both sides are bounded measures in M € ‘r , it 1is
semlj‘,

enough to prove this on a fmult iplicative class which generates the

+
¢ -algebra 'TD . Let @ be the class of all subsets M of P of the

form
Mz{ft‘“N(f, [S‘iti)xvi):ki’ i=1, 2,060, p}.

where [’Si’ ti)x Vi' i=1, 2,..., p are disjoint and

* C is called semi-multi i
members 1in ¢

in £ .

‘ if the intersection of two
1s expressed as a finite disjoint union of medwbers
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0< si< t; <&, n(v)) <o  for i=1, 2y.00y P

Then ( is a semi-multiplicative class which generates the 0 -algebra ”0+,

It is therefore enough to prove our identity for M GQ. For this purpose it

sufficies to prove

N( 6. X, [s,,t.) xV,)
E{ﬂ'o(l v i'i i , B}
1

N(X, [s,,t,) x V,) }
1 1 1

RUR!

P(B).

for Oﬁdi_{l.

Since N(f, E) is a measure in E €TxU, we have

— N( (X, [s,,t.) xV.)
E{H“‘i &r i’ i i ,B}

i

= 0"
. 1
1
1
— N(X, [s,——-—-+—l—+0" t._...l_+ T ) xV.)
4 ik h 'Yi k i
= 1im 1lim E || o, , B
K00 h-500 it
1 1 1
w2 .._...N(X, [s..__+___+o' t-____+¢)xv)
0 , 3 .
- lim  lim 2, E{”"(. ik oK o,
1

k=0 h=—>w0 j=1 ~ i
Bn (L2 <o <L) .
h h
Taking k b‘g enough, we get
1 .
si-—k_> 0, i=1, 2y..ey P

Then

i=1, 2y0eey P
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are disjoint, because they are respectively equal to the sets

k h
Therefore
1 j+1 1 j—-1 . .
Loy -t TR Ve il s e

are disjoint as well,
For big k, we have
$1 ’ 1 j*+1 1 j-1 . .
- — - — -
24 32 E{ﬂ”‘l NX, [s; - 4% v % " % o) X vi)’ B,,(‘%.{‘r <-;1‘-)

j=1 J i

— S S b S S bt 3 - ;
=Z E{ [ o N(X, (si — =, t, — ) x vi)}P(B_ (g_h_l Lo/ al‘\L))
j i

D00, s T nV (X D paadd g gt
5 i
—> p(B)! TTe (t; = s;)) n(v) (L, - 1) (h>eo)

i

- P(B)E [T’-og N(X, [s;, t,) x vi)] .
i

Thus the left side 2 the right side in (1). Similarly the opposite
inegaality holds, This completes the proof‘(kemark. ‘Notice that the

strong venewal property does not hold for M é"r? in general, For
example)take V with n(v) <¢Q . Then the time points at which X is in V
form a sequence tending to ® a.s. Let (@G be the first point in this sequence,

Then
0€D and . X(0) =X(e) €V a.s.,

while
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Chapter II, Application to Markov processes

l, Problem.

Let Xt be a standard Markov process with the state space S. The

time interval [, ) is denoted by T. Let a be a fixed state and 0;

the hitting time for a. We impose the following four.assumptions.
1. =1
Al Pb(V; L)
A. 2, Eb(V;.A 1)/ 0 as b—>a
A, 3. inf E_(V, 1) 0 for every neighborhood U of a
b@UC b a.A ? y €

A. 4, a 1s a discontinuous exit state;

n
We will explain the meanré of this condition.
s 1is called anexit time from a for the path (Xt(aJ))

if

1

z s X_(w) a} N -¢, a) ¥ ¢

and 1if

fs :x (w=ajna a+)=¢.
All exit times from a for the path (Xt(w)) form a countable set depending
on w .,
An exit time s from a for the path (Xt(ﬁh) is called a g¢ontinuous.
or discantinuous exit time according as
Xsﬁd)= a or XSOM)# a.

a 1s called a discontinuous exit state if all exit times from a for the

path (Xt(w)) are discontinuous a.s. with respect to Pa'

t x°=x .
Let X, t AT,

is the same as a,’ the conditions A.1, A,2 and A.,3 are equivalent to

Since the hitting time o;" of the path (xzcw))
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o

\ ) =
Al pb(v; < ) 1

&

A, 2. Eb(V: Al) — 0, as b —>2 a.

3
A;3. inf, E, (g9 1) 0 for every neighborhood U of a.
% perc b & 2

By the strong Markov property of (Xt), the probaﬁility laws of the
path (Xt) is determined by the probability laws of the path (x:) and the
probability law of the path (Xt) starting at a. Symbolically we ha?e
(1) p.1.3 of X)) =p.l.hof (X )+ p.1. of (X)) starting at a.

Since the path (Xt) starting at a behaves outside of a in the same way
as the path (X:), the union relation in (1) is no disjoint union, We
want to extract some infomatio;ffrom the probability law of the path (Xt)
starting at a to obtain a symbolic information relation

1') p.1l. of (Xt) = p.l. of (Xt) + 1 (disjoint union).

In the subsequent sections we will prove that 1 consists of two elements:

Jumping-in measure k(db) and stagnancy rate m.
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2. The Poisson point process attached to a Markov process at a state a.

We use the same notations as in Section 1 and impose the conditions
A.1, A. 2, A.3 and A, 4.

Let A(t) be a local time of (Xt) at a. By our assumptién Al
and A,2, A(t) is determined up to a multiplicative cénstant and we

have

]
=

P(A(t)  w for every t)
and

P(A(t) =) 0 as t —>oo) =1,
We refer the reader to Blumenthel and Getoor E ] for the definition and
the properties local times.

Let U be the space of all right continuous functions:

T > S with left limits. The sample path of (X,) belongs to U a.s.
for every starting point.

From now on we will refer to Pa for the probability law of Xt(u’)
unless the contrary is explicitly stated. Let us define a point process
X:T—>U by

Dx = {A(s) : 8 moves over all exit times from a for the pa.th}‘

[}

x“(t) = Xo eA'l(t—)) for te Dy, where b, 1s a shift

operator and © 1is a stopping operator. Note that D‘ consists of all
values of A(t) corresponding to the flat t-intervals of A(t) and that
Xw(t) is a function : T —> S belonging to U forw@ and t fixed and

X (t)(s) =X (9tw) for s €T,

SAG(frw)
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Fig.1. X
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Fig. 3. X(t) Fig. 2. Alt)
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The following figure is an intuitive picture of Fig.3.

T Fig.4. X%(t)




(31)

2.1, Theorem and Definition The point process X define above is a
Poisson point process : T —> U ; it is called the Poisson point procege

attached to the Markov process (Xt ).

Proof Let {@t} be a family of sub-J-algebras of B in the definition

of the Markov process (Xt). Since A—l(t +) and A_l(t -) = sup A_l(t -
%

1

n +) well

are both stopping times, aA"l(t-) and &A‘l(ﬁ) are defi
F !M 3

Let ast(X) be the ¢-~algebra generated by 1\[0, t). Then
BOOCE -1 4o CB 104+
For t fixeA, we have
PxA Tt-)) = xaa Nt +)) = a) = 1.
Thus, for Bc—&t(‘) and ME"P, we have
P_(B AN (( etX) € M)
= Pa(B) pa(xe M)
because of the additivity of A(t), the strong Markov property of (xt)
and the definition of X, Thus X has renewal property. This implies
that X 1is differential and stationary.
To prove the (¢ -discreteness of X we will introduce a map
h:U—>T by
n(uw) = inf §t : uct) = a l.
If u 1is the path of (xtm)), then h(u) will be. 0;(«:).
Let Un be the set of all u such that

-
h(u) > n



By A.4 we have

Since

X} Vn

14

x=yx|y,. oS

N, (00 )X U ) < im-A o) <w

Ae.8.

is discrete a.s. for each n. X is therefore

( 32)

C-d1iscrete.
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3. The jumping-in measure and the stagnancy rate,

Let us consider amap e : U—> S by

e(u) = u@®), ugvu
Since the path of xt has no discontinuities of the second kind and
since AT(t) <® for t <¥, the distance p(X,» a) between X,
and a can be larger than ¢((>0) a finite number of times during
[b, A"ty a.s, for t <o ., This implies that e'¥X 1is a ¢-disctete
point process, By Theorem 6.1, I, we see that e‘X is a Poisson point

process.

3.1, Definition The characteristic measure k of e'X 1is called the

Jumping-in measure of the Markov process xt from a.

It is obvious that k = ny e_l. Since n, 1s concentrated on the
paths starting at points in s-{a} by A.4, k is concentrated on S-{a}.
It is obvious that the total measure of k is the same as that of nk.
‘Since X is ¢ -finite ; ' the total measure of k is finite,

since A"l(t) is known to be an increasing homogeneous Lévy process
( = a subordinator), it can be written as

AT ) = met + Jct), m> 0,

when J(t) is a pure jump process,

3.2, Definition The coefficient m is called the stagnancy rate of the

Markov process (Xt).
The following theorem shows that the characteristic measure q‘ is
determined by the measure k and the probability law of the path of (x e

3.3. Theorem

) = k(db) P. (x°¢ V)
'3 g b
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)
where X denotes the path (xt(w), t €T,

Proof. Let S, denote the set {b€ §: f(a, B)> 1/1} for 1 =

i
1, 2,¢600es Then - US1 =8 —&a} . Let Iji = {u € S : u(o) € Si}
= c-l(Si) . Then Ui increases with i and the limit Ugx 1is the

space of all paths in U starting from points in S = {a}. We have

X=X‘rU,,..= Yxi ; X; =x“f UC
-1 -1 ‘
by A.4. The set A (Dx ) A [O, A (t-}-)J is included in the set
i o

of the time points s € fo, At - )] for which Py X, ) > /i,

Since the sanple path of (xt) has no discontinuity points of the second
15 -1 -1

kind, the lat:er set is finite and sb A (Dx )n [0, A (t+)] . This

i

implies DX n LO, t] is i.nite, xi is therefore a discrete Poisson
i

point process.

By Tucorem 4.1, I, we have
LRI N
ne D= AR (T ev), v, e U = Uin‘Ul .

where A, =n Xi(ui) and ¢, 1s the smallest element in Dx . .

By the definition we have

xi(ri)_Xui)_(xo&a,i) , 0 =AT(T

= . i G i !
Since n%i rk ' Ui and since i is a stopping time with respect

to {'OBJ, we have, for V ¢ Uu

o
WAV = AP(Xe prd) € VAU

't

— ' °
= A £ P_(X v, € dD)P (X" € Vn U
i
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Set V-e-l(B) B &'lz =S n,g . Then VCe-l(S)‘ 9. and so
€ = i’ Py 1 =54 . . 17T Wy

k(Bi) '

Thus we have

°
n‘ (Uif\ V) = J‘ k(db)Pb(X € Vn Ui) .

Sy

Letting i T o , we have

nx(V) = 5

which completes the proof,

k(dD)P. X° € V) = 'r k(ab)P. (x°€ V) .
s—-{a b . 8 S b ‘

The jumping-in measure k 1is not arbitrary, We have

3:4. Theorem, k 1is concentrated on 8 -{a} and
y E (T2 A Dk(db) <,
$
Proof, hvX is also a Poisson point process whose integrated process

is the discontinuous part of the increasing homogeneous Lévy process

A"Y(t). Therefore h X 1is summable and so
00
A
50(1 t) nh.x (db)
by virtue of Theorem 7,3, Since nhx = nx h-l, this can be written

00
5-(1 At) j‘ k(db)P, ( G-° € dt)
0 s b a

by the previous theorem, namely

° ©
f k(dDIE ( €7 A 1) <@,

S



Remark, By this theorem and the condition A, 3, we have
c
k(U7 Lo

for every neighborhood U of a.

€36 )



If k(8) <09 , then X 1is discrete.

{‘t :

ordered linearly and A(t, < )

.he set Xt(w) =

up to a multiplicative constant,

A’l(t) =mt + J(t),

Thus we have
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Then

is the sojourn time at a singleton

J(t) being the discontinuous part of A-l(t).

3,5, Theorem

A(t)

k depend on which version of A(t)

be two versions of A(t)

i=1, 2,

Az(t) = cAl(t).

Consider the decompositions

-1 .
Ai (s) = m, 8 + Ji(s), i=1,
Then
-1 S |
A2 (cs) = Al (8)
+ = +
mzcs Jz(cs) mls Jl(s)
and so

we take,

Then we have a constant

2.

a } is a sequence of disjoint intervals

{e}

m > 0 in the decomposition

Therefore we obtain

o0
m? O in general and m > 0 in case k(8) < .

is determined up to a multiplicative constant and m and

Let Ai(t). i=12

and write the corresponding m and k as mi

c > 0 such that

Writing 1*A for the number of points in A, we have

f.kz(B) = E_ [#(s : 048 £ €} ﬂ()xs)) EB}]
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E, [#-{s :0¢s4€ ) X(,A;I(s)) eB} ]

i

E, (#{t : 0 SALE, Xt eB} |

Ea[#{t :0 LcA (DL€, X(t) ¢} )

E,[#{t:04a@w <€ xwenY]

=+ & x (B)

c 1
and so

1

k2 T e k1 ‘
Thus we have
_ 1 ’ R !

3,6, Theorem, I1f Az(t) = cAl(t), then m2 = _c m and k2 = —c kl.

Therefore m and k are determined up to a common multiplicative conltant;
To have m and k determined uniquely, we have to take a standard

version of the local time A(t).

3.7. Definition. A(t) 1is called standard if
00 ¢
E ( 3 e dA(t)) = 1,
& Jo

in which case

oo -0

E (J e—tdA(t)) =E (e ) for every b,
b 0 b

The m and k that correspond to the standard A(t) are called the

standard stagnancy rate and the stand jumping-in measure.
3,8, Theorem. © The standard stagnancy rate m and the stagnancy

Jumping-in measure k satisfy the following conditions.
(@) m 20 in general and m > 0 in case k(8) L %0 ,

(b) k 1is concentrated on S -{a} and
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(1) j K(db)E, ( A
8 a o
-0

(i1) m + f k(db)Eb(l -e ° ) =1,
]

Proof. By Theorems 3.4 and 3.5 it is enough to prove b(ii). Since

m and k are standard, the corresponding A(t) satisfies
e t
E_( f e "dA(t)) = 1,
a
0
But the left side is
IS |
E_ ( { oA (B 4y
a
60 -1
= J E‘l(e-'A (t))dt

0

0
m -
-mt-t'j a-e% j k(db)Pb( 0': € ds)
= e ° 8 dt

0

(see the proof of Theorem 3.4 and use the Lévy-Khinghia formula)

0
(m + X (1-e¢" j k(db)Pb(o"o &dasn?
a
0 8
_o'o -1

(m + fk(db)nu-o & n=t,
A b

This proves (ii),
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4, The existence and uniqueness theorem

Suppose that xt 1S a standard Markov process with the state space

S and that a is a fixed state. We assume A, 1, A. 2, A. 3 and

A, 4 1in Section 1.
m

Let Xz = Xt 405,’/the standard stagnancy rate and k the jumping-;rt

measure for Xt" Then we have proved

0 (4] 0 0
(1) Xt is a standard Markov process which satisfies A1'0. Al.l. A1.2

and Ag,S.
and
(1i) m and k satisfy (a) and (b) in Theorem 3. 8.
Now we want to contruct Xt for x2 » m and k given.
4, 1, Theorem Suppose that Xg » d and k satisfy (i) and (ii).

Then there exists a standard Markov process Xt satisfying A. 1, A, 2

is equivalent to X0 and that the standard

and A, 3 such that X t

tAGa
stagnancy rate and the standard jumping --{n . measure are respectively
equal to m and k . Such Xt is unique up to equivalence.

Proof of existence First we will construct the Poisson point process

X attached to the Markov process Xt that is to be constructed.
Let U be the space of all right continuous functions ;
: i}/
T —2 S with left limits. Define a & -finite measure n /U by
0
nev) =J k@b ) p % v),
S b

and construct a Poisson point process X : T —> U with ny = n
by Theorem 3. 5, I or by Theorem 5. 4, I.

Set

~N .
A(s) = m§+ Z hX(x))
o <5

ae[ﬁ
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where h(u) = infioneT : ulo) =&—}

Define X(t) as follows.

~ ~ ~
Y(t) = X(s)(t - A(s - )) if A(s -)<t<A(s)
~ n
= a if A(s -) = t = A(s)

Now define the probability law Pa of the path of X starting at a by

t
Pa(X €EV)=PE(G)IEV)

¢nd the probability law Pb of the path of X starting at a general

t
state b Dby
P X -V, X V)
b X 4 Ve ‘}dé 2
a
=p X EV_ P (XEV)
I i) 17a v 27
It is needless to say that the definition of Pa is suggested by
.the'figures in Section 2 and that the definition of Pb is suggested
by the strong Markov property.
First we will prove that

(1) »P(’K(A)(oo for every s and A(O")“x’)— so that Y(t)

N s e e

J
o —
is well-defined for every t. If k(S) = 0, then m20 and

n .
A(s)=ms e and A(o0 ) =02
If k@S))O, then {'\- + X 1is a Poisson point process with

-1 ! 0
n x—nk _5 k(db)P, (T _€+).

he
S
Since o9
| j(tAl)%x(dt)=fk(db)E (6 A1) fhx is summable and so
——20 T 8

J(s) = PN h(X(oc))
xes

x€&D
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For every s <® and J(s) is a homogeneous Lé&vy process with increasing

pathd. Since n ¢ o, @)= k(S)) 0, we have
PUE? ) =) =1,
This proves (1).
Now we will prove that the process Xt defined above is a standard
Markov process with A.1, A.2, A.3 and A, 4.
case 1 k(§)<9. In this case we have m>O0.
Since
o . :
nx(U) = jk(db)pb(x' eU) = k(g) JX is discrete.

s:t_._, ~— S P
D, = ‘I'Cl(fl+‘(2(tl+’('2+ T.<.... }

and set

fiz X(T, + ?:2+ ..ﬂ'i). i=1, 2, ....

Then ‘fl, 7521..,. fl’ fz,“.are independent and

P(T, 7¢) = e'tk(s)

f k(db)Pb(Xo( )€ V), VEM
In other words the probability law of 3. is the probability law of

the path of X° with the initial distribution k(db)/k(S).

= 1
P( fie v) E‘(S‘)

By the definition of Y(t) we have Y(t) = a

for mT,+ RS+ .o+ T, |+ h fj_l)
lrad —
L t&n T+ SO+ ... +mT,  + h(§1-1)+ m T,

and Y= §FG~aT -nED-..-mT,_ - hF, ) -mT)
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for m{, +hCy O+ oot m T+ neE, o m T

£ t<m T + nC £+ ..+ mT + n g0
Since

PmT, >t) = PCT, ) t/m) = e-—tk(S)/m )
X(t) can be described as follows. If it starts at a, it stays
at a for an exponential holding time with the parameter = k(s)/m,
then jumps into db with probability k(db )/k(S ) and
moves in the same way as xg does until it hits a; it will repeat the
same motion afterwards independently of its pas% history.
1f it starts at b = a, it performs the same motion as xg until it
hits a and then it will act as above. We can verify the strong
Markov property of this motion by routine, 1t is easy to check the

. [ See the .F.,‘ctwre belew ).

other properties of Xt stated above,

7y 7
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Case 2, k(8) = ©2 ., Everything can be verified by routine except the
fact that the sample path of Y(t) belongs to U a.s, Since it is
obvious that Y(t) is right continuous and has left limits as far as

it is in S a} , the only fact that needs proof is that the set of s

such that
g @) <o, G =i pa, w ) 2 ¢ }
forms a discrete set a,s, for every € » 0. Since ¥ (s)(t) = a

for t > h(X(s)) a.s, OE(X(S)) <L %0 is equivalent te
7 (X () ¢ h(X (s

a,S, . It is therefore enough to prove that
x 1.'.V‘E R/ :{ u "E(u) < h(w }
is discrete a.s,, namely that
n_ (v, ) <00, ,
X L Then/
. o } / 0
= ¥ . 3 >
set § 1nf{Eb(J"a,\l) JECHEVES 3 g (8§ »0 by A° 3.

Observe that

ju h(u) A 1 nx (du)

> f h(w A 1 n_ (du)

ot v X
€

S (h(w - 0; (W) A1 n, (dw

%

S (h(w) - @ (W) Al S X(dD) P (X € dw
v ¢ $ oo

Vv

0 0 0 0 ]
Ss k(db)Eb [(0’a - O;(X MIANL, ‘a > OE(X )

I

A ) c 0 G 'OJ
SS k(db)EblE (T _AD, O >} g X))

0
X( G (X))



( 44 )

2§ S‘h(db)Pb(Vg > OTE(xo))
8

0
k(dD)P. (X € Vv )
6 .gs b [

X n‘ (V£)

and that

j h(u) A1l ng (auw)
U

( h(wW A 1 gk(db)Pb(xo € aw
Ju S

j' k(db)E (h(x?} ALD
s b

j‘ K(ADE, ( ¢° A 1)
S b a

Thus we have n.. (V) L,

X
The proof of unigueness is easy, because the probability law of the path

of (XS) and k determine n_" and so the probability law of X ,

which, combined with m determines the probability law of the path of

Xt.
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5. The resolvent operator and the generator of the Markov

process  constructed in Section 4.

The generator of a Markov process is defined in many ways
which are not always equivalent to each other. We will adopt the
following definition due‘té E; B. Dynkin.

Let X_ be a Markov process with right continuous paths.

t
The transition probability p(t,a,E} is defined by

p(t,a,EB) = P_(X €E) ,

and the transition operator p, is defined by
(%

ptf(a) = Jsp(t,a,db)f(b) = Ea(f(Kt)]

P carries the space B(S) of all bounded real Borel measurable

functions into itself. It has the semi-group property:

Piss = P¢Pg » Py = I (= identity operator)

The resolvent operator (potential operator of order o) R

o
(a > 0) 1is defined by

- wﬁ-ut b _ ® ~ut .o
Raf(a) = IOO ptfab}dt = Ea([oe f(kt)dt)

It satisfies the resolvent equations:

Ra - RB + (u-B)RaRB = 0
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The Dynkin subspace, L of B(S] is defined by

L = {feB(S}) : lim p.f(a) = £(a) for every a}
t40

. is a linear subspace of B(S)

Because of the right continuity of the path of Xt we have
C(S) ¢ L € B(S) ,

C(S} being the space of all continuous real functions on S
It is easy to see that

-

pL CL , RLCL

In view of this fact we will regard P, and Ru as operators
L - L , unless the contrary is stated explicitly.
By virtue of the resolvent equation # = RuL is independent

of o . R, L ~ K is 1-1 and so R&l is well-defined.

5.1. .Definition The generator q? of (Xt) is defined by

o@(@) = {f€L : %(ptf(a}f(a)) conveyes boundedly to a
function € L }

and

FE(a) = lin £(pfla)-£(a)) , £ € Hg)

5.1. Theoren. @(g) = £ =RLIL

o

1

gf. = ocf“R(; f, fe€ @(47) , with A.1, A.2 and A.3,
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Let X, be a standard Markov process and a be a fixed state.

Let Xg = XtAca . Then Xg is also a standard Markov process with
AO.O ,AQ.l , A?.Z and AG.E . We will denote the transition

operator, the resolvent operator and the generator of X,

respectively by Pt > R and C; and the corresponding operators

o
0 0 0 0
for X; are denoted by Py » R, and Q?

5.2. Theorem ,@(’(}’)C ,@( 6}0) and

Je) = 96y , b £a,

?Uf(a) =0
Proof If e &) , then
f=Rg ,gel,

By Dynkin's formula we have

7]

rw

e ey

]
tri

f(b)

fca ‘Oﬁt . . ..O{'Ga
. e g(xt)dt) + Eaie f(x0 1)

a

i
!
o
—~

rca ~at ) ’ ‘&Ga
e *Tg(X,)dt) + E_(e  ?)f(a)

it
tr
~

Set

g(b) b #/a

i

g’ (b)
uRag(a) = df(a) h = a

Then
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RO = B, e 0ax0)any
0 C

a
o .
a ~oag
2 —at N e . 00
= EaL[é e TgXpdr) + Ejle MRyg"(a)
Since
‘RO 0 . ¥ -at
o8 (a) = oe of (a)dt = f(a) ,
we have

(o) = %00
£(0) = Rog” (1)

To complete the proof of ;8(g} - a&(gyg) , we need only prove

that go belongs to the Dynkin space L0 of XS

Xg = a for t 2 0, , we have

Since -

ngg(a) = go(a) > gO{a) as t + 0

Suppose b # a . Then Pb(ca >0) =1 and so

lim P, (0o, < t) = 0
tvo ©° @ =
Therefore

pYg% vy -g% b
Pt |

il

By (g” XDy -g% b)) |

[E,(g(X), t < 0 )+Ey(g(a), t > 0,)-g(b)]

i

By (8 (X)) By (g(X,), t > 0,)+E, (g7 (a), & > o) -g(b) |

By (e (X)) -g®) I+ (lel+lg’ ()Pt 2 0) » 0,

lgl = suplg(c)|
ceS



Since

f=Reg-= RggQ s
we have
agf = af - g ,
and so
Py = g
and

gjﬂf(ﬂa) = of(a)



Let Xt be the Markov process constructed from

Xg , m and k in Section 4, The resolvent and the generator
,g)(t are denoted respectively by R, and (% and the
corresponding operators for Xg are denoted respectively by
0 0 '
R, and g .
We will discuss the relation between (Ra ,gﬁ and

(Rg , go) . Let us make three cases.

Case 1, k(S) = 0 . 1In this trivial case a is a trap
for Xt and (Xt) is equivalent to (Xg) , so that
R =R and (J = qﬂ
a a 7 ¢
Case 2. 0 < k(8) <=, (m >0 1in this case) .

a 1is an exponential holding state with the rate k(S)/m .

5.3 Theorem. If 0 < k(S8) < « , then

0 '““g
(1) R g(b) = R g(b)+E, (e IR g(a) for b # a

mg(a)+j k(ab)R)g (b)
() Rg(a) = : '

m+[ KEADIE, (1-0 )

N : 1.

g b

) Je) - ggf(b) for b # a
@ gE@ = | K@) (o) -£a)

Proof (1) is obvious by Dynkin's formula.
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To prove (2), set

f(a) = R g(a) and £(a) = R)g(a)

The Poisson point process X attached to (Xt) is discrete.
Let o be the first point in Dy and 7t be the first exit
time from a for (Xt) . Let Yt be the process derived
from X in Section 4 . By Dynkin's formula, we have

]

f(a) Ea(JOe'mtg(Xt)dt)

il

T . .
Ea(foe‘“tg(xt)dt) + E (e TE(X))

i

me
E(foqe‘“tgca)dt) + Ele M MIE(X,(0))]

-Qmgo
g(a)Bl 28— ] + Ble ™ IE[£ (X, (0)]

1

Observe

Ea(e-amo) - J e-umte-tk(S)k(S)dt
0

- k(S)
om+k(S)

and

E_£(X_(0))] = E%§7jsk(dbzf(b)
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Therefore we have

mg(a)+[qk(db)f(b)

(5) f(a) = ,
am+k (8)

which, combined with (1) , implies

-00
mg (a)+ | k(db)fo(b)+J kK(db)E, (e 2)f(a)
f£(a) = ‘S S
am+k (S)
Solving this for f(a) , we have
L ‘ 0.
mg(a}ff k{db)f (b)
L S
f(d) - O ]
( °O€.O’a
am+JSk{db)Eb(1~e )

which proves (2). (3) 1is obvious by Theorem 5.2.

It follows from (5) that
m(af(a)-g(a)) = [gk(db)(f{b)—f{a)) :

which proves (4).

Case 3. k(S) = » ., a 1is an instantaneous state

for (Xt)
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5.4. Theorem Theorem 5.3 holds also in case k(s) = «

(f k(db) (f(b)-f(a)) = lim j k(db) (f(b)-f(a)))
S ' e+ 0 o(b,a)>e

~with the following proviso. If m > 0 ,

{(Z) holds for g with

(6) lim g(b) = g(a)
b+a

and (4) holds for f = Rag with g satisfying the same condition.

Proof (1) and (3) are obvious. Let ¢ > 0 and set

sy = (bes : p(b,a) > €}

I

ub® = fuev s u(0)€s; 3, i=1,2
x1€ = x| ubt i =12

Let YZ’E(t} be the process derived from Xz’g in the same way

as YT was derived from X in Section 4. Since we fix e for

gl,E UI,E

the moment, we omit € in ¢ , etc.
Let
J(t,X) = [ h(¥)
sst
sEDx

) i
Similariv for J(t &K ).

¢ Xl is discrete. Let o be the first element in DA1 .
X
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Siméia@%yzéexm=éé§g&§4~» Noticing that

X
we have
J(osX) = J(g;xzj , X = xl
o o
and
2 : : 2
Y, = Yo for t < mo + J(o3X) = m + J(03&")
f(a) = Rag(a)
- E(J}e”“tg(yt)dt)
mo+J (ogX) ot
= E(jg e g(Yt}dt}
- . h(X -at
+E[e M0 “J(O*X)j X5 “tg(xo(t))dt]
: 0
+E{e*amo—aJ(03X)-ah(xg)j‘ e'utg(Y{t,edX))dtJ
mo+J(osk?) ., O
- 5([ e tg(rhan)
g2 1, |
+E [ 0mT 0T (05 X7) jg(xg) . utg(Xé(t))dt]
i ﬁ: 2 1. ro0 "
+E[e—amc—aJ(u3X )-ah(X )j o atg(Y(t;GOX))dt]
0+
= I v Iy
1

X

2 . . \ 1 1
and & are independint. o and KU are ZB(X°) measurable
5 _
and independent of each other. X° , ¢ and Xé are therefore
independent of each other. Thus we have

)

2 )
I = E{e»amg~aJ(01X )]EEJO o e'atg(X§(t))dt]

~
bt



Levy

0
” t —x2 k(db) ~ [%a _-gt_ 40
jo Poedt)e Mp[em ) (F5X ’1f k(sT) Eb<f0 e atg(x{)dt)
g o

H

5
Since J(t,K") 1is a Lévy process increasing with jumps whose

Lévy measure is equal to

n(dt) = |

k(db)P, (V. € dt) ,
h-X } .2 b*"a

S

we have ”tfm(1~e'us)n (ds)
2 Jo h~K2
00,
~t[ k(db)E, (1-e )
2

It is obvious the

1
Ploedt) = e X5t rslyge

Therefore !gg
[ xame ] Certixdyan
Gl 10

I, = -
Z . 0
1..{ . . P
om+k (S )+l K(db)ﬁb{l~e )

‘a2

S

By the strong renewal property of X we have

9
10

2 X - { .
Ble-amo-ad (X rre P K g (g

e 1¢]
f(a)[ lk(db)ﬁb(e 4y

S

D
am+k(sl)+[ k(db)E_(1-e *“a)

‘1

LY

W
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Thus we have

(1) £ o0 !
| By (| et iDdtsE (e ()]
ql <0 o v

= T +

[
<

~QJ

o

am+k(31}+{ k(db)E, (1-e )
Faa

S

To evaluate I1 , consider

fz(a)

L1}

“ ot PR
B, egrhyan

0

[++)

- -at 2
I e Yt(egx }dt)

(+E (e-amc~uJ(05X‘).J
a

0

(e el - . - 2 @) . 3
o[ P(oas)p, (e7omSTOI(SKD [Moat y 5 x2yar)
0 : ’

::’I
I 0

1
* ~ams—aJ(s*X2) T at 2

= Il+f P(cEds)Ea{e > )E (J e Yt(x Ydt)
0 aJp

(by the renewal property of KZ)

x ‘ . Z
- - - ? .
= 11 + J P(GEdS)Ea(e ams-oJ (s X ))f“(a}
0 :

ot Conx?y
= Il + Ea(e'()tm(} aJ (o X ))‘r“‘(a)

This implies

o 42
1. = fz(a)[l-E(evamo od (o= X ))]

(el :
- £ ) [1- e ]

oam+k (1) + j k(db)E, (1-e  #)
SA
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S,
am+f RICOENCE IS
C 2 Pl _
am+k(sl)if”ék(db)ﬁb(1-e aca)
S
From (7) we have
| s
'“m*f k(db)E, (1-e “ay
. 2
8) f(a) = £(a)—-5
1 P
am+k (S )+j Zk(db)Eb(l—e )
S
02 0 ‘GO'O.
| xeamye, (] fetgaxdianyen e e
T 0
* 0
- O‘ *
am+k(sl)+j Zk(db)Eb(l~e *a,
S
Solving this for f we have a6 cg
" a
f‘(a)(am+j k(db)E, (1-e ))+J k(db)Eb(j e‘“?g(XS)dt)
-0 ~ 2 1 0
(9) f(a) = 5 S
0
-0

om + | K(@b)E (1-e %)
s

Let € + 0 , then

0
g,
J k(db}E(j fe Mg (xYyar)
! 0
0
> | ktane(] et adian
S 0

notice that
uo‘o
J k(db)[E(J fe g (xDydt) |
S 0
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_ ‘~adg
S ﬂgﬂjsk(db)ﬁb(l-e ) ¥ §=sup. norm

< oo

by virtue of J k(db)Eb(cg Al) < = . It is obvious that

S

~ag, ’
{ k(db)Eb{1~e )+~ 0 as e ¥+ 0 .
Z

S
It follows from (8) and (1) that
0
-0.0

am+f k(db)Ey (1-e ay
g2

f(a) = £2(a) ,
-0

am+k(81)+J k(dbIE, (1-e %)
2
s

[ kv

0
-0
am+k(sl)+j k(db)E, (1-e %)
2
S .

so that
2 00,
(10) m(of(a)-of (a))+f(a)j k(db)Eh(l-e )
2 )
)

0
-Q.0

= fz(a)j K(db)E; (1-e a)+[ lk(db)(f(b)-f(a))

S S

If m =0, we can derive (1) and (4) from (9) and (10),

letting € ¥+ 0 and noticing that

lfzga)] = [fz,s(a)] < fel/a .
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If m > 0 , we need only prove that

s

(11) 1im £22%(a) = £(2)

ey

in order to derive (2) and (4) from (9) and (10).

Let n > 0 and set

-t
—
1
<
-
s
1

= {ueU : sup p(u(t),a) > n}
t

vievyinoy oy

By the argument in the last step.of the existence proof of

Theorem 4.1, we have

>

i
>
1

1 _- 1,n
en nyl(V ) = nxz,a(V )

< ( inf Eb(cg/\l))"lj‘ k(db)E, (00 A1)
o(b,a)>n (2,¢

~ 0, g v 0 for n fixed.

Yl is a discrete Poisson point process., Let 1 = Te o
H

be the first element in D Then 1t 1is exponentially

1
Y
distributed with rate = Re q - Using the game argument as in

3

deriving~ (7), we obtain
€22 (a) - B2

< B( e ey (7an) gy = le( g ()]



(61)

2
= B([TITY et (v ¥ )an)

heyl)

, 5
+E(e~amr-aJ(T-,Y ))E(J T e"atgo(Yi(t))dt)

0

2 1 o
+E(e~amr-aJ(T-,Y )-ah(XJ))E(J e'ath(Yig)dt)
0

Since p(Y(t,Yz),a) <n for 0 < t < mt + J(T-,YZ) ,

we have

| £228 (a)-2L2)

==

-amT) RgO
Q

< (M3 + E(e v penemy Lol

where &(n) = sup{go(b), p(b,a) <n} >0 (n+ 0) by (6).

Since T is exponentially distributed with rate Ae n o
»

we have

*© -A t A

E(e %™y = [ e @Mty €M gt = E,N
/0 € am+ X
b
+ 0 e + 0

by m > 0. Thus we have

1im sup lfz’s(a)—gégll < 6(n)-§ =0, n+ 0.
e+0

This completes the proof.
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6. Examples

0. be a diffusion in S

stopped at 0 such that the generator of x0 is

Example 1. Let S = [0,») and X

i}o i

(i.e. exit in Feller's new terminology)
Let 0 be an exit* or_regular)boundary 1i.e.

1
f m(g,1)dE < = .
0

Then X° satisfies Ag.’f , Agﬂ , Agﬁ and Agé"‘ in Section 1;

notice that

inf  E,(0gAl) = E_(o) A1) > 0 .
p(b,0)>e

We will investigate the condition (i) in Theorem 3.8:

(1) jsk(db)ﬁb(cg A1) < = .

This is equivalent to

-08
f k(db)E (1-e °) < = .
S

..go

Since wu(b) = Eb(e O) 1s a decreasing positive solution of
%ﬁ gi u=u, u(0) =1

1
ur(l) - u'(e) = jgu(g)m(da) vom(E,1) (£ 4 0)
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b ..
u(0)-u(b) & jocm(s,l)-u (1))de

(0(E) & B(E) (£ + 0) means that we have Cy» Cy > 0
independint of ¢§ ;uch Ehg; ;16(2) < a(g) < cz(g) near
£=10)

 Care 1. (regular case) If 0 1is a regplar (i.e. exit and

entrance in Feller's new terminology) boundary i.e.

m(0,1) < «» , then

0
-0
Ey (1-e Oy = w(0)-u®) &b . (b+ 0)
-0'8 ‘Gg

Since Eb(l-e ) >1 as b » = , Eb(l-e ) g bA 1l in

- < b < ©» ., Therefore our €ondition (1) turns out to be

ka(db)UDAl) <,
0 ;

Case 2. (exit case) If 0 is an exit (i.e. exit and non-

entrance) boundary i.e. m{0,1) = = , then (1) turns out to be

‘I;wggller's new terminology)

% b
J @ if me,naga1y <o

Example 2. Let S = [0,») and XO be a deterministic motion

with constant speed'"-1", 6 Fhen Pb(cg = b) =1 and so (1) is

written as

[:k(db)(b,\l) <,
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