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1.1.1.

1, Preliminaries.

We assume the reader to be familiar with the fundamental facts
in set theory, topology and measure theory. In this chapter we will

explain our terminology and notation that will be used throughout

‘'this book and discuss some facts that may not be emphasized in

i

standard textbooks,

1 ° 1. 0 O'—alqebras .

of

. 0
Let S be a set. Elements. S are denped by a,b,X,¥, eese

The class of all subsets of S 1is denoted by ZS. Subclasses

of 25 are denoted by oL, /B s +es. The (set-theoretical) union

and the (set-theoretical) intersection are denoted by U and !

3 e O
respectively. It should by noted that

) = 0 .Q

MUBYE = {A s+ AEN or AEB or A< =7 | ¥

# faAvBvC :+ Aca , BET , CceC . O

The (set-theoretical) differece is denoted by \
AN B=d{xet x €A, xé¢éB} .
The disjoint union is denoted by > . or 4 and the proper

difference by -

A= . A &> A A~ A= # (i%j) and A = Uier 3y o

C A+B & A A B=g and C=A v B,

C=A-B &> A DB and C=ANB,



1.1.2,

When we use the notation {An}n or An’ n=1,2, ..., it means a

w

finite or infinite sequence. If we use the phrase "a sequence {An}n
"a sequence
or AAn,n =1,2, ...", then it always means an infinite sequence,
Now we will introduce several special classes of subsets of
S. Let Ol be a class of subets of S.

Ol is called a comlementary class on S, if it is closed under 2

complements, ise. A G'UZ —> aC ¢ ar -

. N
ol iscalled a multipicative class on S, if it is closed e

under finite intersections. it

0l is called a Dynkin class on S, ifAcontains S and is
closed under countable disjoint unions and proper.differences.

(l is called an algebra (resp. {J-algebra) on S, if it is
non-empty and is closed under complements and finite (resp. countable)
unions,

For a class C - ZS, the intersection of all J -algebras on
S including  is a 0-algebra. It is called the ('-algebra
generated by ¢, ©@L[C) in notation. The same terminology can

be used for other classes.

—

Jords

Let {?31} jey be a family of § -algebras on S, the 0

is the largest ¢ -algebra on S included | <

e

intersection /r\ieI @Si

in eyery %i’ i€I. But the unlon UleI %\/, i.e. Uf{jiefﬁi]’ is the )

smallest g -algebra on S includdng every 23 i€I, It is called

Y . 4
.the lattice union of { 8. }'161 and is denoted by \V/leI 1. '




From the definition we can easily derive the following :
(oo G C C, = 0] c dC]

(e.2) o(clCl) =alCl

(.3 o[ Vir €31 =\Jier _ 7((5] .

Theorem 1.,1.1 (The Dynkin class theorem). Every Dynkin class including

a multiplicative class ¢ includes a[C].
Proof,* «Let’ .- § [C] %ote the smallest Dynkin class including C,, e
It is endugh to prove that
s(e) o olll.
To do this, it is enough to show that S(C] is a 0’-algebra.
Since 5IC] is a Dynkin class, it suffices to show that
(1) A, B ¢ S[CY = anB € $[C],

Let ,})1 denote the class

Ty

~CT)

{B Cs :+ anB e SLC) for\""/A € C} . 4
since ( is multiplicative ,it is easy to check that ‘Dl is |
a Dynkin class including C , showing that ﬁ 1 D> §LCJ . 9
Therefore ' SR ‘*”} t:\ |

(2) aeC , BeslC] = an~gB € 5(CJ
Consider the class Lo
D, = {AB/ CS : AnB € 5(C] for & <CY SEECINZ
Using (2), ~we can easily chéck that ‘DZ is a Dynkin class
including (&, showing that b, D §(CJ . This implies (1).

. A
Theorem 1.1.2. If ¢ 1is arnon-eppty complementary class on S,

then o[ (] is the smallest class B, including C and closed

under countable disjoint unions and countable intersections.
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Proof. Let

i = 2 o 0 o
BLD cC . Bifis obviously complementary. Let B € 731' n =1,2,

c _
Then Bn’ Bn € 2;’o. Therefore we have
' T _C c c €
| B, = Z B; N BN «..NB _; N By 730
n - n
y c _ - c
and [ Bn) = () B, €],
‘'n n

i is a ¢G-algebra
implying that {J B € $, . Therefore By i

including C . This implies that
B, DB, DvlC]J
Tt is obvious that [ calCl.

_ O
Let f bMap from S into T and C be a class of subsets

of T. The class {f'l(c) : ¢ ¢ (C} is denoted by £1(C).

Theorem 1.1.3, £ 1 cLel] ) = O"t:f-l( ¢)).

r
Proof. Obseying that
18 257 1(B)C  ang v B )= U £ ()
n n n n’’
we can easily check that f"l( oclC)) is a S -algebra on S
including f-l(c ).  Therefore
ey D ole ey,
Similarly we can prove that the Class
B ={Bcr : ) e el ey}
is a 9-algebra on T including (. Hence we have o[C)] c B}
which implies that :
£ alC)y e ale ey,

By, = {B Cs: B, B € B, } . since ( is complementary, c

BN



For an C 2S and T C S, the class
Aot = {AnT :+ aeq}
i% called the trace of (! on T. If @® 1is a o¢-algebra on S,

then (INT is a (-algebra on T, called the trace (¢-algebra

of (L on §. If themap i : T—>S is given by x t> x o

‘-—( canonical injection ), then

ity = QAT for every (lC 25.
Let {931} jey Pe a family of ¢ -algebras on S, where I is

an arbitrary index set. The intersection N 3 is also a

.,
iex Vi

(¢ -algebra. It is the largest O‘T,a‘l’é/ebra on S included 1in every

e

'bi’ i¢I, but the union C j“)('//flél 'bi is not a §-algebra on 'S fl;:&'-;o
~~

in general. The (T—al'ge’bﬂra generated by C’ is the smallest ﬁ-algebra/

including every (3{, ieI. It is called the lattice union of
4 » e
B. , i€I, and is denoted \/iEI 731 3 /

Vier U; = 'G[(u'eI %i} g /

i
-1 Y 4t
Theorem 1.1.4, f (\/ieI Bi) = \/ieI (8.

Proof, v “Use’.Theorem 1.1.3 +to obtain

1 ary; 8 = olEH U BN eyl

Let S =W:‘LGI Si ( CartesSian product ) and for each i€7I,

let ‘Bi be a ¢ -algebra on Si . The:.cAnonical projection

from S into S, given by
X > ' the i-th component of x
‘is denoted by p; - It is obvious that p:1 (Bi) is a T-algebra
i ora

. Y, -1 o
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g -algebra of ﬂi; i¢I, and is denoted by ‘Wiﬂ ?31 . Note that

this is not the Cartesian product in the set -theoretical sense, even

though weegse the same symbol TT . A subset A of S = ﬂisi .is called o
£ . .

rd

(J ~determined if we have a countable subset J = J (A){of I such that

pi(x) = p,; (y) for every i€J = 1,(x) = 1,(¥),
where lA is the indicator of A, i.e.

lA(x) = 1 for x€A, = o for x¢A®

Theorem 1.1.5. Every set B € ]TicI

Proof. The class 73 of all oc-determined subset of S = ﬂisi" is

a J-algbra on S, For each i, every set A 1in o—l( 51) is

PP

Bi is ¢ -determined.

G -determined, take the singleton {1} for J(A). Therefore

?P-i-l( /Bi) C IB for every i €.1I. Therefore we have

B O \{/;":s;l(?si) =TI, B, ,
which completes’ the p{oof.

A (-algebra on S is called ¢ -generated if it is -generated

by a countable class of subsets of S,

Theorem 1.1.6. Let Bn\be a (§ -generated G-algebra on s, for

each n=1,2,... . Then the prbdut:t J -algebra 93 = ﬂn 731_1 on

S = Ty n—jis @-generated..—

Proof., Let Cn be a countable class generating Q?n,.Then the union

C = U, p;l;\( Cn) is countable. Since
i N __l’\
C c |, ry (BycB,

we have G‘[CJ c B. Using Theorem 1.1.3, we obtaiy



) ~ =1, 5 _ =1 S :
gle] 2 ofpg () =pr(alCI) = vy (B
for every n. Therefore olC]) > 8.
A class (l of subsets of S is said to separate x and y if

there exists a et A in ( such that lA(x) ¥ lA(y). [}Z

is called a separating class on S if (] separates every two distinct

points in S.

Theorem 1.4.7. (l is a separating class on S if and only if

olLa] is separating.
Proof. i1f (Ol is separeting, then 0[] is obvionsly separating.
Suppose that ({ 1is not separating. Then we have two distinct points
X,y € S such that

lA(X) = 1A(y) for every A eq

Let B denote the class of all A such that lA(x) = lA(Y)’
Then B is a 6" -algbra on S including (L, because

AC

1., =1-1 for B

A
and 1, = sup, lAn for C = \Jn A .



1.2. Measurability of maps.

Let z;i be a (§-algebra on S}‘for i=1, 2. A map
NG

f Sl——> Sirfis called measurable ﬁi/ 82, fel 1/ BZ in notation, if

£ 232) C 731 , i, e, £ ?}) € 731 for B, € B, .

Theorem 1.2.1. If f_l(CZ) C 'Bi . for some class (32 .generating B?,
then f is measurable @1/ ‘82

Proorf. f_l( O’[Czj ) = O‘Ef'l( 82)] by Theorem 1.1.3., Therefore

f-l(Bz) C 0’['31] by the assumption,

let P be a o¢-algebra on S and let T C S, Then the

————~—

ipg it T—>sS is measurable @PnT/ B,

canonical injection 1i =

Liet f be a map from S; into s,, let T, C s, for
i =1, 2, and suppose that f(Tl) C T, . The map

“lg + Ty — T,

r/_——"«\ x = f(x)

is called the restriction of £ to (T,, T,), fl|. - in

notation. It is denoted by flT if T2 = Sz.
1

If f € 731/32, then flTl’Tz € Blﬂ Tl/ anTz, because

T S R r__ - —

"t (B,AT,)NAT,

_ —1 -1
= f (Bz)ﬂf (’I‘z)f\T1

f‘l( Bz)(’Ti by f(Tl) C T2

G%lnT]_ for B2€732'



Let f be a map from S

1.2.2,

1

into S3.' Then the map

h Sl --? S5
x = g(f(x)) &
x; \I'

is called the composite map of f and g , gef innotion.

£e /B, and g€ A,/ B then gef ¢ K./ /5., , because
1 2 2 3, 1 3

X
(gof) ™" (B3) = £

v

If

Let f. be a map from S into T, for i€I., The map

is c®lled the product map of fi’ i €I, denoted by ﬂ-ie'I £.

£ 1 S ’ﬂTTiEITi

X }‘—‘} (fi(X))ieI

obvious that

If £, ¢ 73/'()i

fi = pi°f for i€1.

for every 1i€l, then

£=The; € B/W; Cy

]

because we can use Theorem 1.1.4 to obtain

£ T, Ci)

V.7 CH CB.

1

into 82 and g be a map from S

@B C 7By € B

2

3%

At is

o
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Let fi be a map from s; into Ti for i€ I. The map

—— P

£t Jlier S35 — MHyier Ty
(X3)~jex > (F505)) 501

is called the bilateral product map of £i4 ie1, denoted by TI

It is eagy to see that
b _ g
Tier 3 = Hier £3ep5 |
Using the results proved above, we can prove that if fi 6’78i/ (fi

for every 1€1I, then ﬂ? fi € WiuBi/ chi

Thus we obtain the following

Theorem 1.,2.2. Measurabjlity is inherited by composite maps,

restrictions, product maps and bilateral product maps.
Let A be a subset of SX T. For any y € T the set
{ x€ S 1 (x,y) € A }
is called the section (or section set) of A at y € T, A(y)
in notation. Similarly for the section A(x) of A at x € S.

-7

N




)24

N

Iet f be a map from S X T into U. For any v & 7T themap @ ©
v A

£ 15 — U
X f(x)y)
A~

is called the section (or section map) of f _for y € T, Similarly

for the section £, of f for x €S. The section map of the

12}

indicator 1, of A for vy €T (or x € S) 1S the indicator

-

of the section set of A for v € T (or x € 3).

Theorem 1.2.3. Let ,J',,:Tand U ve c-algebras on S, T and U
respectively . |
(1) 2 €e4xT = awy)ed and ax) € T .
(ii) £ € AxT/ U =y Ad/id ané t, € JT/U.
Eroof.
(i) Let 93 denote the class of all A C S X T such that A(y)‘ é,d
for every y € T. It is easy to check that 73 is a o¢-algebra on S X T,
If a=€ExF, E€d | 7 e, then

Aly) ='{E for y € F

¥ for y ¢€F,
that

so A(y) € B. Therefore 6] DI,JKJ,proving A A(y) € J
for A € 4XJ, similarly A(x) € J for A € 4xJ.

(ii) Immediate from (i).
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1.3. Borel spaces.

A set S endowed with a ( -algebra »(f on S 1is called

a Borel space, which is denoted by S(4 ) or (S‘,’g) . s and 4 are .-

called the base set and the Borel structure of S(;g ) respectively.
Vhen we call a set S a Borel space, we agree that a certain Borel
structure is assigned to S, A subset B of s(4 ) is called a

Borel set if B € .J. Unless otherwise stated, a subset T of a
will be
Borel space S(‘,X ),( regarded as a Borel space with the trace

J-algebra Jn T, called a Borel subspace, and the Cartesian product

: . will be ' .
of Bore]ispaces Si(‘“yi)’ i€ I, A regarded as a Borel space with

mp—

”ieI

/

the product G-algebra A’i , called the Borel product.

A map f from a Borel space S(AJ ) into another Borel space

T(J ) is called Borel measurable if it is measurable ‘da/J, i.e,

£71(7y C 4 . Borel measurability is inherited by composite maps,
restrictions, product maps and bilateral product maps by Theorem 1.2,.2.

CresrArmap, FE7s s(f) — T(7 ) is called Borel bimeasurable if f 1is

bijective and 7 £(4 ) =7. 1In this case both f and g1 are Borel
measurable. If there exists a Borel bimeasurable map f : s(E)y=> 1T )»
T(7J ) is called Borel isomorphic to s(J4 ), (T ) ~ s(J4) in notation.

If we want to refer to a map f : s(d) — T™(T) showing

T(T )~ s(48), we say that T(7T ) is Borel isomorphic to S(J4)

under £, T Yy~ s(.E) (f)" in notation., Borel isomorphism is an

. equivalence relation, Two Borel spaces are said to have the same

Borel type if they are Borel isomorphic to each aether.




In the discussion below S, T, Sn, Tn’ ..e+sStand for Borel spaces,

Theorem 1,3.1.

(1) TS (£), 5,Cs, T EE(S) = Ty~ S ‘f]sl,'rl)'

(ii) Ty~s; (£;), ieI, = T T ~ TT; 8 "('T'T‘io £,).

Proof. Obvious by Theorem 1.2,2,

. R

Theorem 1,3.2, If . . - “ YA E N

S =i Zﬂg;””sn, S, ¢ Borel in S

T : Borel in S

and T = nzTn, n 5

and if Tnf\/ Sn for n = 1.2, e 00y then

T ~ S,

proof. Let fn ¢ S,—> T, be Borel bimeasurable. Then the map

f ¢ S — T
X H fn(x) (XGSn), ﬂ = 1’ 2, o0 09
is Borel bimeasurable.
The following theorem corresponds to Bernsteins theorem in set theory.

Theorem._%,3.3. If

1 s

S ~ T c T, T

———

Borel in S,

and T v Si C s, Sl

then S ~~ T.
Proof, Let f : S — 'Tl and g : T — Sl be borel bimeasurable.
We define Sn and Tn fornn=1, 2, ... as follows :

Sz = g(Tl)’ T2 = f(Sl), e 00y Sn = g(Tn_l)’ n = n_l)’ ".

Then

S D S 3 SZD .o and TDT]_DTZ Doao'



Denote N, S, and and /) n~Tﬁ by S and T res'pectively. Then

(g.-sl) + (8;-5,) +(5,-S3) + (s -7342 + et S

sg 'y
T = (T-T;) + ('_1'1—'.1:2) + (T, 3) * (T'3,-rr4;-) + + T »

where the sets connected by lines aré Borel isomorphic to each
other - under appropriate restrictions of f and g. Since all these
sets are Borel in S or in T, We €an apply - oo o e ey

Theorem 1.3.2 to conclude that S ~ T,

Remark. let S be aset, B a o-algebra on Sand T =T(J) a

Sorel space. If a map f: S—> T is measurable 3/7, £ is called -

measurable 73 or measurable with respect to B, Let 73i be a dg’-alcebra

on s, for i € I. Then the product (@ -algebra TTi 73i on the product
space S = Wi s; 1is the smallest g-algebra on S with respect to

which all canoniacal projections p; S ~> Si’ i € I, are measurable.

@

¢

7
‘
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1.4. Topological spaces. \ﬁ,fw.,‘_
: 7Y

Let S be a topological space. The class of all subsets of S

is called the open system (or topological structure or simply

topology) on S , (F(s) in notation. The a-algebra generated by
..___—-———1 ) .

the open subsets of S , i.e. c(0(s)] , is called the topological

o -algebra on S , HB(S) in notation.
A dubclass U of ((S) is called an open base in S if

every open set can be expressed as a union (finite or not) of sets

in U . . A subclass YV of C’(S; is called an open subbase in S ,
if the fin-ite intersections of sets in %) form an open base in S,
j.e. if the multiplicative class generated by 7f is an open base
in S . It is obvious that every open base is an open subbase.

An open set containing x 1is called a neighborhood of x and
-is denoted by U(x) , Vv(x) or W(x). A class 9l of neighborhoods

of x is called a neighborhood base of x if every neighborhood

of x includes at least one neighborhood belonging to Uu .
Lef: {An } be a sequence of subsets of S and a be a point
in S . If the following three conditions are satisfied, then we
say that {An}-. ;'EEMOnvergig to a , An\i a in notation :

(i) An3 a » n=1’2,...’

(ii) ,A1 D A2 D A3 D ooy
(iii) for every neighborhood U(x) there exists at least one set
A C U(x) (then A C U(x) for every n>nmn).

If £ : S—T is continuous at a € S , then

An& a = f(An) V f(a).



e
,‘ ,\I
' & /"(1’ 1040 2 .
If s//is Hausdorff, then ' ' 0
An J‘ a = /1n An = (\n An = a,
because for b ¥ a , we can find a neighborhood U(a) with
U(a) $ b by the Hausdorff property of S .
Every subset T of a topological space S will be regarded as

a topological space with the relative topology ((T) = C(S) ~ T .

In this case T 1is called a (topological) subspace of S . The

g

1§ieI S; of a family of topological spaces

Cartestiah product S =

Si’ i €I, will be regarded as a topological space with the product topology.
» L ;
o j

In this case S 1is called the (topological) product of S ier.

’

The class ‘ -1

u = \/ieI pi ( L‘(Si))

ier S5

T 1is said to be homeomorphic to S, T S in notation,

is an open subbase of the topological product

if there exists a bicontinuoué%ap f : S T (=a bijection o

1

f : S— T such that both £ and f =~ are continuous).

T is said to be 1-1 dominated by S, T Ifl S in notation,

if there exists a continuous biwjection f : S— T, Ve,

e

T is said to be dominated by S, T < S in notation, if
there exists a continuous surjection f : S — T,
If we want to refer to a map f :-S —> T for which T= S,
we‘é@y that T is homeomorphic to S under f , T= S (f) in notation, O
Similarly for other relatioms.
It is easy to check the following 1
1. = 1is an equivalence relation,
2, T= S = TX, s = T < s,
3. TS, S U = T <«U,
i1 U = TS0,

. . 8 E T"" 0 . <7
5. Ty < S5 (i¢r) = TJ; T; < Tf; sy, and similarly for

[
[oy
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6. TS (f),T"CT, s =£r') = <5,

and similarly for 1‘§1 and =~ ,
If every open co{rering of S has a finite (resp. countable)
subcovering, then S is called compact (resp. Lindelof). If every

subspace of S is Lindelof, then S is said to be fully Lindelof.

S is fully Lindelof if and only if every class of open subsets
of S has a countable subclass with the same union. If S is
fully Lindel'éf, then for every open base u in S , every open

subset of S 1is expressible as a countable union of sets in U .

rest
Theorem 1.4.1. B(S) is the smal? class including all open sets

and all closed sets and closed under countable disjoint unions and

countable intersections.
Proof, Obvious by Theorem 1.1.2.

Theorem :1.4.2,

(i) alV) € PB(s) for every open subbase {/ in s .
(ii) If S is fully Lindelof, then the above two 0"-algebras

are the same,

Proof. (i) 1is obvious by 2/C (U(S) . To prove (ii), denote by
U the multiplicative class generated by U'. fThen U is an open
base and Y C 0(V). since S 1is fully Lindeldf, every open set
is expressible as a countable union of sets in U . Hence we have
sy ¢ olUJ. Therefore we have

B(s) = o(0(s)) C olUI colv],

implying 7P (s) = CL[¥) by (i).



1.4.4.

Theorem 1.4.3, If T 1is a subspace of S , then

Bty = B(s)ynrt .

Proof. For the canonical injection i + T — S we have
i“(ey=enT for every C C 25 . Therefore

B =o(o0m)= clomnr] = i o Enl
171 U'EOTS))S by Theorem 1.1.3.

i"H(B(s)) = B(s)n T .

Theorem 1.4.4.
(1) (Mier S;) 2 Tliep BS;)
(ii) If ﬁiéI S; is fully Lindelof, then these two ¢-algebras

are the same.,

Proof. First observe that

) -1 " -1
[, /B(Si) =V; p; (B(8))) =V, p; (o [((5:)])

1

Vi O’(pzl( U(Si))] by Theorem 1.1.3.

| o(Ug P (OS] .

Since U = Vi pzl( O’(Si)) is an open subbase in the topological
product TTiS i » our theorem follows immediately from Theorem 1.4.2.
Since every countable product of topological spaces, each
having a countable open base, also has a countable open base, it is
fully Lindeldf. Therefore we can use Theorem 1.4.4. (ii) to obtain

the following:

Theorem 1.4.5. If I is countable and if Si has a countable

open base for every i € I , then

B (T 83 = Ter B(s))
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:’)3(si) . Let

—

Let us give an example of B TT; Si) + \ii

Si = R (the space of all real numbers with the usual topology)
for every i€I , where I is not countable. Then every singleton

of S = ]Wi Si belongs to 73(S), being a closed subset of S, but no
singleton belongs to TE.::@(Si) by Theorem 1.1.5.

A topological space S will be regarded as a Borel space with the

topological ¢ -algebra B (S) , unless otherwise stated. Therefore

we can define Borel sets, Borel measurable maps and Borel isomorphism

for toplogical spaces. A countable intersection of open subsets of S is

called a Gy set and a countable union-of closed subsets of S is an F_ set

All G, sets and all F,_ sets are Borel sets. If f :+ S-»>T is continuous,

then £ 1( 7 (T)) € C(s). Using a(¢73(() = 72 WLL ] ) =~

— R

(Theorem 1.1.3.), we can easily prove the following.

Theorem 1.4.6,
(i) Every continuous map is Borel measurabile.

(ii) Homeomorphism implies Borel isomorphism.

Let T be a topological subspace of S . Then the Borel space
T( 8(T)) is a Borel subspace of the Borel space S( 73(S)) , because
B(T) = B(S)NT (Theorem 1.4.3.).

Let S be the topological product of Si s 1€ I, Thé¢n the
Borel space S( B(S)) is the Borel product of Borel spaces
S;( B(S;)) ,» i€I, provided 73 ( 7T sp) = 1) B(s;) .
By Theorem 1.4.4. (ii) (or Theorem 1.4.5.) this condition is
satisfied in most cases useful to probability theory 3 see
Theorem 2.5.8,

We will list Some special topological spaces which will appear

in this book frequently.
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(é) R = the real numbers wiﬁh the usual topology (the real line).
§_n = the topological product of n copies of R (n=1,2....5.
g” = the topological product of a countably infinite number of
freo e - cOpies of R .
) _

has a countable open base for n=1,2,..., ® .

Rn is called the real n-space for n=1,2,... and __1;“ is called

the real sequence space. The topological U -algebra ’B(B__n) is

denoted by ?3“ for n=1,2,¢.¢5 00 o
(b) The following subsets of R are topological spaces with the

relative topology:

Q= the rational numbers,
d = thé irrational numbers,
1 = the unit interval (o, 13 = {x : 0< x<1},
N = the naturai numbers,
Z = the integers,
2= {0, 1} = the set consisting of 0 and 1,
K = the Cantor set.
(c) R= [-v, @] (the extended real line with the usual topology).

This is homeomorphic to I under the map f : I —+R defined by
£(x) = tan (TCx ——275) (0<x<1), £(0) = -» and £(1) =,

(d) C = the complex numbers with the usual topology (the complex plane).

c” is called the complex n-space for n < ® and c” is called

the complex sequence space.

(e) ;m = the topological product of a countably infinite number of

copies of 2 .
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’

The following sets form a countable open base in ;f :

2

. . w . .
. J. j = {(11,12,.,.) c ; H 1k=Jk’ k=1,2’¢001r}9
1 2.00 ;

r=1)2’oco H jk::o,l‘

2 is homeomorphic to the Cantor set X under the correspondence:
[ -k
(i )i ’ooo) H E 2i 53
1772 k
k=1
(f) gf = the topological product of a countably infinite number of

copies of N .
The following sets form a countable open base in gf’ :

d [v]
:_h]m m = {(nl,nznnoo) € I_\]; : nk=mk1 k=1!2""’r}

l 2...mrb.

er
,I’Jk:lDle)l.c »

=4

is homeomorphic to J n I under the correspondence:

(nl,nz,...) <> EI] ;EJ ... (continued fraction). - E#

Let {r } be a strictly increasing !two-sided sequence of
nf nez .
rational numbers such that

limr_=1 and limr_ =0 .
..nae N Lpep-e N

Defining f(n)=rn for n € Z and interpolating it linearly in each
interval (n, n+l) , we obtain a bicontinuous map f :
R — (0,1) such that

f(J) =d n

=

Jd is homeomorphic to J N I under a restriction of f . Therefore

g~ gniA N .

(g) ¢ {0,1] = the real continuous functions on (0,1) with the
maximum norm topology:

see § 2,01 .
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(h) Df[O,l) = the real funétions on [0,13 continuous except
for the discontinuities of the first kind with the Skorohod topology;
see § 2.12
(i) LOTEO;IJ = the Lebesgue measurable real functions on. (0,1]
with the topology of convergence in measure;
see § 2.4 . |
(3) Lp;(O,I] = the p-th order integrable real functions on [O,l]
with the p-th order norm topology, where 1<p< o ;
see § 115,
(k) ' (a) the Schwartz distributions on (-a,a]) ,
El

see § ';?.\[5'" for the Schwartz topology in Br'(a) or ﬁ' .

]

n

the Schwartz distributions on R;
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)

1.5. Coincidence sets and diagonal sets.

let £f and g be maps from S into T . The set

c=c. = {x €s: £(x) = glx)}

is called the coincidence set of f and g .

Theorem 1.5.1. et S and T be topological spaces and suppose

that T is Hausdorff. If f : S— T and g : S— T are
" [ e I N

continuous, then the coincidence set C = Cf g is closed in S .
. »

Proof. It is enough to prove that every x € c® has a neighborhood
U C c® . since x € cF y f(x) ¥ g(x) . Therefore we have disjoint
neighborhoods V = V(f(x)) and W = W(g(x)) , since T is Hausdorff,
Then U:==f_l(V)fW“§:l(w) is a‘neighborhood of x by continuity of
f and g . For every y € U we have

f(y) € V and g(y) € W
and hence f(y) % g(y) , i.e. y € CC/T‘C
This proves that UC cc .
be a family of subspaces of a Hausdorff space

Let {S;} jeg
S and H be the topological product TT&eI Si . The set of all

X € I with all components equal to each other is called the

diagonal set of T, denoted by A(M) . Let p; :+ T—= S, be the

canonical projection.and e; :+ S; S be the canonical injection. Then

1) am = 2 {gems (ejop)(5) = (e op)(£)} -

Since Py and e, are continuous, we can use Theorem 1.5.1, to

conclude that A (1) is closed in TT .
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Let D denote the intersection f\iéI S; . We will +note that
(2) A =AY .
It is obvious that these diagonal sets are identical as sets.
The topology on A(W) is the relative topology as a subset of TT
and the topology on z&(DI) is the_relative topology as a subset
of DI . It is easy to check that these relative topologies are the
same. Therefore the diagonal sets in (2) are identical as
topological spaces,

Let us prove that A = A (pY)  is homeomorphic to D
under the map

f : D— A
X F—;'(x)iEI:= the poinf with all components = x .,

It is obvious that f is bijective. Let qi denote the canonical

I

onto D carrying (x.) to its i-component

projection from D X3 je1

X . Then it is easy to see that
..1_
£ "qitA .
This implies that f ! is continuous. Let Xx € D and V be any
neighborhood of f(x) =:(x)i€I in A . Then we can find neighborhoods

U, = Uk(x) in D such that

k 3 .
) gt (u)
v> () qik o .

Let U = /\Ezl Uy, . Then U is a neighborhood of x in D

and n

vV DO Ql qik (U)N A = f£(Uu) .

.

This shows that f - is continuous. Therefore f : D - A is

bicontinuous and A &~ D (f).

Summarizing the results obtained above, we have the following.



Theorem 1,5.2. Let {Si} iel be a family of subspaces of a

Hausdorff topological space S . Then the diagonal set ZS(TTi s;)

is closed in ITi Si and is homeomorphic to the intersection /\i Si .
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1.6. Disjoint sums and projective limits,

Let {Si} jeI be a family of topological spaces. For each

Si we consider the set Si = {(x.i) : X € Si} and topologize Si

in the obvious way so that SJ!_ ‘is homeomorphic to Si under the map

x> (xyi) e £ * __ Thus we obtain a disjoint family {Si}ieI .
Then the union S' = Ziél Si is a topological space with the

disjoint sum topology:
O(s') ={c* Cs' + 6" N s} €((s]) for every ie 1},

The topological space S' is called the (topological) disjoint sum

of {Si} ie1 ® ie1 Si in notation.

Theorem 1.6.1. Let {Si)ieI be a family of subspaces of a

topological space S . Then the canonical map

T+ @S — Yia S (<09

(x, i) }— x (ie 1, x€8;)

is a continuous surjection.

Proof. Obvious by the definition of Ges*) .
Let {Si}iel be a family of topological spaces, where I 1is
a directed set. Suppose that we are given a family ® of continuous

maps (fij + S.— S. , i <j, satisfying the following conditions:

j i
(@ . 1) ;5 t Sy — S is the identity map,

(P, 2) le o (ka = §; for i £ i< k.

Let
S = {XEHigl s, t py(x) = (gy50py)(x) for i = i},



Since S is a subset of the topological product lli S; » it is
a topological space with the relative topology. The topological

space S is called the projective limit of { Si} eI relative

B'T

to ¢’; lim. S; in notation. Using Theorem 1.5.1., we can

¢

prove the following.

Theorem 1.6.2, If all spaces Si » 1 € I are Hausdorff spaces,

%——
then ‘limq7 S; 1is a Hausdorff space and is closed in 1Wi S; .
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1.7. The analytic operation,

It is obvious that the sets ,__rgk. k=1,2,... , are disjoint. (/

LTy
. K
Denote the union le K <o N by

. Elements of goo are

[

denoted by {, m, n or ti’ m:, n, and their k-th components
by lk. m, n_ or !‘ik’ m,,» N, respectively.

A system ;3 of subsets of a set S indexed by the elements

b=z

of is called a Souslin scheme. It is expressed as

’3 ={Ann }’

1 zlitnk
where %k and n, move over N . With this Souslin scheme we

associate a subset K(A) of S, called the kernel of S :

oo

Kw):&._J/\AM .

n e N k=1 172"k

The operation: D)

(,d > K(4) is called the analytic operation. Countable unions

and countable intersections are special cases of the analytic operation:

B, =K(J) for = {a, . =B ),

{Anlnz...nk = Bk} °

K(J4) for &

A
Let O bé a class of subsets of S . The class of all subsets
obtained from sets in’ Ol by the analytic operation is denoted by
Tl . If A €@ , then -
A=avav .., € [},

Therefore

a < dldl,
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Theorem 1.7.1. 1f A is multiplicative, then

o« (w(a7]) = xlal > a,

Proof. By the last remark we always have ac 0( (al and hence

X[] C X [(T®I], Therefore it is enough to prove that

“[«[]] C «[C] , i.e. that for any Souslin scheme 4 = {Bn1n2"'nk}

composed of sets in o(faj, we have K(J) ¢ Eﬂj . Let

S Ny N, ... ony
Bnn = m Am m ’ ¢
1 zoconk _E_I‘E H” r=l 1 2 o e 0 mr

‘where all sets A..: belong to @ .  Then

'Using the general distributive law of set theory, we can exchange

ﬂ}:;l and um 5 N~ to obtain
. ” y |
k() = S J Y M M2 e 2
26 gp Lni € 1;1"' k=1 r=1 mkl me cee mkr :
(i=1,2,...) T S
o
n, m,my... € N° k,r=1 k1 "k2 *** "kr
For o, my, My, ... € N” fixed, the above intersection can be

expressed as follows:

-4
(l) f\ f—‘—————j -A nl n2 cae nk

g=1 k,r : k+r=g+f Mkl Mxp e My,



, of (1)
Consider the indices n, and nmn,, appearing in the inner 1ntersectloq\

Arrange them in a triangular array and then divide them into ¢q parts

as shown in the diagram,

n m

1 11 12 13 *°°° 1q

nz m21 7 mza- e e mz,q_l

31 0| M3,q-2

n m
g gl

Let the inner intersection of (1) be denoted by

)

LI ) mql .

|nq mlq m2,q—1

Clny myy [ My Myp My; [ Ry My3 myy My
Then
K(J ) = J [ﬁ\ C(n m, ,...]nq Mg ®2,q-1 °°° mql) .

:g My sMosese € N

Since the map
(n, my, Mmpy «ve) F>C(ng my; |0, m, Myy|eeelng My *ve mqll...)
gives a bijections

00 2 3

:&xg&xgwx’o-ﬁ& XN. X...X!‘P-'-l

Xooo b4

we have

K(x&) fﬂ\ C(ny my |eee|ngmy  ove m_o)
P+1 aq 1lq al
(q?lm\ ’o.o’n‘llpl) 6 N q- B
(P[—l 2’n..)
l

Since there exists a bijection fq : N—

g+l

for every q , we have

k() = _J m c(r, (1 D)) dg )

,Y,EN ag=1
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since (I is multiplicative, all sets C(+++) belong to o. .

Therefore K(J ) € «LA),

A Souslin scheme A5 = {A } is called decreasing, if
n1n2"'nk -

. N (<4
. - & ]
{Anlnz--°“k}¥n*¥'2"'f is decreasing for every n (nk) N

4 is called disjoint, if {A is disjoint for

nyNyeeany nlgx:},z,,,.
every k and for every (nl,nz,...nk_l) . (Convention: For k=1

this means that {An}n is decreasing.) If J is regular and K

\' ,/f NS )
disjoint, then the family <
' k
A s (nyynyseeuyn ) €N
NyNgyes ey 1772 k

is disjoint for every k .

Since a non-countable operation is involved in the analytic

operation, K(,§) ¢ ¢[8) in general. But we have the following.

Theorem 1.7.2. For a decreasing disjoint Souslin scheme xf , we have

K(,J) = m L* Jk Ann

k=1 (n;,n,,...,n.) € N ) R ML

and therefore

k() € ald].

Proof, Using the general distributive law of set theory, we can

express the right hand side R as follows:

R = - ) A
(MypsPype o eam) € N
(k=1’2, .sc)

n n " e .

n A NA
n n n n 33

11 21 M22 n

31 32

Since & is decreasing and disjoint, all these countable intersections

are empty except for
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i
=
1

11 - P21 31 = e+ (=)

N,y = N3y = e (=n2)

Nz = o (=n3)

Therefore

R = \~____~_~,,,,,,} A A A

f\ooo
(nl’nz"..) n n,n n.nn :

= k(8 .
1 172 1273

Theorem 1.7.3. let 3 bea 'd-algebra on a set S . For any

disjoint Souslin scheme J € B, we have

K(E) € 73,
Proof. Consider the Souslin scheme

[] H A' = m A é ,B . , P o
/g nln20 . -nk i=1 n1n2 .o .ni AL i

Then ‘5' is decreasing disjoint Souslin scheme c B . Since
K(E) = K(J') and since K(§') € 0[8'] C 3 . by the above
theorem, we have K(AZ) € 13 .
Let f be a map from a segginto another set T. For a Souslin scheme
= {B } of subsets of T the inverse image of ,§ under f :
...n
1%+ * Py
-1
£7(8) =1 )
(0, )
is a Souslin scheme of subsets of S. Since

£H, 2y = U, 1) and i a) =N, tay

n

we have ‘
K(£18) = k(4.

Theorem 1.7.4. Let f be a map from a set S  into: another set T. Then

X [f-l( )l = f'l(tx[C} ) for every ( C 2T,
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1

8. Measures.

He

let S be a set., Amap o from a class d of subsets of S

or C is called a set function on S and the class @

[

into R,
is called the domain of &« , [F(x ) in notation.

A set function M on S is called a measure on S if it
satisfies the following conditions:
(M) b(/u) is a (O-algebra on S,
(pne2) 0 <pa)<ew for A€ P(m) , ana  m(4) =0,

(/41,,3) M is o0¢-additive:

°0 i o0
/u(n;l a) = %1 u(a)  for {a_} ¢ p(p) disjoint.

Let M be a measure on S . Aset ACS 1is called

M -measurable if A € Tr(/&c) . The value W(A) for a given
/u-—measurab‘le set A 1is called the /d-measure of A .
A measure 4 on S is called

a probability measure (or a stochastic measure) if  4(S) =1 ,

a substochastic measure if /a(S) £1,
a finite measure’ if /{(S) L0,
and

a (g-finite measure if we have a sequence {Sn} c (/) such that

s=\/,8, and M) { o0 for every n .

A measure 4 on S is called complete, if

p(a) =0, BCA = BE D(m) (and hence  u(B)=0) .

For a measure m on S we define two set functions with domain 25
the outer M-measure M*(A) = inf {/M(B) : B € ﬁ(/& ), BD A} R

the inner -measure 4, (A):= sup {/M.(B) : B € ﬁ(/u ), BCAJ.



1.802.

For every A C S, we can find Bl’ B2 € D(/A) ‘such that
(1) ByCACB, and uU(By) = K (A) £ u*(R) = u(B,) .

A}l pfope;ties of /M,* and M canl:f derived from this,

et VvV be ameasureon S and B be a 0-algebra on S
included in [JD(v¥ ) . Then the restriction Moo= 'VIB is a measure
on S . A measure Y 1is called an extension of a measure M , if

B(v)> p(m) and ¥ = s on P(g) . A complete measure

which is an extension of 4 is called a complete extension of M« ,
; [ goreplle .
There are many complete extensions. The minimum' extension of M is

called the Lebesgue extension of M, denoted by /72-' , It is defined

as followsz
h(p)
J-(R)

Let /A be a measure on S and let R be a subset of S

p*(A) (= 4 (a)) for A € B(p) .

(M -measurable or not) such that M, ,(S-T) = 0 . Define a set function

y on S by
P(v)={acsiantT €d(r)nrt},
V(a) }%A).

Using the assumption K, (S-T) = 0 , we can check that ¥ is a

measure on S extending M. The measure V is denoted by /'-T .

¢

The domain £(v ) is the ¢ -algebra generated by T and all sets iry

Bory s de.
Fowy= ol{r}r v o)l .

If T is M-measurable, then /LT = M , Otherwise /a.T is a strict

extension of M . If M is complete, then //,LT is a1s0-completgx‘"

]'j.. g
5;‘*
i

IR TS SR

/Z .4".’7»)

r! | Wl ; | ia, mnT A
Y S

2 1 /

/

= f‘a‘A:“ SRR RS

{A CS: Bl C AC B2 for some Bl’BZ‘E 0(/4) with /M(BZ-BI) =o}



Let M4 Dbe a measure on S . For a subset T of S
(/A—-measufable or not) we define a set function € on T by
g(¢)
8(a)

n

bopryonr

/&*(A) for A e BH(8) .

Then © 1is a measure on T . The measure 6 is called the

trace measure of . on T, /“T in notation. If M is complete,

then MT is also complete, If T 1is JM-measurable, then
B(/()GTC%(,“-) and HAn, = ./ulﬁ(/u)f\T‘
In this case /“T is often denoted by M IT .

Note that /MT is a measure on T , while //.T is a measure on

A set S endowed with a measure /l- is called a measure space,

denoted by S(/A ) or (S,/u ) .
Let f be a map from a measure space S(/L) into a Borel space
P(T) (T = B(P) if T is a topological space). The map f is

called ,/44-measurab1e if f 1is measurable .ﬁ(/& YA A

On a measure space S(M4) we can define the integral of a

M -measurable function f : S( v ) 7 R (or E or C) on a
" = = =
/A-me'asurable setA, denoted by

‘{A f(x)/&(dx) or - fAf d/L ’

under certain conditions. We assume the reader to be familiar with
fundamental facts in the theory of measures and integrals.,
et f be a map from a set S into another set T .

For a measure M on S we define the image measure of M under f

denoted by f;u as follows:
Bsp)
£ M (B)

{Bcr:shm) € B},
AETHB))

]

S.

b 4



The transformation formula on integrals:

| (v) £u”(dy) = | (gef)(x) w(ax)
ijgY foATT Sf'l(B) 5

holds in the sense that if one of these integrals is well-defined,
then the other is well-defined and has the same value.

If the original measure /4 on S 1is complete, then the image
measure §M on T 1is also complete. It is obvious that

EM(T) = u(s) .

Therefore if M is stochastic, then g# is stochastic., Similarly
for substochastic or finite measures. However, even if & is
F-finite, fu is not always 0J-finite; for example,

S = Bz, T = R, /l= the Lebesgue measure on R

2

f

the canonical projection : (x, v)H—> x .

Since the domain of a measure is a (-algebra, it is closed under
countable operations such as countable unions, countable intersections,
and so on, but it is not alwé&s closed under the analytic operation.

However, we have the following important theorem.

Theorem 1.8.1, Let M be a ¢-finite complete measure on S .

Then H(MK) 1is closed under the analytic operation.
H .

Proof. Let 4 ={aA '} be a Souslin scheme composed of
N Npfge My

M -measurable sets. We will prove that K(J4 ) is JM-measurable.
Since M is o-finite, we have

§=U, Sy ps) <@, m=1,2, 000 .
Since

.m ) m k
Tt A = N,_s A NS
/8 ...nk 1=1 nlnznoonu m
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is a decreasing Souslin scheme composed of M -measurable subsets of

Sm and since

m
K(A) = U, k(4™ ,
it is enough to prove that K(A™ is M-measurable for every m .

Therefore we can assume without loss of generality that A is a

*

decreasing Souslin scheme composed of M-measurable subsets of < |,

where /A(S )y < o

Define two Souslin schemes:

7 i = U . ,
MyNpee Ny h.<n, (i=1,2,...%) Ahlhz"'hk
' 0
:t A i= (- / m A :
4 Myfge ey h;<n; (i=1,2,...,K) j=1 hyhye.hy .
h,e N (i> k)
it =
Then
(1) ,J* and :g are decreasing Souslin schémes,
T S nyn,i..n,
(3) A e PDpr) ;
nlnz..'nk /‘
note that A ¢ ﬁ(/t) in general.
172 k
First we will prove that
- 00
(4) Q Anlnz“‘nk C K := K(4) for every (n,) € N .

Let x be any element of the intersection. Then we can find a

triangular array of indices:

-~
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hyjgs bhyys B3y eee 2 My
h22, h32, L) s nz
hi3p .00 < D4

such that

fOr k=l, 2, LK N

X € By ho..h

since hkl < n, for each k , we can find ry < n, such that

h = r

K1 for infinitely many k's .

1
Observing h,, for such k's, we can find r, £ n, such that

h = r

K1 and hk2 =r, for infinitely many k's .

1

Repeating this, we can find a sequence risf n; , i=1,2,... such that
for each 1 , we have

= = . =Y. infini 4
hkl = Iy hkZ Loy oo hkl r, for infinitely many k's .

Taking, for each i, a number k- = k(i) satisfying the above conditions,

we have

X € = A C A
Ahklhkz...hkk r Eyeeary D gee S BriroLry

for every i . Therefore
x € () Ay, g CK.

i Y172 ;1 (jD

Since A, 4 K (n—>0) , we have

/u*(éh) T /A*(K) .



1.8.7.

In fact, by taking B € j)(/u.) with B O Al and /u(Bn) = /U‘*(An) ,

we have
1im (A ) < p*(K) € wm(lim B ) < 1im (B ) = lim *(A ) . ek
n n —‘/u /A n = n /M n n n B

Similarly we have

"/‘A*(énlnz...nkn) T/u*(l—\nlnz...nk) (hr@) .

Therefore, for every £ >0 , we can find m;,m,,... such that

-1
HR) < pr(ng )+ 2T E

< w*a )+ 272¢ + 27t
~ 1

< /&*(A y + 2756 4 (e Ley vin 4 27t

This implies that

05 1m0+
<1 /AK “_mk) + € by (2) and (3)
= ﬂ mlmznk € by (1)
S M(R) + € by (4)

Letting ¢ + 0 , we have

/u.*(K) = /“-*(K) < /U—(S') < o2,
Therefore we have B,, B, € 8(/~-) such that B, C K CB, and
B,C KC B, and A(B) = Ha(K) = px(K) = M(B,) ,
which implies that /u(Bz - Bl) =0 , Since /u. is complete, we have

K € B([U-
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1.9. B-reqular measures and universally measurable sets.

Let S(,J) be a Borel space. A measure M on S is called

a B-regular measure on S(J ) if it satisfies the following conditions:

(B, 1) M is complete,
(B, 2) Do 4,
(B, 3) For évery A € .B’(/“-) we can find B €_J such that
B CA and /U-(A—B) =0 .,
It is easy to check that (B, 3) is equivalent to the condition:

(B, 3') For every A € ﬁ(/l—) we can find B;» B2 € 4 such that

BJCACB, and M(B, - B) =0 ,

Therefore the following conditions are equivalent to each other.

(1) M _ is B-reqular,

(2) M is the Lebesgue extension of a measure on S with
E T ey

domain ,J ’ ( o

(3) T o= TERYT .
We can define B-regular measures on a topological space by
regarding the space as a Borei space with the topological ¢--algebra.
Let S(j ) and T(J ) be Borel spaces, A a B-regular measure
and f + S—T a M-measurable map. Then the image measure f/u is

complete and fy(f/L ) DJ . Therefore fi is a complete extension

of the restriction f/u"j . This implies that fu is an extension -

of (fmly) . But fu * (££]7 ) in general. Indeed, £ is not

b

always B-regular even if f is Borel measurable (@nd so obviously st ¢

i

-

A
/U.-measurable), as the following trivial example shows.

el g
i
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S = {'al’ az" s s ey ank} » /J = ZS,

T

/b(.

and define f : S — T by ay b, (¥k=1,2,.,..,n) . Then Y := tH

{bl’ bZ’ -oosvbn} I 3= {ﬂ‘t T} ’

L}

the counting measure on S .

is the counting measure with D(v) = 2T . Therefore

(v[:y):; vfj £V for n>1 ,

Let us\give a more sophisticated example in which S and T
are subspaces of R . Let A Dbe the (classical) Lebesgue measure
on I = (0,1) . The measure A is B-regular. Let

S the famous non- A -measurable subset of I

]

due to Lebesgue,

T =1 9 g
A} (the trace measure of A on /f ) ' o o]

=%

and f = the canonical injection from S into T . Then M is
B-regular and f is Borel measurable (hence MK -measurable),

Examining Lebesgue's construction of § » we have A*(S) =1 and
v ‘
so A*(ANS) = A*(A) for AC I, Thefore o

=

fm (B) =/u(f"1(B)) = /A(Bn/’g} = A'*(Bf\/? = A(B) for B € ®B(T). OCL
if{f/»«_ were B-regular, we would have | ' @
fE®h = A, |

in contradiction to S € D’(fr‘/a) and S & B(Ar) .
v

vi

A subset of a Borel space S(J ) is called universally measurable

if it is measurable with respect to every B-regular probability
measure.. The class of all universally measurable subsets of s(4£) is
a o -algebra on S(4) including 4 and is denoted by Wi(S,4) or

Mi(S) « Amap f : S(S)—> T(7) 1is called universally measurable,
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if f is measurable W[ (S)/ J .71t is obvious that every Borel measurable
k—map is universally measurable.

Theorem 1.9.1. Every universally measurable subset of s(S) is

measurable with respect to every o¢-finite B-regular measure on s(d) .

N

Proof. Let A Dbe universally measurable and let u be a o-finite
B-regular measure on s(4) . since A is o-finite, we can find a

disjoint countable family {S } C D(u#) such that

s =Zn: Spr 0 < ps)) < @ (N=1,2,0..) .

For each n , define a B-regular probability measure /un on S(4)

by
JB 0 s)

/u_n(B) = s for B € 4.

Then

(B) ‘:4 S (B) for B € oS .

Since A is /a-measurable. we can find Bpy? B> € J such that

By CACB,» /"Ln(BnZ-Bnl) =0 .
Let B, =/, B,; and B, = M, B, « Then

and
/“‘(BZ - Bl) = z,/"((Sn) /'Ln(BZ'_ Bl) =0.
n

Theorem 1.9.2. 7nu(s,x§) is a (¢-algebra on S including ',J and

is closed under the analytic operation. Therefore 7ﬂu(s,,5) 2 M[?gj.

Proof. Obvious by Theorem 1.8,1.
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We define universally measurable sets on a topological space ,

regarding the space as a Borel space with the topological g-algebra.

Similarlv we define universally measurable maps from a topological

{or Borel) space into another tovological (or Borel) space,
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1.10. K-regular measures,

Let S be a topological space and M an arbitrary measure on
S (B-regular or not). A jL-measurable set A is called K-regular if
(1) /u(A) = sup {/A(K) t K compact, KC A, K € B(/u )}.

If M is a B-regular measure and if every M-measurable set is

K-reqgular, then M is called a K-regular measure on S .
A class of sets Ai’ i € I, 1is called directed up (resp. directed
down) if for every i, j € I there exists Xk € I such that

Akj Aiu Aj (resp. AkC Ai{\ AJ.) .

Theorem 1.10.1. Let A be a K-regular measure on S .

(1) If {Gi}i ¢1 1is a class of open sets directed up, then
/‘L(UiGi) = SuPi/‘-(Gi) .
(ii) 1If {Fi}i €T is a class of closed sets directed down and if
/u(FJ.) <o for some j , then
/u(ﬂiFi) = 1nfi/u(Fi) .

Remark. If I is countable, this is obvious by the general

properties of a measure.

Proof.

(i) Let ¢ = U;G; and let K be any compact set included in G .
Since {Gi}i is directed up, we have Gjﬁ) K for some j . Then
sup; M(G;) 2 /L(GJ-) z M(K) .
Since M is K-reqular, we have .
sup; /"(Gi) = //-(G) .

The opposite inequality is obvious,



(ii) Since {Fi}i is dirccted down, ﬂiFi and .infi /A(Fi_\- dn rot
change, even if we ignore the sets that are not included in FJ. .
Therefore we can assume that uiFi »is included in a set S' with
/U~(S') < ® . since S'-F; is open in S' for every i , we can
use the same argument as in (i) to obtain

/u'(ui(s.“Fi)) = Supi /‘(S.‘Fi) .

Since /M(S') < o , this implies the conclusion of (ii).
et S and T be topological spaces and let M be a
K-regular measure on S . A A-measurable (i.e. measurable

B(/u )/ B(T)) map £ 1+ S—=> T is called Lusin K-measurable if for

every set A € B(/M-) and every a < /M(A) , we can find a compact

set K C¢ A such that

(L) /,4,(K)> a and the restriction flK is continuous,

Theorem 1,10.2, Iet S and T be Hausdorff spaces, // a

o -finite B-regular measure on S, and let £ 1+ S— T be Lusin

/M. -measurable. The image measure V = f/u on T is K-regular.

- Proof. First we will prove that every V:—measurable set B is
K-regular. Let a < V(B) . Then

As=£71(B) € D(px) and A(R) = u(B)>a .
Since f 1is Lusin /u-measurable, we can find a compact set K C A
such that

/u(K)> a and g = flK is continuous.
Let H = g(K)(=f(K)) . Then H 1is compact by continuity of f ,

H Cf(A)CB, and
YV (H) = /u(f—l(H)) _>_/a(K)> a .
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This proves that every B € P(V ) is K-reqular,

Since M is complete, V 1is also complete. It remains only
to prove that for every B € J(V ) , we can find C € #(T) such
that ¢ C B and V(B-C) = 0 . Since this property of B is
inherited by countable unions and since VvV 1is g-finite, we can
assume without loss of generality that P(B) < ® ., Since
B € (v ) is K-regqular, we can find a sequence of compact sets
H C B, 'n=1,2,... such that  V (H)) 4+ V(B) .

Let C denote the union thn . Since T 1is a Hausdorff space,
H is closed and therefore C € PB{(T) . It is obvious that

C CB and y(Cc) = V (B) .
Since VY (B) <« , we have V(B-C) = 0 . This completes the proof

of our theorem.
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1.11, The weak topologv in the space of measures.

A toprological space S 1is called completely regular if it is

Hausdorff and if for every point a of S and open subset G of S
contatning a, we can find a continuous function

£=f, ¢ s— [0,1]

such that f(a) =1 and f(x) = C for xE€ ¢€. We note that this
conmpact _subset K of S and open subset G of S,
condition 1mn11es that for evé??XEEhtalnlno K, we can find a continuous

~function

c .
. To see this, K choose

such that £ =1 on K and f = ¢ on G y

fa = fayG‘nggweach a€ K . Thén the family /—

U(a) ={x : fa‘(x)> %}, a €'K.,

is an open covering of K. Since X 1is conpact, we can’find

@548550.0520 K such that \,éU(ai) D X. Then the-function
f = max (Zfa A1)
i i
satisfies the condition for f .

k,G
In this section S always stands for a completely regqular

: nt,
space. We denote by ct(s) and n?(s) the bounded cohhuous non—nqpfne
functions on S and the finite K-regular measures on S respectively.

The integral

f, on
is denoted by /L(P)
K““"*‘““"““If ,uem (8), tHen
(1) u(a) = sup { (K) : Kcf, K copact §

and

(2) /A(A)

inf {;L(G) : C DA, G open}
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for A e ﬁ(ﬂ). Therefore any A € M (s) is completely determined
by its behavior on compact sets. Since

- M(R) < w(E, L) < u(G)
MEx, ) S M

for the f mentiond above, we have

k,G

(3) M(K) = inf {/M(‘f) : £€c™(s), £ 21 on K},

3 . 3 . 3 +
vhich immediately 1mp11e§//*Theorem 1.11.1. Let M, , /42 € M(s).

. + _
If M (f) = p,(f) for evey f € C'(S), then F1 = Mo,

A functional on C'(S) is called positive if [(£) 2 0 for
every f € C+(S), and additive if
MUE + g) = wlf) + ula).
iA positive additive functional e»on C+(S) is called tight if for
every € > O there exists a compact set K = K(&) such that
(4) £2z1on K = [(£) 2 WL1)) —E.
It is obvious that for M € m*(s) M(f), regarded as a functional
on C+(S), is positive , addi%%e and tight ; “—= tightness follows
from (1). conversely we have
: eveyy
Theorem 1,11.2. Forjpositive, additive and tight functional
{ on c*(s) we can find a unique g€ M¥(s) such that
L£) =/L(f) for every f € C+(S).
Remark. If S is a compact Hausdorff space, this theorem is

well-known as the Riesz representation theorem. Note that tightness

» 4 ] L] Q
1s automatic in this case, because wecan take S for the compact

set K in (419’ Proof of the theorem . To prove existence, Iet S be
[ ‘

v o . . .
the Stone-Cech compactification of S, which exists by complete

regularity of S, Then the map
¢ : C(S) — c(s)

£ I— frg'(the restriction of f to S)
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N

is bijective. The functional ! on C¥(S) defined by

1 = 1Egy
is positive and additive. Since S is a compact Hausdorff space,
we can use the Riesgz representation tﬁ;rem to find & € M (3) such that

: T(E) = A for Fectd . ~
Wwe will prove that

(5) sebB) and H(S -—s) = o,
For evefy E>0C we can find a compact set K = K(§)
satisfying the condition (4). Then

f>1on 8 = flg 21 onk

= I(f]g') >l - ¢
= 1) > Tay €= jd -¢.

Hence we have

A(K) 2 J(S) - €,
which implies (5) sinée, KcsCS .

By virtue of (5) the ¥estYiction M= jzls is a finite K—regular

measure on S . For every f € c*(s) we have a unique T € ct(s)
such £ ='§‘Sj. Hence

Leey = L) = () |
| (Fap @lxce (S ~8) =0)

(Fap = pn,

which completes the proof of the theorem,

The weak topology in wf(s) is induced by the neighborhoods

.H—-‘-T"rﬁ:f:ﬂﬂi(/u) = | ve w(s) :flv(fi) -A(ED)| <e, i=1,2,...,n}
. 2 ’ Vo ‘
[/u c m+(8)’f1,f2,“" fn€c+(s) , &£2>o0. ©
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It is easy to check that these give a well-defined Tl-topology;
the separation axiom follows from Theorem 1.11.1.
Consider the map

+4 00
(6) i M¥(s)y — gc'(Sj

pn = () o oty
This is injective by Theorem 1.11.1 and

i (U w))e -1 -1 -1 .
1 f1f2"'fn,5(k’ ? pfl(-f.,’E)n pfz(-E,E)n npfn(ff,é) ni(s).

where Pe is the canonical projection to the f-component. Hence the
space hz*(s) with the weak topology is homeomorphic to the subspace

+
1(MHgNor € (9

=

with the product topolooy, As i(‘?’YL*(s)) is completely
;régular, so is 'm+(S). Thus we have

‘Theorem 1.11.3. The space M (S) with the weak topology is

completely regular.

S
A subset M of a topological space,is called conditionally
§ i o, & N =Y
compact in‘s;\ the closure of M .4n® is compact JTheorem 1.11.4. —
[ Vet . Wt

N
A subset M of M'(S) is conditionally compact in ’)’ff(S) if the following

conditions are satisfied

(i) (Uniform boundedness) sup /A(S)§A<°,é @ |
_ MEM :
(ii) (Uniform X-regularity) inf sup /&(Kc)=0.

K ¢compact peM

Remark. The second condition is automatic if S is compact.

*(s)

Proof of the theorem. Iet [ denote gd . By the map i : m+(s)——-) r

in (6) we imbed M’ (S) inte " . Theorem 1.11.2 shows that an element

L= (25, f e ¢¥(s)) of " belongs to m+(S) if and only if J (f),

-
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as a functionai of f , is positive, :additive and ticht, The closure
M of M in m+(s) is bi*nm+(3), where M* is the closure of M in[ .
But we can prove that
(6) F = ue.
To do this, it is enough to show that
(1) fyemr 9 Ly emi(s). therefere
By the assumption fo € M* vwe can,-f‘find a coeneral’ z: " secuence /ud C M
converging to 10 in[". Since {/‘a]Cﬂ’f{S) and since the map [ — [(f)
is continuous for every + €c¥(s), Zo(f), as a functional of f, is
positive and additive. By the condition (ii) we can find a compact set
K = K(€) ( £>O) such that
/‘d(KC) <& - for every «,
Let § be any function in c*(s) such that $2 1 on K. Then we have"
MALF) 2 /Ud(]sf) - € for every &, ’ (9

so
e L) 2 an- €
hy//le(—)[ . This proves that fe}(f‘) is positive, additive and tight,
i.e. EO €m+(s). Thus we have proved (7).

Let & = sup M _/_“S) and lifd = sup, 4 (¥). By th= condition (i),
we—have 2 < @, since u(f) x aiff for me m, K Pllews that

M C’.'TTfeC"'(S) Lo, aiifi], .

The right jewd Si‘de 1S compact by TYchonov's‘ theorem) vHene—e M* is also -~

hand.

compact, e M is compact bv (6),
a
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1,12, Topological vector spaces,

A topological vector space S over C is defined to be
a vector space over C endowed with a Hausdorff topology under
which the linear operation
g ¢+ CxXxCXsxs — S
' - d
(45 %, 5. 55) b= 18+ 45,

is continuous ; this ensures that vector addition and scalar
multiplication are continuous. Similarly we define a topological
vector space over R. In this sectionjwe discuss the rroverties

of topological vector spaces over C ; a similar discussion can he

made for topological vector spaces over R,

=

Throuchout this section we use the following notation :
S : a topological vector space over g,

$,7,... ¢+ points of S,

A,B,U,V,.e. ¢ subsets of S,

< ,P sess ¢ cCOmplex numvers,

A +£O f¥ + 50 ¢ §¢ al,  (algebraic sum)

dA+pB={o(x+Py:x6A,ye B}

U

Since the map § — § +§, is bicontinuous, U +§¢€ ?/{(f)

It

hte neighborhoods of §.

if and onlvy if 1T € U{(0). Similarly, if « #$0, AU € U0)

if and only if U € U (0)
A ceneral sequence 1[ gv‘}e(e Ar A being directed, is called
Canchvy if for every U € 1{(0) there exists 0(0 = of(U) such

that

. - §P € U vhenver «,82 d,
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1f every general Cauchv seguence in S is convergent, S is called
complete.
A subset A of S 1is called
balanced if
®«A CA vwhenever [« <1,
convex if
XA + (1-d) A C A vwhenever N <xX<1,
and bounded if for evervy U € {(0) there exists an « € (0, )
such that AC AT,

S is called locallv convex if the convex neichborhoods of 0 form

a hase of ?( (). We'nofprove that

(1) If S islocallv convex, the balanced convex neichborhoods
|

of 0O form a base of LA0).

Since S 1is locally convex, it is enough to show that every

convex neighborhood U of O contains a balanced convex neighborhood
W of 0. Also the map («,§)—> «§ is continuous, so we can

find € > 0 and a neighborhood V € U(0) such that

|4l = € = av CV,

and hence §
(2) gl =1 = XV CFU. | GO
Let W denote the interior of the intersection of all FTJ: lf1= 1.
then W D &€V by (2). Thus W € P(0). It is easy to check that
W is balanced and convex , which completes the proof of (1).

ILet T be a vector space over g, where no topology is given.
A map p : T — [0, ) is called a semi-norm on T if the following
conditions are satisfied :
(p.1) o(*§) = |x]p(¥),
(p.2) p(§+7) £ v(3) + (7). -
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A family F of semi-norms on T is called sepatating, if

<P
=

0 for every p
/T
For a given sepa¥ating family P of semi-norms on T we may

p(x) x = 0. )

define a topology Tb by the system of neichborhoods

U

TN = € : . - ‘< E = e
pl’pz,...’pn’c\—/(go) {; S pl(g 50) ’ 1,2, )n}

n=l,2,..., piep, £>O.

It is easy to see that the vector space T with the topology

'“tp is a locally convex topological vector space Conversely we have

"“heorem 142.1. Every locally convex torolocrical vector svace S
canies a separating family P of semi-norms determining its topology. =B

Proof, We will sketch the proof. Let # be the family of all balanced
convex neighborhoods of 0. Bv virtue of (1) W is a basis of #(0).
For each W €W set

P (§) =inf {o: «w 2£7} .

w ==

= i i i £ i- '

Then P {Pw} wel 1S @ sepatating family of semi-norms on S and
the topolooy Tp determined by F coincides with the original

topovlogy in s. ) %géb

tor space is called an F-space if it is

A topological ¥

complete and met;;zgp;g: An F-space is called a Frechet space if it is

(O

locally convex., (This terminology follows Rudin [l] 3 autho%ai?ry 6
in their definition of ¥- and Frechet spaces.)
Tet T and S be topological vector spaces., If T C S (as sets).

the
and if the linear operation and, topology on T are ins}déed from (;

kkkkk Argrlicec|
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those on S, then T 1is called a subspace of S. Every subset T of
S closed under the lié%r operation is a subspace of S when the
linear operation and the topology on T are induced from those on S.

A topological vector space‘expressible as the uniogfan increasing

sequence of Frechet subspaces is called an LF-space.

Theorem 1.12.1. Every LF-space is locally convex and complete.

Theorem 1.12.2. ILet. {Sn} n=1.2 be a sequence of Frechet spaces
F 2 I )

such that Sn is a subspace of S foﬂevery n. Then the union

n+l
= U;Sn with the following linear operation and the topology is
an LF-space
(i) § = do% +»ﬁ’7 in 35 ¢ this holds in some S, »
(ii) G is open in S & G N S is open in S for evervy n.,
e N e

P e V\/\/_\/‘\,W M‘m.ﬂ .
Thbrem 1.,12,3. Iet S be an LF-space expressible as the union
of an increasing sequence of Frecheqsubspaces Sl,Sz,....Then a
linear functional [ : S = C is continuous if and only if the .

restirction [lgﬁ ¢ S, =2 C is continucus. | We refer the reader to
v = — B

Treves [j%)kfor the proof of these theorems.

V)
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Leb 5 —68 a tho/o?«M vecler ﬂzﬁj_(f/’v “called the dual space of 'S/
P

‘The set of all continuous linear functionals x : S — € is ¥

denoted by S’'. S’ is a vector space with the usual linear operation

A, . R
(«D('lxl +<x2x2)v(§) = d,%, (%) +q2X'2(§) f(_).irevery £€ S, TWe may]

e et e o s - e e e

V&éfine many topologies on 's” that make s’ .into a locally convex QE%CD

topological vector space. Among such topologies the following are most
‘ T
1mpg;ant.

-~

(i) The strona topology on 3 is defined by the family of semi-noms

.p?(x) = sup |x(%)|
’ €8

where 2B rums over all bounded subfsets of S, Note that every
continuous linear functional is bounded on some U € o)

and therefore bounded on any bounded set R, so pé(x) < 9,

(ii) The tovologv of uniform converagence. on compacts. ol S is

L
deﬁped by the family of semi-norms

Pe(x) = sup | x(§)]
g€¢K
vhere K runs over all compact subsets of S,

*
(iii) The :weak topologv on S' is defined by the family of semi-norms

p (x) = [x(s)] , fes.

Among theg§e three topologies (i) is the strongest and (iii) is the

weakest,
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let T = (T, u) be a reasure space, where/u is a firnite

. =}
1.13, The I spaces.

—rae

f:

measure., The set of all /u-measurable reall(resp. complex)
functions on T is denoted by

o _ .0, 0 _ .0 _

L” = L (f,/b) (resp. Lg = Lo (T,/A)) s
/

"as usuval two /M—equivalent (i.e. equal a.e.(fﬁ)) -_—

functions are identified. We will discuss. LO in thi#section,

0

but a similar discussion Jiolds on L

The set Lo with the usuval linear g%}ation is a vector space @2

. . . o
. Ve will define a topologv which makes L into an F-Space. Set

e}

cver 5

il

ixig = § (=&)X A 1] pce).

I “O is not a norm on LO but it dofs have the following properties:

(i) 0 < IIxlly <1, ana ﬂxllo =0 &> x=0 (i.é. x(t) = 0 a.e. (M)
(ii) f xlf 5 = Ixlly if Jul=1,

(iii) Ix +vilg Llixiyg +iyiy,

(iv) laxllg < Cl«+ 1) xll,,

(v) dy 70 = lopxllyg = 0,

0 » . ’ O
(vi) lim | x, =% ilg =0 = lim i, -~ x ”O =0 for some x € L

n,m- n-—>c

(i), (ii) anad (iii) are obvious. (iv) follows from the obvious

. 3 1/—\
inequality (a b)A 1 < (a+l)(bA1l) for a,b 20 .

(v) follows from the bounded convercence theorem for intecrals.

[aa} ) 1
To prove (vi take a sulseguence v, = ¥
“ , ( ) - kK n,, ¥=1,2,..., so that



‘ i -k
“ Tf”{_-*'l - ’Vk " < 2 ’ k = 1,2’000

Then oo

["k"'l - yk(t), A 1] /"'(dt) = Z " ’"‘(+l - Yﬂ "-/ < 1.

k=1

‘l

Hence

W (7@ - pelat] <

holds a.ej/&). Ir (1) hoids, lyk+l(t) - yk(t)[ < 1 for

sufficiently large X , soO

(<]
25 ve  (t)=v. ()] < oo
k=1 I k+1 k
holds a.e. (#). This implies thet
Yy = ¥, + (y ) + (v -V, ) Fee.t (Vk e 1) K=1,2,... N
converges to some X € LO a.e, (/A). Using the bounded convercence
theorem, we can show that
"xn - X “o < 1;’?“ " Xn - Yk ":O ’
SO .
lim | x_ - x| & lim 1im NXp=Yln S 1im  [x -x || = 0,
n n (o) n k ' “uo n,m-re nn @
which proves (v).
Defining
howy) = lIxvllg
we obtain a metric on LO by (i), (ii) an? (iii), so we may

the
endow LO with/\f%-topology . ObServino that

o< ts|
£ pfe Ix(E) 26} < lixllg & em(S) + plte(x(t) > €} , £ror @

we see that X, —> X in the fo-topoloqy if and onlv if
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lim ﬂ{ £t |x (t)-x(t)]l >€} =0 for everv &0,
: : n
n=>e°
In view of this fact we often call the po—topology the torolocv

of converacence in measure.

Theorem 1.13,1, The vector space LO with the fb-topology is an

F-space .[%he map (x,y) —» x+y 1is continuous by (iii):?

Proof.¢;;;erving that

lof 2, = ax ”O < Ndn(xn—x)llo + 1 -%) x|

and using (iv) and (v), we see that the map (¢,x) = ox is also
continuous. Therefore LO is a linear topological srace.
10 is evidently metrizable, and complete bv (vi), so 0 is
an “=grace.

The following example shows that LO(T,/A) is not, iﬁgeneral,
locally convex,
_”Exémgle. LO(;, A) is not locally convex-.( A denctes Lebesgue measure),
Proof.. Suppose that Lo(é,x ) is locally convex. Since 1 # 0,

both 5eing Yecarded as members of LO(;,, A ), there must be a

convex neighborhood V of 0 such that 1 é v .

7oy ={x : ]]xﬂ@<;1]=_} cv

and consider

X, = (n+1) l[i—l i 2 1= 1,2,0¢45 N+1,
n+l ) n+l

Then

___l__;‘: 3
(1) li xi[lo = 741 fOr every i
and

1 n+l

(2) LERT & N
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From (1) we get x, €U C v, so (2), combined with convexity
of V , implies that 1 € V , a contradiction.
For X € LO, set
(e P pae) P (adp < e )
Bx“b = { T

ess, sup x(t) = inf { o 3 |x(t)] <« a-e-gﬁ-)} (p=00)
teT

and define 17 = Lp(S,/A) by

P {xeLo . ||xup<°°}'

i

It is well-known that the space 1P with the norm i "p is

a Banach space.



2.1.1.

i

f?. ‘Polish spaces, standard spaces and analytic spaces.
f }

Polish if ‘it is homeomorphic to a complete separable metric space,

A Hausdorff topological space is called

standard if it is 1-1 dominated by a complete separable metric space
(i,e. it is 1-1 dominated by a Polish space), and
analytic if it is dominated by a complete separable metric space,
(i.e. it is dominated by a Polish space).
&t is obvious that

{Polish spaces } c.{standard spaces} ¢ {analytic spaces}.
These £opologica1 spaces have nice properties related to Borel
structures and measures. The special topological spaces listed in
~§ 1.4. are Polish except for the spaces .p , 9*'(a) and §°'
which are standard. Practically all topolo;ical spaces appearing in
probability theory are standard.

A Borel space is called a standard (resp. analytic) Borel space,

if it is Borel isomorphic with a standard (resp. analytic) space with
the topological O-algebra. It is obvious that

{standard Borél spaces} CZ{analytic Borel spaces}.
These Borel spaces also have some nice properties which can be

derived from the properties of standard or analytic spaces.

2.1. Metric spaces.

A set S endowed with a metric f 1is called a metric space,
denoted by S(f) or (s,f) . S(f) 1is regarded as a Hausdorff
topological space with the pf-topology. If every"ﬂ-Cauchy sequence
in S(f ) converges to a point with respect to the f-topology, then

P is called a complete metric and S(f ) 1is called a complete metric

space.
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Let S(f) be a metric space. The ¢-neighborhood of a € S,

the closed ¢ -neighborhood of a €S and the diameter of A C S are

denoted by U(a,t ) , U(a, &) and d(2A) respectively:

{xes: p(x,a)<e} ,
[xes: P(x,a)< &},

_U(a9 &)

U(a, €)
a(a) = sup { p(x,y) s x,y €A} .

We often include the suffix f to indicate the metric referred

to; for example wTy(a, ) . The distance between a € S and

4

BCS (or between ACS and BCS) is denoted by f (a, A) (or p(A, B)):

f(a,B) = inf { f(a,b) + be¢B},

inf {p(a,b) + a €A, be B} .

¢ (A,B)

Theorem 2.l.1. Let S(P) be a complete metric space.

(i) (The Cantor intersection theorem). If {Fn} is a decreasing

sequence of non-empty closed sets with d(Fn) — 0 , then the

intersection NpFn consists of a single point. Denote the point by

a . Thus F y a .

(ii) (The Baire category theorem). If {Fn} is a sequence of closed

sets covering S , then at least one F includes a non-empty open set.

Proof.

(i) Take a. € Fn’ n=1,2,,.. « Then

a s ay € F for n, m2> k .

n k
Therefore f(an, am) - 0 (ng m —>o0 ) as ﬁ(Fk)-> o .
Since f is complete, we can find a € S such that a,— a . But

a) € Fk for n> kK, so we have a € Fk . Therefore a € (\ka .
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Since P(Fk)té 0, {a}= (), F, and Fk-& a .
(ii) Suppose that none of the Fn’ n=1,2,..., 1includes a non-empty
open set. Take a point xi'E S and a positive number r1'< 1.

Then U(xi,rl)‘\ F is a non-empty open set., Take a point X, in

1

this set and choose a positive number r, < 1/2 in such a way that

U(xz,rz) C U(xl,rl)\\ F1 .

Then U(kz,rz)‘\ F is a non-empty open set. Continuing this, we

2

can find X, € s and r, € (0, 1/n) , n=1,2,..., such that

_ r |
U(Xn+l’ n+1) C U(X ,%l) \. Fn, n=1,2,... . @

Applying the Cantor intersection theorem to 'Vﬁﬁ(xn’ rn)}'n , We can

. -— N .
find a point x € N U(xﬁ,rn) . Then x ¢ UpFn * o » contrary to.
the assumption.

et S be a topological space and let p be a metric on S ,
If the P -topology on S is the same as the given topology on S,

then f 1is called a compatible metricon S . A topological space

S is called metrizable (resp. completely metrizable) if there exists

’

a compatible metric (re a complete compatible metric) on S .
(ot

It should be noted that* gf completely metrizable does not imply that 4:>

every compatible metric on S is complete., For example,consider the

positive half-line aﬁ = (0,%°) , This is completely metrizable,
because p(x,y) 3= [10g x - log yl is a complete compatible metric
on ,&T . But the usual metric %(x,y) $= [x-—yl is compatible but

not complete, because {l/n} is Q-Cauchy but does not

n=1,2,...

converge to any point in R .



If P is a compatible metric on S, then PA1 is also a
compatible metric on S . Therefore every metrizable space has
a compatible metric bounded by 1, and similarly for a complete

compatible metric.
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2.2. Polish spaces,

Let S be a Polish space. Then S is homeomorphic to a complete
separable metric space $S'( ') under a bicontinuous map f : S — S' .
Thus

f(x,¥) 1= P (£(x),£(y))
defines a complete compatible metric on S . Since S'( p') is
separable, S(f ) is also separable and hence S has a countable-
open Saee. Therefore a Polish space is a completely metrizable space
with a countable open base.

Let S be a completely metrizable space with a countable oven
base. Then S has a complete compatible metric P and S(P) is
complete and separable. Since the identity map i + S — S(f) is
bicontinuous by compatibility of f, S 1is Polish. A

By the above observation we can define a Polish space to be a
completely metrizable space with a countable open base.

From the definition we see that every Polish space has all the
topoiogical properties of a complete separable metric space.

For example: : .

(i) Every Polish space is normal and fully Lindeldf,

(ii) On a Polish space every closed set is GS ’
(iii) The Baire category theorem (Theorem 2.1.1.(ii)) holds for a

Polish space,

is

Theorem 2.2.1." Every closed subset T of a Polish space s

Polish, where T is,endowed with the relative topology.
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Proof. 1Let P be a complete compatible metric on S . Then the
restriction ﬁr of P to T is a compatible metric on T .
Since T ‘is closed in S , it is easy to see that ﬁr is complete.
T has a countable open base as aAsubspace of S . Therefore T 1is

Polish,

Theorem 2.2.2. Every countable disjoint sum of Polish spaces is .
Polish.

let

Proof. Let Sn’ n=1,2,... » be Polish spaces and ﬂ\ﬁ; be a complete
= -

compatible metric on Sn' bounded by 1 , for each n ., Let S be
the disjoint sum of Sn,_n=l,2,... . Then a point in S 1is of the
form (x, n) where n=1,2,... and X € S, 5 see § 1.6, Define a metric

p on S by

p((x,n), (y,m)) P (x,7) if m=n

1 if m#Fn .

It is easy to check that P is a complete compatible metric on S and

that S has a countable open base., Therefore S is Polish.

Theorem 2.2.3. Every countable product of Polish spaces is Polish,

where the product space is endowed with the product topology.

Proof. Let S and f; be as in the proof of the above theorem.

Then
Pl (v))

= Zn: 2-1’1 f’n(xn,yn), xn’yn€ Sno N=1,2,.40 »

defines a complete compatible metric on S ='TTnSn . It is easy to

see that S has a countable open base.
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Theorem 2.2.4. Every countable projective limit of Polish spaces

is Polish. R m@mmélérxm_cfff P ﬁJ:Z /% (,} _ %%gi
AT —- 0{:(1 ( 7

- rd

. /
Proof. This follows at once fro7/Theorems 2.2.3, and 2.2.1., because

the projective 1imit of Hausdorff /topological spaces is a closed

subset of their product space;"

Theorem 2.2.5. Every compact metrizable space is Polish,

Remark. By Urysohn's metrization theorem it is obvious that a compact
e
Hausdorff space is metrizable if and only if it has a countable open

‘base.

Proof. Let S be a compact metrizable space, P a compatible metric

on S, and let X, be a f-Cauchy sequence. Since S is compact,

{xn} has a sébsequence converging to a point x € S . It is easy to O
u
‘see that xn—§ X . Therefore f is complete, - By the above remark

S has a countable open base.

i .

Now we will examine which of the special spaces listed in § 1.4.
are Polish.

R
(i R,,and are Polish.

{[p]

(ii) I., N, 2, 2 and K are Polish by Theorem 2.2.1., because

.

they are closed in

1P

n

(iii);gp, gn’ 2 and 5? (n=1,2,...,) are Polish by Theorem 2,2.3.

(iv) J is Polish, because it is homeomorphic to N® .
- - mgﬂcn,;ﬁ#m

(v) Q is not Polish, because the Baire category theoreq‘does not

hold on Q ; consider the covering of Q by all singletons.

In Chapter 2 we will prove that the spaces C(b,l] , D[O,l] ‘and
1P{0,1)] (1< p <) - are Polish,
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2.3. Polish subsets

Iet S be a topological space. A subset T of S is called

Polish, if.the set T with the relative topology is a Polish space.

Theorem 2.,3.1. (Alexandrov). A subset T of a Polish space S is

Polish if and only if T is Gg in S,

beina..
Proof. Since T always has a countable open base:,. A & subspace of

S , the Polish property of T follows frdm the existence of a
complete compatible metric on T .

First we will prove the following:
(1) Every open subset T of S is Polish,

Let P be a complete compatible metric on S and let f be

T

the restriction of pf to T . ﬁ} is compatible with the relative

topology in T but is not complete except in the trivial case T =S .

to construct a complete compatible metric J

We will modify  f ™

T
on T . First define

f(x) s= P(x, S-T) = inf {F(x,y) s yés—T}_.
Then f(x) is continuous. f(x) > O if and only if x € T, because

1/f(x) (x € T) is continuous

S - T is closed. Therefore g(x)

on T . Define a new metric fp on T by

Pr(x,y) = fo(x,y) + [g(x) - aty)| .
If PT(xn,x)-—> 0, then fr(x ,x) —> O Dby the continuity of g,
and the converse is obvious as RP < P% . It follows that P is

compatible., We now prove that f% is complete,
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Let {x } be a pr-Cauchy sequence in T . As ﬁT s I

{xn} is ﬁr—Cauchy in T, i.e. P-cauchy in S . Therefore {x }

converges to a point x €S, If x € S-T, then

f(xn) — f(x) =0, i.e. g(x)— o ,
in contradiction to

lg(xn) - g(xm)l < P,I'.(xn,xm) <0 (ny,m—>e) ,

Therefore x must be in T , which shows that f% is complete.
This completes the proof of (1),
Second we will show the following:

(2) 1I1f Tn_C'SW s N=1,2,..., are Polish, then the intersection

T = nnTn is Polish,

Let D be the diagonal set of the product space |l := -ﬂnTn .

Then D ‘is closed in [T and homeomorphic *to>: T by Theorem 1.5.2.
Since D 1is Polish by Theorem 2.2.3. and 2.2.1,. T 1is also Polish,
as desired.

By (1) and (2), every G subset of S 1is Polish. To complete
the proof of our theorem, it is enough to show that if T is Polish,
then T 1is Gg in S . Take a complete compatible metric £, on

T
T and denote the fT-diameter of ACT by dT(A) . Let ’l{n denote

the class of all sets U open in S such that
d.(Un T) < i
T n°*

and let G be the union of all U € un. Then G, is open in S,

and the closure T of T in S is Gy in S , being a closed subset

of S . To prove that T is G in S, it is enough to show that



(3) T=Tn(NG,) .
n
Suppose that x € T , and take a neighborhood v, = Vh(x) in T
such that dT(Vh) < 1/n . Then Vh = Un(1 T for some neighborhood

Un = Un(x) in S ., Thus dT(Un n T) <1/n . This shows that

Un c Ztn , whence x € Gn . Since xe€ TC T , X belongs to the

right hand side of (3), call it R,

Suppose conversely that x € R . Then for every n , we can find

a neighborhood U = Un(x) in S such that
dp(U, N T) < 1/n .
This inequality continues to hold, even if we replace U, by a smaller

neighborhood of x for each n . Therefore we can assume that Uh vV x .

Since x €T » Un11 T contains at least one point, say X, As

{'Un N T}h is decreasing,
xh, xn € Uk NT for my n >k
and hence
P (X %) < %?"‘ form, n > kK .

Since ﬁr is complete, we have y € T such that x — y in T .

Therefore X, > Y in S . But X, —> X since Un-ﬁ>x . We conclude

that x=y € T, completing the proof of (3), = . =he thedrar..

Theorem 2.3.2. (Alexandroff-Urysohn). A topological space is Polish,

if and only if it is homeomorphic to a G, subset of ;f .
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Proof. Since ;,;=f0,1J is Polish, every Gy subset of ;” is

Polish by Theorems 2.2.3. and 2.3.if‘and the "if" part of the theorem

follows immediately. To establish the other half of the theorem,let

S be a Polish space and f é complete compatible metric on S

‘bounded by 1. Take a sequence {an} dense in S and define a map
£f+18—1

X "'—} ( r(x’al)’ P(x’az)!“') L]

Let B denote the image f(S) and g the restriction f s,B °
By a routine argument we have that the map g : S — B is
bicontinuous. Therefore S isvhomeomorphic to B . Since S is
Polish, B 1is also Polish. Hence B 1is G, in ;w by Theorem 2.3.1,
completing the proof. |

A topological space is called 0-compact, if it is expressible as a

countable union of compact subsets.

Theorem V2Q3.3. Every locally compact, (¢-compact metrizable space

L AL A S I S M AT, R ey~ s . . imogrin

is Polish,
~ Proof. Such a space S 1is open in its one-point compactification

S =85 uiw} and S is metrizable. Since S is Polish by Theorem 2.2.5,.

S 1is Polish by Thedrem 2.3.1.
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2.4. O-dimensional Polish spaces.

A topological space is called O- dimensional if there is an open

. Y .
base consisting of simultaneously open and closedﬁets, This property
AN
w 00
is inherited by subspaces and product spaces. Therefore N , 2 and

their G, subsets are O-dimensional Polish spaces.

Theorem 2.4.1. Everv Polish space is 1-1 dominated by a

O-dimenensional Polish space. | /“/ - —

Proof. ILet Py denote the propertv of being domineted by a O-dimensional“£9
Polish space. It is easy to see that P, is inherited bv countable

products and GI subdets. Since everv Polish space i hoﬁ%wgghic to QO @? ﬁ3

a G, subsets of I” , it remains only to prove that I = [0,1] hes

property PO' Consider the map

f H

2?
=
(

{
-n .
2 i

n .

M8 -

in)F9
1

3
I

‘This is continous and surijective but not bijective. Tet 2 Dbe the

NI
=

set of all roints in I expressible as k/ZnL>

n=1,2,... )e Then A 1is countable and

(k = 1,2,00., 281
| £~ 1(3d) consists of two points for a €A,
and f“l(b) consists of one point for b € I-A.
Choose a voint E(Q) in f—l(;5 for each a in A and

Let

o0

A' = {g(a) : a€EA} and Sqg = 2 — A’

I~

[y

Then the restriction fq = flg 2 Sp—> is a continuous bijection,
Since A' 1is countable, SO is GS in ;f and hence is Polish.
FThis proves that 1 has property Pg, completing the proof of

the theorem,
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Theorem 2.4.2. Every Polish space S is 1-1 dJdominated by a

Proof. By the previous theorem we can assume that S is
O-diménsional. Iet f Dbe a complete compatible metric on S and
let d denote the p-diameter. For every E > 0, we can find a
sequence of simultaneously open and closed sets Un( £E), n=1,2,... ,
with a(U (& )) <6& such that

S =\, Un( &) ,
because S is O-dimensional and fully 1indelof. We can assume that

{Un(E )}n is disjoint for each & > 0 , by replacing Un(f; Y by

L

U.(€) if necessary. Then the Souslin scheme

Un('c') B uk<n

A = U ()n U HE)N coon U (

nlnz...nk nl n2 n
€S

is decreasing and disjoint. Since every x jbelongs to some Un( € )

)

X 1=

for every € 2 0 , we have

(1) S = E ﬂ An Neuoun. ? where g=(n1,n2,...) .

n € Eﬁ k 12 K
Let F denote the set of all n € N~ such that A + ¢ .
- — n n L) in ° Sl
. : 12 kK _
for every K . Since {A } is a decreasing sequence of
n n ‘..n
12 K
non-empty closed sets such that d(An Yy < k_l , Wwe can use

1n2 [ I} an
the Cantor intersection theorem (Theorem 2.1.1.(i)) to conclude that

for evervy n € F , nk A consists of exactly one point,
- nlnzo-ank

which we denote by €(n) . Then the map f: F — S 1is bijective

bv (1) . Since for every n = (nk) € F the sets

an n =
12...

N : nF,k=1,2,... »
k '-nl Zastnk
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are neighborhoods of n in F and since

-1

f(F : YC A and d(A ) < k ’

nlnzcoonk nlnz...nk nlnz...nk

the map f : F— S is continuous. Therefore S is dominated by
F . It remains only to prove that F is closed in gw »y OF

. c . . 0 c
equivalently F is open 1n ‘g ., et n = (nk) € F . Then

A n is empty for some j . This implies that
1 2." ._j

c . .
(mk) € F if m=n_, K=1,2,.4457

k "k
c . c .
Therefore N C 7~ , which proves that F is open,
n n OI'n'
12 3
Theorem 2.4.3. Fverv Polish space S is domirated by N
Proof. Let P Dbe a complete compatible metric on S . We construct
a Souslin scheme Ag = {A } as follows. Take a sequence’
nln?Q 2 ’nk

{ an} dense in S and let

An = [-]- (an,l) » n=1’2"oo .

If A is constructed, take a sequence {5 } dense in this
N N,.eeny n

set and 1let

- 1
A = A . n U ( b ,—_), n=1’2’.o- .
0ens n’k+1
nlnz...nkn nln2 Ny
= \I 1 1
For every n (nk) € N, {An e ...n }k 1s a decreasing sequence
; 172 k

of non-empty closed sets with d(An n ' n Y>>0 (k—>w) .

1 2... k

Therefore we can use the Cantor intersection theorem to conclude that

nlnz... K

which we denote bv £(n) . Then €: N —> S is a continuous

09 N o
for everv p €N , /Wk A ., Consists of exactly one point,

. . . s ) L L
sur jection and therefore S is dominated by N .
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2.5. standard spaces and analytic spaces.

Since the relations < and < are transitive, we can derive
' 1-}

the following facts at once from the definitions given at the
beginning of this chapter.
(S.1) A Hausdorff space 1-1 dominated by a standard space is
standafd.
(S.2) A Hausdorff space 1-1 dominated by a closed subset of N"
is stahdard.
(A.1) A Hausdorff space dominated by an analytic sﬁace is analytic.
(A.2) A Hausdorff space dominated by XN® is analytic.

let & and (@' be topologies on a set S and suppose that

0' is weaker than ( (i.e. @ C ¢ ) . Then the identity map .

i3 8S(0) > s{(') is a continuous bijection. Therefore we obtain
the following facts. Hass dorff
(s.3) If S is standard, then the set S with a weaker] topology is
also standard.
Hausdon §f
(A.3) If S is analytic, then the set S with a weakeg{topology is
also analytic.

As already mentioned, every Polish space is standard and every
standard space is analytic._

A trivial example of a standard but non-Polish space is Q.
Q. is standard because it is dominated by N , but not Polish (see the
end of § 2.2.). A more interesting example is the space C = c(0,1)
with the topology of point-wise convergence, denoted by g . In

p
this topology the following sets form a neighborhood base of x ¢ C .
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U ]_'tZ”"’t ’Sv(x) { €C: ,y(ti) - X(tl)l < 8’ i=1’2:-109n}9

€>0 5 n=1,2,... 5 t, € (0,1)

The topological space C( Ob) is Hausdorff but not metrizable,
because there is no countable neighborhood base of anv point x € C ,
Therefore C( 0 ') is not Polish. But the srace C with the
max1m\;1grgorm topoloay O’ is Polish, because the set C with the
max1mum&metr1c is 2 complete separable metric space. (See §1J’ ).
It is obvious that 0; is weaker than 0; . Thefefore C((?p) is
standard by (S.3)... |

Fxamples of analytic but non-standard spaces and non-analytic
gpares will »o given in § 2.6,

We now present some general properties of analytic spaces and

standard spaces.

Theorem 2.5.1., Every analytic space (and therefore every standard

space) is fully Lindelof.

Proof. Iet S bYe analytic, Then we have a Polish space P and
a continuous surjection f : P — S, Let {Gi}ie 1 ke an arkitrary

clase of open subsets of S , Then £

Gi) is open in S for every
i « Since P is fully Lindelof, we can find a countable subset J

of I such that

@) = U ™ (G. .

i€ 1 i€1
Since f 1is surjective, this implies that

w_/ Gy =/ G; »
i1 €T i€TX 1

proving that S is fully Lindelof,
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Theorem 2.5.2, Everv closed (or open or Gy ) subset of an

analytic space is analytic and every closed (or open or Gy ) subset
of a standard space is standard.
Note., Recall that a subset of a topological space is endowed with

the relative topology.

Proof., ILet S be analvtic, Take a Polish space P and a
continuous surjectioh f : P—>S, Let B be closed (or open or Gy )

in S. Then A = f“l(B) is also closed (or open or G, ) in P,

By Theorem 2.3.2, A 1is Polish, Since the restriction

f a,n ! A<= B o)

-

is continuous and surjective, B 1is analytic. The proof for

standard spaces is analogous.

Theorem 2,5,3, Every countable disjoint sum of analytic spaces is

analytic and every countable disjoint sum of standard space is

standard.

Proof. Let Sn, n=1,2,:4s 5 be analytic., For each n , take a

Polish space Pn and a continuous sur jection £t P.— S .

Let P and S be the disjoint sums of { Pn} and { S,} respectivelv.
Then P is Polish and
f:P — S

(x,n)H(fn(X),n) (x P, n=1,2,...)

is a continuous surjection, Therefore S is analyvtic,  The proof

for standard spaces is the same,
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Theorem 2.5.4. Every countable product of analytic spaces is

analytic and every countable product of standard spaces is standard.
Proof. Use the bilateral product map.

Theorem 2,5.5, Every countable projective limit of analytic spaces

is analytic and every countable projective 1limit of standard spaces

is standard.

Proof. Since every projective limit of Hausdorff spaces is a closed
subset of their product, this theorems follows from Theorems 2.5.4.

S

and 2.5.2.

Theorem 2.5.6. EVery analytic space S with #S > ™  jncludes

o0
a compact subset homeomorphic to 2 .,

_ggggf. We have a complete éeparable metric space P(f ) and a
COntiﬁnéus; surjection f 1 P—>S . For each y in S take a
point g(y) in f’l(y) . Then the set A ={g(Y) 1y € S}CP “has
the same cardinal number as S , i.e. A is not countable. Let C
be the set of all points x € A such that at least one neighborhood
V(x) has at most countably many points in common with A . Pick -
such a neighborhood V(x) for each x € C ., Then C 1is covered by
{v(x), x € c}. since P is fully Lindeldf, we can find a sequence
{V(xn). n=1,2,...} covering C . Therefore

ccC Unv(xn)nA .

This shows that C is countable. Let B=A -C . B has the

following properties:



(B.1)

2.5'5.

for every neighborhood U(x) of x € B, U(x) N B contains

at least two distinct points (in fact, uncountably many points).

(B.2)

for any distinct points x, y € B, f(x) # f(y) .
Now we determine a diadic system of points and neighborhoods

X s ] e B 9 Ua ) s = U(X- s : ’rn)

by induction. Pick two distinct points Xo and x, in B .

follows. By property (B.2) we can pick two distinct points

X.

i=0,1 in Ui .

i N B, Then
1 2.00

eeol 1’

f(x. . 0? i ~f¥1

) .
12..01 1200.1 1

Therefore we can find neighborhoods

Uo ° . . = U(x : ]
i1ig000i i i 12...i Tn+1

such that

U, . o\ O, . i Us .
llizcoclno lllzooolnl/l:‘;\c 1112...1n 14

) (i=0,1 ; O<r 1( 2-n-1

=

]

Then f(xo) ¥ f(xl) . By the continuity of the map f we can find
neighborhoods
- ‘ -— 1
such that
f(Uo)(1 f(Ul) =g,

If x . €B and U . = U(x, . . ,r_ ) are determined,’

i 12...1 iliz...ln i1i5¢00i °"n
then we determine x € B and U, . . ¢« (i=0,1) as

il 2...i i ii50004 4

)L
=
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and

£(T . o) " f(fJ—i i § ) =9%-

i112...1 1igee-ip
Using the Cantor intersection theorem, we can check that for

each i = (i_) the intersection MN_ T consists of exactly
= n n iliz...in

one point, which we denote by h(i) . Since

® (See §1040 fO!.' __2_0 ) »
b § ——llizaaoin

h(2
. —il 2'..

Yc U, .
in 1112...1n

. . _ _
the map h ¢+ 2 » P is continuous. Therefore fo h 3 g?-+ S |is

continuous, Also, we have

(Foh) (2, . . ) c £(U, . ) »
Sigigeeedy 1112...1n
which implies that foh |is injeétive. Therefore K 1= (fc:h)(gf)

(]
is a compact subset of S homeomorphic to 2 .

Theorem 2.5.7. Every compact analytic space is metrizable

(and hence Polish by Theorem 2.2.5.).

Proof. let S be a compact analytic space., Then S is normal.
To prove that S is metrizable it is enough to show that S has
a countable open base, because every normal topological space with
a countable open base is metrizable by the Uryséhn metrization
theorem. The space 82 t= S X S is also a compact analytic space

by Theorem 2.5.4. Therefore s? is compact and fully Lindelof.
2 2

is closed in S and therefore D is

also compact. The set G = S2 - D is open in 82 . Since 32 is

The diagonal set D of S

compact and hence normal, for every 5 € G , we can find a neighborhood

U( %) such that
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u(g) CG.

2

Since G is covered by {U( £), %€ G} and since S is fully

Lindelof, we have a sequence { En} C G such that { u( & n)}n covers

' n
G. Let G denote \J, , U( £x) + Then

= _ n . ‘

"GCS “"Gno

ioeo : D= Sz

2

- n
But D 1is compact and S° - Gn is open. Therefore, for each,\we

can find a finite number of open sets { vni}i in S such that

2 2 _ = 2

DcUi Ve €8S =G (Vis= VX Vi) .

n ij ] 3

We will prove that the countable class { V i} . is an open
, nifn,i
base in S . Let x be any point in S and V any neighborhood
of x in S . Then

2

._}c
{x}x vCcs*-p=6 and G 126G .

2

since {x] X V* is closed in S° and hence compact, we have

{x} x Vcc:(;m for some m .
For thisAmm , We take j so that (:;. x) € V:j . Then
v:j nifxl X v) c(s?-G)ne =4 ,
i.e, {x] X Vg 0 ) =4,

ioeo ij N Vc=¢.
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] * " v
This implies that x ¢ ij CcV , proving that { ni}n.i is an

open base,
Theorem 2.5.8. If Sn. n=1,2,... , are analytic, then
73(T1n5n) = 775 ’B(Sn) .

Proof. 'TTnSn is analytic by Theorem 2.5.4. and therefore it is

fully Lindelof by Theorem 2.5.1., We now use Theorem 1.4.4.(ii).



