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Chapter 1. Analytic spaces and standard spaces

A Hausdorff topological space S 1is dplled an analytic
space if we can find a complete separéble metric space P and
a continuous Surjection f : P~>S. If we can take a continuous
bijection f in this definition, then S 1s called a standard
space. These special topological épaces are important in the
theory of stochastic processes. First, practically all function
spaces useful in probability theory are analytic (even standard)
spaces (See Section 7). Second, these spaces have many nice
Borel properties which are not enjoyed by general Hausdorff topol—
ogical spaces (See Sectionsk4.5.6). We assume the reader to be
familiar with measure theory in general, but we will give a quick

_ and the analytic operation

review of o-algebras, Bore%”§555533 in Sections 1, 2 and 3 to
standardize our terminology and notation. In Section 8 we will
introduce standard (or analytic) Borel spaces and in Sectiong"9 and 10

we will discuss some properties of probability measures which

may not be discussed in standard textbooks of measure theory.

l. og-algebras.

Let S be a set. A class bf subsets of S 1s f8fifen called

a class on S. A non-empty class on S 1is called cpmplementary

(resp. multiplicative, additive,'c—additive) if it 1s closed

under complements (resp. finite intersections, finite unions,
countable unions). A complementary additive (resp. o-additive)

.class on S 1s called an algebra (resp. a c—algebra) on S.



A class closed under countable disjoint unions and proper differ-

ences is called aDynkin class if it contains S (as a member).

Let OUL be an arbitrary class on S. The smallest o-algebra
containing 0t (as a subclass) is called the o-algebra generated
by OL, denoted by o[a]. The Dykin class 8[or] generated by
O is defined in the ‘same way.

TheE)rIJ;%?n Dly;.nkiLrét01%LSSl;%h%ofnellrgzciplicative class on S and O

a Dyhkih class on S. If > 0 , then & > o[ A].

Proof. It is obvious that & > §[e] D @ . To prove that S >cla]
it is enough to check that 6[dl] is a o-algebra. Since [ a]
is a Dynkin class, we need only prove that &[A ] is multiplicative.
Using the assumption that (¢l 1s multiplicative, we can check that

the class
'&l = {BC S : A,AB e SLm] for every‘ Aen}
is a Dynkin class containing (. Hence 08196[02,], i.e.
AeOL, Be s[a] » AnB € 6[0),].

This implies that the class

D

5 = {ACS : AnRB e §[a] for every B € §[ o]}

is also a Dynkin class containing (L. Hence oﬁz,D sfa], i.e.



A,Beds[n]l] » AAB € §[a].

Theorem 2. Let (/. be a complementary class on S and B
a class on S closed under countable disjoint unions and countable

intersections. If @B > , then B > ol a].
Proof. Let ’Bl. := {A : A, A°e B }. Since ¢l 1is complementary,
(JLcBch.

To prove that B >o[m] it is enough to check that ‘Bl is a

o-algebra. If A € Bl’ n=1,2,..., then
(¢} (6] (¢} .
%{An = ZlAln ASn...nb _nh € 8 (Y : disjoint union)
and (\/An)C =r\Ar°1 € B,
n n

so A, e,Bl.f Hence 31 is o-additive. Since CBl is obviously
complementary, ~31 is a o0-algebra.

Let us define several operations deriving new o-algebras
from given ones.

Let {ABA}X <) Dea famtly of o-algebras on S. The set-
theoretical intersection ’\xBx is a o-algebra on S, but the

set-theoretical union U,g, 1s not. The o-algebra olu, 4,1

is called the lattice union of the family {‘BA}’ denoted by V3, .

L2

Let f : 8; » S,. If 82 is a o-algebra on S,, then the

inverse image




£ B,) = {r1(B) : B€ )5’2}
is a o-algebra on Sl'
Let T be a subset of S. If B 1is a o-algebra on S , the
class |

BAT={BNnT : Be B!

is a o-algebra on T, called the trace o-algebra of 8 on T.

Let ;B}\ be a o-algebra on S, for A€ A and let S
:=0I,S,. Then ﬂ;\l(ﬂx) is a o-algebra on S for each XA, where

LY denotes the canonical projection from the product space S

to its A-componént space S The lattice unlon V)\ﬂ;\l( B5)

X*
is called the product oc-algebra of .3)\, Ae N , denoted by H>\$>\.

Note that HXQA is not the set-theoretical product of 8)\, Ae A,
If 8, =T and B, = F for every A, then IS, af’ld m,B, are
denoted by ™  ang :’}'A respectively.

Let Bi be a o-algebra on S for 1 = 1,2. "A map f :

i

. -1
Sl > 82 is called measurable Bl,/ﬁz if f (62) C 61’ If

@ i generates B; for 1 = 1.2, then "f—l(OLZ)C a," implies

that f 1s measurable 81/182. Measurability is transitive in
the obvious sense. It 1s easy to see that if f_1(01§) C 01,1,
then f isﬂmeasurable o[m,l]/c[ Cﬂ?]

If f, : S > S, is measurable ﬁ/@)\ for XA & A, then the

A
product map

I.f s » 1,8, x> (£, (x))

1.1



is measurable B/Hxﬁk ; use f = ﬂEO(n}fx) to prove this.

If ¢ S, > T is measurable l?xﬁya for A€ A , then the

A A A
bilateral product map

myf, o+ LS, > LT, (x,) = (£, (x,))

is measurable HABA/Hiyk , because this map is equal to the map

fokoﬂk°

2. Borel spaces.

A set S endowed with a o-algebra 4 on S 1is called a

Borel space (or a measurable space), denoted by (S,d4). A subset

B of a Borel space S = (S,d) is called a Borel subset of S,

if Se 4. Amap f : (S8,4) » (T,7) is called a Borel map or a

measurable map if it 1s measurable &£ /7 .

Whenever it is necessary, a subset T of a Borel space (S,4)
is regarded as a Borel space with the trace o¢-algebra 4 A T,
called a Borel subspace of (S,4). Similarly the product HASA
of Borel spaces SA = (Sx,dx), A€ A,’ is regarded as a Borel space

with the product o-algebra HX&A’ called the Borel product of

(Sx,d&), A€ N . Every canonical projection is a Borel map.

Amap f : (S,4) » (T,7) is called bimeasurable if f is

bijective and if f(f) = F. If there exists a bimeasurable map
from (S,4) to (T,7), then (S,¥) is called Borel isomorphic
to (T,?’))

/.2



(5,4) 5 (T,7)

in notation. The relation E; is an equivalence relation. It is
easy to check that this relation is preserved by forming Borel

products.

Theorem 1. Let (S,4) and (T,77) be Borel spaces and suppose that

s=rzlsn, sne,x(n=1,2,...) and T=r21Tn, T ET (n=1,2,...).

Then
Sn Y Tn (n=1,2,...) =» S Y T .
Proof. If fn : Sn > Tn is bimeasurable for each n, then the map
f:8->T, f(x) = f‘n(x) for xéSn
is bimeasurable, -l

Theorem 2. Let S = (S,4) and T = (T,7) be Borel spaces. Then

sngley and TESI‘EJ# s & T.

Proof. This is a Borel version of Benstein's theorem on equivalence

of sets and can be proved by the same trick. Let f : S ~» T1

and g : T-*Sl be bimeasurable. Define sn and Tn for

n=2,3,... as follows.



S 28, = g(T) O,8 =g(T1)~:>S g(T2)D..

D D =

£(8,)2 Ty = £(8,) ..

=]
U
L=
u
w
©n
J
3
"

1 2
Then
S = (S—Sl) + (81—82) + (82—83) + ... + ,gsn
T = (T—Tl) + (Tl_T2) + (T2—T3) + ... + ng

Since the Borel spaces connected by lines are Borel isomorphic
to each other, we can use Theorem 1 to conclude that S'g’T;
Let S be a topological space. The oJ-algebra generated

by the open subsets of S 1s called the topological oJ-algebra

on S, denoted by B(S). If we want to clearly specify the topology
T on S, we use the notation (S,t) and B(S,t) 1instead of S
and B(S) respectively. Every topological space is regarded as

a Borel space with the topological o-algebra. Hence Borel subsets,

Borel maps and Borel isomorphisms are defined for topological

spaces. Open sets, closed sets, GG sets, Fc sets, etc. are Borel
subsets, continuous maps are Borel maps, and homeomorphic topological
spaces are Borel isomorphic.

Let T be a subset of a topological space S. Then T 1is
a topological space with the induced topology, so T 1s regarded
as a Borel space B(T). Since S 1is a Borel space with &B8(S),
T 1is also regarded as a Borel space with 4B(§ﬁr\T. Since it is

easy to check that .

B(T) = B(S)N T,



it does not matter in which way T 1is regarded as a Borel space.

Let S = S)\, where every Sx is a topological space.

Tren
Since S 1is a topological space with the product topology, it
is regarded as a Borel space with B(S). Since every S)\ is a
Borel space with B(S)‘), S 1is regarded as a Borel space with

Hkﬁ(sk)' In general we have
L&(s,) GBS,

80 we should clearly mention in which way we want to regard

HAS)\ as a Borel space. But we have

Theorem 3. If Sn has a countable open base for n = 1,2,...,

then nnaj(sn) = B(nnsn).

Proof. Since HAQ(S)\) c,@(ﬂ)‘sx) always holds, it is enough to
prove the opposite inclusion relation. Let 'Mn be a countable

open base 1in Sn' Then the class

n -1 . _
U := {ﬂi=1ﬂi (Ui) : n=1,2,..., Uieui}

is a countable open base in the product space S := IInSn. It

is obvious that UL L := IIn,B(Sn). Every open subset of S belongs

to o[u] , being a countable unions of sets in Y. Hence

B(s)colulcd, i.e. BN S)ICI B ), J

A.topological space is called fully Lindel8f if every family

- 8 -
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13

of open subsets has a countable subfamily with the same union.
Every topological space with a countable open base is fully Lindeldf.

As a generalization of Theorem 3 we have

Theorem 4. If S, 1s fully Lindeldf for every n, then

m B8(s ) = B(IS).

Proof. Essentially the same as above.

3. The analytic operation.

An indexed family of sets
A : k=1,2,... 5 n; = 1,2,... (i=1,2,...).

is called a Souslin scheme. With every Souslin scheme 4 =

{A } we associate its kernel

5

k@) =\ NA L

(np) k=1 ™M1 o+

where the union runs over all sequences (ni)elfﬂ The operation

4> K(f) 1is called the analytic operation. Countable unions and

countable intersections are special cases of the analytic operation,

because
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Let M be an arbitrary class of sets. The class of all sets
obtained from sets in ¢gr by the analytic operation 1s denoted by

afoL]. If A €0L, then

A=AVYAVY.... eola],

Therefore
v C ala] ¢ alal oul].

But we have

Theorem 1. Acoao[a] = ala[®]], if oo 1is multiplicative.

Proof. It is enough to prove that a[a[OL]]C:dQZJ,i.e. that

K&) ealw] for every = {B calor].
e Dy
Let
® N_N....n
B = U Nat? kK, aveam .
n1n2...1’1k (mj) 1"=l mlm2...mr c o o
Then
o ©® nN.N....n
KW) = U N U MNat2 k

(ny) k=1 (m) r=1 mymy ... m,

Using the general distributive law we can exchange’/\k and

gy(mj) to obtain y
o © N-Nq...n
K6 - Cr———d A N A
(ni) (mj),(mj),... k=1 r=1 mym, . . M,
© p n.n....n
= | J N N aj ﬁ _ ﬁ
(ni),(m§),(m§)--- p=1 k=1 mlm2"'mp+l-k



where the union runs over all indices ny and mi (i,J,k = 1,2,+-+).

These indices can be arranged in a triangular array

I’]l n2 n3 . np
1. 11 1
ml m2 m3 oo mp
2 2 2

1’1’1:L m2 . mp_l. .
3 3

ml mp__2. ..

P ..

' i
Since ni and mk

moves freely on Np+l

move freely on N , the p-th row of the array

+
nPtl

for every p. Since is a countable

infinite set, the p-th row can be indexed by a natural number vp.
Since the last intersection f\£=1A"’ in the above expression of

'KG!) depends only on the indices appearing in the first p rows
of the array, it can be denoted by Dv v v ° Hence we obtain
VoV

Kef) = \UJ NDp .
(vi) p=1 172" "p

But Dv v v € (U, because (Ol is multiplicative. Therefore
V27V
K() Dbelongs to al[d ]. A
A souslin scheme 4= {A } 1is called decreasing if
n N....n
12 k
A, DA | DAn non. D>+ for every sequence (ni).

1 12 17273

 1is called disjoint if A =1,2,..., are disjoint

’ n
nln2...nkn
for every k and every (nl,n2,...,nk).

- 11 -



Since a non-countable union is invoeolved in the analytic

operation, K(J) 4& old4d ] in general. But we have

Theorem 2.

(i) If o 1is decreasing and disjoint, then

K(4) = /W \\_______J

k=1 (nl,nz,..., nqhy--

(ii) If « 4is disjoint, then

K(d) € o[ S ].

Proof.
(i) Using the general distributive law in set theory, we can

express the right hand side R as follows:

R= J AN A,
1 n n-n n
nl,nl,n2,ni,ng,n§,... 1 172

where all indices move freely on N. Since ;f is decreasing and

disjoint, these countable intersections are empty unless

l—2=3= = 2=3=u>= =
np =0y =N (=ny), n; =n3=n, (= n,),
Hence
n-n n-n.n
Ny sNyyeons 17273
122
(i1) The Souslin scheme ' := w n n = f\f lAn n n }
Nyfoe- -0y 1Mooy

- 12 -



is decreasing and disjoint. Hence

K(J') € old'] by (1).

By the definition of the analytic operation we have

K(f) = K(4') € o[4'] C old].

A
-

i

- 13 -



4, Polish spaces, standard spaces and analytic spaces.

Throughoﬁt this section a Hausdorff topological space is
simply célled a space. If the topology <t on S 1is given by
a metric p, then the induced topology f|T on a subset T of
S 1is given by the induced metric p|T.

A metric p on a set S 1is called Polish if the metric space

(S,p) 1is separable and complete. A Polish space is defined to be

a space whose topology can be given by a Polish metric. A space
is Polish if &d only if it is homeomorphic to a complete separable
metric space.

A space S 1s called standard (resp. analytic) if it is a
continuous bijective (resp. surjective) image of a Polish space,
i.e. if we can find a Polish space P and a continuous bijection
(resp. surjection) f:P > 8. It 1s obvious that

Polish=standard=—ranalytic.
A metrizable standard (resp. analytic) space is called a Lusin

space (resp. Souslin space).

Theorem 1. Every analytic space is fully Lindelof.

Proof. Let S be analytic. Then we can find a Polish space P
and a continuous surjection f:P » S. Let ’{Gx}xeA. be a family
of open subset of S. Then f-l(GX) is also.open for every AX.
Since P has a countable open base, we can find a sequence

{A } € A such that

Us, ) = U™ @y
n n A :

- 14 -

-4



Since f is surjective, this implies that

e, =Ua,.
n ™ oA ol
Since the continuous bijective (or surjective) maps are

closed under compositions, we have

Theorem 2. Every continuous bijective image of a standard space
is standard and every continuous surjective image of an analytic
space is analytic.

Since the identity map from a space to the same space with

a weaker topology is a continuous bijection, we have

Theorem 3. The property of being standard (or analytic) is

preserved by weakening the topology.

Theorem 4. The property of being Polish (or standard or analytic)

is preserved by forming countable topological products.

Proof. Let ‘{Pn} be a sequence of Polish spaces and a

Pn
Polish metric defining the topology on Pn for each n. Then the

product topolagy on P: HnPn is given by

zz'n[p (x_,y

p((xn),(yn)): z n(X ¥,

)Aall,
It is easy to check that p 1s Polish. Hence P is Polish.
This proves the assertion for Polish spaces.

Let Sn be standard for n =_1,2,...; Take a Polish space

Pﬁ and a continuous bijection fn:Pn-—>Sn for each n. The

- 15 -



bilateral product map £ := Hﬁfn is a continuous bijection from
P := HnPn to S := Hnsn' Since P 1is Polish, S 1is standard.

This proves the assertion for standard spaces.. The same argument
works for analytic spaces by using surjections instead of bijec-

tions. | | ol
Theorem 5. If Sn’ n=1,2,...., are analytic, then
73(nnsn) = I3(S.).

Proof. HnSn is analytic (Theorem 4), so it 1s fully Lindelof

(Theorem 1). Now use Theorem 2.4 . -

Let '{SA,AEA} be a family of spaces. For each €A we
topologize the space S; := {(x,k)txesx} so that the map

xk* (x,A) 1s bicontinuous. Next we topologize

S' =

> ™
> -

so that G 1s open in S' if and only if Gnsi is open in Si

for every A. The space S' thus defined is called the topological

sum of {S,}, denoted by CXSA.
If fA:SA > TA is continuous (resp. bijective, surjective),

then the sum map

@r, : @s, > @r,, (x,A) (£f,(x),2) for xes

Y A

is continuous (resp. bijective, surjective).

- 16 -



Theorem 6. The property of being Polish (or standard or analytic)

is preserved by forming countable topological sums.

Proof. If we prove the assertion for Polish spaces, then the
argument in the proof of Theorem 4 will work for standard or
'analytic spaces by using sum maps instead of bilateral product
maps.

Let P n=1,2,... be Polish. Take a Polish metric op

n? n

defining the topology on Pn for each n. Then the topology on

OnPn is given by the metric

p((x,m), (y,n)): = {pn(x,y)j\l if m=n
1 if m#n

It is easy to check that p 1is Polish. Hence G%Pn is Polish.

.

This proves the assertion for Polish spaces.

Theorem 7. Every compact metrizable space 1s Polish.

Proof. Immediate from the fact that every metric defining the

topology of a compact metrizable space is Polish.

Theorem 8. Every sBeparable Banach space is Polish with respect
to the norm topology and standard with respect to every Hausdorff
topology weaker than the norm topoloty (for example, the week

topology) .

Proof. Immediate from the definition and Theorem 3.

- 17 -
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5. Standérd subsets and analytic subsets.

Let S Dbe a space, i.e. a Hausdorff topological space. A

subset A of S is called Polish if the set A endowed with

/.5

the induced topology is a Polish space. Similarly we define standard

subsets and analytic subsets..

We denote the class of all standard (resp. analytic, closed,

open) subsets of S by 3f(8) (resp. A(S),?(S),?(S)). It is

obvious that

BS) = olff(8)] = olHS)] = olF(SHFS)].

Since every restriction of a continuous map is continuous, we

have
FO8(S)) ¢ d(T) if f:S - T is a continuous injection,
and £4(S))c g(T) if £:5 » T is continuous.

If f:P » A(cS) is continuous, then iA Sof:P + S 1is also
3

continuous, where iA,S is the canonical injection from A into
S. Hence

A€ 4(S) if and only if we can find a Polish space P (or
equivalently a complete separable metric space (P,p)) and a
continuous map f:P > S with f(P) = A. We can characterize
Ae XS(S) similarly.

If S 1is standard (or analytic), we can prove very simple
relations among the classes 7(8), ?(S),/ﬁ’(s), J(S) and XA(3s)
(Theorem 7).

- 18 -



Lemma 1. Every closed or open subset of a Polish (resp. standard,
analytic) space 1s Polish (resp. standard, analytic).

Proof. Let P be Polish and p a Polish metric defining the
topology on P. If F is closed in P, then the induced metric

pIF is also a Polish metric defining the induced topology on F.
Hence F 1is Polish. Let G be open in P. If @& = P, then G

is Polish trivially. If G # P, then the function f(x) := p(x,P-G)
is continuous and f(x) > 0 if and only if xeG. It is easy to

check that

pa(X5y): = p(x,y)+|f(i5 - f(;)l, X,y€G

is a Polish metric defining the topology on G. Hence G 1s
Polish. |

Let S be standard and B a closed or open subset of S.
Take a Polish space P and a continuous bijection f:P > S. Then
the inverse image A := f_l(B) is closed or open in P, so A
is Polish. Since f(A) = B, B is standard. Similarly we can
prove thét every clased or open subset of an analytic space is

analytic. J
Let ‘{SA,AGA} be a family of subspaces of a space S. The

set

D::= {xell Syt ﬂx(x) is independent of A}

is called the diagonal set of HASA’ denoted by D(HASA)' It

is not hard to prove that D . is c¢losed in HASA and homeomorphic

to the intersection (\xsk (e S).



L5

Theorem 1. xf(S) is closed under countable disjoint unions and

countable intersections.

Remark. Later we'will prove that WJ(S) 1is closed under arbitrary
countable unions (Theorem 8).

Proof. Suppose that A € $(8), n = 1,2,.... We will prove that

A := YA €\§(S), and B:= QAneJ(s).
n

Let

Al :n@t\

n

n

and consider the map

f:A' > A, (x,n)p x for XEA_ .

a bijection
This map is,continuous. Since A' is Polish (Theorem U4.6), A 1is

standard, i.e. AeJ(S). Let D be the diagonal set of HnAn.
Then D 1s homeomorphic to B. Since HnAn is standard (Theorem #.
4) and since D 1is closed in HnAn, D 1is standard (Lemma 1).

-

Hence B is also stdndard.
Theorem 2. )6(8) is closed under the analytic operation.

Proof. By the argument used above we can prove that A4 (S) 1is
closed under countable unions and countable intersections; note
that if A =\J%An’ Ane/Q(S), then the map f:A' - A used above

is a continuous surjection.

Let (L= {Anln

2...nk}C:)€(S) be a Souslin scheme. We want

- 20 -



to prove that

= KDeA(S).

Without loss of genefality we can assume that (X is decreasing,

because
k
= An n n e)d(S)
'k i=1 "172°° i

and the Souslin scheme far } has the same kernel as the
nlnz...nk
original scheme & . Since N 1s Polish, N” is Polish. Let 7T

and Z? denote the Souslin schemes composed of

Nn n...n = {gelN : ni(g) = n,, i=1,2,...,k}CcNN
172 k :
and B :e& N xA C N3
NniN,...n. NyNye. Ny "DqN5.. .0
respectively. Being closed in Nm, every Nn n n is Polish
105 .oy
(Lemma 1). Since . C X(S), we have
Bn1n2._.nke;4(N xS) (Theorem 4.4).

Since 7 is decreasing and disjoint and since (4 1is decreasing,
)9 is decreasing and disjoint. Hence we can use Theorem 3.2 (i)

to obtain

k@ =M ___ JB

k(nl,n2,...,nk NyNoe- - Ny

Since Jd(NmXS) is closed under countable unions and countable

intersections, we have

- 21 -
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K@) e ANTxS) .

From the definition. of K@) we obtain

K@) L—-—J[_oﬁ Bh-n.,

l 2...nk
l

L_J (-)}wa
= ng ) bx (YA,

s
11’12. . .nk

Let Ty be the canonical projection from N”xS to S. Then

o

(K@) =\ (A, = KOV .

(n;) k=1 "1 20y

Since T, 1s continuous and since K@) e J(N“xS), we obtain

K e A(S). ' |

Let {An} be a sequence of subsets of S. We say that

{Ar% monotically converges to a point aes if

(1) Anaa for every n,

(11) A;DAD ...,

and

(iii) for every neighborhood U(a) we can find an index n,
such that An,C_U(a), (1.e. AnC U(a) for every n > n, by (ii)).

o

Lemma 2. A Ya3 QAniQAn = {a}.

Proof. Let b be any point of S distinct from a. Then we
can find disjoint neighborhoods U(a) and V(b). Take an index
r such that Arc U(a). Then A, and V(b) are disjoint.

Hence b does not belong to Kr' . This implies that
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HalcNAcC @ R c{a},
n

so all these sets are the same.

Lemma 3.

If f:S-»>T

is continuous, then

A vasfa) v f(a) 3 {f(a) SARI® - N,

Proof. Let V be any neighborhood of f(a). Then £

a neighbor

hood of a.

L)

Hence we can find an index r such

that 'Arc'f'l(V). Then f(A)CV. It is obvious that

f(A

Hence f(A

RER{CI-REE

n) vy f(a). T

and f%An)Bfm)ﬁFl,2g'-).

his proves the first implication. The

second implication follows from the last lemma. ol

Theorem 3.

Souslin sc

S 1is Poli

(1) . s =(Js and S
Y n

(1i1) For every sequence (ni)ele the sequence {S

If S 1is a
heme J = {8

sh) satilsfyi

1

n-Nns...n

nalytic, then we can find a decreasing

n1n2"'nk}c A(S) (J c F(S) 1in case
ng the following conditions.

s .
2 x n DPpPorcomyn

n1n2 . o ank

monotonically converges to a point in S.

Proof. First we consider the case where S 1is Polish. Let

p be a Polish metric defining the topology on S. Take a

sequence

where U(x

{xn} dense

, r) denotes

in S and let

the closed pall with center x and

- 23 -
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L5

p-radius r. Thgn Sn is a non-empty closed set and .

S ={JS. .

0

Suppose that the non-empty closed sets

Shn.:..n° (nl,nz,...,nk)élNk

L REES

are defined. Take a sequence {yn = yn(nln2"‘nk)}n=l,2,...
dense in S n and let

k—l)

.

S := S nO(y_,2~
. n nin,...ny. n

Then S is a non-empty closed set. Thus we'obtain a
nin,...nn
Souslin scheme ¥ = {S }CHS). We will verify (i) and
NiNy.. N
(11). (i) is obvious by the construction, (ii) follows from the

Cantor intersection theorem. This proves our theorem for S
Polish.

Let S be analytic. Take a Polish space P and a continuous

surjection f:P > S. Take a Souslin scheme 0 = {P } € F(P)
nin,...n.

satisfying (1) and (ii). Let

S = £ (P ).

niN,...n. NyNy...ny
Being closed in P, Pn1n2"’nk is Polish, so Sn1n2"'nk is analytic.
Then xf=’{S } is a Souslin scheme to be constructed,

NyN,...Np

because (i) is obvious and (ii) follows from Lemma 3. P |

Theorem 4. 4(S)c a[F(3)]

Proof. Let A\EJAfs). Applying the last theorem to A we can
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find a Souslin scheme CL = {A } satisfying Conditions (i)
. niNy...n. ~
and (ii). Let QL := {& }, where the bar means the closure
NN5. . Ny
in S (not in A). Then it is easy to see that

A = K@) c K@) .
For every (ni)elN°° we have

Anln2"'nk+ a in A (so in S) for some a€A.

Hence Lamma 2 ensures that

NE = {a} C A,
k n1n2...nk

proving K(&)C A. Thus we have

A = K@) € A[F(S)]. |
If we can find a disjoint family '{Bn} such that

A CB, E B(3) for every n,

then we say that {An} is Borel separated.

Lemma 4. If {Am’Aﬁ} is Borel separated for each (m,n), then

1]
{LﬁAm’tJhAn} is Borel separated.

Proof. For each (m,n) we can find B BrhneB(S) such that

mn’

' ' 1 =
AnCan and B__NB é.

Apc B mn - mn

m mn?

Then

UA,c (\UaneB(S) and (JA'c UNnB! € B(S).
m n m n * pogp™
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In general, if CnnCﬁ = ¢ for every n, then
. \]
V) Cn)r\(/WCn) = ¢.
n n -
Using this fact twice, we can check that
(NUBInWUNB,) = ¢
nm n m

[
Hence { UAm,UAn} is Borel separated‘. : o |

Lemma 5. If {Am,An} is Borel separated for every (m,n) (m#n),

then {Al,A } 1is Borel separated.

PERRE

Proof. We can use Lemma 4 to find disjoint Borel sets

|
B,2A, and B'> (A

n K> n k

for each n. Then

"n. — =
Bp: = BInBiN...nB!_inB, (DA ), n = 1,2,

are disjoint Borel sets. Hence the family f{ An} is Borel separated.
If { An}- is Borel separated, it is obviously disjoint. The
converse 1s not true in general, but we have

¢(The Borel sepatation theorem of Lu51nlj'

Theorem 5. If { ALY 1is a countaBI,JSubclass of x4 (S), then it

8301nt

is Borel separated.

Proof. By virtue of the last lemma it is enough to prove that
if A and B are disjoint analytic subsets of S, then {A,B}
is Borel separated. Supposing that {A,B} 1is not Borel separated,

we will deduce a contradition. Applying Theorem 3 to the analytic

- 26 -



spaces A and B we construct two Souslin schemes

A= by ) CAB) wna B (2

mym, n} C.4(B).

nln2. .o

Since { A,B} 1is supposed to be not Borel separated. and since

A =lv%Am and B =LJan, we can use Lemma 4 to'find a pair

{A_ ,B_} which is not Borel separated. Since
MmN
A =Ua and B_. =B s
my m m,m n, nn.n
we can again use Lemma 4 to find a pair [ A B } which is

1My’ NN,
not Borel separated. Continuing this procedure, we can find two
sequences (m,) and (n,) such that {A ,B
i i MMy . ..My nln2...nk
is not Borel separated for each k. From Condition (ii) of Theorem

3 we have

A o vy agaA and B .n + bEB.

Since ANB = ¢, a must be distinct from b. Hence we can find

two disjoint open sets
U(@a) and V(Gb).

Then we have

A cU and B CV for some k = k..
mlmz...mk nln2...nk 0
This implies that { A ,B } 1s Borel separated
mlmz...mk nln2...nk ’
which is a contradiction. J

Lemma 6. Every Borel subset Qf a Polish space is standard.

o

/5



Proof. yJ(P) 1is closed under countable disjoint unions and countable

intersections (Theorem 1) and
/S(P) > A= q(P)U 7(1’) (Lemma 1).
Hence we can use Theorem 1.2 to conclude that

Ar)o ol =0 ). 4
Theorem 6. Y (S) C 'BM(S)

Proof. Let A€, J(S). Then we can find a Polish space P and a
continuous bijection' f:P » A. Applying Theorem 3 to the PRolish

spaee P, we construct a Souslin scheme

o = {P “.nk}c: F(P).

Let

1°°2 172 n<n, 1
Q = P - P R
nln2n3 nln2n3 %—{3 nyn,n

and so on. Then

. n,...n, € BEVE A(P) (Lemma 6),

P= )P and Q CcP =7Q .
~ Ln niny...n = "ninsy...n zn n,n n

k 2ooonk

Hence every point p€P belongs to a unique intersection
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(&

Q and the Souslin scheme Q = {Q } is disjoint.
nk nyny...ng ‘ nqNy...n.
Since f 1is bijective, the Souslin scheme
a = {A i=1r(Q )}
nins...n, NiNge. ey o
is disjoint. Since Q eJ(P), A eJ(S). Also
NqNy...ns 2 NqNy. .. Ny

{A is disjoint. Hence Theorem 5 ensures

}o_
nins...n 10 n=1,2,...
the existence of disjoint Borel sets

B (DA ), n = 1,2,...
nins...n._qn nyNse..n_ 1N > >T
Thus we obtain a disjoint Souslin scheme &= {B n n }C H(S)).
l 2... k
Then the Souslin scheme
' = {A! = & NB HC &(S))
NiNy.. .0y nin,...n "niny...n

is also disjoint, the closure being taken in S (not in A).

Hence Theorem 3.2 ensures that
K@) € olB(s)] =8 (8).
We will prove that
A=KQO"),

which will complete the proof of our theorem.

Let p€ P. Then

pi&J;inn2...nk for some (ni).

Hence we have

f(p) € [k\ f(inn ...n ) = G{\Ann ...n,_ C K\Ar'ln ...n, © KA,



. &

proving that ACK@®').

Let ae€ K(@l'). Then

a & NA! for some (n.).
g AqNy. ..y i

Since {P monotonically converges to a point

b=
nqny...n k=1,2,...

pe P and f 1is regarded as a continuous map from P into S,

Lemma 3 ensures that

{f(p)} = NT(P ) D £(Q , )
k| DqNy...ny [k\ nyng...n,
=:MA - A _ a.
Kk Dqfoe ..y > fk\ nyn,...n, 2
Hence we obtain a = f(p), proving that XK@') C A. J

Theorem ‘Z.
(1) If S is standard, then B(S) = J(3)

(ii) If S 1is analytic, then

B(3)

]

{A : A,AC eA(S)} C A(8) = a[F(S)] = alB(S)]:

]

al4(S)]

Proof.

(1) Since IJ‘!(S)CB(S) (Theorem 6), i#°is enough to prove that
B(s) C B(s).

Since S 1is standard, we can find a Polish space P and a continuous
bijection f:P - S. Let BefB(S). Being continuous, f is Borel.

Hence we have
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3

A= t1(B) € BP)c J(P) (Lemma 6),
which implies that B .= f(A).€ A (S). This proves that ﬁ(S) C Js).

(ii) By the same argument as above we can check that

L (8) C A4(8).

Hence

AEB(S)=>a, A€ B(S) —> 4, A% € A(s).

If A, A® € A (S), then we can use Theorem 5 to find disjoint

Borel sets

¢
Bl:)A and BZDA .

Since A + A® = S, we have A = Bléfdg(s). Hence

AEPB)= A, 1% 4(9),
SO
B(S) = {a: 4, A°€ 4(8)} C H(9).
But

A(8) € ol F(8)] (Theorem 4) and al[4(S)]1C A(S) (Theorem 2).

Hence we have

M) CalF()I1C allB(S)I Ccald(S)] C A(3),
o

so all these classes must coincide.

Theorem 8. xf(s) is closed under countable unions for every
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space S.

Proof. Let Anegy?(s), n=1, 2,... . The union A :=

L% A is the disjoint union of the following disjoint sets:

]
=
o]

- A N(B +B, +...+ B._1), n=2,3,... .

Since a countable disjoint union of standard subsets of S is

also standard (Theorem 1), it is enough to prove that every .

Bn is standard. It is trivial that B is standard. Suppose

1
that Bl’ B2,..., Bn—l are standard. Then (B1 + B2 +...+ Bn—l)
is standard. Since An is standard, Theor§25y7(i) ensures
1 and

that

AN (Bj+B,+...+B__1) € »J(a ) = B(a ),
SO

B € B(A ) = J(a). ot

A space is called o-compact if 1t is expressible as a
countable union of compact subsets. Since every compact metriz-

able space is standard by Theorem 4.7, the last theorem implies

Theorem 9. Every o-compact metrizable space is stnadard.
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/6

6. Borel maps in standard spaces and analytic spaces.

Let f be a map from S 1into T, Then the set
{(x,y)esS xT :y = f(x)}
is called the graph of f, denoted by G(f).

Theorem 1. Let f: S > T be a Borel map, where S and T

are analytic. Then
a(f) € 1(s xT) c (s xT)

Proof Consider the map
g: SxT->TxT, (x,y) b (£f(x),y)

and the diagonal set D of T x T. It is obvious that

a(r) = g~ (D).

Also g 1is measurable J9(S) xB3(T)/ B(T) x B(T), being the
bilateral product map of the map f: S - T and the 1ldentity
map 1: T > T. Since S and T are analytic, Theorem 4.5

ensures that
B(S) x13(T) =13(S x T) and NT) x B(T) =T x T),

so the map g 1s Borel. Since D 1is closed,
- 33 -



6(r) = g (D) € 7S x 1)
Since S x T 1is analytic, (8 x T)C J (S x T) (Theorem 5.7(ii)). g

Theorem 2. Let f: S - T be a Borel map.

(i) If S and T are analytic, then

£(A(s) ¢ H(T) (especially f£(S)€A(T)) and e~ (A (T) c AS).

(11) If S8 and T are standard and if f is injective, then

£(93(8)) C B(T) (especially f(S)e€ B(T)),

Proof
(i) Let 7, : S x T > T be the canonical projection. Then
2
T
£(a) = m0(a x AGD]. raX I A acry

A S

G(f)e A(S x T) (Theorem 1). Let A€.§(S). Then AXT €A(S xT)

(Theorem U4.4). Hence

(A x T)A G(f) € A(S x T) (Theorem 5.2).
Since m, : 8 X T >T is continuous, f(A) € J4(T). This proves
that f£(A(S) ¢ A(T). |

Let B€ A(T). Then Bea[?(T)] (Theorem 5.7(i1)), so

B= (U nan“. where F... e FT).



Hence

-1 -1
£~1(B) = M 1 € (s)] = A s
(nLij) A nny...n) al73(S)] (8)

by Theorem 5.7(ii). This proves that = (A (T))cA(S).

(11) Let A€¥(S). Then A x T € ¥3(8 x T), so
A= (AxT)O () e Bs xT) =>xF (s x T,

because S x T is standard. Let ﬂé denote the restriction

of T to A'. Then ﬂé : A' > T 1is a continuous injection

and

£(A) = my(A') = mH(A"),

so f(A) € J(T) =73(T), because T 1is standard. This proves

that £(a(S) ¢ B(T). -
Theorem 3. Let S and T be analytic spaces. If f: 8 > T

is a Borel bijection, then f 1is bimeasurable, so S 1is

Borel isomorphic to T.

Proof. Since f 1is bijective and since £ 1(&(T))c B3 (S),
it is enough to prove that f£(73(s))c B(T). Let A € 13(3).

Then A, A® € 4(S) (Theorem 5.7(ii)), so

£(n), £(A®) € A (T).

Since f is bijective,
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£(a)C = £(a®) e ().
Hence f(A)e€ #9(T) (Theorem 5.7(ii)). J
We denote the cardianl member of a set S by #8S.

Theorem 4. Let S be analytic. If #3S >N then S has a

0’
compact subset homeomorphic to the Cantor set K and also S

has a Borel subset Borel isomorphic to [0,1].

Proof. Take a complete separable metric space P = (P,p) and
a continuous surjection f:P > S. Since f—l(x) # ¢ for every
X €S, we can use the axiom of choice to find a subset A of

P such that g = fIAtA + S 1is bijective. Then
#A = #3 > N
Let B denote the set of all pe A such that
#(U N A) > Ny for every neighborhood U of p

and let C := A - B. Then every point pée C obviously has
a neighborhood U(p) such taht U(p)N A 1is countable. Since
P is fully Lindeldf, we can find a countable set {pn} cC

such that

U up) = U Ulp).
n

peC
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Hence we have

cc U umna=lUJube) na,
peC n

implying that C 1is countable, so #B > NO' Observing that

#(UN A -UNB) S#C < N,
we have
(1) #(UN B) > ﬂb for every neighborhood U of pé€B.
Now we will construct a family

U

11,...4, 2 n=1,2,...5 1y = 0,1,

n

each being a neighborhood of a point of B. Take two distinct
points py, Py € B. Since B C A, f(po) # f(pl). Hence there
are disjoint neighborhoods V(f(po)) and V(f(pl)). Since P
is metrizable and since f 1is continuous, we can find disjoint

neighborhoods U, = U(pi), i=0,1 such that

£(T;) C V(£(py)), 1=0,1.

Then f(ﬁb)(ﬂ f(ﬁl)“= ¢. We can take U; so that
G(Ui) < 2—1, i=0,1 (6§ = p-diameter).
Suppose that we have constructed U, . . Since U;
1112...1n 1,
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is a neighborhood of a point of B, #(U; 4 . NB) > Nj»

.'.l
172 n
so we can take two distinct points in Ui 5 1 NB. Apply-
1i5.. -3,
ing the same argument as above, we construct U, . . ’
135000349

ih+1 = 0,1 such that

£(U 5 o) N f(ﬁi

1112... n 1is.01,

We can take Uiliz"'i 1 80 that

Us 1 ...11€ 01 , and. (U ) < 27

i . in...1 . . .
172 172 n N i-i "ln1n+1

172

Thus we obtain U i 1 for every n and for every (1

i oeeely 1°

1
12,...,in).

Let §& = (iv) € {0,1} . Then Uili2°"in decreases as

n 4 o and S(ﬁ ) + 0. Hence the Cantor intersection

ili2...in
theorem ensures that ﬁi 1 i monotonically converges to
LR

a point which will be denoted by Pg- Suppose that & = (iv)

#Fn o= _(j\,). Then

1 - J.1’ i2 = J.2""’ in—l = J.n-l and in # J.n

for some n.

Hence f(p,) ¢ £(T ) and f(p.) e £(T RS S, T I
K il"'in-lin n 1112 n-1“n
Since these two sets are disjoint according to the construction

above, f(pg) # f(pn). Thus the map

¢ : {0,1} + 3, & P £(pg)
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is injective. Since

= = 1 T -n
m,(E) = m (n) =1, (vsn) = pgipy eui1i2°°'in = p(pg>py) <2
the map § k» pE is continuous. Hence <p: £ k+ f(pg) is

also continuous. Since {0,1}" is compact, the image

E = ({0,1}7)

is a compact subset homeomorphic to {O,l}w.
Since {0,1}° 1is homeomorphic to the Cantor set K
under the map

v . \Y
(1)) + vzl 21,/37,

E 1is a compact subset of S homeomorphic to K. This proves
the first conclusion.

Let T be the set of all (i)¢€ {0,1}* such that either
ivﬁl for every v oOr iv = 0 for infinitely many v. Since
‘{O,l}w-r is countable, I' is a Borel subset of {0,1}m. Since

et v
v : I » [0,1], (iv) ) iv/2
vel
is a continuous bijection, T E»[O,l] (Theorem 3). Since
30:{0,1}00 + E 1is bicontinuous and since T € ]3({0,1}00), F :=
P(r)e B(E)C B(S) and F%JI‘, SO [O,l]fnge B(S). This
proves the second conclusion.

Theorem b

(1) Every analytic space is Borel isomorphic 40 an analytic
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subset of [0,1].
(11i) Every standard space 1s Borel isomorphic to one of [0,1],

N={1,2,...} and N, = {1,2,...n} (n = 1,2,...).

BRemark. The second assertion implies that every standard space
is Borel isomorphic to a compact subspace of [0,1], Dbecause

N and Nn are Borel isomorphic to

..,0} ana {271,272,...,27"}

respectively.

Proof of the theorem.
(1) Let S Dbe analytic. First we prove that there is a
sequence {Uplc J9(8) such that for every two distinct points

X,y € S we have

lUm(x) # 1y (y) for some m.

m
Let D Dbe the diagonal set of S2 := S x S. Then the set
G := 82—D is open in S2. Being analytic, S2 is fully

Lindel3f. Therefore G can be expressed as

G = (g U, * Vo Un’vn open in S.

Since G A D = ¢,

Unrw Vn = ¢ for every n.

Let x and y be two distinct points in S. Then (x,y) e G,

- 4o -
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SO
(x,y) € U % Vi for some m.

c
Hence X ¢ Um and y € Vm(: Um’ SO

1y (x) =1 and lUm(y) =0, 1i.e. lUm(x) # 1y (y).

m

Define a map f : S » [0,1] by

3-5 1, (x).

£(x) = )
n=1 3 n

Since U € B(S), n=1,2,..., 1t is easy to check that f 1is

Borel. If x#y, then 1y (x)#lU (y) for some m, so f(x)
m m

#f(y). Hence f 1is a Borel injection. Now use Theorems 3

and to conclude that
2(1)

S x r£(s)e 4(L0,1]).

(11) Let S Dbe standard. If #S < Ny, the conclusion is
obvious. Suppose that there 1s an injective Borel map f

S » [0,1] by (1). Then

S 5 £(s) € B([0,1])

by Theorems 3 and 2(ii). Also Theorem 4 ensures that we

can find a subset E of S such that

[0,1] ‘AB’E € B(S).

Now use Theorem 2.2 to conclude that S E'[O,l].
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‘ Let £ : S > T be a surjection. Amap g : T +S 1is

called an inverse map if

f(g(y)) =y for every ye T.
If g : T S 1is an inverse map of f : S > T, then the image
A := g(T)

is a subset of S satisfying the following condition.

(C) For every ye T A(\f_l(y) consists of exactly one point,

which will be denoted by xA(y).

Conversely, if A 1is a subset of S satisfying (C), then

the map

g : T>3S, y xA(y)

is a unique inverse map of f with the image g(T) = A. Hence
there is a 1-1 correspondence between the inverse maps of f

and the subsets of S satisfying (C).

Theorem 6. Let f: S > T be a Borel surjection, where S and
T are analytic. Then f has an inverse g : T - S with the’

following properties.

(I.1) g(T) e ol AS)]
(I.2) g 1is measurable ol A4(T)1/ B(S).

Proof. First we will prove the theorem under the assumption

that f 1is continuous. Take a decreasing Souslin scheme ,X =

{s } mentioned in Theorem 5.3 and denote the 1limit
NqNy. . Ny
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of {S 1
o« -0y y=1,2,...

a new Souslin scheme ¢ composed of

by xg where g = (ni). Consider

))

(1) A =5 ..nk\\f—l( U f(Snlng...nk

noNy.. .0y nin,. n<n,,
and let A denote the kernel K(dl). We will prove that (1)
A satisfies (C) and (ii) the inverse map g of f corre-

sponding to A satisfies (I.1) and (I.2).

Using the obvious relations

£y CA) = U f(CA) and f[C~ f_l(f(D»] = f(C)~f(D),
A A

we obtain

(2) £(A .o ) = f(Sn n n ™~ U f(Sn n n n)’

Nqfge. . 0y 1Mo+ B n<n R R T |

Next we will prove that
(3) M £(a NF) = f(N A NF)
k nlnz...nk Kk 1’111’12...1’1k

for every F € F(S).

Denote these sets by L and R. L DR 1is obvious. Let

y € L.

y e N, mnknF) C Qﬂ(sn

N £y o L) = r(xg))

1’12... k

1

where § = (ni) ; the last equality follows from the continuity

of f. Hence y = f(xg). Since

f(Xg)=y€f(A ):

nln2. . .1’11/c
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we have
r(x,) ¢ U £(S ) by (2)
£ n<n, nln2...nk_1n
so
XE ¢ f_l( LJ f(Sn n n n))°
n<n, 1 27" "Tk-1
Since x, € S obviously X, € A . Suppose
13 n n, n, ? 3 nln2...n
c
that x F, i.e. x, € F'. Since S ¥ X and since
. 13 ¢ 3 NqNy. . Ny 3
F is open,
Sn n a c r° for some r
172" "r
SO
A c 7%, i.e. A AF = ¢
nln2...nr ’ nln2...nr

Then L must be empty contrary to the assumption that yé€ L.

Therefore xgth Thus

NnNF, so y= f(xg) € R.

This proves L < R, which, combined with L D R, implies (3).
Now we prove that the set A satisfies (C). Let y be

an arbitrary point of T. Then

y €T = f£(8) = U () -
n

Let n, be the minimum of n for which ye& (S ). Then

_u4 -



y € £(s, ) = Urs, ).
n

1

Let n, be the minimum of n for which y € f(Sﬂ n). Re-
1

peating this’we determine n i=1,2,... . Then

i’

37é fQ f(sn1n2°"nk) = {f(xg)}, where & = (ni),
SO
y = f(xg).
It is obvious that XE € Snlng...nk By the choice of N,

rxg) =y & U £(S, ), so xg ¢ £LU) (s, 7.

n<nk n1n n<nk nln

Hence Xg € An

.n This implies that

K"

so we have

Suppose that x € £ 1(y) N A. Then
f(x) =y and x € A = L.) ra A
Then
x € fa A o for some n = (ml,mz,...) s

S0
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Hence X = X,. Supose that n # &. Then we have
m, = Ny, My T Npsece m,_q = N, 9 and m, # n,.
Since y = f(x) = f(xg), we have
v € f(An1n2"'nr—1nr) and y € f(‘B‘ml...mr_lm;,)
- f(Anlng...nr_lmr) ‘
This is a contradiction, because f(An ), n=1,2,.

1n2...nr_ln

must be disjoint by virtue of (2). Thus we have 1N = £, so

X = X = Xg.

This proves that Xg is the only one element of f—l(y)n A.
Thus the set A satisfies (C).
Let g denote the inverse map of f corresponding to A.

Then
g(T) = A = K(a).

It follows from (1) that

A ‘
n.n....n._ C S - s
12 k nlnz...nk n<nk nlnz...nk_ln,
so the Souslin scheme 2= {A } is disjoint. Hence
n1n2. . nk

K(CL)€ o[ C] (Theorem 3 ,2(ii)).
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Using Theorem 2(i), we can check that
0 C ol A)T,

SO

2(T) = A = K(OU) € of0L] ColAs)1.

This proves that g satisfies (I.1).

To prove (I.2) it is enough to show that

e 1(F) € o[ A(T)] for every F € F(S)

(W) f(AAF) € olA(T)] for every F € F(S).

Since A = K(OL),

5y tanm = S ecN\a, o on®
(ny) k 172"k
- UM\ e, NP by (3).
(ny) 172"k
Since the Souslin scheme {f(A )} is disjoint by
n.-n,...n
12 k .
virtue of (2), the Souslin scheme {f(Anan..-nk:f\Fﬁ} is
disjoint. But
’ -1
(A NnF) = £ | NnF e~ (U £(s ))]
nlnz...nk l’lln2....nk n<nk nln2...nk_1n
= £(S NPy U f(s )
nln2..nk n<nk nln2'°'nk—1n
e o[A(M],
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3.
Hence we can use TheoremA2(ii) to conclude that

£f(A NF) € olA4(M],

proving that g 1is measurable oLAT)I/B(S). Thus our

vtheorem is proved under the assumption that f 1is continuous.
Now we will discuss the general case where f is Borel

measurable. The graph G = G(f) is Borel in S X T (Theorem 1),

so G 1is analytic (Theorem 5.7(ii§). Consider the canonical

projections

. -> . ->
Py ¢ G S and Py ¢ G T .

Since f : S > T 1is surjective,

: f
Py is a continuous surjection. Hence S > T
p, has an inverse map h with the \\\\ h
p Y
1 2
properties:
G

(I'.1) n(T) € of AG)]
(I'.2) h 1is measurable GEA(T)]/B (@).

Since Py ¢ G > S is a continuous bijection, Pq is bimeasur-

able (Theorem 3), i.e.
(B () = B(s) and pIH(B(s) = Be).

Keeping this in mind we will prove that the composition g

Py ° n: T > S 4is an inverse map of f satisfying (I.1l) and
(I.2).
Let ¥y be an arbitrary point in T. Since h(y)é€G, we

have
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h(y) = (xy, y) where f(xy) =y .

Hence

g(y) = pl(h(y)) = X_,

SO

f(g(y)) = f(xy) y-

Hence g 1s an inverse map of f. Using Theorem 5.7(ii), we

obtain
g(T) = p, (n(1)) € p Lol A(@) )= py(alalB (@)ID).

Since Py is bijective, we have

pl(a[OL]) = a[pl(CE)] and pl(o[Olj) = o[pl(O[)]

for every ClC22G,

SO

b, (oLal2B(®)1) = olalp, (/B(6))1] = olal B ()1 = oL AS)].

Therefore

g(T) € ol A(S)1.

Since
-1 -1, -1 _ -1
g (B (s)) = n7HEINB(8)) = nTH(B(®)) Tol M1,

g 1is measurable o[ A(T)1/ B(S). | - |
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7. Function spaces.

Practically all function spaces appearing in probability
theory are analytic (even standard). Here we will give some
typical examples. For simplicity we consider only spaces of
real functions on [0,1], but it is not difficult to extend the
results to more general cases.

(a) C = C[0,1] = the space of all continuous functions.

C is a separable real Banach space with the usual linear

operation and the maximum norm:

el = max  |£()].
0<t<1

Hence the space C with the norm topology is Polish. The same

space with the weak topology is standard (Theorem 4.8).

(b) Dy= DLO0,1] = the space of all right continuous functions

with left limits.

Let ® be the set of all increasing continuous bijectilons

¢: [0,1] -~ [0,1]. The Skorohod topology Ttgq ©On D¢ is given by

the metric

pg(f,8) = inf [||P-i]| +|[foP - gl ]
Ped

where i 1is the identity map on [0,1] and || || denotes the
supremum norm. The space D*(with TS) is Polish. In fact

the metric Pq itsélf is not Polish, but there are Polish metrics
giving the topology Tg- One of such metrics is the Billingsley

metric given as follows. Let

PB
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(7

B8(P) : = sup |1og 2L = Hs) | geo
t#s t -

and let V¥ denote the set {P€d : B(Y) < =}. The Billingsley

metric is given by

Py

pp(fg) = inf [l fov - gl + B(WI.
YEeY

See Billingsley [ ] for the details. Let

D =D [0,1] = {QeD,: P(1-) = P(1)}, Pt-) = lim P(t).

s4tt
The Skorohod topology Tq On D is defined in the same way as
above and the space D with Tq is also Polish. -
(c) mt = M+[0,1] = the space of all finite measures on fo,1]

(defined for all Borel sets).

The weak topology on M+ is defined by the following neighbor4

hood base

+ | :
U(u;fl,f2,..., fn, g) : ={veM : ]<fi,v>—<fi;u>|<e, i=1,2,...,n}

e >0 3 n=1,2,... 3 fi € c[o0,1],

where

<f’u> = fduc
[0,1]

+
The space M (with the weak topology) is Polish. This 1is a

special case of Prohorov's theorem (Appendix ).
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(d) M = M[0,1] = the space of all signed measures on (0,11

(defined for all Borel sets).

The weak topology on M 1s defined in the same way as above.
The space M with the weak topology is standard. To prove this
we first recall several known facts, M 1is the dual space of the
Banach space C 1i.e. M = C* where the norm |[68]] (6 € M) 1is

the total absolute variation of 6. Hence the weak topology on

M should be called the weak-star topology in accordance with the

Banach space terﬁinology, but we will use the word "weak topology"
for simplicity. Note that M 1is not separable in general, soO

we cannot use Theorem 4.8 to prove that the space M with the
weak topology is standard. For ]Jﬂ)ewﬁ given the largest measure
< u, v 1is denoted by u A v. Using the Radon-Nikodym densities

dp|d(u+v) and dv|d(u+v), we can easily prove that

1 +
fuavil = sCllw+vll = flu=v[lT, wvel.

Every ©6 €M has a unique decomposition (the Jordan'decomposition);

+
8 = u-v , H,v € M, [luAav] = 0.

In the discussion below we always consider M+ and M with

the weak topology. Since Mt s Polish, (M+)2 is Polish.

Since the map

¢: 2 —M, (u,v) —>u - v

is a continuous surjection, M must be analytic. The proof

that M 1is standard is slightly harder. Let

A= (v e M2 flupvl = o).
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Then the restinction ¢ = QﬂA: A > M 1is a continuous bijection.

Since llu]] = sup |<f,u>| where T being any countable dense

T . .
subset of C, wu# ||u|ll 1is Borel. Since (u,v) P utv are con='.
tinuous, the maps (u,v) » |lutv|| are Borel, so (u,v) = | wavll o

is Borel. Thus A 1is a Borel subset of (M+)2. Since (M+)2

is Polish, A 1is standard (Theorem 5.7(1)). Since ¢ : A ~>

M is a continuous bijection, M 1s also standard.

(e) i°

= mo[o,lj = the space of all Lebesgue measurable functions,
IA)

where equivalent functions are identified.

mo is topologized by the following metric:

1
po(fs &) = J [1f(t) - g(t)]| A 1] dt.
0

This topology is often called the topology of convergence in

measure, because

>¢}
po(fn,f) + 0 & MMtelO0,1] : |fn(t) - f(t)|A+ 0, Ve> 0,
where A denotes the Lebegue measure. Since o is Polish,

the space mo with the po—topology is obviously Polish.

: 1
(£) LP =rPro,1] = (rer’ : J |£(6)|P dt < ®»} (1gp<=).
0

P is a separable Banach space with the usual linear

operation and the p-norm:

S L 1
= p p
el = ¢ 1r@) P .

Hence the space P with the norm topology is Polish and the
same space with the weak topology is standard. Suppose that
p > 1. Since the dual space of ? i1s o4 (p_l + q"1 = 1),
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the weak topology in Lp is given by the following neighborhood

base
U(f; 81,82,{.., gnre) = {h:|<gi’h> - <gi’f>| <e, 1=1,2,...,n}

€ >0;n=1,2,...3 gieLq.

The dual space of Ll is
L” : = {fe L0 . ess.sup|f(t)|<=},
t

where the norm in (Lw is defined by
l£ll, = ess.sup | £(t)].
t

The space _Lm with the norm topology 1is a non-separable Banach
space.

Generalizing the notion I we can define

‘ 1
,le = P([o0,17, w) = {f : I |£]P an <eo} (l<p <)
0

where the p-norm ||pr is defined similarly, the space LE
with the norm topology is also Polish.

(g) Ho=410,1] = the space of all ¢” ffinctions on [0,1], where

the derivatives at 0 (or 1) are understood to be the right

(or left) derivatives.

G 1is a vector space with the usual linear operation. &

is a topological vector space with the Schwartz topology defined

by the collection of norms

n 1
191, = L[ 199 @170 2, n =123,
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Since this topology is given by the metric

o(P,0) = ¥ 270[le-vl,A 1T
n=0

and since p 1is Polish, the space 9 with the Schwartz topology
is Polish.

(h) H' = 17'[0,1] = the space of Schwartz distributions on [0,1].

This is the dual space of o8, i.e. the space of all continuous
linear functionals.on .

LG' 1is a topological vector space with the usual linear
operation and the strong topology T or the weak topology T,

T (resp. Tw) is defined by the collection of semi-norms:

| Flly = sup|F(®)| , B: bounded
PeB
(resp. [|Flly = sup|F(P)| , @: finite),

Ped
where a subset B of *9 is called bounded if for every
neighborhood U of 0 we can find n such that B ¢nU.
For any fixed n the normed space (&, || |l,,) 1is a
(real) pre-Hilbert space, because | [, is induced from an

inner product:

n (1l
I9le = (9, @), where (P,y), = kZO[O ¢ (4yp (¥ (1) at.

Let J}ﬁ be the dual space of this pre-Hilbert space, where the

norm | "—n in &} 1is defined

N Fl_, = Iﬁ;ﬁﬂl’ﬁ‘(?)l
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Then 49% is Polish, being an separable Hilbert space isomorphic

to the completion of d}. Iteis known that

Also the topology on 435 as a subspace.of (49',TS), i.e. the
induced topology TS|*9 , coincides with the original topology
n
on {35. Since f}ﬁ with the original topology is Polish,
ole ‘P(,@')C ,3(09'). Hence (O',t.) 1is standard (Theorem 5.8).
n s
Since Ty is weaker than Tgo ({?',Tw) is also standard (Theorem

4.3). These facts are due to X.Fernique [ 1J.

Now we will investigate the relation among these spaces.
It is obvious that

gecccp, ctPc’cMeh, 1s r<p <.

Denote these spaces Dby Sk’ k=1,2,...,7. Then the canonical

injection im: Sm-+ Sm+1 is continuous. Hence Theorem 5.7 (1)
ensures that -~  Glro Theorem 6.9 snicaes Fhet
- . - o
Sp € BSp) 5 Bis )= BlSm)n Pm,
S0 v i : ~ wlaelb. /i,(;—’,ﬂw vAth S € /3{5»»;‘1./,
— frphees ol
Sm € B(Sm+k) )

B(Sw) C BlSmek ).

The continuity of 1 (m#3) follows easily from the definitions.

We will prove that 13: D = EP is continuous. Suppose that

'ps(fn,f‘) + 0 where fl,fz,...,feD

Then we can find P, e & such that
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q’n(t) +~ t and £ (t) - f(gan(t)) > 0

uniformly in t €[0,1].

Hence

It - foCB'“p + 0 .

Since (pn(t) > t,
f(ﬁPn(t)) > f(t) at every continuity point t of f.

This implies that

Iro @, - €ll, > 0,

because the discontinuity points of f(eD.) form a countable

set. Thus we have

proving the continuity of 13 .
Similarly we have

,9c0cD*cmﬁcL§ CcCMCO',12r<p <o

where u 1is the sum of the Lebesgue measure and the §-measure
concentrated at 1. Denote these spaces by Tk’ k=1,2,...,7-.

Then

lI‘me B (Tm+k)
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Note that D C Ep does not hold, because two functions taking
the same values on [0,1) and different values at 1 are

distinct in D, though they are identified in [LP.

8. Standard Borel spaces and analytic Borel spaces.

Standard spaces and analytic spaces are special topological

spaces and have several nice properties that have been discussed
in the previous sections. The corresponding notions for Borel
spaces are standard Borel spaces and analytic Borel spaces.

A Borel space is called a standard Borel space or a Mackey

space if it is Borel isomorphic to a standard space. Similarly

a Borel space is called an analytic Borel space or a Blackwell

space if it 1s Borel isomorphic to an analytic space. It is obvious
that every standard Borel space 1s an analytic Borel space.

Every standard space is standard as a Borel space with the
topological o-algebra. Similarly for analytic spaces.

A subset F of a Borel space (E,§) is called standard if the
Borel space (F, § n F) is standard. The class of all standard
subsets of (E, %) is denoted by L(E,&). Similarly for analytic
subsets of (E, &) and the class 4(E,g) of all analytic subsets of
(E, &) .

Let S be a Hausdorff topological space. We have defined
A(S) and #4(S) in Section 5. Since S 1is regarded as a Borel
space with &(8), both H(S, B(S)) and A4(S, B(S)) are meaningful
in the sense defined above. Since J3(T) =B(S) A T for TC 3,

it is obvious that



4(S) < A8, B(s)) and  AS) c A(S, B(s)).

But we have

Theorem 1.
(1) 4(8) = 4(S, B(s)) if S 1is a standard space.

(11) A(S) = A4S, B(8)) if s 1is an analytic’ space.

Proof. To prove (i), it is enough to check that 4(3, B(s)) C
J(S). Let T € 4(s, B(s)). Then T is Borel isomorphic to a

standard space U. Therefore if follows easily from Theorem 6.2

(ii) that T e #4(S). The same argument works for the proof of (ii).

L g

Theorem 2. Every countable Borel product of standard (resp. analytic)

Borel spaces is standard (resp. analytic).

Proof. Let (E_, En), n=1,2,...,be standard. Then we can find

standard spaces Sn, n=1,2,... such that

(Bys ;) ~ (Sqs B(S,).

Hence
(NE,, Mg,) AB/ (ms,, mB(S,)) = (WS, B(IS));

the last equality follows from Theorem 2.4. Since HSn is a
standard space, (HEn, ﬁgn) is a standard Borel space. This proves

the assertion for standard Borel spaces. Similarly we can prove
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the assertion for analytic Borel spaces. J

Theorem 3.
(1) If (E, &) is standard, then J(E,&) = &.
(ii) If (E, &) is analytic, then
€ ={AcE:a, 2°%¢e AE,8)} C AE, &) = al&].

Proof. Easy from Theorem 5.7.

Theorem 4. Let f : (E, &) » (F, F) be a Borel map.

(i) If (E, &) and (F, F) are analytic, then

f(A4(E, 8)) C A(F,F) (especially f(E)e A(F, 7))
and £ L A4(F, 7)) C A(E,8).
(ii) If (E,g) and (F, ¥#) are standard and if f 1s injective,
then f(&6) C F (especially f(E) € F).

Proof. Easy from Theorem 6.2.

Theorem 5. Let (E,§) and (F, ¥F) be analytic. If f : (E, g) -
(F, ) 1is a Borel bijection, then f 1s bimeasurable, so (E, g)

is Borel isomorphic to (F, 7).

Proof. Easy from Theorem 6.3.
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Theorem 6.

(1) Every analytic Borel space is Borel isomorphic to an analytic

subset of [0,1].

(i1) Every standard Borel space is Borel isomorphic to one of

[0,1], N and {1,2,...,n} (n =1,2,...).

Proof. Easy from Theorem 6.5.

Theorem 7. Let (S,,8) be a Borel space and (T, J) an analytic Borel
space. If both f and g are Borel maps from (S, A) into (T, 7),
then

{xeS : f(x) = g(x)} € j
Proof. If T € R,then this is obvious. Hence our theorem follows,
because every analytic Borel space is Borel isomorphic to an analytic
subset of {0,1].

¢y

|

.
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9. Probability meansures

Let S be a set and % a o-algebra on S. A map

u: F > [0,1] is called a probability measure on S with

domain F if wu is o-additive, i.e.

u(r}j1 A = EA;.U(A‘H) for disjoint Ay,A,,...€ 7

and if u(S) = 1. F is denoted by A(n). A set A is

called u-measurable if A € Q(u) and u(A) is called the

p-measure of A. A subset of p-mearue 0 1is called a p-null
set. A set S endowed with a probability measure u on S
is called a probability space (S,u) or (S,F,u) (F =

).
A probability measure u on S 1is called complete if

H(N) =0 and N'C N = N' € A(n) (so u(N') = 0).
Every probability measure u can be extended to a complete
probability measure, which is called a complete extension
of uW. The least complete extension of u 1s called the

Lebesgue extension of u, denoted by u.

Let 4 Dbe a probability measure on S. The outer u-

measure u¥ and the inner p-measure Uy are defined by

u*¥(A) = inf u(B) and u,(A) = sup u(B) for A C S.
BDOA BCA
BeH(u) B€J(n)

The Lebesgue extension u of u 1is characterized in terms

of u¥*¥ and u, as follows:

A € A(W) and uW(A) = u*(A) 1if and only if u*(A) = u,(A).
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For every set A C S we can find u-measurable sets B1 and

B2 such that

ByC ACB, and u(By) = ug (A) < u¥(A) = u(B,).

We can use this fact to prove the following facts:

WE(UJA ) < T ua), A+ A =R +fe),
n n

ueC L A > ) ug(A), A ¥ A ue(A)) ¥+ ulh),
n n

uE(A) + uy (A% =1,

u¥(A) < u,(A) =A € D(u), if p 1is complete.

Theorem 1. Let u be a complete probability measure on S,

Then JB(U) is closed under the analytic operation.

Proof. Let = {A } be a Souslin scheme and
QALY Ny, . Ny

suppose that X C A(u). We want to prove that

oo

A = LJ A € ).

(ni) k=1 nlnz. . .nk

We can assume without loss of generality that A is decreasing,

since A(u) is closed under finite intersections. Consider

two Souslin schemes:

a: An Nh...n :=L
12 k )
L. <n,
i—"1

Ja
< k) . hlhz.‘.'.:--‘o' hk

(1
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A: A = _J M\
% nlnz. .nk hiinj_ (iik) 5=1 hlh2' 'hj
hie(N (i>k)

Then we obtain the following facts:

(1) both a‘ and ,@ are decreasing Souslin schemes,

(2) A C A 5

—nln2 .o .nk n1n2. .. nk
(3 Ao € AG, but Ay g ¢ Q(u) 1in general,
() /N & C A

K nln2“'nk

(1), (2) and (3) are obvious. Let x Dbe any point in the
intersection on the left hand side of (4). Then we can find

a triangular array of indices:

1 2
hys by, h%’ Tt Imy
2 .
h3, b3, = n
hg, P in3
such that

x & Ah% N\ Ah2h2 N Ahiﬁzh N .

3
172 3

Since h

i
1 < nq for k =1,2,°**, we can find ry < nl. such

that
for infinitely many k's.

Observing hg for such k's, we can find r, < n, such that

h, = ry for infinitely many k's.
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Repeating this procedure, we can find a sequence TIr; < n, »

i=1,2,"--, such that for each 1 we have

h., =r,,**°, hy; = ry for infinitely many k's.

Taking a number k k(i) ( > i) satisfying the above

condition, we have

X €A K k = A Kk k CA .
hll(hg...hk riry.. Ty hi+1"'hk riTs.--Ty

Since this holds for every i, we have

x € MNA CA
1 hlhz...hi J

proving (4).
Keeping (1), (2), (3) and (4) in mind, we will prove

that A € O(u). Since A tA , we have
%
u¥(a )t uA).
Similarly

u* (A ) 4+ u*(A ).

1n2...nkn 1n2...nk

Hence we can find my = mi(e) such that

u*(A) < u¥(A ) + 27te
Ty
< uE(A ) + 272¢ 4+ 271¢
B
< u¥(A ) + 27K 4 om(k=1)e Loy 27
—m1m2...mk
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This implies that

u¥(A) < 1im u¥*(A ) + e
k —mlm2...mk
< 1im u(A m m)+r—:
k my Moty
= u(MNA ) + €

k mlmz. . .mk

IA

He(A) + ¢ by (4).

Letting € + 0 we have u¥(A) < uy(A), which implies that
A E H(u), because u 1is complete. o
Let f be a map from a probability space S = (S,u)

into a set T. Define a probability measure v on T by

D) = BCT: £ 1B) € Hu)} and v(B) = u(£ 1 (B)).

It is easy to check that v 1is a probability measure on T,

which will be called the image measure of u under the map

f, denoted by fu or uf_l. If u 1is complete, then fu

is also complete. It is obvious that f 1is measureble
Hu)/ B(fp). It g : T > U is another map, then (gof)u =
g(fu), as we can easily check.

Let (E, &) be a Borel space. The Lebesgue extension
of a probability measure on E with domain E is called a

B-regular probability measure on (E, §). A probability

measure B on E = (E,£&) 1is B-regular if and only if (i)

u is complete, (ii) .«A&(hi):)fa and (iii) for every A € QA(n)
there exists a subset:cfﬂ such that Be& and u(B) = u(A).

A Borel space E = (E, &) endowed with a B-regular

probability measure u 1is called a B-regular probability
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space (E,U) or ((E, 6)3“) .
A subset A of E = (E, &) 1is called universally

measurable if A 1is u-measurable for every B-regular

probability measure u on (E, &). The class J(E,E)
of all universally measurable subsets of (E, &) is a
o-algebra on E containing &. Amap f : (E,&) > (F,F)

is called universally measurable if it is measurable JZ(E, £)/F -

Theorem 2. Let (E, &) be analytic. Then every analytic

subset of (E, &) is universally measurable.

Proof. AE, &) = o[ €] (Theorem 8.3 )
c m(E, £) (Theorem 1).
Jd

Amap f : S = (S,u) »F = (F,¥%) 1is called u-measurable

if f 1is measurable AQAW)/F . Then the image measure fu

is complete and
Airu) 2 F .

Hence fu 1is an extension of fu |7. but these two measures
are different in general, i.e. fu 1s not always B-regular,
as the following example shows.

Let A Dbe the Lebesgue measure on [0,1] and S the

well-known example of a non-measurable subset of [0,1]

Then it is easy to see that

0 = A,(S) < A%¥(S) = 1.
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Define a probability measure u on S Dby

D) = AN N S  and  u(A) = A¥(A).

It is easy to check that u 1s a complete probability
measure. Let f : S8 » [0,1] be the canonical injection.
Then f is up-measurable. But the image measure v := fu

is not B-regular. To check this, observe that v = A on
B[0,1] but 8 € H(v) \ A(A); if v were B-regular, then

v should coincide with A.

Theorem 3. Let u Dbe a B-regular probability measure on
E=(E,&) and let F = (F, ¥) be an analytic Borel space.
Then every p-measurable map f : E - F has the following
properties.

(1) There exists a Borel map g : (E, &) - (F, ) such that
f(x) = g(x) a.e.(n), i.e. u{x € E : f(x) # g(x)} =0.
(ii) The image measure fu 1is B-regular.

Proof.

(1) The assertion is well-known in the special case where
F C [0,1], from which the géneral case follows at once
because every analytic Borel space is Borel isomorphic to
an analytic subset of [0,1].

(11) If f(x) = g(x) a.e.(n), then it is ocbvious that

fu = gu. Hence the assertion (i) ensures that we can assume

without loss of generality that f 1s a Borel map from

(E,§) into (F,F). Let v := fu7. Then fp 1s an
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extension of v . Let A € &Q(fu). Then f'l(A) e Ay,

so we have
f—l(A) > E; and w(e~tay) = u(E;) for some E € &.

Since f : (E, &) + (F,%) 1is Borel and since both (E, &)

and (F, #) are analytic,
£(E,) € AF,F) C /(Vv) (Theorem 2).
Hence we have

f(E;) 2 F; and V(f(E;)) = v(F;) for some F, € F .

Therefore A D f(El) ) F1 and

(£w) (A) = w(e™H(A)) = w(E)) < w(fTH(£(E)))) = (Fu)(£(E))

) = (e (Fy) < (fw)(A),

v(f(El)) = \)(Fl

so we have
A DF € F and (fw)(A) = (FW)(F),
proving that {u 1is B-regular. wll

Since a topological space is regarded as a Borel space
with the topological o-algebra, we can talk about B-regular

measures on a topological space. Let S Dbe a Hausdorff

topological space, and let u Dbe a B-regular probability
measure on ‘S. A subset A of S is said to have inner

K-regularity (with respect to u) if

u(A) = sup u(K)
KCA
K:compact
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If every u-measurable set has inner K-regularity, then u

is called a K-regular measure on S. This condition 1is

equivalent to the condition that every Borel set has inner

K-ragularity.

Lemma 1. Let u be a B—regular probability measure on S
and suppose tﬁat every open subset of S 1s expressible as
a countable union of closed subsets; for example, every

metrizable space has this property. Then u 1is K-regular

if every closed subset has inner K-regularity.

Proof. It is obvious that both open sets and closed sets
have inner K-regularity. Since
H(UA N UB)) < 1 u(ANB)
n n n
and

HCMA N MNBY I u(ANB) ,
n n n

| A

we can easily check that the class of all sets having inner
K-regularity is closed under countable unions and countable

intersections. Hence every Borel set has inner K-regularity

by virtue of Theorem 1.2. -l
Theorem 4. Every B-regular probability measure u on an
analytic space S 1is K—regular.

Proof. First we will discuss the special case where S

is a complete separable metric space with metric p. By

virtue of Lemma 1 it is enough to show that every closed

- 70 -



subset has inner K-regularity. Let {a } be a countable dense

subset of S and let

= -k
B 1= U(an, 2 )

K , nyk = 1,2,:--.

Since S = U_B

Bk for every k, we can find N(k) such that

N(k)
-k _
u(S—Fk) < 2 where Fk n&{ Bnk'

Let
K := [\ F .
m K=m k
. -k+1 .
Since Fk has a finite 2 -covering, Km has a finite
2_k+1—covering for every k > m. Hence K 1s totally

bounded. It is obvious that Km is closed. Therefore

Km is compact. Also

S -m+1
H(S-K ) < § u(8-F,) <2 .

k=m
If F is an arbitrary closed set, then Km N F 1is compact

and

WF — K AF) = u(F A (5-K)) < u(s-K ) < 271,

so F has inner K-regularity. This proveé that every B-
regular measure on a complete separable metric space (or
on a Polish space) 1s K-regular.

Now consider the general case. Take a Polish space P
and a continuous surjection f:P s S.  Then there exists an
inverse map g:S > P measurable o[ A(S)1/ B(P) (Theorem
6.6). Since A(S) =al B(S)] c H() (Theorems 5.7 (i)
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Theorem 3 (ii) ensures that
and 1), g 1s u-measurable. HenceAthe image measure v = gu
' ' s6 v (S K-regular.
is a B-regular probability measure on P, Let B € B(S).
Then f—l(B) € B(P) by continuity of f. Since v is
K-regular, we can find compact sets Kn(ZdeL n=21,2,**",

such that
v(f_l(B) - Kn) < 2™h,
Since fog : S > S 1s the identity map,

fv = f(gu) = (fog)u = u.

Since Kn is compact, f(Kn) is also compact and

(B - £(K ) = v(£TH®B) ~ £TH(E(K)))

<v(eThm) - k) < 27

Hence every set B € B(S) has inner K-regularity. 3

Theorem 5 (The generalized Lusin theorem). Let f:(S, u) > T

be u-measurable, where both S and T are analytic spaces
and u 1is a B-regular probability measure on S. For every
p-measurable subset A of S and for every e > 0 we can
find a compact subset K = K(e¢) of A such that the restric-

tion flK : K-> T is continuous.

Proof. First we consider the special case where A = S and
T 1is a complete separable metric space with metric f. Then

T has the following decomposition for each k = 1,2,-:-:

= _k - o o
B = g Bk where G(Bnk) < 270, n = 1,2,%--.
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n

N(k) k-1

so u(s - 7} A ) <2 ¢ for some N(k). Using the last
L nk

n=1

theorem, we can find a compact subset Knk of Ank such that
-k-1

u(Ank - Knk) < 2 e/N(k).

Then
( N§k) ) —x
H(S - K < 2 e
n=1 nk
Let
N§k)
K = N K
k n=1 DK
and define a sequence of maps fk : K> T, k = 1,2,***, as
follows:
fk(x) = bnk on K N Knk \?I.f this set is non—empty‘,\

where b, 1s any point in (K A K ). Since X AK,,
k = 1,2,+++,n are disjoint compact sets, f is continuous

k
for every k. Since for every x € K N Knk (# ¢) we have

p(£,(x),E(x)) < 8 (£(K NKAD) < 6 (£(8 1)) < 8 (B ) < 27K,

'fk(x) converges to f(x) uniformly on K. Hence the restric-

tion f|, 1s continuous. Also
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N(k)
w(A-K) < J u(A- )} K ,) < e.
k n=1
Thus our theorem is proved in case T 1is a complete separable
metric space (or a Polish space) and A = S.
Now we consider the general case.  Take a Polish space

P and a continuous map ¢ : P > T. Using Theorem 6.6 we can

find a fu-measurable inverse map

v of Y. Since f 1is measurable S(u)
H(W)/H(fu), the composite map

gof : S = P 1is u-measurable. Since

P is Polish, we cén use the result

proved above to find a compact T(fu) <""""—_‘P
subset H of S such that w

u(S-H) < % and wOfIH is continuous.

Since ¢@: P >~ T is continuous, QPo(¥ef|,) is continuous.
This means that f|H is continuous, because Y 1is an inverse
map of q’. Since W 1is K-regular, every u-measurable set

A has a compact subset J such that u(A-J) < €/2. Let

K :=H A J. Then f|K is continuous and

u(A-K) < W(A-H) + u(A-J) < e. -
Vin
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10. Standard grobabilitz spaces.

A probability measure u on S is called standard if We
can find a oc-algebra 4 on S and a subset Sq with u-measure

1 satisfying the following two conditions:
(8.1) n 1is a B-regular probability measure on (S,Jd),

(s.2) (Sl, X N Sl) is a standard Borel space.

A probability space (S,u) 1is called standard, if u 1s standard.

A standard probability space is often called a probability space

of type L or an L-space.

Every B-regular probability measure on a standard Borel

space 1s obviously standard. More generally we have

Theorem 1. Every B-regular probability measure u on an analytic

Borel space (E,§) 1is standard.

Proof. Since E = (E,E) is an analytic Borel space, E 1is Borel
isomorphic to an analytic subset of [0,1]. Hénce we can assume
without loss of generality that E i;r;nalytic subset of [ ,1]
and that € = B[0,1JNE. Let 1 : E »+ [0,1] Dbe the canonical
injection. Then the image measure Vv := iy 1s B-regular (Theorem

9.3(ii)). It is obvious that
V(E) = u(17HE)) = n(E) = 1.
Hence there eXists a Borel subset B of [0,1] such that
B cE and v(B) = v(E) = 1.

Being a Borel subset of [0,1], B is a standard space, so (B,
B(B)) 1is a standard Borel space. Since
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B(B)‘= ®8([0,1]1)n B = B([0,1])NENB = £ENB,
(B, £€nB) 1is a standard Borel space. Also
u(B) = u(171(@)) = v(B) =1 , A

Since the above proof works in case A isuniversally measurable,

we have

Theorem 2. Let (E,§) be a Borel space Borel isomorphic to a
universally measurable subset of [0,1]. Then every B-regular

probability measure u on (E,&) is standard.

Theorem 3. Let (S,u) be a standard probability space and (E,&)
an analytic space. If f : S - E 1s u-measurable, then the image

measure V := ¥Yu 1is B-regular and (E,v) is standard.

Proof. Take a o-algebra § on S and a subset S; of S with

u-measure 1 satisfying (S.1) and (S.2). Then S = (sl,_ar\sl)

is a standard Borel space. It 1s easy to check that the restriction

1’

4 N S;). Also the restriction ¥1 : ?Isl : 8§, » E 1s p,-measurable.

Hence the image measure 9&u1 is a B-regular measure on (E,§).

My = MLO(U) n s, is a Biregular probability measure on (S

Since u(S—Sl) = 0, it is easy to check that %lul = Yu = v.
Hence Vv is B-regular (Theorem 9.3(ii)), se (E,¥Y) 1is standard

(Theorem 1). = |

=

Let (S,u) and (T,v) be probability spaces where u and
Vv are complete. If there exists a bijective map #’: S~>T

such that

PeE(n)) = Av) and wu(A) = v(PA)),
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then (S,u) 1is called strictly isomorphic to (T,v),

(S,u) ~ (T,v) in notation. More generally, if we can find a

subset Sl with U(ml)

such that

= 1 and a subset Tl of T with v(Tl) =1

Srvlogaya s = Tvlgwy nr)e

then (S,u) 1s called iseomerphic to (T,v), (S,u) ~ (T,v) 1in
nofation. Both &= and ~ are equilvalence relations.

Let u Dbe a B-regular probability measure on (E,E) and
let f : (E,§) » (F,%) be bimeasurable. Then it is easy to check

that (E,u) = (F,fu).,

Theorem 4. Every standard probability space is isomorphic to a
probability space [0,1] endowed with a B-regular probability

measure.

Proof. Let (S,ﬂ) be standard. Take a o-algebra _J on S
and a subset S; of S with p-measure 1 satisfying (S.1) and

(S.2). Let denote the restriction of u to «Q(u) 0 Sy

M1
Then W4 is a B-regular probability measure on S, = (Sl,‘Xn Sl).

Since Theorem 6.5 ensures the existence of a bimeasurable map

£: 8 +~ B where BE€ g([0,11), (S4sM1) == (B,fu;). But fu; can

be extended to a B-regular probability measure v on [0,1] such

Cthat  «8(fuy) = L(v) N S;. Hence (S,u) ~ ([0,1],v). o
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Chapter 2. General concepts of probability theory

1. Sample spaces, events and random variables.

In the moderh theory of probability we take a probability
space (f,P), define random variables to be P-measurable
functions and formulate all probabilistic facts such as
independence, conditional probabilities, expectations etc.
in terms of measures and integrals. This idea goes back to
E. Borel [ ]. Also N. Wiener used measure theory to
discuss Brownian motion [ ]. But Kolmogorov's celebrated
work [ ]:

Grundbegriffe der Wahrscheinlichkeitsrechnung (1933)
is the first systematic theory of probability presented in
the framework of measure theory.

In application & represents the set of all possible
outcomes of the random phenomenon in observation and P(A)
is the probability that the observed autcome be in the set
A. Hence § may be a finite set, a countable set, R, Rn,

Bm or a function space according to the nature of the

. random phenomenon in consideration.

In this book we assume that

(A) (2,P) 1is a standard probability space.lfThis assump-

&
tion enables us to establish probability theory in a more

natural way. Also (A) 1is not too strong, because all
probability spaces useful in application satisfy (A), as
we have seen in Chapter 1.

Let S = (S,,) be a standard Borel space. A P-

measurable (i.e. measurable aa(P)/AJ) map X : Q > S 1is
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called an S-valued random variable. It is customary to

denote by w a generic point of Q and an S-valued random

variable X : @ + S by X(w). The space S = (S,d) is

called the sample space of an S-valued random variable X.

Since every standard space T 1is regarded as a
standard Borel space with the topological c-algebra B(T),
we can talk about T-valued random variables.

An S-valued random variable is called

a real random variable if S = R,

a random vector if S =R (n = 1,2,...),

a random sequence if S = Bw,

a random continuous function on [0,1] if S = c[0,1],

a random L2 function on [0,1] if S = L2[0,1],
a random distribution on [0,1] 1f s = Hr'ro,11,

and so on.

Let a

a(w) be a condition concerning a generic point
w € @ = (Q,P). In probability theory it is called an event.

The probability (of occurrence) of a 1is defined to Dbe the

P-measure of the set of all w € @ for which a(w) holds,
if this set is P-measurable. Hence the probability of a

is equal to P({w : a(w)}), which is simply denoted by P(a).
If P(a) =1, i.e. a(w) a.e.(P), we séy that o occurs

almost surely, o a.s. 1in notation. 1In view of the well-

known relation between conditions aqd their extensions

(the set {w : a(w)} being called the extension of a in
logics) we can reduce the properties of probabilities to
those of P-measures. Let o, N = 1,2,... be a sequence of

events. The event that an(w) holds for infinitely many n's
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is denoted Dby

o i.o. (i.0. = infinitely often)

and the event that an(w) holds except for finitely many

n's by

a f.e. (f.e. = with finite exceptions).

We obviously obtain

{w : an(w) i.o.} = EEE {w : un(m)}
and
Hw 2 o (w) £.8.} = lim {w : a (w)}

The well-known Borel-Cantelli lemma claims that if

[} i = 3 7 =
znp(an) < @, then P(a_ i.o.) 0, i.e. P(a] f.e.) 1,
ag denoting the negation of o . Denoting {w : an(w)}

by An , we can reduce this lemma to a measure-theoretical
lemma that

[oo]

] P(a) <= = P(IIm A ) =0 <> P(lim A;) = 1.

=1 n-o n->o
Let X(w) be an S-valued random variable, where
S = (S,d) 1is standard. The image measure XP on S is

called the probability law of X, denoted by PX . Then

(1) {u: X(w) € A} € AP) « & € %) = p(xen) = Pa),

which justifies the definition. Immediately from the

definition we obtain
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(2) X : 8§ > S is measurable B(P) / 29(PX) s
(3)  x(2) € @Y ana PX(x(Q)) =1

Theorem 1. PX is a B-regular probability measure on

(S, .4), and (S,PX) is a standard probability space.

1. .
Proof. Immediate from TheoremsA9.3(ii) andAlo.l.

Two S-valued random variables are called equivalent

if they are equal almost surely. Equivalence in this sense
is an equivalence relation. Equivalent random variables
have the same probability law, but not conversely.

Let S =(S,d4) and T = (T,J) be standard Borel
spaces. If S CT and BDOT NT, then the canonical
injection i : S »T is Borel, so S = i(S)éd (Theorem i.
8.4) and ,J =7NT (TheoremiB.S). Let X be an S-valued
random variable. Then it is obvious that Y := ioX 1is a

T-valued random variable. But
X(w) = Y(w) for every wE Q.

Hence every S-valued random variable X is regarded as a
T-valued random variable ioX. In this sense we regard
real random variables as complex random variables and
random continuous functions on [0,1] as random L2
functions on [0,1]. This convention is commdnly used
without mentioning.

From now on S, T, U --- stand for standard Borel

spaces where the endowed o-algebras are denoted by the

corresponding script letters _J, 7, U, -
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Let X be an S-valued random variable. Then (S,PX)

is a standard probability space. Let f : S > T be PX-

measurable. Then the map
Y := foX : Q > T

defines a T-valued random variable with PX = fPX . It is

obvious that
(C) X(wy) = X(w,) = Y(w) = Y(wé).

i.e. the value of Y is completely determined by that of

X. Conversely we have

Theorem 2. Let X be an S-valued random variable. Then
every T-valued random variable Y whose value is completely

determined by the value of X 1is expressible as

Y =fo X, where f : S—-T 1is PX—measurable.

Such a map f 1s uniquely determined on S1 := X(Q), where
X -

P (Sl) = 1.

Proof. Since X and Y satisfy (C), there exists a

unique map fl : S1 + T such that

fl(x) =y if x = X(w) and y = Y(w) for some w € Q.
It is obvious that

£, (X(w)) = Y(w) , i.e. fqoX =Y.

Let £ : S > T be any extension of the map f}: S1 > T.

Since X(f) = S foX = Y. Hence

1 b
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-1, .- -1 -1
el (B)) = (£ox) H(B) = YH(B) € A(P)
for B €Y
. -1 X
i.e. . f77(B) € H(P") for B € T .
Hence f 1is a PX—measurable map satisfying Y = foX. Every
such map must coincide with the map fl on S.. | o

1
Let Z be a real random variable. Then the integral

J Z(w)P(dw)
Ja

is denoted by E(Z,A) , if it is well-defined. E(Z,Q) is
denoted by E(Z)e

called the expectation of Z ,, Let X be an S-valued

random variable. If Z = foX , then

E(Z,f 1(B)) = J £(x)PX(dx) and E(Z) = J £(x)PX(dx).

B S

Remark 1. If we take a general probability space (Q,P),
then Theorem 1 does not hold even in case X 1is a real random
variable. This was pointed out by Kolmegorov [ J. To get
rid of the trouble he assumed& P to be perfect. This
assumption is weaker than our assumption (A). Similarly

for Theorem 2.
Remark 2. We may similarly define S-valued random variables
in case S 1is an analytic Borel space; then both Theoremsl

and 2 also hold. But we will not consider such random

variables in this book.
Remark 3. Let (Q,P) be a probability space and N a
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P-null set, i.e. a subset of £ with P-measure O . Then
the probabilistic naturé of évery random variable X on
(2,P) is the same as that of the restriction of X to

Q - N on the probability space (Q - N,iijUp)n (Q - N))'

%ﬁ‘e'ebwe_t&ﬂ‘”nmnvg a1y P=rrrtti—set—From J\_pr,P) witlhreut any
esseﬁ%&a&—eharge—ef—%he—resu&%sﬂ Hence we can assume without
me® loss of generality that § 1is a standard Borel space

and P 1is a B-regular probability measure on §

Remark 4. In many cases there is a random varilable X(w)

with values in a standard space S such that we are only
concerned with the random variables whose values are completely
determined by X(w) . Since such randoh variables are |
expressible in the form f(X) (f: PX—measurable), they are
regarded as random variables on the probability space

(s, PX) . This obsemwation ensures that in many cases we can
assume that & 1is a standard space and P 1is a B-regular

measure on £

The set £0 = -CO(Il,P) of all real random variables
on (f2,P) is a complete separable metric space with metric
fb(X,Y) = E(}|X-YIAl), .
where two equivalent functions are identified in LP. The la-topo—

o ] o A
logy coincides with the toplogy of convergence in probabilty

’

because

P(IX-Y[ >¢&) < fO(X,Y) < P(IX-YI>¢g) + E
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2. Joint random variables and extension theorems

Let S = (S, )Jn), n=1,2,++, be standard Borel

spaces. Then their Borel product

(s, A) i= (M5, T 4

is also a standard Borel space. If Xn is an Sn—valued

random variable on (Q, P) for n =1,2,---, then
(1) X(w) = (X (0), Xy(w), )

defines an S-valued random variable on (§, P), called the

joint (random) variable of Xl’ X2,-~-. In fact the map
X:Q > S defined by (1) is P-measurable, being the product
1> Xpsooe (Section 1.1). The probability law
of X = (Xl’ X2,--n) is called the joint probability law

map of X

of Xl, X2,---.

If S are standard épaces, then the topological
product S = Hnsn is also a standard space. In view of

Bs) = Hn B(Sn) (Theorem 1.4.5) we have that if Xn is

an Sn-valued random viriable for each n, then the joint

19 X2, .. 1s an S-valued random variable.
The joint variable of fihitely many real random variables

variable X of X

is a random vector and the joint variable of a sequence of
LY
real random variables is a random sequence.

It is obvious that

X =YX a.s. for each n
n n

(X

.o) (Yl’Y oo.:
«+) a.s.> P =

- s s° ’
# (Xl,X2’coo) = (Yl’Y2,o 1 2 2
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Theorem 1. Let X and Y be S-valued random variables -

where S = (S, J) 1is standard. Then
{w: X(w) = Y(w)} € B(P)

Proof. The joint variable (X, ¥Y) is an S x S-valued
random variable and the above w-set is {w: (X(w), Y(w)) E A},

where A = {(x, y) € S x 8: x = y} € 4 x 4 (Theorem 1.8.7)._‘

n 2 - 2
DO I opaltTo Lo 11U LULL rY

ahreys—defirre—tire—Jort—vartabic of uncouncaoly many Tangaom

Let S = (8, 4,) bea sequence of standard Borel

spaces. We consider the Borel products

n n
Tn = (Tn’ :Tn) . (kgl Sk kg %Jk)’ no= 12,000,

and the following projections

T+ T - Sn, (xl,x2,---xm)r+ X

nm® “m n’

pnm: Tm - Tn: (xlgxzs"°sxm)’—* (X1’x2s"‘9xn)3

where 1 <n<m¢<w® and if m = =, (xl,xz,---xm) should
be replaced by (xl,x2,--'). Every Tn is a standard

Borel space and

pnm°pm2 = pnl

Trnmopml = “nz
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where 1 <n <m< & < =, We keep using this notation.

Suppose that Xn is an Sn—valued random variable on

(, P) for n = 1,2,--+ and let Yn denote the joint

variable of gl,xz,-o-,xn for each n. Then the probability
, Y

laws u =P n y=1,2,-++, satisfy the consistency con-

dition:

() M) = Popbps 0Sm <,

because

Theorem 2. The joint probability law u of Y := (Xl’X2"")

is completely determined by My My

Proof. Let X!, Xé,--- be another sequence of random

variables on another probability space (', P') such that

the joint probability law of X!, X! ---,Xﬁ is w for

2° n
every n. We want to prove that the joint probability law
-1
] \J ] o o 0 o=
u of XI,X), is equal to u. Let %n : pnm( 7n),

n=1,2,*+*. Then Bn is a o-algebra on T_ and the

union aA:= Un Bn generates the o-algebra T Let Yr'1
denote the joint variable of X',Xé,
n=1,2,--+, and Y' the joint variable of Xi,Xé,---.

-°',Xﬁ for every

Since (Yo ¢)v = Y(¥Pv), we have

P . H' = pnw(Y'P) = (poY")P = Y!P =4

noe n
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and similarly

nee n?
50 ProM' = PproHs
i.e WpTL(E ) = w(pIi(E)) for E_€ 7 _.
: ne ' n ne ' n n n
This implies that
ul:u on Bn’n=l,2,...’
sO H' =y on 61.

Let /. be the class of all B € J, for which
u'(B) = u(B). Then /B 1is a Dynkin class on T, containing

X . Since A is multiplicative, the Dynkin class theorem

ensures that B Do[X] = 7.. This implies that ' = u
on 7., so uw' =1u by virtue of B-regularity of u and u'._'
Theorem 3. (Kolmogorov's extension theorem). Let M be a

B-regular probability measure on T (= Hn_ S, ) for
n k=1 "k

n= 1,2,-++, where 81,82,---

If '{un} satisfies the consistency condition (C), then we

are standard Borel spaces.

can construct a standard probability space (£, P) and a

sequence of random variables Xl’X2’

Xn being Sn—valued) so that un is the Jjoint probability

... on (2, P) (each

law of Xl,Xz,- -,Xn for every n.

Proof. It is enough to find a B-regular probability measure

P on "T_ such that



if this is done, @ = T_, P and X =, will be what
we want to construct.

First consider the special case where Sn is a compact
subset of [0, 1] for every n. Then T  1is a compact

metrizable space with the product topology, because

T, = HZ=1 Sn‘ A tame function g on T 1is defined to

be a real fqnctlon of the form g = gnopno° where gn:Tn -~ R
is Borel. The family F of all bounded tame functions on
T, forms a normed vector space with the usual linear opera-
tion and the supremum norm || |_. The completion F of

F 1is a Banach space consisting of all real functions f

on T_ such that
It - £f]_ ~ 0 for some sequence {f } C F

Let C be the family of all continuous real functions

on T_. We claim that ¢ C F. Let f &€ C. Since T

2]

is compact, for every € > 0 we can choose a finite number

of neighborhoods Ul,Uz,--

of the product topology on T such that

-,Ua from the usual open base

sup |f(wl) - f(m2)| < g, 1=1,2,++,0.

wl,w26Ua
Let -Ei = Ui - j<in’ i=1,2,+++,a, and define g:T_-+> R
by

#lw) := any fixed point bi € f(Ei) if w € E,.
Then

|lg(w) - £(w)]| < e for every w € Q.
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. -1
Since each Ui is of the form pnw(vi) (Vi E j7n), we have

= —1 il = o o o
Ei - me(Fi) (Fi e yN)Q 1= 1’2’ ’u"

for a sufficiently large N independent of 1. Hence g
is expressed as
g = g.op,, Where g = Y ob,l. ,
NN NooaiE At Fy
so g € F. This proves that C < F.:
Now define a linear functional L on F Dby
L(f) = J fndu if f = fnopnw'

T n
n

This is well-defined independently of the expression of f
by virtue of the consistency condition (C). It is easy to

check that
|L(f)| < "f"m, L(f) >0 for f > 0, and L(1) = 1.

Hence L can be extended to a linear functional on F
with these properties. Since C C F, we can use the Riesz
representation of measures to prove the existence of a
B-regular probability measure P on T such that

L(f) = I fap for every f € C.
T‘

(o]
Let fn be any continuous function on Tn' Then
fnop eECnNT,

Yoo

Hence
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f du_ = J (f op__)dP = J f da(p, P)-
JTn n 'n q D ne T n *n

This proves that M, = pan.

Now we consider the general case. Since S = (Sn, an)
is standard, Theorem 1.8.6 (ii) ensures that there exists a
bimeasurable map from Sn to a compact subset Sﬁ of

[0, 1] for each n. Then the bilateral product map

<
]
[[=—=1n]

h? . T -)T'(’—‘ ]I:.[lsl)
; 'k n n'*

k k=1

is also bimeasurable for each n. Let

Coresponding to p__:T > T we define »p

' T > T'. It
nm° "m n nm’ "m n

is easy to check that

p! =y v, n<m <.

nm P

8} o
n " nm

Since {un} satisfies (C) and since (@Poy)v = @P(yv),

(9 0P oV ) (W)

! 1 \
PrmH "I

“nm m

= '
YoH, = Hpo
-Y

so. we can find a %@gular probability measure P' on T: such
that “u’-= p! P'. Let P := y 'P'. Then

Ppof = pnw(w;lP') = (pnwow;l)P',
o= Tt = e P = vt ((uep, o P
= (pnmow;l)P'

and hence
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p__P=u_. |

Let A be a countably infinite directed index set. We
consider a family of standard Borel spaces S = (Sa’ Xfa),
o € A, and a family F of Borel maps fuB:SB > S, a,B € A,
a < B, such that

faBOfBY = fay’ a < B <Y, and faa = the identity map.

Let S = (S, 4 ) be the Borel product of S , o € A and

na:S > Sa, o &€ A, denote the canonical projections. The set
1 .= . =
s' := {x € 8: m (x) faB(ﬂB(X)), a < B}

endowed with the trace o-algebra J' := N S' 1is called

the projective limit of S, a € A, relative to 7,

denoted by

) e—
Tim S or 1lim S .
o a

Being a countable Borel product of standard Borel spaces,

S = (38, /) is standard. Hence Theorem 1.8.7 ensures that

S&B = {x € 8S: Tra(x) = (faBOTTB)(X)} € J , a < B,

Ye)
st =N S'BE)J°
asg
This implies that S' = (S', ,f') 1s a standard Borel space

(Theorem 1.8.3 (i)). We keep using this notation below.
Let Xa be an Sa—valued random variable on (Q, P)

for every o € A, and suppose that they are related as
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follows:
(R) Xg(w) = £ o(Xg(w)), v € 2, a < 8.

Then it is obvious that the joint variable X(w) :=

(xa(w),(x € A) 1is an S'-valued random variable on (f, P).
Let Vg be the probability law of Xa for o € A.

Then it follows from (R) that the following consistency

condition holds:

(c") v a < B.

o = fapVe®

Theorem 4. The probability law of X 1s completely determined

by Hys © € A.
Proof. Similar to the proof of Theorem 1.

Theorem 5. (Bochner's extension theorem). Let Vo be'a
B-regular probability measure on a standard Borel space

S4 for each o € A. If {va} satisfies the consistency
condition (C'), then we can construct a standard probability
space (9, P) and a countable family of random variables

X > @ € A, on (£, P), each Xa being Sa—valued, so that

X
- _ a
Xa(w) = faB(XB(m)) and v, =P 7,

where o,B € A and o < B.

Proof. Since A 1is countable and directed, we can choose

~

a sequence 0, < a, < **° in A such that for every o € A
Q.

Denote S_ , V and f
n — o o o_0

n n nm

we can find a by S

n’
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14

~

vn and fnm respectively. Let

. n .
T o:= T S, n=1,2,:,

and

~

Prm := the canonical projection from Tm to T

Since the product map

fkn : Sn -> Tn

n=s

is Borel, the image measure on %n (n < «):

~

~ n .
Wy 1= E fkn)vn

is B-regular for n < o,

We claim that {u_} satisfies the consistency condition:
n

~ ~

= n <m-«< o,
un pnm“m’ -

Let n < m. Then

- n . - n . -
un = (kgl fkn)\)n = [(kzl fkn)Ofnm]\)m
n . - n
- [kgl(fknofnm)]vm = (kgl fkm)\’m

~ m ~ ~ ~
= (pnm°k21 fkm)vm = PrmMm-

Using Kolmogorov's extension theorem, we can construct
a stahdard probability space (Q,P) and a sequence of

random variables in(w), n=1,2,--+, on (Q,P), each Xn
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being én—valued, so that ﬁn is the joint probability law

of il’i2"°"in for every n.
It follows from the definition of ﬁn that the joint

probability law of the random variables

ikn(s) = %kn(s)’ s € <Sn’\)n)’ k = 1,2,:--,n,

~

is L Since the joint probability law of il’i2"..’

bkl

~

is also M, s W€ have
P{X_(w) € E} = v {f (s) € E} = v (E)
and
PR (w) = B (X ()} = y{F, (s) = F (£ (s))} =1

for k < n. The first equation means that the probability

~

law of Xn is Vo and the second equation implies that

P{X, () = f,_(X_(0)), k < n} = 1.

Removing a P-null set from Q, (Remark 4 of the last section),

we obtain
X, (w) = £ (X (w)), k < n for every w € Q.
Now define Xa(w) by
Xa(w) 1= faan(xn(w)) if a < a .

Since deOfBY = fay’

pendently of the choice of o, >0. If o< B < as then

a < B <Yy, Xa is well-defined inde-



If « < G;, then

xq ~ ~
P =X_P = (f o X )P = f vV = f y = ¥,
& X %y n o< <><n n ooy
This completes the proof of our theorem. A

3. Rogu&érly measurable functions,

In Section 7 we introduced the space .mp = 1.0 (o,1)

endowed with metric

' 1
(1) f(f.q) = fo (1£t) - gt)l ~ 1] at;

- P satisfies all conditions of a metric except for the separa-
tion axiom which will hold only if equivalent functions are

identified., The relation
0
(2) cCcpcCuwL

holds under such .. identification; see Section 1.7 for the

definitions of C and D. To get rid of the trouble of identi--

fication of equivalent functions we choose from each equivalence
class a single well-behaved function, called a regularly mea-

surable function, and consider the space Lo of all regularly

measurable functions instead of mp so that (2) may hold in
the ordinary sense.

Let E be a (Lebesque) measurable subset of (0,1] . A
point t €[0,1) is called a right density point of E, t €E'

in notation, if

1im A(Enlt,t+€)) =1
£+ 0 €

( A = Lebesgue measure).
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Similarly we define t € (0,1) to be a left density point

{

of E, t € E in notation, if we have the same condition

where the interval (t,t+¢) is replaced by (t-¢,t) . The

upper_reqularization Rf of f € 1% is defined by

_ inf { ast € {f=<a}Y®t} , t e(0,1),
Rf(t),-s={

"

inf {a:leifsa}ﬂ} s, t 1,

where (f < a} denotes the set of all s € (0,1] such that
by s¢p'

£(s) < a. By replacing ‘'inf' and ‘'fs<a’'and 'f2>a' res-

pectively we define the lower regqularization of f. It is

obvious that

-0 < RE(t) < RE(t) <@ for every t € ([0,1].

The reqularigzation Rf of f € ILO is defined by
REf(t) if RE(t) = Rf(t) (= @0,0),
RE(t) = {
0 otherwise.

From now on we use the following notations

f=g £(t) = g(t) everywhere on [(0,1]

£~ g £(t) = g(t) a,e. on [0,1) .

Theorem 1, Rf ~ Rf ~f., Hence Rf ~ f,

Proof By the Lebesque density theorem we have
A(EaE') =0 ( 4 = symmetric difference).

Let N, 1= {f<a} a [f<a}® ana N = U Then

-~

a€cQ Nae
A(N) = 0. For every t € (0,1) - N and a € @ we have

£(t)s a & t € {f<a}l < tC{fga}r = §f(£)$a
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S

and
RE(tk) <a = t e{fsalf & teci{f<ale £(t)s< a,
Hence f(ﬁ) = RfF(t) for every t € (0,1) ~-N, because Q is
dense in [~w, ], Since A (N) = 0, we have f~ Rf, Simi-
larly we can prove that £~ Rf. . |
Theorem 1 ensures that Rf 1is a measurable function
belonging to the same equivalence class as f and that
R(Rf) = Rf,
because it is obvious by the definition that f~A g = Rf = Rg.
Hence the function space

Lo 1= R(Lo)

0

consists of all functions f € L such that Rf=f. A function

f € Lo is called reqularly meagurable if f GLP. i.e, if Rf = £,

From the observation above it is ébvious that each equivalence

0

class in L~ contains exactly one regularly measurable func-

0

tion. The space L is a complete separable metric space with

the metric given by (1).

Let 1P s=0oP n 10

for 1 < p <o , Then tP is a comp-
lete separable metric space with metric Gp(f,g) = Hf-guﬁ .
Then it is obvious that

bceccpcitPctfcucyp’ (p>q)
in the ordinary sense; see Section 1.7 for the definitions
of the spaces P, M and »'. If we denote these spaces by
Ty n=1,2,..¢,7, then v'

Tn € B(Tm) and B(Tn) = B(Tm) N Tn, 80 Tn € B(Tm)
whenever n < m; see Section 1.7.

The advantage of P is that we can define the evaluation

maps e, and e on P,
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e. 1+ IP> R, f > £(t) (the evaluation map at t),

t
es (0,1) x1IP > R, (t,f) — £(t) (the global evaluation map).

These maps may be defined on tP as well, but P(f,g) =0
(i.e. f~ g) impliesneither et(f) = et(g) nor e(t,f) = e(t,q),
so such maps are not useful on LP. The evaluation maps on

M, ¢ and D are defined in the same way as above.

Theorem 2. The evaluation maps are Borel for F-=8, ¢, D and
P (p=0 or 1 < p<w).,

Remark. e s (0,1] X F — R is Borel (i.e. measurable
8((0,1] X R)) if and only if e is measurable 7Z[0,1]X %(F)
(Theorem 1.2.3),

Proof of the theorem., First we remark that if ¢ s TXF— R
is measurable JXx F , then the gection map of &, at t:

Pt s F — R, £ > P(t,f)

is measurable % . To prove this we can use the Dynkin class
theorem observing that 7 X# is generated by A x B, A €7,
B €% . sSince e, is the section map of e at t, we need only

prove that e is Borel. Since

F € 73(L°) and B(F) =75(L0) NF for F = 0,C,D or Lp,

it is enough to check that e is Borel for LO.

let e iresp. e) denote the map (t,£) = Rf(t) (resp.

0

Rf(t)) from [0,1] x L into R =¢ _"oo’ ©3. Then

e(t,f) if e(t,f) = e(t,f) € (=00,00)
e(£,f) = {

otherwise.

Hence it is enough to prove that both e and e are Borel,

we will prove this only for e § the proof for e is similar,
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G

Since

{(t,£) s S(tof) < a} = {(tyf) s+ Re(e) < a}
~f

= A {(t,f) s te{f sad%;}}ufn\ {(,) + 1 ¢ {£¢ a%}e} ’

it is enough to prove that each (f,f)-set in the above expres-
sion belongs to 75(0,1] X B0,
Let

A {£< YN Chee+e)) (0 <&<1)

Jg(t,£sb) 1= -

and

t+ ¢
Je Ho(£(s))ds (0 <&,7<1)

L [

Jé‘l?(t’f’b) =
where

H’? (x) s=

1, X <a

{0, x> a+ 17

linear in x ¢ [a, a+ 7/,

Since
A

&y 6T

[ SE’,Z (tof,b) = &

t+ &
< %Jt | 1, (£¢8)) - H, (f(s)) | as + 2 |eg

I\

1 . < -
_2._-_/(; (..Lf_iﬂ):v—g-(ﬂl—/\l) ds +%|t—t}

j=

< Sy (£, 8) +2 e-E],

0
-~

5\5. 7(t.f;b) is continuous in (t,f) € [0,1] x10. since
J‘S,'} v ;g as NN O ,
5;“5, JC/ b) is Borel m (t.£) € [0/ 17 x [°  Simce



%(t,f,b) is continuous in g., we have

§(t,£,b) 1= lim  J, (t,£,b) = lim 4, (t,£,Db),
£v0 £V0
€eQ

so §(t,f,b) is Borel in (t,f) € EO,lJ)(LO. Observing that
J(t,£,b) =1 & t € {f<p)} ¥

we can conclude that
{(ky) 1t € {£ <b}T} € ¥(0,1])x10)

;imilarly we obtain
{(1,6) 11 ¢ {r<v}t} € B(l0,11x10)

completing the proof of our theorem,

We can make the above discussion for a general real inter-
val T. No essential charge is necessary for T compact., For
T non-compact we express T as a countable union of compact
intervals Tn’ n=1,2,.... The space C = C(T) of all continuous
real functions is a complete separable metric space with metric

foltsg) = 22 27" sup [l£(t) - g(t)] A 1],
teTn
The space D = D(T) of all right continuous real functions
with finite left limits (left continuous at the right endpoint
of T if T is right closed) is a complete separable metric

space with the Skorohod metric

fstf9) = int {FC ¢ 1) + P, (£0p, @)},

where @ 1is the family of all order~:::preserving homeomor -
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phism from T to itself, The space P = IP(T) (p=1 or
1 £p <©0) is defined in the same way as in the case T =[0,1]

but the metric is defined by

e Llewy mawrt A 25 Jae. , peo,
’op(f,g) = 1+
({p 1£(8) = g(t) | P ag)t/P .1 p .

Then (bp, Gb) is a complete separable metric space. Then

ccpci® but DEIP (1¢p<=).
in case T is non-compact. Hence we consider the space Lgoc
= 1P (T) of all locally p-th order summable functions in
loc
L0 endowed with metric
1/»

L(f,g) = 32 27 [I lf(t)—g(t)lpdt] .

P n '1‘n
Then (Lgoc’ fp) is a complete separable metric space.
Using the same argument as before, we can prove
Theorem 3 ccCcp C L?Oc CZLO. If we denote these spaces

by Sl’ Sz, S3 and S4, then

s, € B(s)), 7(sy) = B(s )~ s, and #B(S) C 23(s,)

wheneyer m < n,

Thus far we have taken the Lebesque measure as the reference
measure in defining the spaces LP, p € {0} v [1, ©). Now we
consider the case where the reference measure & on T is
a general locally finite (=finite on compacts) B-regular mea-
sure #~ on T. Once we define the space LO(T,/L) of all
regularly M -measurable functions, we can proceed as abovej;

the only difference is that we do not have
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c(r) ¢ p(r) < 10T, )

unless M 1is atomless ( = vanishing on every singleton) and

strictly positive ( = positive on every non-empty open set).
let F 3 (-©0,0 )— R be a non-decreasing right-conti-

nuous function such that u[s,tJ) = F(t) - F(s-) for every

(s,t) € TX T with s ¢ t; such a function F is called the

distribution function of M and:=# is the Lebesque-Stielt jes
measure dF.

let I be an interval with the endpoints

o t= inf F(t-) <« ﬁ s= sup F(t),
teT teT

wvhere « (or ﬁ) belongs to I if the left (or right) endpoint
belongs to T. If x is atomless and strictly positive, the
map F s+ T > 1 is an order-preserving homeomorphism and the
image measure FM is the Lebesque measure A on I. Hence

we define

LO(T,/u.) 1= {g oFs gAéI‘.'.o(I./\)} .
If M is general, we define

L2, 0) 1= {goft g ¢ 2T A}

where ?(t) s= F(t-) and io(I, A) is the space of all func-
tions f that are constant in (F(t-), F(t)) for every jump

point t of F., The details are left to the reader.
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4., Stochastic process and random functions.

Let T be a real interval. A family Xt(w), t € T, is

called a (stochastic) process on T. For simplicity we deal with

the case where T 1is the unit interval [0,1] endowed with the
Lebesgue measure. The general case where T 1s a general interval
endowed with a general locally finite B-regular measure can be
treated similarly with some obvious modifications.

A stochastic process {X t € T} 1is called continuous in

t,
probability if the map t - Xt from T into XL = L(Q,P) with

respect to the usual topology on T and the po—topology’on L,

i.e. 1if

lim P(|Xs - X
s>t

t| >e) =0 for every t € T and every € > 0.

{X,,t € T} 4is called measurable in probability if the map t - X,

t’
from T into X 1is measurable, i.e. measurable & (A)/B(L)

where B (L) 1is the topological o=-algebra on £ with respect

to the -topology. It is obvious that continuity in probability

o
implies measurability in probability. From now on we will abbreviate
'in probability' to 'i.p!.

A stochastic process {X t € T} is called measurable if

t,
X (w) 1is measurable &(A) x H(P) as a function of (t,w) €

T x Q.

?heorem 1. Measurability implies measurability i.p.

Proof. Suppose that {Xt, t € T} 1is measurable. Then the function
of ¢

—~lo§ —



po (X ,Y) := J[lxt(m) - Y(w)| A 1]P(dw) (Y e L)
Q

is measurable «&(X), so
{t : pO(Xt’Y) < r} € LH(N).

This means that the inverse image of any open ball in L under
the map t » X belongs to & (\). Hence the map t - X, is
measurable & (A)/B (L), because the space (Z,,po) is a

separable metric space (Section 1). o

Fixing w € © and moving t 1in a given stoéhastic process
Xt(w), t € T, we obtain a function of t, which will be called

the sample function of the process corresponding to the sample
a

poin%, denoted by X.(w). A process {Xt’ t € T} is called

a C process if X.(w) € C c(T) for every w,

a D process if X.(w) € D

D(T) for every w,
and

an LP process 1if it is a measurable process and if

X.(w) € Lp = Lp(T) for every w.

Theorem 2. Every C process is a D process and every D process

is an LP process.

Proof. Since C C€ D C Lp, it is enough to prove that every

t € T} is a

D process is measurable. Suppose that {Xt’

— 0§



D process. Let

X (w), t e (=, 5  (k=1,2,...,n-1)
Xn(w) 1= n
t n-1
Xl(w), t € ["'n_' }) 1]
Since X.(w) € D,
Xt(w) = lim Xg(w) for every (t,w) € T X Q,
n-—+o
Since the set {(t,w) : Xg(m) < a} 1is expressible in the form
n
Z I, * A, I, : interval, A € H(P),

Xg(w) is measurable B (T) x H(P) (as a function of (t,w)),
SO Xt(w) is also measurable &B(T) x & (P). Now note that
B(T) C H().

A C-valued random variable, i.e. a map from © into C

measurable 4 (P)/ #(C), is called a rardom C function. Simi-

larly we define random D functions and random L’ functions.

Let Y(w) be a random C (or D or LP) function. Since the
evaluation map e, 1is Borel, eﬁ(Y(w)) is a real random variable.

The stochastic process et(Y(m)), t € T, 1is called the evaluation

process of Y(w). Then Y(w) 1is the sample function of the

evaluation process of Y(w).

Theorem 3. Let {Xt} = {Xt’ t € T} Dbe a stochastic process.
(1) {x

t} is a C process & X.(w) is a random C function,
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(ii) {Xt} is a D process & X.(w) 1is a random D function,
(iii) {Xt} is an LP process & X.(w) 1s a random LP

function.

Proof. First we prove (iii) for p = 0. Suppose that {Xt} is
an LO process. Then Xt(w) is measurable (L) x &(P) as
a function of (t,w). Hence Fubini's theorem ensures that the

function of w

po(X-(@)y ) = [ (Ix (@) = £(6)] A Dat (r € 1%

T

is P-measurable, so

fo : pg(X.(w), £) < €} € O (P)

i.e. X" Lu(r,e)) € &(P),

U(f,e) Dbeing the e-neighborhood of f. Since (Lo,po) is a

separable metric space, this implies that X. : Q - LO is

measurable J&(PL/A(LP), proving that X.(w) is a random 1,0
function.
Suppose conversely that X.(w) is a random LO function.

Then

Xt(w) = et(X.(w)) = e(t, X.(w)),

where e : T x L0 'R 1s the global evaluation map. Since e

is measurable B(T) x B(Ip) and since X.: Q> 1,0 is _measurable
a&(P)/’B(LO), it is easy to check that Xt(w) = e(t, X.(w)) is

measurable M (T) x %(P), proving that {Xt} is an 19 process.
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Next we will prove (iii) for p € [1l,»); we can prove (i)
and (il) by the same argument. Suppose that {Xt} is an LP

process. Since P ¢ LO, {Xt} is regarded as an L0 process

for which X.(w) € LP for every w. Since
B (P ¢ B1Y (see the last éection),
the assertion (i) ensures that
X'.'l(B) € H(p) for every B € B(LP).

Hence X.(w) 1is a random LP function. Suppose conversely that

X.(w) 1is a random LY function. Since
X.(2) ¢ 1P anda BIP) = B1Y a P,

X.(w) 1is regarded as a random 1.0 function. Hence {Xt} is

a measurable process. Since X.(w) € Lp for every w, {Xt}

is an Lp process. J

Let {Xt’ t € T} be a stochastic process. A C process

{Y,, t € T} 1is called a C regularization of {X,} 1if

t? t

P(Xt = Yt) =1 for every t € T.

Similarly we define a D regularization of {X,}. An LP process

t

is called an LY regularization of {X,} if

t



P(Xt =Y =1 for almost every t e T.

)

Theorem 4. A stochastic process {X t € T} has an L0

t’
regularization if and only if it is measurable i.p. If {Yt}

and {Y't} are 1.0 regularizations of {Xt}, then P{Y. =Y} }= 1.
Proof. Let us first prove

Lemma 1. If ({X t € T} 4is continuous i.p., then there exists

t’
a measurable process {Y

o b€ T} such that

P(X, =Y

t t) =1 for almost every t € T.

Proof. Let

k- k
Xk/n(w)’ t € [Tl, H)’ k = 1,2,...4n
n ——
Xt(w) =
Xl(w), t =1
Then {X2} 1is a measurable process for every n, because the set

t
{(t,w) : Xz(w) < a} 1is expressed in the form:

n
Z I, X A, I, ¢ interval, A € H-(P).

Since {X_} 1is continuous i.p., we have

(1) lim

T1->0o

pO(XE, X,) =0, t € T.

Using Fubini's theorem and the bounded convergence theorem, we

obtain
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J [IXD(w) - X™(w)| A 11 dt P(dw) > 0 as n,m > =,
TxQ
Hence we can find a subsequence {Yg(w), n=1,2,...} of {Xg(w),
n=1,2,...} convergent to a measurable process Yt(w) a.e. on
T x Q. Hence

(Yz, Y = J[(|Y2(w) - Yt(w)[ A 1] P(Adw) = 0 (n » =)

Q

Py t)

a.e. on T,

SO

P(Yt = Xt) = 1 a.e. on T

by (1). This completes the proof of Lemma 1.

Now we prove our theorem. Suppose that {Xt} is measurable

i.p., namely that the map t - Xt from T into oto is measurable

oﬁxk)/'ﬁ(}io). Since X0 1is Polish, we can use the generalized
Lusin theorem (Section 1.9) to find a compact set Kn C T such
that (1) A(TJ-Kn) < 1/n and (ii) the map t - Xt restricted
to t € Krl is continuous. This map from Kn into ip can

be extended to a continuous map t - X? from T into .to;

since T - Kn is a countable union of intervals Il’ 12,...,
we can obtain X? by linear interpolation on each interval In
Then {Xg, t € T} is continuous i.p. and Xg = Xt for t € Kn'

Use Lemma 1 to find a measurable process {Yz, t € T} such that

n _ n _ _ _
P(Y, = X)) =1 for t € T - N where A(N) 0, so

n

P(Yt

=X,) =1 for t € K - N
t n n

-—.,]p.—«



Define
n n-1
Yt(w) if (t,w) € (Kn - et Ki) X Q

Yt(w) ¢=
0 otherwise

It is obvious that Yt(w) is a measurable process and

= Xt) =1 for t € T - N!

t
where N' := (T - L/kn) U N, so A(N') = 0. Let
n
%t(w) i= e, (R[Y.(w)]) (See the last section for R).

Then ?.(w) = R[Y.(w)] and

poTe ), £) = og(Yo(w), 1) = [ [[¥, (@) = £(6)| A 1lat.
T

Hence p0(§.(w), f) 1s a P-measurable function of w. This

~

implies that Y. : Q@ ~» LO is measurable 4}(p)/¢B(LO), because
(LO, pO) is a separable metric space. Hence {?t} is an LO
process by Theorem 3. Since {Yt} and {§t} are measurable
processes and since ?t(w) = Yt(m) a.e. on T for every

w € @, Fubini's theorem ensures that

p(3~{t Yt) 1 for almost every t € T.

|
el
~

I
=

Since P(Yt = for almost every t € T,

|
=

p(§t = Xt) = for almost every t €& T.
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} is an L° regularization of {Xt}'
} is an 1.0 regularization

This implies that {Qt

Suppose conversely that {Yt

of {Xt}' Since {Yt} is an L0 process, it 1s measurable,

so it is measurable i.p. by Theorem 1. Since Xt and Yt are

identical as points of ,io for almost every t, {t : Yt € B}

and {t : Xt € B} differ from each other only by a null set.

But {t : Y, € B} € &(1), so {t : X € B} € L(\). This

implies that {Xt} is measurable i.p.

Let {Yt} and {Yé} be Lo regularizations of {Xt}'

Then
Yt(w) = Yé(w) = Yt(w) a.s. for almost every ¢t,

so Yt(w) = Yé(w) for almost every t € T a.s. by Fubini's

theorem. Since Y.(w), Y'(w) € LO, this implies that

Y.(w) = Y'(w) a.s.,

completing the proof of our theorem.

Two processes {X,, t € T} and {Y t € T} are called

t? t?
sample equivalent to each other if P(X. = Y.) = 1. Theorem 4

claims that every process measurable i.p. has a unique (up to
sample equivalence) LO regularization.

}, then
0

If {Xt} has a C (or D) regularization {Yt

{Yt} is also an L° regularization of {Xt} and every L

regularization of '{Xt} is sample equivalent to {Yt}. Hence

it i1s enough to consider only ngwpegularizations.
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Theorem 5. (A. Kolmogorov) Suppose that {X t € T} satisfies

t’

|l+3

E(lXt - Xsla) <vylt - s for every (t,s) € T x T,

where o, B and Y are positive constants. Then {X,} has a

t
C regularization.
Proof. Choose a positive number 6 so that € := B - ad > 0.
Then
. 8 +
PUxX, - X | > |t - 5%} < v[t - s|**®
Hence
P{|X(k/2™) - Xx((x - 1)/2™)| > 28 ror some k = 1,2,...,20-1}
< Y2n2—n(1+€) - Y2—n€
where X(t) denotes Xt' By Borel-cantelli's lemma the following
event Ql C @ has probability 1:
k k- -ne
(2) Xy -xED) | < y2 ™"
2 2
for

for n sufficiently large (n > N(w)) and , k = 1,2,...,2n.

Let ®' denote the set of all numbers in T of the form

n

k/2 We claim that

(3) X (0) - X, ()] < 2v(1 - 27%)(p - ),

o,r € @, O<p—r<2_N(w), w €&

To prove this, determine n by

2—(n—1) -n

>p~-r >2



and choose k so that

It is obvious that n > N(w). Observing that

k2™ - p<p-r< 2—(n—1)

and b - k2 M < p-p <o~ (071)

we can expand r and p as follows:

x 2o ! %p
I’=;H—-2—H—2n+l—'°'—2n+p ai=0 or 1
and
b b b
t—] ——k.— .—_g l e e o _& =
o} 2n + on + 2n+1 + + 2n+q bi 0 or 1.
Let r_qs ro, rl,...,rp be the partial sums of the expansion of
r and P_1s> Pyo pl,...,pq those for p; r_, =p_q = k/2n,
r =r and p_ = p. Then (2) implies that for w € Q
P a 1
-(n+i)e
and
| -(n+i)e
SO
e
X - X(r < X(r,) - X(r + X(p,) - X(p.
X(p) - x(m)| <} |X(ry) - X(ry ) JZOI (py) = X(py_1)|

oy2 e (1 - 27F)

A

2y(1 - 27%)(p - 1),

| A
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proving (3).
By virtue of (3) Xr(w) is a uniformly continuous function

of r € Q' for w € 2 so it can be extended to a continuous

l’
function Yt(w) of t € T for w € &

1° We define

Yt(w) =0 for w € Q - Q-

It is obvious that Yt(m) = Xt(w) for w € Q and for t € @'.

1

Hence
= = 1
P(Yt Xt) 1 for t € Q'.

For t € T - Q' we can find a sequence tn € Q' converging
to t. Since {Xt} is continuous 1.p. by the assumption,

X, > Xt i.p. Hence we can find a subsequence {sn} of {tn}

n
such that X¢ - Xt a.s. Since YS (w) - Yt(w) for every w
n n
and since Xs = YS a.s., we have
n n
= = -— !
P(Yt Xt) 1 for t €T Q'.

This completes the proof that {Yt} is a C regularization of

}. of

{x,

~;1]§m~
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