Chapter I Standard Borel Spaces

1.1 o-algebras

Let S Dbe a space. A class‘g of subsets of S 1is called a
o-algebra on S if (1) S € 3, (2) A e & = 1% ¢ & and
(3) A € d, n=1,2,... = U A € 8. Let C_ ve an arbitrary
class of subsets of S. Then Ehe intersection of all g-algebras on
S that include Cz, is also a g-algebra on S. It is called the

c-algebra generated by C_, ¢(C.) in notation.
Let <3 be a g-algebra on S and T a subset of S. Then

T n,é’= {Tn A: A ecf} is a g-algebra on T, called the trace of
45 on T.

Let 13% be a g-algebra on S% for N e p. Let S Dbe the

(Cartesian) product of S ANep, i.e. S = 1,5, Let m, be the

)\J
A-projection from S onto S

sets: v;l(

A
X The o-algebra on S generated by the
Ax), A€, A e »» 1s called the product g-algebra of

g?\, A€ N By ,57\ in notation.
Suppose that S 1s a topological space with topology r. The

The g-algebra generated by all r-open subsets of S 1is called the

topological g-algebra. YST(S) in notation. The suffix ¢ 1is often
omitted if there is no possibility of confusion. If we have two
topologies ¢ and ¢ on S and if «+ 1is stronger than g, then
every g -open set is also r-open and therefore we have ‘éi(s) :>Z%(S)
in general. It often happens that two different topologies may induce
the same topological g-algebra. (See Example 1 at the end of this
section.)

Let S = (S,T) be a topological space. Then every subset T of

S 1is,regarded as a topological space with the relative topology

r|T in which a set Ge T is called open in T if it is thé
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intersection of T and an r-open subset of S. It is easy to verify

(1) B o™ =10 Bs).

Let S, = (S be a topological spéce for A € p. Then the

A 7\"1'7\)
product space S = Hxsx is also a topological space with the
product topology .

Then we have
(2) ECHEWS S C
rA

and they are not equal in general. (See Example 2 below. )

Theorem 1. If ) 1is countable and if the topology T\ in S% has
a countable open base for each A € p, then the product topology in
I SA also has a countable open base and the two g-algebras in (2)

are the same.

Proof Obvious by the definitions.
Let Qg andaw_ be g-algebras on S and T respectively. A

map f: S > T 1is called measurable ‘8/’T if f_l(rr)<: zB i.e.

- T
f l(B) € g? for Be & . If f: 8-> T is measurable <8/ | ana if
g: T > U 1is measurable GT'/Ql , then the composite map g - f:
S > U 1is measurable 3 /%A . If T 1is a topological space, then

we often use the term "measurable @ " instead of measurable ég/iS(T).

Theorem 2 Let xS be a o-algebra on S and T a metric space with
metric p. Let YS(T) denote the topological g-algebra on T.

(i) The limit of a sequence of functions: S = T measurable

AQ/ZS(T) is also measurable cy/zg(T).
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(1i1) If T 4is a separable metric space, then every function:
S > T measurable 45/iS(T) can be expressed as the uniform limit of
a sequence of functions: S - T measurable *5>ZS(T) and taking a

countable number of values.

Proof
(i) Let G be any open set. Take a sequence of open sets {Gp}

such that G, c T}'l c G,c 52 c G3 c...>G, for example

Gp ={ x e G: p(x,y) > 1/p for y ¢ GC}.

It is obvious that Gp+l includes the closure 5? of Gp, Therefore

f‘l(

-1 -1
G) =uf(G) =uu o £(a) e .S,

(ii) Let f: S > T Dbe measurable 48/ZS(T) Take a countable dense

subset {a } in T and let U = denote the ball { y e T: p(y,am)<lﬁn

for my n =1,2,... . Set
V. =U -y U and A =f (V)
mn mn k(m kn mn
Then

Define fn: S > T by

f (x) =a_ for x e A, m=1,2,...

n

Then fn takes only values in {al,a2,...} and

p(f (x), £(x)) = play, £(x)) < 1/n for x e A

This completes the proof.



-

Let 231 be a g-algebra on 'Si for 1 =1,2,3. For

A~ Sl X S2 we consider the sections
A(xl) = {x, € 5,: (xl, xg) € A} , for fixed x; € §;
and

A(xg) = {x, € 8;: (xl, x2) € A} , for fixed x, € S,,

Similarly for f: Sl x S, > S we consider the sections

2 3
fxlz S, > 83 s fxl(x2> = f(Xl, xg) for fixed x; € S,
and
fxgz 5, > 83 fxg(xl) = f(xl, xg) for fixed x, € S,

Then we have the following

Theorem 3

(1) 1If Ae 8, @,,52, then A(x;) e 32 for fixed x, € S, and
A(xg) € <81 for fixed x, € S,.
(i1) If f: Sy x S, S3 is measurable ‘xg1.® 252/”8 , then
fxl : 82 > S3 1s measurable 282/<83 for fixed X, € 82 and
fx2: Sl > S3 is measurable 231/‘83 for fixed X, € 82.
Proof (1)If A=A, x Ay, A, € ,Si, then

A(xl) = A, if x{ € A,

=¢ if x, ¢ A

and so A(xl) € 482 for x, € 8;. Since the class of all sets
Ac Sl X Sgﬂ for which A(Xl) € é& for every X, € Sl is a g-algebra

on S84 x S,, this class includes the c-algebra 231 ® x82. This proves

the first part of (i). Similarly for the second part.
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(1i) This is an immediate result from (i) by virtue of the obvious

relations
o (8) = (£71(3)) (xy) and £ () = (£75(B) ().

The converse of Theorem 3 is not true in general. A set or a
function in the product space is not always measurable even 1if its
sections are measurable. The following theorem is useful in this

connection.

Theorem 4. Suppose that

(1) g% is a g-algebra on 8,

(2) S, is a separable metric space,
/ 2

(3) 83 is a metric space.

(4) f is a map: 8y x S5, S3 .

If the section fx : 82 -> 83 is continuous and if the section
1

S S3 is measurable ggl/13(53), then f is measurable

2
10 B(sy)/B(sy).
Proof. Since the identity map I: 82 -> 82 is measurable
‘Zg(sg)/ig(sg) we can use Theorem 2(ii) to obtain a sequence of

I: S, > 8, measurable ¥5(S,)/@(S,) such that the set C_ of

values of In is countable for each n and that

o € 52.

In(xg) -> x2(n > ») for every X

Set gn(xl,xg) = f(xl, I (xg)). Then

n
g, (x,%,) > fx,x,) (0> ).

and

-1 -1
g, (A) = cgcn £ 7 (a) X {c}
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Therefore g_ is measurable & ® (s )/ﬁ(s ) and so is f.
n 1 2 3

Theorem 5. If f7\: S - T7\ is measurable é)/‘"\"?\ for every A € \.

Then the map f: S > 01 T, defined by f(x) =(f}\(x), A€ p) is
A
measurable 8/@7\6"[’ <

Proof. Write T and“] respectively for 1'[7\'1‘?\ and &:?\GT)\ and let

: T > T be the A-projection. Then

™ A

£ (7 (B,)) = (m, « £)7H(B,)

for B, € | .. This implies

n;\l(BA) e Tt = {B e T: 1 (B) e dy}.

But qu is clearly a g-algebra on T. Therefore ‘Tl e °T , 1l.e.

f 1is measurable §/°T .

Theorem 6. If f}\: S?\ > T?\

N € p, then the map f: n)\S)\ > H?\Tx defined by

is measurable 57\/"'[’ 5 for every

f(X?\, A € A) = (f?\(X?\) S A)

is measurable ®- é?\/®)\"_[')\.

Proof. Write S and 4& for n}\S?\ and ®7\g7\ and let T * S—>S?\

be the A-projection. Then

7\(x),?\eA),xeS.

Since LN is measurable 45/,8?\' and since f is me asurable

A
37\/”7’7\, £oe T

A 1s measurable 523/"1'7\. Now use the previous theorem.
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Example 1. Let H Dbe a separable Hilbert space and let o and

w be the norm topology and the weak topology respectively. Since
g 1is stronger than ¢, we have ﬁc(H) Dﬁw(H). Every g-open set
is a countable union of g-closed balls and every g-closed ball is
w-closed. Therefore every g-open set belongs to Léw(H) This
implies ﬁo (H) ﬁw(ﬂ). Therefore we have 50 (H) =‘6w(H),

although g 1s strictly stronger than .

Example 2.  If p 1is uncountable, then
B (&) i\@(R yRA

(1f s, =T and KS% =T for A e p, then we write T) ana

°T®A respectively for n7\S)\, and ®5 J )\-)

To prove this, we introduce the notion "countably determined." A

subset A of RA is called countably determined if we have a

countable subset M = M

A of A such that

€ A and x, =

(x7\) L =V, for AeM = (y)\) € A.

The class Q of all countably determined subsets of RA is a

g-algebra on R\, Since the set n;\l (E is countably determined

N
for every AN € A and E7\ € g?\, we have C_: fé(R-lv)'gA- Therefore
every set € ?@(R)A is countably determined. Since jA 1s

uncountable, every singleton (= single point set) is not countably

dete‘rmined but belongs to ﬁ(RA) as a closed subset of RA.

Example 3. For A = {1,2,3,...n} or {1,2,3...} we write R? or
R® for RM. By Theorem 1 we have g(RA) = \é(R)®A in this case.
We write Bn or \Bm for this g-algebra according as A={1,2,...n}
or {1,2,3,...}.
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Example 4. The two point set {0,1} 1is a topological space with
discrete topology. {O,l}ﬁm:l,E”.. ,o are defined as above. The
product g-algebra and the topological g-algebra for the product

topology are the same. {O,l}oo is called the coiln tossing space,

T 1in notation, because it is the sample space of coin tossing game.
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1.2 Borel spaces

A space S endowed with a g-algebra &B on S 1s called a

Borel space (S, .8 ). S is called the base space of (s, &) and

<8 the Borel structure in (S,gg ). If there is no possibility of

confusion, we will simply write S for (3,45 ). A subset A of

S 1s called a Borel subset if A € <8'

To get rid of the trouble of assigning the Borel structure all
the time, we will make the following convention.

(a) A topological space is regarded as a Borel space endowed with
the topological g-algebra.

(b) A subspace of a Borel space is regarded as a Borel space endowed
with the trace g-algebra.

(c) The product of Borel spaces is regarded as a Borel space endowed
with the product g-algebra.

Because of the relation (1) in é&é there is no contradiction
between (a) and (b), but (b) and (c) may not be consistent. Therefore
in the case of the topological product we should specify the Borel
structure we are referring to, unless the two g-algebras in (2) are
known to be equal. (See 1.1 Theorem 1 and Example 3 .)

Let f be a map from a Borel space (S, 48) into another Borel
space (T, ). f is called Borel measurable if it is measurable
S/7T . Al-1lmap £ from (S, &) onto (T,T ) 4is called a Borel

isomorphic map 1f both f and f":L are Borel measurable, i.e. if

£(F) =T . If there issuchf, then(T, T ) is said to be Borel

isomorphic with (S, .8 ). Borel isomorphism is an equivalence relation.
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Theorem 1. If T is Borel isomorphic with S, then every Borel sub-

set F of T 1s Borel isomorphic with a Borel subset of S.

Proof. Let f Dbe a Borel isomorphic map from S onto T. Then

E = f_l(F) is Borel isomorphic with F.
Theorem 2. If T% is Borel isomorphic with Sx for every AN € |,
then I, TA 1s Borel isomorphic with H% S%'

Proof. Let fx: S% > T% be a Borel isomorphic map for A € p.

The map f: 0, T, -, S, defined by f(xx,?\ €pN) = (f?\(xx), A€ )

1s Borel isomorphic, as can be easily checked.

Theorem 3. Every homeomorphic map is Borel isomorphic. Therefore

two homeomorphic topological spaces are Borel isomorphic.

Proof. Recall the fact that a homorphic map f: S - T carries the

open sets in S onto the open sets in T.

Theorem 4. Let S and T Dbe Borel spaces and suppose that S = Sn
n

and T = U Tn are disjoint countable decompositions into Borel
n
subsets. If Tn is a Borel isomorphic with Sn for every n, then

T 1is Borel isomorphic with S.

Proof. Let fn be a Borel isomorphic map from Sn onto Tn’ Define
f: S>> T by £ = fn on Sn n=1,2,... . Then f is a Borel
isomorphic map. To prove this, take an arbitrary Borel subset B of

§S. Then B=UyUS nB (disjoint union) and so
n

£f(B) =u f(s,nB) =u £ (5 nB).
n n

since S n B 1s a Borel subset of &5 , fn(Sn N B) is a Borel

subset of Tn and so a Borel subset of T Dbecause Tn is a Borel
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subset of T. Therefore f(B) is Borel subset of T. This proves
that f_l is Borel measurable. Applying the same argument for f—l,

we have that f = (f—l)-l is also Borel measurable.

Theorem 5. Let (S, &) Dbe a Borel space.

(1) If p and ’M have the same cardinal number, then (SA,jggA)

is Borel isomorphic with (SM, CBQ’M)

(2) If the cardinal number of pj is the sum of the cardinal numbers
of A, @ € A, then (SA,,é Ay is Borel isomorphic with

(s, o 5" 9.

Proof. The same as the proof of similar facts on the topological

product.

is Borel isomorphic (in fact homeomorphic)

Example. rn(n=1,2,...w)

with T, where T = {O,l}oo (the coin tossing space).
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1.3 Standard Borel spaces

A Borel space (S, é{) is called standard if it is Borel
isomorphic with a Borel subset of Rl. The notion of standard
Borel spaces was introduced by G. MacKey [1l] in connection with group

representations.

Theorem 1. Every Borel space isomorphic with a standard Borel space

is standard.
Proof. Obvious by transitivity of Borel isomorphism.

Theorem 2. Every Borel subset of a standard Borel space is a standard

Borel space.
Proof. Obvious by 1.2 Theorem 1.

Theorem 3. A Borel space is standard if and only if it i1s Borel

isomorphic with a Borel subset of the coin tossing space T.

Proof. By 1.2 Theorem 1 it is enough to prove that T 1is Borel
isomorphic with Rl. Since Rl is homeomorphic and so Borel
isomorphic with I = (0,1), it is enough to prove that I = (0,1)

is Borel isomorphic with 1. Consider a map f from T onto TE[O,l]:

f(X,X,--.): T _— (X =OOI‘1).
1’72 no1 2n n
Since Un(x) = {y =(yl,y2,...): y; =% 1 =1,2,...,n}, n = 1,2,...,
form a complete neighborhood system at x = (xl,xg,...), f is

continuous. Let 1, be the set of all x = (xl,x2,...) for which
either X, = O eventually or X, = 1 eventually. Set Ty = T - ro

and define a map f,: T, > I = f(rl) c I by

£(x) = £(x), x ey



-13-
Then fl is continuous, 1-1 and onto. For X € Ty and every n,
we can find p = p(x,n) > n and q = g(x,n) > n such that X, = 0

and Xq = 1. Set r = r(x,n) = pvg. Then it is easy to check that

| £(y) - £(x)] < o~ " = Vi = Xy i=1212,... n.

This implies that fll: I,— Ty is continuous. Therefore Tq is

homeomorphic and so Borel isomorphic with Il. It is obvious that
To and IO = I-Il are both countably infinite, so that they are

Borel isomorphic. Using 1.2 Theorem L4, we have that I = Il U IO

is Borel isomorphic with 1 = Ty UTgy
Theorem 4. The product of a countable number of standard Borel

spaces 1is a standard Borel space.

Proof. We will discuss the countably infinite product case, since
the finite product case can be treated similarly. Let Sn’ n=1,2,..
be standard Borel spaces. Then each S, is Borel isomorphic with a
Borel subset En of T by Theorem 3. Therefore the product

S =1 Sn is Borel isomorphic with E =T En by 1.2 Theorem 2. But
n n

-1
E = ?1 T (En),

where L rm - T is the projection that carries x € rw to its

n-th component. Therefore E 1is a Borel subset of rw. Since rw
is Borel isomorphic with T (1.2 Example), rw is a standard Borel
space by Theorem 3. Therefore E 1is a standard Borel space by

Theorem 2 and so is S Dby Theorem 1.

Theorem 5. Let S be a Borel space and Sn a Borel subset of S

for n=1,2,... (finite or countably infinite) such that S =y S,
n
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If each Sn is a standard Borel space, then S 1s also standard.

_ n-1 0 _ .
Proof. Set T, = S, = U1 Sy (Uk=l Sy = d). Since
_ n-1 . n-1 .
T, = S, N (s - Ug_1 Sk) and since S - y,_] S, 1s a Borel subset
of S, Tn is a Borel subset of Sn‘ As Sn is a standard Borel

space, so is ‘I‘n by Theorem 2. Since Rl is homeomorphic and so
Borel isomorphic with I = (n, n+tl) and since Tn is Borel
isomorphic with a Borel subset of Rl, Tn is Borel isomorphic with
a Borel subset E, of I Dby Theorem 1. Since {T,} and {E.}
are both disjoint, we can apply 1.2 Theorem 4 to see that S =y Tn

and E =y B, are Borel isomorphic. As each En 1s obviously a

Borel subset of Rl, so is E. This proves that S is standard.

Theorem 6. Let § &) and (T, “T') be Borel spaces and suppose

that (T,°T ) 4is standard. If f: S > T and g: S > T are both
g(x)} ¢ 3.

Proof. We can assume with no loss of generality that T 1s a Borel

Il

Borel measurable, then {x e S: f(x)

subset of RY and T =Tn jS(Rl). Then

{x e 8: f(x) = g(x)}

:nLlJ{{xeS:hk:gf(X)<k+l Eex) ¢ By
n
=ﬂ%f-l([%,%)ﬂ“—“)ngl(§kﬂ)ni‘)e,‘g
n

Examples. The following spaces and their Borel subsets are all
standard.

1. A countable set (with the discrete topology)

2. The n-space R*
3. The sequence space R”.
4. The n-dimensional unit cube space [O,l]n, n=1,2,...,%
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5. The coin tossing space T = {O,l}oo

é, A compact Hausdorff spaée with a countable open base. This is
homeomorphic and so Borel isomorphic with a closed subset of [O,l]oo
7- A g-compact metrizable space, i.e. a metrizable space which is
expressed as a countable union of compact subsets. This is standard
by Theorem 5.

§. A locally compact Hausdorff space with a countable open base.
This is a special case of 7.

9. A complete separable metric space. This is homeomorphic with a
Gy subset of R°. (See the next section Theorem 5.) Therefore
it is a standard Borel space. This includes all the examples
mentioned above except 7.

Remark 1. The following theorem is very interesting. Since we

shall not use it in this book, we will omit the proof.

Theorem 7. A standard Borel space is Borel isomorphic with one of
the following Borel spaces that are obviously not Borel isomorphic

with each other.
(a) {1,2,3,...,n}, n=1,2,3,...
(0) {1,2,3,.--

(¢) [0,1].
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1.4 Polish spaces

A topological space is called separable if it has a countable

dense subset, and completely metrizable if the topology is

determined by a complete metric (= a metric p such that every

p-Cauchy sequence converges to a point in the space). A separable

and completely metrizable topological space is called a Polish spacé.

A complete separable metric space (with the metric topology) is
obviously a Polish space. Every topological space homeomorphic with
a Polish space is also Polish. Every Polish space obviously has a
countable open base.

The real line R- = (-w, ) with the usual topology is Polish.
The usual metric p(x,y) = lx-yl is complete and the rational num-
bers form a countable dense set.

The open half real line Ri = (0,o) with the usual topology is
also Polish, because it is homeormorphic with Rl. The usual metric
p(x,y) = |x—y[ is not complete, because X, = 1/n is a p-Cauchy
sequence but does not converge to any point in Ri. The metric
p+(x,y) = |log x - log yl determines the usual topology in Ri and
it is\complete. The positiﬁe rational numbers form a countable
dense set in Ri. This example shows that a metric space (S,p) with
the metric topology may be Polish even if the given metric p 1is not
complete.

It is easy to see that if p(x,y) 1s a complete metric in S,
then pl(x,y) = p(x,y) Al 1is also a complete metric determining the
same topology as the metric p. Therefore the topology of -a Polish

space is determined by a complete metric bounded by 1.
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Theorem 1. The product of a countable number of Polish spaces (with

the product topology) is Polish.

Proof. We will discuss the countably infinite product case. Let
Sn be a Polish space for n = 1,2,... and S the product space
Hnsn' Suppose that Py is a complete metric determining the topology

in S,. We can assume that p, { 1. Then it is easy to check that

()5 (7)) = B 27, ()

1s a complete metric determining the product topology in S.

Let ...} be a dense subset of S,- Thenthe points

{anl’anQ’

in S

(aqy s8p 5w sy 5809 15840 10000 )
1 2 Nk, nr, e,

n=1,2,..., k; =12,... (i =1,2,...,n)

for a countable dense set, as can be easily checked.

Let us remind the reader of the convention that every subset of
a topological space 1s regarded as a topological space endowed with
the relative topology (see 1.2 (a)). A subset of a topological

space is called a Polish subset if it is a Polish space with res-

pect to the relative topology.

It is easy to prove the following two propositions.

Proposition 1. A subset of a separable metrizable space is also

separable and metrizable.

Proposition 2. A closed subset of a Polish space is Polish.

Proposition 3. An open subset of a Polish space is Polish.
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Proof. Let S be a Polish space and Pg & complete metric in S.
Let G be open in S. G 1s separable by Proposition 1. We want

to define a complete metric determining the topology in G.

Pa
We assume that S # G, because if S = G, then it is enough to set

Pe = Pg- Let f(x) De the distance between x and 5-G, i.e.,
f(x) = inf ps(x,y).
veS-G
Since |f(x)-f(x')| { p(x,x'), £ is continuous in S. Since G 1is

open, we have f(x) > O if and only if x € G. Therefore

g(x) = f(x)—l (x € G) is continuous. Define

Pa(xy) = le(x)-g(¥)| + pg(x¥), % ¥ e G

This 1s a metric in G determining the topology in G, as we can
easily check.

Let us now prove that Pa is complete. Let {xn} be a Pg~
Cauchy sequence in G. Then {xn} is also a pS—Cauchy sequence
by Pg < Pg in G. Therefore we have x € S such that X, > X
in S. If x € G, then X, > X in G, because the topology in G is
the relative topology induced from that in S. Suppose that x £ G.
Then f(x) = 0. Since f is continuous in 8§, limnf(xn) = f(x) = 0,
so that 1lim g(x_ ) = ». Thus we have a subsequence {yn] of {xn]
such that g(yn+l) > g(yn) + 1. Then pG(yn,yn+l) > 1. Since
{yn} is a pg-Cauchy sequence as a subsequence Of {Xn}, we must

have pG(yn’yn+1) > 0. This is a contradiction.

Theorem 2. The intersection of a countable number of Polish subsets

of a metrizable space is Polish.
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Proof. Let S Dbe a metrizable space and {Tk} a countable family

of Polish subsets of S. We will prove that the intersection

T=N0NT
, x k

topology is Polish. Let L P~ Tk is the k-projection that

is Polish. The product space P = % Tk with the product

carries x € P to its kth component. L is continuous. The
ldentity map ik from Tk into S 1s continuous because of the
definition of relative topology. Therefore Qe = ik ° Myt P~->3S

is also continuous. Let p be a metric determing the topology in 8.
Then (x,y) = p(x,y) 1s a continuous map from s  into [0, »),
Therefore & - p(ak(g),ak(g» is a continuous map from P into

[0,w) and so
D = {€ e P: p(al(g),ak(g)) =0, k=1,2,...}

is a closed subset in P. Since P 1is Polish by Theorem 1, D 1is

Polish by Proposition 2. But it is easy to see
D = {(x,%x,...): x € T}.

By the definitions of relative topology and product topology we have
that for XysXps e esX € T
x, >x in T = x,>x in 8

<= x, >x in T, for every k

<= (xn,xn,.o.) > (x,%X,...) in P
= (xn,xn,...) > (x,%X,...) in D.
This implies that x > (x,x,...) determines a homeomorphic map

from T onto D. Since D 1is Polish, T is also Polish.
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Theorem 3. A subset T of a Polish space S 1is Polish i1f and only
if T 1is G6 in S.
Proof. The "if part" follows at once from Proposition 3 and
Theorem 2. Let us prove the "only if" part.

Suppose that T is Polish. We will prove that T is G6 in
S. The closure T of T is Polish by Proposition 2. Since T is
Gg in S as a closed subset of S, it is enough to prove that T
is Gy in T. Let p(p) be a complete metric in T(T). Let Z[n
be the family of all p-open subsets U of T such that
dp(T N U) < 1/n, where dp(A) is the p-diameter, i.e.,
sup{p(x,y): x,y € A}. Set

0. = U TU.

n UeQ{n
On is open in T. For completion of the proof it is enough to prove
that
(1) T = 2 0, -
Suppose that x € T. Consider the open ball Bn in T with

center x and radius 1/2n. Then B, = TN Url for some open subset

U, in T. Since

Un € Z(n' Therefore x € Un c On‘ As n is arbitrary, x € g On'
Suppose that x € N On' Then we have Xx € Un for some
n
U, € U . Let C_ be the open ball in T with center x and

p-radius 1/n. Now set

Vh = Ul n U2 n...n Un n Cn'
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This is open in T and contains x. Since T 1s dense in T, we
have a point x, €T N v, ~for each n. If n, m>» k, then

Xpo Xy € TN Uk’ and so
p(Xn’Xm) < dp(T n Uk) < 1/k

by Uk € Zlk. Since p 1s a complete metric in T, {xn) p-converges
to a point y € T. Therefore x_ >y in T. But x, > x in T

by x, €V, < C,- Thus x =y e T. This completes the proof of (1).

Theorem 4. (The Representation Theorem for Polish spaces.) A
topological space is Polish if and only if it 1s homeomorphic with
a Gg subset of the (countably) infinite dimensional unit cube

[0,11%.

Proof. As [O,1] is Polish, so is [O,l]m. Therefore every G5
set of [0,1]° 1is Polish. The "if" part follows at once from this.
Let us prove the "only if" part.
Let S be a Polish space and p a complete metric bounded
by 1 which determines the topology in S. Let {ak} be a sequence

dense in S and define a map S - £(8) (¢ [0,1]7) by
f(x) = (p(x,ak), k=1,2,...).

It is easy to check that f defines a homeomorphic map between S
and f(8). As S is Polish, so is f(S) and therefore Gy in

[0,1]° by Theorem 3. This completes the proof.

Theorem 5. Every Polish space (with the topological o-algebra) is

a standard Borel space.

Proof. This follows at once from Theorem 4 and 1.3 Example 4.
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Examples. The following spaces and theilr G6 subsets are Polish.

A countable set (with the discrete topology).

=

2. ®r% [0,117 {0,1}” n=1,2,...,2 .
3. A compact Hausdorff space with a countable open base. This is
metrizable and separable. Every metric determining the topology is

complete.

U, A locally compact Hausdorff space with a countable open base.

This is homeomorphic with an open subset of its one point compactifi-

cation, which is Polish by:;.
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1.5 The space C

Let C =C(I), I =[0,1], be the space of all real continuous

functions defined on I = [0,1]. We introduce a metric Py in C
by

(1) p,00y) = sup [x(t) - y(t)] (= max [x(t) - y(t)])-
tel tel

It is easy to check that p(x,y) satisfies the conditions of a

metric. The p-topology is often called the uniform convergence

topology in view of the fact that pu(xn,x) - 0 if and only if

xn(t) > x(t) uniformly in t e I.

Theorem 1. The space C = C(I) with the pu—topology is a Polish

space.

Proof. The metric Py itself is complete, because the limit func-
tion of a uniformly convergent suquence of continuous functions is
also continuous.

To prove that the space C with the pu-topology is separable,
we shall find a countable dense subset in C. A function p of

the form:

p(ti) =a;, 1=0,1,2,...,n

(2) . .
p 1is linear on [ti_l,ti]

1

(0 =1t,< <. b = Laq,8p..8, €R )

is called a polygonal function and is denoted by P{y }(a 3 If all ti
1791 |

and a; are rational, then Py Ya.} is called a rational polygonal
i i

function. The rational polygonal functions form a countable set T

and we can prove that T is dense in C using the fact that every

x € C 1s uniformly continuous.
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By 1.4 Theorem 5 and the above theorem we have the following.

Theorem 2. The space C with the topological o-algebra z?u(c)
relative to the Py topology 1s a standard Borel space.
For t fixed, the map e,: C > R defined by e, (x) = x(t)

is called the evaluation map at t. Since

lep (%) - e (3] = |x(¢) = y(&)]  p(x¥),

ey is continuous and therefore measurable ﬁ?_u(C)/Bl. The

oc-algebra on C generated by the sets
et_l(E), t eI, Ee B3

is called the Kolmogorov o-algebra on C, i?K(C) in notation.

Theorem 3. ﬂ?K(C) = B (c).

u

Proof. Since e _l(E) € é%(c) for E € aBl and t € I, it is

t ,
obvious that d?K(c) c #(c). Consider the balls:

B(a,r) = {x € C: p(x,a) {r}, aecC, r>oO.

Since every p-open set can be expressed as a countable union of
balls, 13u(c) is the o-algebra generated by the bélls. Let Q(I)
be the set of all rationals in I. Then
B(a,r) = n {xec: |x(t)-a(t)]| {r} e ﬂ?K(C).
teQ(I)
This implies that W3 (c) = W,(c).

Note. From now on we will write ¥Z3(C) for Z?K(C) = Bu(c)-

Theorem 4. The map e: I X C - RL:
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e(t,x) = x(t)
is continuous in (t,x) and so measurable 73 (1) ® 13(0)/431.

Proof. I X C dis obviously a topological space with the product
o-algebra and the topological o-algebra 423(I X C) is identical
with the product o-algebra % (I) ® B(C) by 1.1 Theorem 1.

e(t,x) is continuous in (t,x) by virtue of
le(t,x)-e(tg,x5) |  le(t,x)-e(t,x )| + [e(t,x5)-e(ty,%4) ]
i pu(Xﬁxo) + Ixo(t)_xo(to)i'

Generalization. The space C[0,») of the real continuous functions
defined on [0,») can be dealt with analogously: The metric

p(x,y) is defined by

8

2™ sup {[|x(t)-y(t)| N1},
1 otn

The pu—topology is called the topology of uniform convergence on

pu(X, y) =

™

n

compacts. 'All the theorems mentioned above hold true for C[0, »).
Similarly for C(-c, ).

In the above discussions we have considered real valued functions.
Similarly we can discuss the space CE(I) of all E-valued continu-
ous functions on I where I = [0,1], [0,») or (-»,o) and E
is a complete separable metric space with metric p. The only change
we have to make is that we should replace |x(t)-y(t)| by
d(x(t),y(t)). All the theorems mentioned above hold true in this
case. Similarly for the case in which E 1is a Polish space, because

E 1s regarded as a complete separable metric space with an
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appropriate metric p. There may be maﬁy such matrics but we can show
the pu-topology in CE(I) is independent of the choice of p. We
will prove this only in case I = [0,1], as the other cases can be
proved similarly with a slight modification. Suppose thatthis is not

true. Then we have

pligXg) >0 and phluxg) 2 €D 0

for some p and p' and some {x } < E. Then we have
p'(xn(tn), xo(tn)) > ¢ for some t_ . We can assume that t, tends

to some to. Since x 1is continuous,
px, (t,),%5(t0)) < plx (t,)sxa(t)) + plxg(tn)sxg(ty))
Copyxpxg) + plxg(t,),x5(t5))

> 0.
Therefore xn(tn) -> xo(to) in E and so
o (x, (8,4 (55)) > O.
Since xo(tn) > xo(to), we have
p! (x5 (t,)>x5(t5)) > 0.
This implies p'(xn(tn), Xo(tn)) - 0 in contradiction with

ot (x, (t,)s xo(t.)) > e> 0.
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1.6 The space D

1 is called a D function on

A function x: I = [0,1] » R
I if it satisfies the following three conditions:
(D.1) %i% x(s) = x(t) for every t € [0,1],
(D.2) %%% x(s) exists and is finite for every t € (0,1],

(D.3) %}% x(s) = x(1).

The space of all D-functions on I 1is called the space D on
I, D(I) or D in notation.

Every continuous function is a D-function and so C 1is
a subset of D(I).

A step function is called normalized if it 1is right continuous

in [0,1) and left continuous at 1. Every normalized step function
is a D function.
Every function of bounded variation normalized in the same

sense ig a D function.
Theorem 1. Every D function is bounded.

Proof. If a function x € D is not bounded, we can find a

sequence {tn] c [0,1] such that

(1) 1im X(tn) = w,

n
(2) either ty { ty < evr 0Tty > ty >
Then we have either x(t-) = « or x(t) =« at t=1im ¢t  in

contradiction with the definition of D functions.

Theorem 2. For x € D, the set

8 (x) = (b € [0,1]: [x(6)x(t-)] > ¢]
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is finite and so the set of all discontinuity points of x 1is count-

able.

Proof. If Ae(x) is infinite for some € > 0, we have

{tn} < A (x) such that |
t; (K eve 28 0o 8y >ty D > b
Then we can find {sn} c [0,1] with [x(tn)-x(sn)l > ¢ such that
s (b Csp Kt < >t o0 By > 81> ty > s, >... > t.

Then either l%% (x(s) or 1}% x(s) does not exist in contradiction
s s »

with the definition of D functions.
Remark. This theorem is an immediate result of Theorem 4 pelow.

Theorem 3. The 1limit of a uniformly convergent sequence of D

functions is also a D function.
Proof. Obvious by the definition.

Theorem 4. Tet x be a D function. For every € > O we can find
0 =s55¢< 8 <. s, =1 such that
[x(t)—x(si)i { ¢ on [Si’si+l)’ i=1,2,...,n-1.

(Then this inequality holds on the closed interval [sn_l,sn] by
the left continuity of x at 1.)
Therefore every D function can be approximated uniformly on

[0,1] by normalized step functions.

Proof. Since x is a D funection on I = [0,1], for every

u e [0,1] we can find &(u) = 8(u,e) such that

|x(t)-x(u)] < ¢ for t e [u,u+s(u)) N I
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and

|x(t)-x(u-8(u))| < ¢ for t e [u-8(uwu) N I.
Using the covering theorem we have

0,11 € U (uy-8(ug), uy + 0(uy)) (m )

Let s, < 81 << s, be the rearrangement of the points

U.

5> (ui—é(ui))\/o, (ui+6(ui))A 1, i=1,2,...,m.

Tt is obvious that sy =0 and s = 1. Since [Si’si+l) is
included either in some [ui~6(ui),ui) or [ui,ui+6(ui)), we have

Ix(t)—x(si)[ (e on [sy;sy 1)-

The Skorohod topology. As in the case of C(1I), we can define the

supremum metric p(x,y) = suptellx(t)—y(t)l for x, y € D. This

metric determines the uniform convergence topology in D. However,

this topology is too strong for many purposes. In fact D 1is not
separable with respect to this topology, because the set of the
indicators i of [0,a), 0 a1 is an uncountable subset of D
and we have p(ia:iﬁ) =1 for o # B- A more natural topology with
respect to which the space D 1s Polish was introduced by A. V.

Skorohod [1l] and is called the Skorohod topology in D.

Let us now define the Skorohod topology. Let & be the set of
all strongly order preserving map from I = [0,1] onto itself.
Every map ® € & is a homeomorphic map. & 1is a group with respect
to the composition of maps. The identity map i plays the unity in
the group &. It is obvious that & < C < D. For © € D the trans-
formation x > x ¢ ® is 1-1 from D onto itself and preserves

the supremum metric p(x,y) introduced above, because ¢ is a 1-1
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map from I onto itself. Write o(®) for p(¥,i) where ® € &.

It is easy to verify the following properties for o(®):
(0,1) 0 o(w) < 1.

(0,2) o(e) = 0 if and only if & = 1i.

(6,3)  o(@™) =o(®).

(o,4) o(pet) L a(e) + o(¥).

Define the Skorohod metric pS(x,y) in D by

pg(x,¥7) = inf [p(x,ye0) + o(®)].
wed

Using the above properties of o0(®) we can easily check the conditions

of a metric for Pgq except the property of separation:

I

pS(x,y) O = x =y which will be proved below. Suppose that

ps(x,y) = 0. Then we have ¢ € & such that p(X°mn,y) - 0 and
c(wn) - 0. Therefore y(t) = %ig x(wn(t)) and %ig wn(t) = t.

This implies that y(t) = x(t) outside the discontinuity points of

x that form a countable set by Theorem 2. Since both x and Yy are

right continuous in [0,1) and left continuous at 1, we have

x(t) = y(t) everywhere.

The Skorohod topology is defined to be the pS—topology. Roughly
speaking, y 1s said to be close to x 1in the Skorohod topology if
we can make v(t) be uniformly close to x(t) Dby little deformation

of the t-scale.

Theorem 5. The Skorohod topology is strictly weaker than the uniform

convergence topology.
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Proof. Since 1 € &, we have ps(x,y) { p(x,y). Therefore the
ps—topology is weaker than the p-topology. Let ia be the indicator
of [0,a) (0< a< 1). Then pS(ia’iB) { |a-B|, because if @

is the polygonal function P{0,a,1}{0,8,1) (see 1.5), then

ige = 1, and o(¢) = |a-B|. Therefore limg ., pS(ia’iﬁ) = 0,

while p(ia,iﬁ) =1 for a # B. This shows that the pg-topology

is strictly weaker than the p-topology-.

Theorem 6. The following functionals on D are continuous with

respect to the Skorohod topology:

fl(x) = sup x(t), fg(x) = inftx(t), f3(x) = supt|x(t)[,
£ (x) = sup (x(t)-x(t-)), f5(X) = inf (x(t)-x(t-)),
fe(x) = Suptl(X(t)-X(t-)l-

Proof. Suppose that pS(Xn’X) > 0. Then we have @ € & such that
yn(t) = xn(ﬁn(t)) converges to x(t) uniformly in t. Then

fj(yn) -> fj(x) for every Jj. It is obvious by ¢ € & that

fj(yn) = f.(x_). Therefore fj(xn) > fj(x) for every J.

J n

Theorem 7. The space D with the Skorohod topology is separable.

Proof. Let T be the set of all normalized step functions on I
whose values and jump points are all rational. I 1s obviously
countable. We will prove that T 1is dense in D. Let x be an
arbitrary function in D. Then for € > O we have a normalized

step function y with p(x,y) { € by»Theorem L. We can assume that
Ng takes only rational values. Let (0 =858y <o 8, K sy =1)
be the jump points of y. Let O =ry < ry <. r < rq =1

be rational numbers such that |ri—sil { € and write ¢ for the
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polygonal function pg. 3[8'3. Then ® € & and o(®) < €. Then
i i

z = y°® Dbelongs to T and

ps(z,x) < p(zﬂp ,x) + oY= p(v,x) + o(e) < 2e.

This completes the proof.

The Billingsley metric. The Skorohod metric in D is not complete,

as is seen by the following example. Let X, = ll/n’ where i, 1is

the indicator of [0,a). Then x,) { |1/m - 1/n| as we have

pg(x
seen in the proof of Theorem 5. Therefore {x 1 1s a pg-Cauchy
sequence. But there is no x € D such that pS(xn,x) - 0. Suppose
that there exists such x. Then xn(wn(t)) - x(t) for some

¢, € & with lwn(t)-t[ { i/n. Then xn(wn(t)) =0 on (2/n,1].

Therefore x(t) = 0 on (0,1]. Since x 1is right continuous at

0, we have x(0) = 0 1in contradiction with
x(0) = lim x, (¢ (0)) = lim x,(0) = 1.

The Billingsley metric in D that will be defined below

Py
is a complete metric determing the Skorohod topology. Let I be the

set of all ® € ¢ for which

0 ¢ inp 8(0)(8) ¢ oo O(E)0(s) ¢

t#s t-s t#s t-s

Define pB(®) by

B(®) = sup |log c—P—(-Jg’--l-ﬂ-iﬁll, ® e d.
t#s t-s

Then pA(®) has the following properties:

(B,1) 0 < B(w) { =.
(B,2) B(®) = O if and only if ® = i.
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(B,3) B(9) { « if and only if @ € ¥.

(B,4) B(e™h) = B(v).

(8,5) B o%,) (o)) + B®,)-

(B, 6) oB(e), < w(t) < B®)

(8,7)  ole) ¢ P®) - e F®) cupe) 15 o) (1.

(B,2), (B,3), (B,4) and (B,5) show that { 1is a subgroup of §&.
The Billingsley metric pB(x,y) is defined by
pB(X,Y) = inf [P(X,Wlb) + B(¢)]°
Vel
It is easy to check that PR satisfies the conditions of a metric.

Theorem 8. The pB-topology is identical with the Skorohod topology.

Proof. Since both are metric topologies, it is enough to show that

”pB(xn,x) - 0" and "pS(xn,x) - 0" are equivalent.

If pB(xn,x) ~> 0, then we have V¥ € y such that

p(xn°¢n,X) > 0 and B(wn) > 0.
Then c(wn) >0 by (B,7). This implies ps(xn,x) > 0.
n

Suppose conversely that pS(Xn’X) - 0. Then we have ®_ € &

such that
p(xn°¢n,x) > 0 and c(¢n) > 0.
By Theorem 4 for e > O we can find a normalized step function Yy
such that p(y,x) { ¢. Suppose that |
yv(t) = a; on [Si—l’si)’ i=1,2,...,k where 0 = s, 4 sy <...<sk = 1.

Let be the polygonal function p . Then V{_ € 3
{Si}’{cpn(si)} n

n

and

¢ (s5)-%, (s;5_ 1)
B(Y,) = max |log — ! Ak L8
1{i<k ®17%1-1
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)-s. | {o(g,) >0 as n > « we have B(wn) > 0.

Since |cpn(si :

Observe
pxpob,x) Lplxpev ,y) + p(yx),
plx o¥,,7) < max sup |z, (b (£))-asl, Iy = [s;,48;)

{ max sup %, (t)-ay |

1 tewn(Ii)

= max tescpf(xi)lxn(t)'ai] (by ¥, (s5) = @, (s4))

= max su X t))-a.
2 te%’i' (e ())-a, |

= P(Xn°¢n;Y)
é p(Xn°$n:X) + P(X,Y):

and so

plx oV ,x) oplx o0 ,x) + 2p(x,v).

Then we have

lim sup p(xnown,x)  2p(x,y) < 2e.

n-—»oo

Since € 1s arbitrary, we have l%m p(xn°¢n,x) = 0, which implies

pp(xx) plx ¥ ,x) + B(V,)) > 0 (n>w).
This completes the proof.

Theorem 9. The metric in D dis complete.

PB

Proof. Let {xn] be a -Cauchy sequence. We will prove that

Py
p(xn,x) - O for some x € D. With no loss of generality we can

assume that

pB(Xn’Xn+l) 2™, n=1,2,...



-35-
Then we can find wn € §J such that
(1) plxgox,qo¥,) < 2 and (2) B(y,) < 27"

Set Yoon T L A R (m > n). Then we have

-1

P(‘l’m’ n’ ¢m+l,n) = p(i: ¢m+l)
- 0(¢m+1)

< upy ) 2T

Therefore en(t) lim n(t) exists and the convergence is uniform

m—oo m)

in t for each n. Since wn m € U, en is non-decreasing and
s

continuous. It is obvious that en(o) = 0 and en(l) = 1. But

( )- ¢ m
-n+
|10g men UPE wn) < EBly) <27
t-8 k=n
for t # s. Letting m = o, We have
(t)-6,
+1
1o -2 Bt ¢ 42,
t - 8
which implies that
-(n+1
(2) 6, €1 and 5(en)g2( )—>o.
Observing
-1 oo 1 oo
0 (1,1 (6)) = Lim v (n,7H(B)) = 1 vy L (8)
- en+l(t)
° -1 =
1-€ en 11Jn en+1’
we have
(-] —l = ° —l‘ (-] L] —l
p(xn en > Xppq® n+l) B p(xn en > Xntl wn en )

= p(xn’xn+l°¢n) < 2
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by (1). Then we can find x € D such that
(3) p(x_26875x) > 0
n n’ :

Thus we have pB(xn,x) - 0 by (2) and (3).

Theorem 10. The space D with the Skorohod topology is Polish.

Proof. D 1is separable by Theorem 7 and completely metrizable by
Theorems 8 and 9.

Let z?S(D) denote the topological o¢-algebra on D relative
to the Skorohod topology. By the above Theorem 10 and 1.4 Theorem 5

—

we have

Theorem 11. The space D with Z?S(D) is a standard Borel space.

The Kolmogorov o-algebra "ZBK(D) on D. Let

D = D(T) - RT

ey: (I = [0,1]) ©be the evaluation map: et(x) = x(t).

The Kolmogorov o-algebra zﬁdrﬂ on D is defined to be the

o-algebra generated by

1y,

e, N(E); t e [0,1], E ¢ B(R

t

We will prove the following important fact.

Theorem 12. ‘Z?K(D) = 15;(D).

The proof is not as easy as that for the corresponding fact on
the space C (1.5 Theorem 3). We shall need some preliminary facts
for the proof.

Theorem 13. The map e: (t,x) > x(t) from I x D into RY is

measurable 73 (I) x ZS%(DL/ZB(RI).
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Proof. Set en(t,x) = x(en(t)), where

_ [nt]+1
6, (t) =+—=—n1
Then
i i-1 i
en(t,x) = X(H) for t e Ini = [—ﬁ_’ﬁ)
= - rh=Li I
= x{1) for t e In,n = [—E_’n]

and therefore ¢ is measurable B(1) x 72%(D)/Z?(Rl), because

n -1
= I . E).
E) igl n, X €5 /n (E)

Since en(t) t as n > » we have €(t,x) = lim en(t,x). There-

fore € is also measurable W3(I) X sz(D)/zgl.

Theorem 14. If a: D > I is measurable 'ZgK(D)/dZ(I), then

e(a(x),x) is measurable ZgK(D)/ZQ(Rl),

i

(a) x > x(a(x))
and

(b) for € > 0O

inf{t: 1> t> a(x): |x(t)-x(a(x))]| > €}

x > B(x)
(=1 4if there is no such t)
is measurable &gk(D)/QB(I).

Proof.

(a) x > (a(x),x) is measurable 73 ,(D)/B(I) x Tr(D) by 1.1

m—
—

Theorem 5 and (t,x) = e€(t,x) is measurable

13(1) X ﬂgk(D)/Zg(Rl) by the previous theorem. Then their composi-
tion x - e(a(x),x) is measurable “ﬂgK(D)/Eg(Rl).

() 1f |x(t)-x(a(x))| > e, then for every & > O we can find a

rational r € [t,t+8 such that |x(r)-x(a(x))| > €. Therefore
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we can restrict t +to rationals in the definition of pB(x). This

implies
{x: B(x) ¢ s} = U {x: > alx)x(r)-x(a(x))] > €}.
r rational
r { s

x > x(a(x)) is measurable 72&(D)/23(R1) by (a) and x = x(r) is
measurable Z;K(D)/dgﬂgﬁ be the definition of ﬁgk(D). Therefore
the above set belongs to égK(D).

Now we will return to the proof of Theorem 12.

Proof of ZgK(D) c ZBA(D). For this purpose it is enough to prove

that the evaluation map et(x) = x(t) dis measurable ZBE(D) for
every t. Since x( € D) is right continuous at t € [0,1) and

left continuous at 1, we have

1 (t+e )AL
eg(x) = x(t) = Lin EL x(s)ds (0 < t < 1)
1
1 , _
a0 ¢ —[(l—e)\ll rsas (=)

Therefore it is enough to prove that

"B
IQB(X) =ja x(s)ds (0 a{ BXK ‘1)

is continuous in x with respect to the Skorohod topology. Since
the Billingsley metric determines the Skorohod topology, i1t is enough
to prove that pB(Xn,X) > 0 dimplies Iaﬁ(xn) -> IaB(X)' If

pB(xn,x) > 0, then we have 1V _ € § such that
p(x,»,x°¥,) >0 and B(¥, ) > O.

n’

Then we have

() T p(x)-Tog(xev )| L (B-a)p(xy,xe¥,) > O.



Observe
B
Typlxety) = [ x(uy(s))as
] -
- Jf n x(t)de (t) (9, = ¥, h
v (a)
1
S ARMOEOLNOE
where A~ is the indicator of the interval [wn(a),wn(ﬁ)]. Since

Bli)  -Bly)

lv, (8)-t] {ol) (e 0

for every t, An(t) converges to the indicator A(t) of the inter-
val [a,B] except possibly at t = a,B. Since B(%,) = B(¥ ) > 0,

we have

)
0< e = t—sn e M w (t#£5s).

This shows that @n is absolutely continuous and

Ble) 8(e,)
e §.¢n (t) C e a.e.

Therefore mn'(t) >1 a.e. (n~>w) by B(®,) > 0. By the bounded

convergence theorem we have

l 1
(5) T B(X°¢n) = j; Kn(t)x(t)wn (t)dt

»lj'l At)x(t)dt = Iaﬁ(x).
0

It follows at once from (4) and (5) that Iaﬁ(xn) > Iaﬁ(x)°

Proof of ﬂg;(D) c 18

K
ized step functions with rational jump points and rational values.

(D). Let E be the countable set of all normal-

If we can construct a sequence of maps fn: D » E such that
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(1) pglf (x),x) >0 (n > =) and

(ii) f;l(a) € ZS%(D) for every a € E,

then the ball B.(b,r) = {x € D: pS(x,b) { r} 1is expressed as

S(

N {x e D: ps(tn(x),b) < E%i T}

B.(b,r) = U U
m k QZK

S

I

UU N {xeD: £ (x) e E)
m k nmpk n(x) m

where Em is the countable set of all a € E with

po(a,0) < (m-1)r/m. Since £ Y(a) ¢ B (D), t7H(E,) ¢ B, (D). Tnis
implies BS(b,r)eﬁK(D). Since 758(13) is generated by the balls
Bs(b,r), b €D, > 0, we have 88(]3) c ﬁK(D).

It remains only to construct {fn] ‘with (i) and (ii). Fix n
for the moment. We will define ck(x), k =0,1,2,... by induction.
Set
x) =0

inflt: o, (x) <t {1, |x(t)-x(o,_(x))] > £}.

O(
o, (x)

Define ck(x) = 1 if there is not such t. Since x € D, we have

m = m(x) { » such that cn_l(x) {1 and cm(x) = 1. Then we have

N

0 = GO(X) < cl(x) (.. < cm_l(x) < cm(x) =1, m = m(x).
Take the smallest p = p(x) for which

p>n end < in (030005 ()

and‘set
[po, (x)]+1

x) = 0, Tk(x) = 5 , k=1,2,...,m-1

and
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Then 0 = To(x) < Tl(x) (oK Tm(x) = 1 and
ITK(X)-ck(x)l g_%, k=0,1,...,m. As all ck(x) are measurable
dBK(D) in x by Theorem 14(a), so are m(x), p(x) and all

Tk(x).

Notice that ok(x), m(x), p(x) and Tk(x) depend on n.

Define gn(x) € D and fn(x) € E as follows:

(g, (x))(t) = x(0,_,(x)) for t e [0, (x),0,(x)), k=1,2...,m

- X(°m~l(x)) for + =1
[nx (o, 1 (x))]
(£,(x))(t) = el for toe [T, (x),T.(x)), k= 1,2,
[nxo . (x)]

= for t =1
n

|

Using the polygonal function @ = p{c }{T ) € &, we have
k k
2
o (£, (x), 8. (x)) C p(f, (x)e0) + o(®) < &

By the definition of ck(x) we have

ps (8, (x),x)  ple, (x),x) { £

Therefore pS(fn(X)’X) < % >0 (n = o).
For completion of the proof it is enough to show that

fn_l(a) € ﬂgK(D) for every a € E. Suppose that a(t) = Qps Qs+ o -
or o, according as t € [o,tl), [tl,tE),..., or [tq_l,l]. If all
_l(

of noy, k = 1,2,...,9-1 are integers, f a) 1is the set of all

x € D satisfying the conditions

and
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Since m(x) and Tk(x) are measurable ng(D) in x and
X(Ck_l(x)) are all measurable ng(D) in x, by Theorem 14(b)

we have fn—l(a) € ZBK(D). If at least one of na, k =1,2,...,q-1

k)
is not an integer, fn_l(a) =g € ig%(D).

The space C 1s a subspace of the space D. The space C 1is

endowed with the uniform convergence topology Tu and the space D
is endowed with the Skorohod topology TS'

Theorem 15. C is cloged in D and Tu is identical with the

relative topology in C induced from Tg in D.

Proof. Using the functional f6(x) in Theorem 6, we have
C = f6_l(o). Since f6 is continuous in D, C 1is closed in D.
For the proof of the second part it is enough to show that

p(xn,x) - 0 and, (xn,x) - 0 are equivalent for

Ps
X{sXp, -++,X € C. Since 1 €3, pS(xn,x) g_p(xn,x). Therefore
p(xn,x) - 0 implies pS(xn,x) > 0. Suppose that ps(xn,x) > 0.
Then we have ® € & such that p(xn,xomn) > 0 and c(wn) > 0.
Since x(t) 4is uniformly continuous on [0,1] and since

¢n(t) - t uniformly on [0,1] by c(wn) - 0, p(X°¢n,x) > 0.
Therefore p(xn,x) - 0. This completes the proof.

Generalization. As in the case of the space C, we can consider the

space D[0,x) of all right continuous functions with finite left
limit at every t € (0,o). It is a Polish space with respect to the

topology defined by the metric

PS(X,Y) = Q_H(PS(Xn,yn) n l)

™8

n=1
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where Xn(yn) is the restriction of x(y) to [0,n] modified at
n by xn(n) = x(n-) (yn(n) = y(n-)) and the metric pS(xn,yn) is
defined exactly in the same way as in D[O0,1]. Similarly for
D(=-e, ).
The extension to the case DE(I) in which I = [0,1], [0, =)

or (-w,o) and E is a Polish space can be discussed exactly in

the same way as in the case of C.
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1.7 The space M of canonical measurable functions

~

Let T be the closed unit interval [0,1] and M = M(I) the
space of all real measurable functions defined a.e. on I. Whenever
we consider the space M or a subspace of M such as Lp(I), we
identify two equivalent (= equal a.e.) functions in M. Therefore
M is the space of equivalence classes rather than the space of
functions.

The spaces C(I) and D(I) are subspaces of M. Since C(I)
and D(I) afe spaces of functions and M is a space of equivalence
classes, the above statement needs some interpretation. Let E(I)
be the set of all equivalence classes in M represented by functions
in ¢(I). By continuity of x in C(I) two different x,y € C(I)
determine different equivalence classes in M. Therefore the
natural correspondence C(I) = C(I) is 1-1 and we can identify
T(1) with C(I). It is in this sense that C(I) is regarded as a
subspace of M. Similarly for D(I).

To do without such an interpretation, we will pick up the most

regular (in some sense) function, called a canonical measurable

function, from each equivalence class and consider the space
M = M(I) of all canonical measurable functions instead of M.
Then we have

c(I) € (1) < M(I)

in the naive set-theoretical sense.
Before defining canonical measurable functions we will review

the classical notion of approximate limit.
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Definition 1. ILet x be a function in M and t a point in

(0,1). If for every neighborhood U of a we have

m(x"T(U) N [-eq,t4e,])
(1) tim m[t-e,, 5+, ] =4
€158,V0 1’772

then we call a the approximate limit of x(s) as s - t,

a-lim_ _.x(s) in notation.

s>t

Note that such a 1is unique if it exists. Suppose (1) is

true for a = a; and ag(al # ag). Take neighborhoods U; = Ul(al)
_ _ -1 -1 ~

and U, = Ug(ag) such that U; N U, = @. Then x (Ul) n x (Ue)-—ﬁ

and therefore (1) holds for U = Ul and U2 and so we have

y m((x"l(Ul) u x'l(Ug)) N [t-ep,t+e,]) .
im =2,
Cl, €2¢/O m[t_el)t+€2T

but the ratio must be always g.l. This is a contradiction.

For t € [0,1) (or (0,1]) we will define the approximate right

limit  a-lim_, . x(s) (or the approximate left limit a-limsftx(s))

by restricting e, (or e2) to be identically O in (1).
It is easy to see that a—limsétx(s) exists if and only if
both a-lims¢tx(s) and a-limsTtx(s) exists and take the same value.

Corollary. If x =y a.e., then

a-lim_ _,x(t) = a—limséty(t),

s>t

i.e. if one of the limits exists, then the other one exists and both
limits are the same. Similarly for the approximate right (or left)

limit at t e [0,1) (or t e (0,1]).
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Proof. Obvious by the definition.

Theorem 1. All the three approximate limits exist a.e. on I and

are equal to the original value x(t) a.e. on I.

Proof. It is enough to find a set I' with m(I - I') = O such

that a-1lim_ _.x(t) exists and equals x(t) for every t e I'.

s>t
Let {ak} be a countable dense subset in I. Let Unk be the
. _o-1 .
1/n-neighborhood of ays Ink = x (Unk) and I % the set of all
t € Ink for which
m(I N [t-e,t+e,])
1im nk 1 2 - 1.

m[t-€,,T+e ]
el,€2¢0 1 2

By the density theorem we have

m(I . - TI! = 0.

nk nk)

Since ﬁ I 1s the same as the set () of all t for which

x(t) is defined, we have

m(I - g Ink) = 0.
Therefore m(I - U I'.) = 0 and so
k "nk
m(I - N U I! = 0.
( n k nk)

Setting I' =N U I we have m(I - I') = O.

1
n k nk’

We will prove that a-1lim___.x(t) exists and equals x(t) for

s->t

every t e I'. For t e I', we can find Iﬂ,k(n)’ n=1,2,...

such that

1 —_
t EIn,k(n)’ n"l,g,oo' .
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Then it holds that

-1
. m(x (Unk(n)) n [t"el:t+€2])
(2) lim m[t-€.,t+e,] = 1.
el,e2¢o 1’ 2
3 1
Since t e In,k(n) c In,k(n)’ we have

x(t) € Un,k(n) and so |x(t) - ak(n)l < 1/n.

Therefore Un X (n) is included in the 2/n-neighborhood of x(t).
b4

For every neighborhood U of x(t) we can find Un k(n) < U by
2

taking n big enough. Then we have

m(x"H(U) N [t-eq,

m[ffcl,t+e§T

t+e2])

1lim inf
el,egﬁo

> lim
el,eEWO 1

=1,
t+62T

which implies that a—lins¢tx(t) exists and equals x(t).

Theorem 2. a-lim x(s) = a
s>t

if and only if

t+e
1 2
(3) Lin e [ 7 etxte)a)as = o
€15 €5 0 1 "2 t-el
where p(a,b) = |a-b| A1l. Similar facts hold for the other

approximate limits.

Proof. Iet U, be the m-neighborhood of a (0< n< 1). Then
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t+e m(x‘l(uh) N [t-e,t+e

2 .
€ 1e j[ p(x(s),a)ds > n(1 - ATEeTee,T

t-e,

5]

m(x_l(Uﬂ) N [t-el,t+62])

+(1 -
<l m[E-e;, 5+ ,]

from which our theorem follows at once.

Definition 2. For Xx € M we define the canonical modification

xc(t) as follows:

a—lims¢tx(s) (0< t< 1)
() x, (£ -
a—limsrlx(s) (t = 1)

if this 1limit exists and xc(t) is undefined elsewhere.

By Theorem 1 xc(t) is defined a.e..on I and equals x(t) a.e.

on I. Therefore X, belongs to the same equivalence class as X.

If x and y Dbelongs to the same equivalence class, i.e. x =y a.e.,
then Xo = Voo i.e. X and v, are defined on the same set and

take the same values on the set. Since X, = X a.e., we have

(xc)c = Xq- In view of this fact we define the canonical measurable
functions as follows.

Definition 3. If x = X, then x 1is called a canonical measurable

function.
Then we have one and only one canonical measurable function in
each equivalence class.

If lims*tx(s) exists, then a-lim_ ,x(s) exists and these

sdt
limits are equal. Similarly for 1ims¢tx($) and a—lims¢tx(s).
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Therefore all functions in D = D(I) and so all functions in
C = C(I) are canonical measurable functions. Thus we have the

following.
Theorem 3. C &Dc M

Now we will topologize M = M(I) by the metric

P (X5 ) =f p(X(t),y(t))dt., pla,b) = Vla-bl/\l.
T

It is obvious that pm(x,x) = 0 and pm(x,y) = pm(y,x). Since

pla,b) + p(b,c) > p(a,c), we have

P (x55) + o (v,2) 2_ Py (x5 2).

If pm(x,y) = 0, then x(t) = y(t) a.e. on I. Therefore
X =X, =Y, =V by virtue of Xx,y € M. This proves that P
satisfies all conditions of a metric.

Since for 0< n< 1 we have

nomit: [x(t)-y(t)| > n}  py(x,y) <+ mlt: [x(t)-y(t)] > n}

the pm—topology is identical with the topology of conveyence in

measure.
The topological O-algebra in M (with respect to the pm—topology)
is denoted by GEh(M)‘

Theorem 4. The space M with the pm—topology is a Polish space

and therefore a standard Borel space with CE%(M).
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Proof. First we will prove that M 1is separable. Let A be g

countable dense subset in Rl and A the set of all functions
€:T > RT of the following form:
E(t) = a; on [ri_l,ri) (1< i< n-1)

= a on [rn_l,rn],

where a; € A, ro is rational for every i and

0 =1, < ry < ... < r = 1.

A is obviously a countable subset of M. We will prove that A
is dense in M. It is enough to prove that for x e M and € > 0

we can find & e A such that pm(x,a) { 5e. Write I, for the

t-set:
p(x(t),ai) > € for i< k
and
p(x(t),ay) < e.
Then I, k =1,2,... are disjoint, p(x(t),ak) { e for t € Ty

and g Ik is the set where x i1is defined, so that

m(I - U I,) = 0.

)
Kk k
Take K = K(e) such that m(I - Uﬁ;llk) { e. A set expressed as a
finite disjoint union of rational intervals of the form

[r,r') (0 r< r 1) or [r,1] (0 r< 1) will be called an

elementary set for the moment. We denote by é? the class of all

elementary sets. Since Ik is measurable, we can find JR € éf

such that
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m(1, 8 J,) < ¢/K°, k = 1,2,...,K, A8B = (A-B)U(B-A)

Since Ty NI,.=@g for k # j, we have

m(Jk 9 Jj) = m((Jk N Jj) ) (Ik N IJ))

{m(I 0 1,) +m(3; 0 1) < 2e/K

Set
k-1
L=, - jg (3, N 3,) e E.

Then ko1

m(J, © J) < E: m(Jk n Jj) { 2¢/K

J=1

and so

m(Ik ] Jk) < m(Ik 8 Jk) + m(Jk ] Jk) { 3e/K.

Define §& by

E(t) = a, on J, k=1,2,...,K

= ag (any fixed point in rl, say 0) elsewhere.

Since Jk

e &, it is easy to check that & e A.
Observing
m(I - U I, n Jk)
k
{m(I-VI)+Zm(I 6dJ)
Kk k Kk k k

G +-%§ - K = le,
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we obtain
K

pp(x,8) = E: ‘[ p(x(t),a,)dt +~J[ p(x(t),8(t))dt
I-U
k

k=1 IkﬂJR IkﬂJk

Ce+m(-UL nagg)dse.

This completes the proof of separability of M.

Second we will prove that Py, 1s a complete metric. For
. cp s ( . -P
this purpose it is enough to prove that if pm(xp’xp+1) { 27%, then

we have x € M such that pm(Xp,x) - 0 as p > o, Observing

[ 2 oty (0,3, ()00t = 5 o) < L,
TP p
we have

z p(X

. (t),Xp+l(t)) { » a.e. on I,

p

so that

Py (8153 (8)) < ) plge(),myy (8))
k>pag

> 0 a.e. on I
as p,q > o, and so

lim |x_(t) - xq(t)I =0 a.e. on I.
D, Q=

Then we can find x € M such that

lim |x_(t) - x(t)] = 0 a.e. on I.
pre D
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By replacing x Dby its canonical modification, we have x € M with

the above property. By the bounded convergence theorem we have

1im pm(xp,x) lim f lxp(t) - x(t)] A1 at
p->eo P <

Il

j 1lim [xp(t) - x(t).lAl at = o.
T P |

We have already seen C &€ D M in Theorem 3. Now we will

prove the following.

Theorem 5. C,D e @ (M), @u(c) =c N @m(M) and @B4(p) = DN @m(M).

Therefore

&
[3)
I

{(A:h e, A e @m(M)}

{A:hcD, A e @m(M)}.

£
g
Il

Proof. Since we have proved C e dgé(D) and Ggu(C) =Cc N GEB(D)
in ;éngheorem 15, it is enough to prove that D € dgﬁ(M) and
@4 (D) =D N @n(M). We will write JL)(x) for the set where x(e M)
is defined. It is needless to say that m(I - g)tx)) = 0.

First we will make two small remarks.

(1) If t € JD(X), then we can find an arbitrarily small rational

interval J containing t such that

by [ plxle)x(e))as
J

is arbitrarily small. This follows from the definition of canonical
measurable functions, the second part of Theorem 2 and the fact

that the above quantity depends continuously on the end points of J.
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(2) If t,s e £JXx), then we can find arbitrarily small rational

intervals J 3t and K 2 s such that

HT%'E(T{T ffp(X(u),x(v))du dv
J K

is arbitrarily close to p(x(s),x(t)). To prove this, observe

lm f fp(X(u),X(V))du av - p(x(s),x(t))]
J K

lp(x(u),x(v)) - p(x(s),x(t))bldu dv

J
< : f f [p(X(u),X(s)) + p(x(v),x(t))]ldu av
J 'K

=gy [ elelahxleNan + gy [ ple(a),x(e))av

J K

and use (1).

Let us consider the supremum Np(x) if the number n for

which

(3) there exist ©2n points S1stqs850tns a8t € JD(X)

such that

0 s7< < .. < s <t <1
and

p(x(s;),x(t,)) > 1/ps 1 = 1,2,... n.

The condition (3) implies the following condition by the remark (2):

(4) there exist 2n rational intervals J’l,Kl,...,Jn,Kn < I such

that
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Jl< Kl< J2< K2< .. < Jn< K,

and .

] |
m(J, Jm(K;) é f p(x(s)sx(v))du dv > 1/p,
1

K.
1

i=1,2,...,0,

where J < J' means that the right end of J is smaller than the
left end of J'. Conversely if (4) holds, we can find
5; € D) n Js, and ty € E(x)ﬁKi, i=1,2,... for which we have

p(x(si),x(ti)) > 1/p. Therefore (3) and (4) are equivalent.

Now we will prove that Np(x) is measurable Gsm(M) in x,
namely that the set {X:Np(x) > n} belongs to Gsm(M). This set
is characterized by the condition (3) i.e. (4). The system of
rational intervals Ji,Ky,...,J ,K ~ with Jl< K, < J2< K2< ... < Jn< K,
is obviously countable. Therefore for the proof that {X:Np(x) Z_n}

€ Ggm(M) it is enough to prove that

a(x) = Wff ()% (v))du dv

is measurable Ggm(M) in x. As a matter of fact, H(x) is

continuous in x, because we can easlily see that
| (x) |gmj y(u))du +mf x (), ¥ (v))dv

g.ﬁq%j Py (X5 ¥) +-ET%7 P (%5 7)

Thus the proof of measurability GBmKM) of Np(x) is completed.
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For the proof that D ¢ QBm(M) it is enough to verify the

following identity.

D. = {x:N_(x) < o}.

D
p’ °p P

(5) D =N
p
Suppose that x € D. Then we can find a normalized step

function xp such that

1
ig p(x(t),xp(t)) < 5

b
X € Dp for every p.

This implies that N_(x) < the number of jumps of X5 { o, so that

Supposing conversely that x e N Dp, we will prove x € D.
1Y

Take an arbitrary t e [0,1). Then

(6) b = lim x(s) exists and is finite,
syt
se f(x)

because if otherwise, we can find two sequences {sn} and {tn}

in &(x) such that 51 > tqy > S, > t, > ... >t and

p(x(sn), x(tn)) > 1/p for some p independent of n and therefore
we have Xx é Dp in contradiction with our assumption. K follows

from (6) by the bounded convergence theorem that
t+4€ 1

< [ p(x(s),b)ds =f p(x(t+es,b)ds > 0;
t 0

recall here that m(I - $(x)) = 0. This implies that t e L(x)

and

(7) x(t) =b =1im x(s)
svt
se O(x)
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Therefore [0,1) € J(x). Then (7) can be written as

(8) x(t) = 1im x(s).
st

Similarly we can show that (i) 1ims¢tx(s) exists and is finite for
s € [0,1) and (ii) 1 e x) and lim_p;x(s) = x(1). This completes

the proof of (5).

For cbmpletion of the proof of our theorem it is enough to show
that B4 (D) =D N @& (M). The right hand side is the topological
O-algebra in D with respect to the pm—topology in D and so we

will write it as G%JD).

If pS(Xn,X) > 0, then we have @ ¢ & such that
xn(t) - (x°@n)(t) - 0 and wn(t) > t uniformly in t. Then
(x°mn)(t) > x(t) at all continuity points of x. Since the
discontinuity points of x form a countable set, (x°¢n)(t) > x(t)

a.e. on I. Therefore
o (%) opp(xpxee) + pp(xo0 ;%)

- 0 (n > ).

Therefore the pS—topology in D 1is stronger than the pm—topology

in D. This implies that GSS(D) > & (D).

Since 63K(D) = <E€(D) by 1.6 Theorem 12, for the proof of
63>S(D) c dSm(D) it is enough to show that 63K(D) c (E%(D),
i.e. et(x) = x(t) is measurable dgm(D) in x € D for every

t e I. Since
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[ petshaas-[ ptlsdalasl < [ plels)wle))as < oy (v,
J J J

jr p(x(s),a)ds is pp-continuous and so measurable ng(D) in x € D

for every a € R°. Since _
b
o(x(t),a) = 1im n [ o(x(s),a)ds, +© e [0,1)
n->oo
t
1
= 1lim n ‘[ p(x(s),a)ds, t =1
n->eo 1
1-=
n
for x €e D and a € Rl, p(x(t),a) is measurable Ggm(D) in x
for every a € Rl. Let {ak} be a dense sequence in Rl and

define e%(x) to be the first a, such that p(x(t),ak) < 1/n.

Then e%(x) is clearly measurable ng(D). Since
p(x(t),e?(x)) { 1/n » 0O, et(x) = lim e?(x) for every x.

n->oo
This proves that et(x) is also measurable GEQ(D) in x € D.

Thus we have proved (E%(D) =<§3K(D) = GQQ(D), which completes the

prnof of our theorem.

Consider the map e, :x - x(t) and e:(t,x) » x(t). The
domain @(et) of definition of e, 1is the set of all x e M
for which x(t) 1is defined, while the domain of definition &) (€)
of € is the set of all (t,x) € I X M for which x(t) 4is defined.
The product space I X M 1is a topological space with the product
topology. The topological 0-algebra {S(I X M) is identical with

the product 0-algebra &yI) ® 63&(M) by 1.1 Theorem 1.
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The orem 6. Both et and € are Borel measurable. More precisely,
(a) for every t, S)(et) € Q%m(M) and et:£9(et) > rY is
measurable iD(et) n dsm(M)/QB(Rl)
(b) P(e) e 65(1 x M) and e:Q)(e) = RT is measurable

Oe) n Bz x u)/BER).

Proof. (a) follows from (b) by 1.1 Theorem 3. To prove (b), let

us observe the following functions:

£4+6
£g5(t,x,8) = = f plx(s),a)ds 0< t¢ 1-6
t
1
-1 [ elenadas as< e
1-€

f(t,x,a) = 1lim sup fé(t,x,a) = 1lim sup, fa(t,x,a)

840 n->o0 O<6<.ﬁ

and
f(t,x) = inf. f(t,x,a).
aeRl

Since p < 1 and since

|P(X(S):a) = P(y(s):b)l g_ p(X(S):Y(S)) + p(a,b),
we can easily verify
(l) Ifa(t’x:a) - fé(u:Y:b)l

{ 2lt-ul + % p (x,7) + pla,b).
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As special cases of this inequality we have

(1.a) 25 (t,%,8) - £4(uy,a)] { 2lt-ul +35 p,(x,¥)
and
(1.b) |f5(tyx:a) - fé (t,x,Db l é_ p(a:

By an obvious relation:

Ilirg‘bgup ®(8) - llrgwéup v(e)| llrgbguplco(ﬂ v(e) ],
we have
(1.c) If(f:X,a) - f(t,X,b)l ﬁ P(a,b)

by (1.b). Using

p(x(s),a) + p(x(s),b) > pla,b),

we have p(a,b) g_fé(t,x,a) + fa(t,x,b) and so

(2) p(a,b) < £(t,x,a) + £(t,x,Db).

fa(t,x,a) is continuous and so measurable @(I x M) in
(t,x) ¢ I x M for every & > 0 and every a € Rl by virtue of
(1.a). sSince fg(t,x,a) is obviously continuous in e > 0 for

(t,x,a) fixed, we have

f(t,x,a) = lim  sup fé(t,x,a).
N0 1
X &K=

6 rational
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This implies that f(t,x,a) 1is also measurable (I x M) in

(t,x) e I X M for a fixed.

By (1.c) f(t,x,a) is continuous in, a € R for (f,x) fixed.

Therefore we have

f(t,x) = inf f(t,x,ak),
k
where {ak} is a countable dense subset in Rl. This implies that
f(t,x) is measurable (B(I x M).
Now we will show
(3) (t,x) € e) <= t e Ox) &= f(t,x) = 0.

The first equivalence is obvious by the definition. Suppose t € iXx).

Then f(t,x,x(t)) =0 by x € M and so we have f(t,x) = O.
Suppose conversely that f(t,x) = 0. Then we have a sequence {bk}
such that f(t,x,bk) >0 as k » o. By (2) we have

lim p(bk,bh) < lim f(t,x,bk) + lim f£(t(t,x,b

)
K, h->oo K h h

1

Therefore we have b e R~ such that p(b,_,b) > 0 as k = «.

k’
Using (l1.c) we obtain

|£(t,x,0,) - £(t,x,0)[ { p(oysb) >0 (k> ).
Since f(t,x,bk) -0 (k> ), we have f(t,x,b) = O. This implies

t e D(x) and b = x(t) by the second part of Theorem 2 and the

definition of M. This completes the proof of (3).
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It remains only to prove the measurability of c:i)(e) > Rl.

~t

Let {ak} be a dense sequence in RT. Define en(t,x) to be the

first &y for which
f(t,x,ak)  f£(t,x) + 1/n.
Since we have above proved f(t,x) = inf f(t,x,ak), en(t,x) is well
k

defined for every (t,x). By the measurability of f(t,x,a) in
(t,x), it is easy to see that en(t,x) is also measurable (3(I x M)

in (t,x). Let €_ Dbe the restriction of €  to DN(e). Then

e I X M~ RT is measurable Ole) N B(T x M)/Gb(Rl). If (t,x)
e O(e), then t e Okx) and f(t,x) = 0, so that

f(t,x,en(t,x)) { 1/n and f(t,x,x(t)) =0 .

Using (2) we have
ple, (t,x),x(t)) < £(t,x, ¢ (t,x)) + £(t,x,x(t))
> 0 (n > w),

i.e. lim €
n

n(t:X) = X(t) = C(t,x).

This proves that €:I X M - Rl is also measurable De)n B(z x M)/(B(Rl).

Generalization. As in the case of C and D, the notion of M is

extended to the space ME(I) of canonical measurable functions with
values in a Polish space E. No change is necessary for such an

extension. The only cne point to be mentioned is as follows.



-63-
Let p be a metric in E bounded by 1 which determines the

topology in E. Then the metric p, 1in ME(I) is defined by

po(xy) = [ p(x(t),y(t))at.
fI

It should be noted that the pm?topology is independent of the choice
of p. Suppose that we have two metrics p' and p". Then
pﬁ(xn,x) > 0 implies p%(xn,x) - 0. Suppose that it is not the
case. Then we have a subsequence {yn} of {Xn} such that
pé(yn,x) > 0 and p%(yn,x) > ¢ > 0. By taking a subsequence again,

we can assume that p&(yn,x) < 2™, n=1,2,... . Then

[ =0ty e)x(e)as & pplyax) <1

II] n

and so p'(yn(t),x(t)) - 0 a.e. on I.
This implies that p"(yn(t),x(t)) > 0 a.e. on I. By the bounded

convergence theorem we have

(0% = [ 6" (r, (8),x(6))at > o,
I
in contradiction with p&(yn,x) > c.
If we take a complete metric p 1in E bounded by 1, then

py 1S @ complete metric in ME(I).

In case I = [O,w) or (-e,o), we need not make special
consideration about the right end point as we did for I = [O,1].

The pm—metric is to be defined by

o () = J; px(£),3(8)) =55
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1.8 The space ) of distributions

Let ¢% = Cw(Rl) be the space of all functions: RT = RT

that are continuously differentiable infinitely many times. The
support S(p) of o € ¢” is defined to be the closure of the set
{t:o(t) # 0}. The space of all functions e Cm(Rl) with compact
support is denoted by 29:= lD(Rl). ﬁD is obviously a linear space
with the usual scalar multiplication and the usual addition. We
will write @ > © (9,95, ...,9 ¢ L) if

(1) mgk)(t) é‘w(k)(t) uniformly in t for every k = 0,1,2,...

and
(ii) the closure of U S(wn) is compact.
n

A real linear functional x on <£> is called a distribution in Rl

if mn »>> O dimplies x(mn) - 0. The space of all distributions on
R is denoted by D' = ﬁ)(Rl). ' is clearly regarded as a
linear space in an obvious way.
Let J(a) be the space of all ¢ e L with support C[;a,a].
fﬂ(a) is clearly a linear subspace on iD. For ml,¢2,...,m €¢EXa),
®, > ¢ if and only if the condition (i) is satisfied, because

(ii) is automatic in this case. A real linear functional x on

L(a) 1is called a distribution on [-a,a] if ® > O implies

x(wn) - 0. The space of all distributions on [-a,a] 1s denoted
by iD(a)'. L(a)' is also regarded as a linear subspace in an
obvious way. If x € &', then the restriction x|H(a) of x to
O (a) velongs to (a)', but not every distribution on [-a,a]
can be extended to a distribution in (-e,w). &[0,») and jD[o,w)'

can be defined similarly.
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The Kolmogorov C-algebra QBK(jD') is defined to be the

O-algebra on JS' generated by the sets

{x e D:x(p)cl, oed, ¢« rl.

GSK(ib(a)') and GSKKJD[O,w)') are defined similarly. The purpose
of this section is to prove that o', f(a)' and [0,=)' with

the Kolmogorov CO-algebras are standard Borel spaces.

The k-th inner product ( , ), in D(a) is defined by

(9, ) = f o ) (£) 4 () (1) ax.

It 1s easy to check that (i) (9, V) is bilinear in (,¥) and

(i1) (¢,¢%£> O (¢ # 0) and (0,0). = O. J(a) 1is obviously a
pre-Hilbert space with the k-th inner product for each k. The norm
I[mllk = JT$T$7£ is called the k-th norm. The space J)(a) is
separable, because &)(a) is isomorphic with a subspace of LE(Rl)
by the map ¢ - m(k).

The space of all real linear functional on J£)a) continuous with

respect to the k-th norm topology is denoted by éD(a)é. Since

v, > O implies Ilmnllk > 0, ja(a)ﬁ is clearly a linear subspace
of ia(a)'. Using the Schwartz inequality, we can prove that
(1) loll < 2all ol for o e Hia).

This implies that

(2) &D(a)i c iﬁ(a)é < ...
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Define the (-k)-th norm |!x||_k of x e Pa)' by

(3) I xll = supll(e) s ] @l < 11

Ul may ve = but el < lxll o+ gl ana
HCXH_k = |c] |]x|]_k. Tt is also true that |x(®)] g_llxl[_k||¢||k.

Since 59(3) with the || !lk-topology is separable, we have a
countable dense set {o,} in L(a) ana lell_k is expressed as
(30) lall = swo  Ix(ey)]

n: |l e, 1<
Theorem 1. iD(a)g = {x e fXa)':I[xl[_k:< w}.

Proof. Suppose that x € &)Ga)'. Then x 1s a linear functional

in Ea(a), Therefore x 1is continuous with respect to the

I || x-topology if and only if x|l _ < e
Theorem 2. J)(a)' = U ib(a)ﬁ .
k

Proof. It is enough to prove that every x e ia(a)' belongs to
1

some ﬁb(a)k. Suppose that x £ éD(a)k for every k. Then we can

rind {g} © L(a) such that

(4) x ()] > (22)%F | @y ll o & = 0,1,2,...

Tt is obvious that llmkH # 0. Set

U L - .
Eo@a)® e ll, ¢




-67-

Then for k » n we have

S o, (2a) 5D —ken
v = £ 0 2 = (2a) (by (1))
el = e, & e T !

>0 (k> o), n=1,2,...

and so

1 1
2(t+a)2

t t
ey [ P s fas ¢ ([ (P (5)2a8)

> 0 (k> o) for t e [-a,a]

¢(n)(t) =0 for t £ [-a,a]l.

Therefore ¢én)(t) > 0 uniformly in t for every n. Since

x e Oa)', X(wk) - 0. But

(0, )| = - |x () |
T e el ok

> 1 (by (4)).

This is a contradiction.

Theorem 3. There exists an inner product ( , )—k in ¢9(a)£
such that (x,x)_, = || x|l . The space (a); with this inner

product is a separable Hilbert space.
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Proof. Since J(a) is a separable pre-Hilbert space with ( , )k’
we can find a complete orthonormal system {wn} by the Schmidt

orthogonalization method. Every element ¢ € .E}a) can be expressed

as
@ = E: 2, @, (convergence in || Ilk)
n=1
2 2 .
where I a° = ||m||k.< w. Observing
L on
2 2
x(0) 1% = (S ax(®))? T a2 x()? = lloll 5T x(e)?

for x € éD(a)k, we have
Il 2 < 2 ()%,

On the other hand, we have

= M3
m
SN

N N
2 2 2 )
|x(§ a @) 17 =l 2l z a @ Il = = Il xll 5

Setting a = X(@n) we have

x(9)°

N 2
(= x(9.)%) =l &

™M=

and so

N
2 2
(o) ¢ lxll 2

Letting N T o we have

Pt 2 2
E x(e)% Ml 2



Therefore we have

(5) E x(0,)? =l %l 2
Define (x,¥)_, Dby
(5) (x,¥) _y = ;Zo x (e )y (o).

It is easy to see that this satisfies all conditions of an inner
product and that (x,x)_, = |lx[|?k,
Since the space ;B(a)£ with the inner product ( , );k is

isomorphic with 12 by the map
frx > (x(9),x(w,)s000),

it is a separable Hilbert space.

!

Theorem 4. The topological O-algebra QS(ig(a)k) is identical

with the trace of QBK(ia(a)') to JSXa)Q.

Proof. Since for each ® ¢ jEXa) the map x - x(¢) 1s continuous

in x € iD(a)£ by

x(@)-y@) ] < eyl Il ol

the set {x ¢ O(a) :x(p) < ¢} 1is open in 'iD(a)k. This implies
that

O(a)y N B (D(a)') =« &(D(a)y).
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By (3') we have

)|

Il x=xoll _y = sup |x (@) - xg(e

n

and so the ball {x € }9(a)£:” X—XOH_k { r} Dbelongs to
JD(a)é N dbk(ib(a)'). Since 65(§3(a)£) is generated by such

balls, we have

AR (a)y) © Ha)y N B (D(a)').

Theorem 5. The Borel space (i)(a)',GSK(JQ(a)‘)) is standard.

Proof . D(a)' is the union of H(a)., k = 1,2,... . Since
Hxll_k is measurable GBK(iD(a)') by (3'), SD(a)k € GSK(ia(a)')

by Theorem 1. Since §9(3)£ is a separable Hilbert space, it is

Polish and so (iD(a)é,&S(iD(a)k)) is standard. But Qﬁ(ig(a)i)
is identical with the trace 0-algebra of QSK(SD(a)') on iD(a)i.

Now we can use 1.3 Theorem 5 to complete the proof.
Theorem 6. The Borel space (JD',GSK(ﬁa')) is standard.

o0
Proof. Consider the product space P = 1 ég(n)' and denote the
, n=1 \
product O-algebra ®n63KO£D(n) ) by"72 For every x € iD the

restriction x = x/ig(n) belongs to Hn)' and so
f(x) = <X1’X2"") e P.

The map f d1is obviously 1-1 from ij into P Dbecause every
® € & _belongs to some §D(n). Let § = (51,52,...) be an
arbitrary element in P. Then it is easy to see that § ¢ f(JD')

if and only if
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gn = %m/ﬁa(n) for n < m.
1
Let T, denote the projection from P onto JD(n) and Om the
restriction map from J4(m)' into On)', i.e. '

anm(gm) = gm/og(n): gm € S(m), n < m.

Then
(D" = {g ¢ P:(anm ° Wm)(i) = vn(g) for n < m}.

T iE > On)'  is clearly measurable fﬂ?@SK(SD(n)') and
anm;iﬁ(m)' > O (n)' is also measurable &5KC§>(m)')/(SK(§D(n)')
by the definition. Therefore Cm' T and T, are both measurable

m

7@/45KQE>(H)')- Since (ia(n)',gﬁKﬂfD(n)')) is standard, the set

(¢ e Pia, 7 )(8) =7 (8)}

anm n

belongs to 70 by 1.3 Theorem 6. Therefore f(&L)') € 75.

As (i§(n)',63K(&D(n)')) is standard by 1.3 Theorem 6 so is
(P,;Zﬁ by 1.3 Theorem 4. Therefore the space f(&') with the
trace O-algebra f( Q') N 70 is also standard by f(&)') e ;b.
It is easy to see that (f(ﬁD'),f(§9')f7)Z) is Borel isomorphic
with (S',@K(JS')). This completes the proof.

In the same way as above we can prove the following.

Theorem 7. The Borel space QQ'[O,w),QSK(ig'[O,w))) is standard.



Chapter 2. Basic Concepts in Probability Theory

2.1 Probability measures.
Let S 5.be an arbitrary space. A map u from a o-algebra
on
‘h1=‘7w(uf\ into [0,»] is called a measure on S or on M if it

satisfies the following conditions:

(u.1) u(g) = o,
(u.-2) (g-additive) u(UnAn) = I, H(An) for disjoint

A A2,,o., € M

l’

W is called a probability measure if u(S) = 1. A space S

endowed with a measure | on S 1s called a measure space

(S,u). If . is a probability measure, (S,u) 1is called a

probability spac?;:i:p

(ﬁé assume the reader to be familiar with the general theory of

measures and integrals. In this section, we will mention some
fundamental facts on probability measures which may not be found
in a standard text book on measure theory.

Suppose that S 1s a Borel space endowed with a g-algebra
zfon S. A probability measure uyu on S 1is called‘zf-regular

or regular on S = (S,zf) if it satisfies the following conditions:

(R.1) u 1s complete,
(rR2)  mw) =24,
(R.3) for every A € M(u) we have B € o such that BcA

and u(A-B) = O.

In other words a probability measure on S 1s called regular on

(S, of ) if it is the Lebesgue extension of a probability measure
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on,zf. Two (complete) Tregular probability measures on (S,Qf)
aré identical if they coincide on_gf, '
Haws .
Let S be‘hjtopo ogical space. S 1s regarded as a Borel

space with the topological g-algebre.éﬁ(s). Therefore we can de-

fine regular measures on S. We will define two stronger notions
of regularity, F-regularity and K-regularity. A probability meas-
ure y on S 1s called F-regular (or K-regular) if it satisfies
(R.1), (R.2) and (R.3):"for every A €/M(u) and every e O

we can find a closed (or compact) C = C(A,e) < A such that

u(A - ¢) < €". Every K-regular probability measure is F-regular

and every F-regular probability measure is regular.

Theorem 1. Suppose that every open subset of S 1s an Fo—set.
(For example, every metrizable space S has this property.)

Then every regular probability measure on S 1s F-regular.

Proof. Let A¢ be the class of all subsets A e @ (S) such that
for every ¢ > O we can find an open set G > A and a closed set
FcA with u(G-F)  e. It is easy to check that stis a g-algebra.
Since every open set belongs to 0t by the assumption, 6tincludes

B (s). This completes the proof.

Theorem 2. (Prohorov's theorem). Suppose that S 1s a Polish

space. Then every regular probability measure u on S is

K-regular.

Proof. First we will construct a compact set K = K(e) for

e > 0 such that u(S-K) < ¢/2. Let p Dbe a complete metric
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in S8 determining the topology in S. Let {al,ae,o,. 1 be a
countable dense set and denote by an the closed ball with center

ay, and radius 1/n. Then we have

m mn
Therefore we can find M = M(n) for every n = 1,2, ... such that
M(n)
u(s - U mn> < o-n-le,
™m=1
Set
M(n)
F = U B and K=nkt_.
n m=1 mn n R
Then

u(s-K) = w(y(s - 7)) < T uls - F < e/

Since every an 1s closed, every Fn is closed and so is K.
Since X is covered by B, m = 1,2,..., M(n) for every n,
K 1is totally bounded. Therefore K 1s compact as a totally
bounded closed subset of a complete metric space (S,P).

| Let A be an arbitrary Borel set in the class n(u). Since py
F-regular by Theorem 1, we can find a closed set F < A such that
u(A - F) < ¢/2. Let K' denote the intersection of ,; with the

compact set K constructed above. Then K' 1is a compact subset

of A and we have

is



u(a-k1) < yfA-F) U (A-K))

I\

u(A-F) + p(A-K)

uw(A-F) + u(s-K) < e.

I\

This completes the proof.

As an example of this theorem we have that every regular proba-

bility measure on R (n = 1,2,...,®) is K-regular.
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Let f be amap from S into T and 4 a probability
measure on S. Then the class 72' of all subsets B of T such

that f_l(B) e YN(u) is a o-algebra on T and

v(B) = u(£ (), B ¢,

defines a probability measure on T with 7(v) = “7/. The pro-

bability measure VvV is called the image measure of W by the map

f and denoted by f-u or u-f_l. If g is a map from T into

U, then we have
(gef)-u = g (f-u).

Let Vv Dbe the image measure of a measure W on S by a map

f: S > T, g a V-measurable real or complex function on T and Ba

v-measurable subset of T. Then gef and f_l(B) are 0l

5’”)1( (78

u-measurable and we have the following transformation formula:

f (go£) (x)u (dx) =f g(y)v(dy) .
#~1(5) B

The equality means that if one of the two integrals exists, then
the other exists and they are equal.
Let (S,u) Dbe a probability space and (T,JJ) a Borel space.

Amap f: S > T 1is called u-measurable if it is measurable

7%Ku)|tj. The image measure f-u is not regular on (T,7J/) 1in
general.

Suppose that (S, 4 ) and (T,7J) are Borel spaces and that
W is a regular probability measure on (S,xg). If f: S>T is
p-measurable i.e. measurable f%?(u)|:7, then the image measure
f-u is a complete probability measure on T with f%?ﬂf-u) > 7.
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Even in this case f-u 1s not always regular; see the example at
the end of this section. The following theorem plays an important

role in this connection.

Theorem 3. Suppose that (S,Kf) and (T,7J) are standard Borel
spaces and that W 1is a regular probability measure on (SLXV).
If f: S > T is u-measurable, then the image measure f-u is

regular.

Proof. Since the regularity of measures is invariant under Borel

isomorphism, we can assume that S and T are Borel subsets of

Rl endowed with the trace o-algebras S nBL ana T nBt

respectively. Define a probability measure Vv on Rl by

Vv(E) = w(E N 8)

1

for all E C R such that EN S €77 (u). Since S 1is a Borel

subset of Rl, every set B € S N %51 is also a Borel subset of
Rl. Noticing this fact we can easily check that v 1s a regular
probability measure on RY  with 5”2(v) - 7%«p). Extend f to

a map g: R:L -> Rl by

0, x e RF - 8.

Noticing that v(Rl-S) = 0, we can easily see that g 1is a
v-measurable map from Rl into itself. Therefore for every
v-measurable set E C Rl and every € > O we can find a compact

subset K of E such that
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(i) WV(E-K) ( ¢ and
(ii) the restriction g|K is continuous (Lusin's Theorem).

Keeping this observation in mind we will prove that the image
measure 6 = f.-4 1is a regular probability measure on (1,77).

It is obvious that 6 1is a complete probability measure on
T with 27(8) > =1 n B . For completion of the proof it is
enough to show that for every A € 7?(9) and every € > O we
can construct a compact subset H of A with 8(A-H) < e.
Since A € ?7/(8), we have f“l(A) € 77(p) c zy(v). By Lusin's
H

Theorem we have a compact set K < £ ~(A) such that

(1) w(e™(a)-K) < ¢ ands

((i11) the restriction gy = g|K is continuous. Set

H = f(K).

Then it is obvious that H<C A by K c £ T(A). Since

K c £71(a) c 8, we have

H is compact as a continuous image of a compact set K. Since

H = £f(K), we have f—l(H) D K. Therefore
6 (A-H) = w(£ 1(a)-£71(H)) L u(r H(R)-K)  e.

This completes the proof of regularity of 6.

A standard Borel space (S,xf) endowed with a regular pro-

bability measure W On (S,Kf) is called a standard probability

space (S,xg,u). This definition is slightly more restricted than

that of G. Mackey which reads as follows:
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A Borel space (S,<?) endowed with a regular probability measure
is called a standard probability space if we have a set Sl e,kf7
with u(Sl) = 1 such that the Borel space (Sl, 81 nk) is

standard. In this book we will not take this definition.

Example. TLet N Dbe the Lebesgue measure on I = [0,1]. Take

a subset S of I such that (i) S ¢7?(%) and

(i1) A (I-8) = 0, where ) denotes the inner Lebesgue measure.
The famous example of non-measurable sets satisfies these condi-
tions. S 1is a Borel space with the trace o-algebra

£ - s nB'. Define u by

for every set A C S of the form A =MN S, Me?ZZ(N). If

)]
Il

M, NS =M, N S, then (MleMg) N #. Therefore

Il
O

N ©M,) ( A(I-8)
This shows that W is well-defined. It is easy to check that
W 1is a regular probability measure on (S,xg). Let f ©Dbe the
identity map from § dinto I. If B e Z3(I), then B e‘?ﬁ(%)

and so

£I(B) =8N Be %(u)-

This implies that f 1is u-measurable i.e., measurable
f%?“;)IZB(I). Nevertheless the image measure Vv = f-u 1is not
regular. TIf B e R(I), then £ X(B) =8N B e u).

Therefore
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B e l(v) and v(B) = u(r H(B)) = u(snB) = A(B).

This shows that %(I) CW(\)) and Vv = A on 73(1). Suppose
that v is regular. Then v = A and sO ’772(\)) ='772(7\). Since

£1(s) = s =8N 1cZ)u), we have

s e Mv) = (N,

which contradicts S g 772(7\). Therefore v 1s not regular.
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Let 4 be a probability measure and A%, N e A be a system
of u-measurable sets such that UkeAA% is also p-measurable. Then
it is obvious that

B( U A) > sup u( U Ay)
Nel M NeM
where M moves over all finite subsets of A. If A 1is countable,
we have only a countable number of possible choices of M and so
the equality holds. If A 1is not countable, the left-hand side

may be larger than the right one. But we have the following theorem.

Lt te

Theorem 4. Ff W is a K-regular probability measure on a ecmpsss

Hausdorff topological space S.

(a) If G, 1s open for every X e A, then
W(U G ) =sup u( U Gy)
Nel M NeM
(b) If F, 1s closed for every X\ e A, then
Nel M NeM

In both cases M moves over all finite subsets of A.

Proof. Set G = U%eA G%’ This is obviously open and so MW-measurable.

Since 'u is K-regular, we have a compact set K & G for every
€e> 0 such that u(G) < W(K) + €. By the covering theorem we
have a finite subset M of A such that

U G% o K.

AeM
Therefore

B(U G 2 B(K) > u(Ge) - e,
NeM
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This implies that the right hand side of the equation in (a) is
no less than the left one. The opposite inequality is obvious.

This completes the proof of (a). To prove (b), apply (a) to the

open sets F<

)\:)\6/\.

As we explained before, regularity is not inherited by image

measures in general but we have the following.

Theorem 5. Let u be a K-regular probability measure on a Hausdorff
topological space S and f a continuous map from S into another
Hausdorff space T. Then the image measure VvV = f*i is a K-regular

probability measure on T.

Proof. It is obvious that Vv 1is a complete probability measure
on T such that 2M(v) 2 ‘5(T), For completion of the proof it
is enough to show that for every B e ?7(v) and every ¢ >0

we can find a compact subset K of B such that

v(B - K) < €.
By the definition of the image measure we have
A=+1(B) e ME) and wu(a) = v(B).

Since M is K-regular, we have a compact subset H of A such
that W(A - H) { €. Since f is continuous, the image K = £{H)
is compact and

K<c f(A) € B.
f_l(K) is a closed subset of A including H. Therefore

V(B-K) = p(£71(B) - £7H(K)) L u(a - H) e
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2.2 The Coincidence Theorem and the Extension Theorem

Let y Dbe a probability measure on a space S. To deter-
mine |, we need not specify u(A) for every A eM(u). For
example, if we know the values p(A), u(B) and u(A n B), then the

value H(A U B) is automatically determined by the relation:
‘u(A U B) = u(A) + u(B) - u(A nB).

It is often necessary to determine a probability measure by
knowing its behavior on a certain subclass of /M (u). We have two

types of theorems in this respect. The coincidence theorem gives

the conditions under which two probability measures | and v
are identical if they coincide on a subclass gt of M(p) n M(v)

and the extension theorem gives the conditions under which a set

function defined on a class Jrof subsets of S can be extended
to a probability measure on S.

A class 0t of subsets of S 1s called a multiplicative class

on S if it is closed under intersection, i.e. if A, B e OL
implies A nBelr. A class &3 of subsets of S is called a

Dynkin class on S if it satisfies the following conditions:

(D.1) S e&,

(D.2) e is closed under proper difference, i.e. A,B € &
and A o> B imply A -B e®,

(D.3) . 35 is closed under countable disjoint union, i.e. if

A el are disjoint, then Un An e & .

1280500
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In the same way as the g-algebra o[ot] generated by ot was

defined, we can define the Dynkin class generated by o0t to be the

smallest Dynkin class containing #7 . This Dynkin class 1s denoted

by & [62].

Lemma 1 (Dynkin's lemma). Let 0tbe a multiplicative class. Then

we have

D [or] = glot].

Proof. This lemma is similar to the monotone class theorem and
is more convenient in 'many cases. Since a g-algebra is also a
Dynkin class, ©[0ot] is obviously in?luded by o[ot]. We will
prove the opposite inclusion. For tﬁgfpurpose it is enough to

show that

(1) A, BeD [0t] => A NnBel[oL];

once this is done, we can see that & [4t] 1is a g-algebra o 07

and therefore includes o[07]. First we will prove that

(2) Aebt, Bed[on] => AnBel[oL].

Let A Dbe an arbitrary member of 07 and set
Dp={BcS:AnBed[l}

Since &t is multiplicative, we have

Betl =>ANBetrcPlo].
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Therefore 61 c BA’ As ® [#7] is a Dynkin class, so is ﬁA'
Therefore jQA ) ib[&z]. This proves (2). ILet A Dbe an arbitrary
member of Rb[az] and define 23A as above. Then j:A is a Dynkin
class which includes bt by (2). Therefore ﬁjA ) ES[UL]. This

proves (1).

Theorem 1. (The coincidence theorem). Suppose that uoand oy

are probability measures on S and that 6t is a multiplicative class
included by M(u) nM(v). If u= v onodr, then p=y on

olot].

Proof. Consider the class
D = (A e m(u) n (V) u(8) = y(4a)3.

fj includes &L by our assumption and & is a Dynkin class by the
properties of probability measures. Thereforeﬁb > T[et] but
D[] = o[ 5] Dby Dynkin's lemma. This completes the proof.

In case S 1s endowed with a c-algebrag! , we have the

following as an immediate result of Theorem 1.

Theorem 2. Let yu and v Dbe two regular measures on (S,gf)
and 0t a multiplicative c{qﬂss generatingz{ . If u= vy oneétr,
then ¢y =y, i.e. M(u) = M(v) and = v on this common domain

of definition.

A class DLof subsets of a space S 1s called an algebra on
S 1if it satisfies the following conditions:
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(A.1) S e o,
(A.2) A cop=> A°(= S-A) € &1,
(A.3) (additive) A, BeoL=> A UBedL.

Amap m from an algebraszon S into [0,1] 1is called an

elementary probability measure on oL if it satisfies the following

conditions:
(m.1) m(A y B) = m(A) + m(B) for disjoint A, B € 0T,
(m.2) m(s) = 1.

An elementary probability measure m on 6 is called g-additive on 0T

if it satisfies the following condition.

(¢) If A ,A,,...c 6L are disjoint and if A =y A € 07 , then

m(A) = Z m(An) .

n

l’

This condition is equivalent to each of the following ones.

() If (i) AjsA,,... eorand (i1) A oA, D ... = ¢, then
1lim m(An) = 0.
n-— oo
(cr) If (4) Alshy,eie 0L (ii) A, DA, > ... and
(iii) dinf m(A_) > 0, then n_. A+ ¢.
n n tenb5ion non
Theorem 3 (The exh theorem). Let 8¢ be an algebra on S
and m an elementary probability measure on #t. Then m can be

extended to a probability measure if m 1is g-additive.

Proof. The idea of the proof is similar to the construction of
the Lebesgue measure in [0,1] as an extension of the notion of
length. We will only sketch the proof. Define the outer m-measure

m* and the inner m-measure myx as follows.



=]
*
=
I
l_l
s
Hy
=8
=3
™
m
SC
o =3
s
V)
=3
)

=]
*
o=
I
|__l
i
=]
©
™
b=
N
)]

*
The class Mof all A c S such that my(A) = m (A) is a

oc-algebra on S including 6t and the restriction

u = m*lm(= m*lM)

is a measure on’))Y]. By g-additivity of m we can prove that
(1) M > ftand (ii) u=m on 6z. Therefore y 1is a probability
measure on°ﬁ1which is an extension of m.

As a corollary of this theorem we have the following in

case S 1s a Borel space endowed with a c—algebra.Qf°

Theorem 3'. Suppose that 6t is an algebra on a Borel space S = (S”J)

generating the o-algebra_zfand that m 1is an elementary proba-
bility measure on fqp . If m is g-additive on 0L, then m can be

extended to a unique regular probability measure on (S,ﬁ!).

Proof. Let y; Dbe the probability measure constructed in
Theorem 3. Since‘h\(“l) 5 &7 and so-Yn(ul) > o[ b2], the restric-
tion p, = ul]o[vz] is also a probability measure on o[ ot].

The Lebesgue extension y of yu, 1s a regular probability meas-
ure on (S,nf) which is to be constructed. If | and py' are
such extensions, then = y' on g[#.] by Theorem 2. Since o
and y' are both regular, we have yu = ;'. This proves the

uniqueness.
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Suppose that S is a compact Hausdorff space. Let C(S) be
neal

the class of all continuous(functions on S. For every regular

probability measure W we have a real-valued functional L = L

on(XQ:

v

(L) L(£) = [ £Gou(a),
S
which satisfies the following conditions:
(L.1) L(lS) =1 (1S is the indicator of S),
(L.2) L(f) > 0 for f » O,
(L.3) L(f+g) = L(f) + L(g).

Conversely we can prove the following representation theorem that
is also useful to construct a regular probability measure on a

compact Hausdorff space.

Theorem 4 (The representation theorem). Let S be a compact

Hausdorff space and L a functional on C(S). If L satisfies
(L.1), (L.2) and (L.3), then there exists a unique F-regular
(and so K-regular by compactness of S) probability measure W

on S for which (L) holds.

Proof. The idea of the proof is as follows. Define u(K) for

every compact K and for every open G by

)
w(K) = inf{L(f): f ec(s), fzh and £ > 1 on K}

and

sup{m(K): K compact <G}.

M (a)
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Let 972 be the class of all A such that
sup{d (K): K compact € A} = in={u(G): G open > A}

and write W(A) for this common value. Then u 1is an F-regular

probability measure on S for which (L) holds.

We will present a slight generalization of the representation

theorem which will be used frequently.

Theorem 4'. Suppose that S 1is a compact Hausdorff space and that

E 1is a subclass of ((S) satisfying the following conditions:

(E.1) E > 1g,
(E.2) E is dense in C(S) with respect to the maximum norm
matric,

bimenn _combinetims wrtly natloned coeffirents ~
(E.3) E is cléEEE'Eﬁag? gam| i.e., if f, g € E, then

fmf e E(d, ! hatinal ).

If a functional L: E = R

1 satisfies the conditions (L.1), (L.2)

and (L.3), then there exists a unique F-regular (and so K-

regular) probability measure on S for which (L) holds.

Application of the extension theorem.

Example 1 (Probability measures on Rl). Let W be a regular

probability measure on Rl° M 1is K-regular by Prohorov's

theoreéﬁ<:Th€‘fﬁﬁEfi6ﬁ
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igs called the distribution function of W. It is obvious that F

satisfies the following condition:

(F.1) (increasing) F(x) { F(y) for x< v,
(F.2) (right-continuous) F(x+) = F(x),
(F.3) lim F(x) = 1 and 1im F(x) = O.

X—>00 X-—>=-00

Theorem 5. For every function F satisfying the above three con-
ditions we have a unique regular probablility measure on Rl

whose distribution function is F.

Proof. Let EL be the class of all intervals of the form

(asb]) ('W,b]: (a,oo) or (’°°’°°)

and CY the class of all disjoint finite unions of members of <JL

Define a set function m(I) for I e(§ by

m(a:b] = F(b) - F(a)) m(‘w:b] = F(b):

I

m(a,o) =1 - F(a) and m(-w,») =1

and extend it onto C? by additivity. Then (J/ 1is an algebra

on Rl

and m 1is an elementary probability measure on (jz .
It is obvious that 07 generates the topological 0 -algebra
281 on Rl° For completion of the proof it is enough (by
Theorem 3') to check the condition (C'). For every I € é}

and every € » O we have a bounded J € 5} such that

Jc I and m(I) - m(J) < €.
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Therefore <77 has the same property. Suppose that {An} satis-
fies the assumption of (C') and set a = igf m(An) > 0. Take

a bounded Bn € &Z for each An such that

@
B, < An and m(An) - m(Bn) < 2™ e
Then
n n n
m(An_QBi) g_? m(An—Bi) g_? m(Ai—Bi) { a/2
and so

n
a a
n(n3;) > m(y) - 3> 3 -
This implies
n n
QBi o> QBi + dg.

Since every Bi is compact, we have
[o0] [e o]
NB. £+ # and so NA_ + &.
1B 10

Example 2 (Probability measures on R% nq «). Let u be a

regular (and so K-regular) measure on R™. The function

F(xl,x3,...,x

n
I’l) = U(g(_w)xi])

is called the distribution function of . Let A; denote the

difference operator:

i
S F(xl,...,xn) = F(xl,...,xi_l,xi+h,xi+l,...,x )-F(xl,xg,.",x ).

n n

1
hy’ "

set H?(xi,xi+iiy. F satisfies the following conditions.

& b, ok 7h

Then A .,AﬁnF(xl,...,xn) is the u-measure of the rectangular
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(F.1) Aklll,...,Aﬁn F(xl,.“,xn) > Og frr t"t, o,y b 70)
(F.2) (right-continuous)
F(Xl”'°’xn) -> F(al,...,an) CERS \A a; for every i.
(F.3) lim F(Xl"‘°’xn) =0 for each i =1,2,...,n and
x>0
F(xl,xg,...,xn) > 1 as x; » = for every i.

In the same way as in the proof of Theorem 5 we can prove the

following.

Theorem 5'. Theorem 5 holds in Rn.

Example 3. (Probability measures on R®). Let M Dbe a regular

probability measure on R”. M 1is obviously K-regular by

' . % n . ohtl n
Prohorov's theorem. Let Hn. R =R and nn,n+l' R - R be
projection operators, i.e.,

nn(xl’x2’°°"xn’xn+1’°'°) = (xl’Xe""’Xn)
and
Hn,n+1(X1’X2"'°’Xn+1) = (Xl,Xg,...,Xn).
It is obvious that Hn = nn,n+l ° nn+l‘ Both vﬂn and nn,n+l

are continuous and so Borel measurable. Let My be the image
measure Hn°u. Then we have a system of regular probabillity measures

un on R, n=12,... . Obviously we have

(K) (Kolmogorov's consistency condition)

Wp = O i1 Mgy B 5 L2
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Theorem 5" (Kolfmogorov's extension theorem). For a system of
7/

regular probability measures M, on Rn, n=1,2,... satisfying
(K), we have a unique regular probability measure W oOn R”

such that M, = Hn'p, n=2>%12,...

Proof. Consider the class 07 of all sets A of the form

A= n;l(B), B e &3n, n=1,2,... . Then (@7 1is an algebra on

oo}

R . The topological o-algebra 43“ on R” is generated by d?h
Define m: g7 - [0,1] Dby

_]_(

n B).

m(A) = un(B) for A =1

Suppose that H;l(Bl) =7t (Bg)(Bl e B, B2t5b5n+l). Then we have

n+1
-1 _ -1 _ . -1 _ n-1 -1
nn+1(B2) - Hn (Bl) - (nn,n+l nn+l) (Bl) - Hn+1(nn,n+1(Bﬁ)‘
Since 1II is a map from R” onto Rn+l, we have

n+1l
B, = Hﬂ}n+1(Bﬂ'

Therefore “n+1(B2) = (nn,n+l'“n+l)(Bl) = un(Bl). Using this

several times, we have
-1 -1 n n+k _
it (Bl) =1 (Bg)(Bl<£Z& ,B2€Ia3 ) = un(Bl) = un+k(B2)'

This implies that m(A) is well-defined independently of the ex-
pression A = H; (B). It is easy to see that m 1is an elementary
probability measure on 07 . For completion of the proof it is
enough to check the condition (C'). Suppose that A € a ,

n=1,2... is a sequence satisfying the assumption of (c)

and set a = inf m(An) > 0. By inserting a number of A~ Dbetween
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A and An+l if necessary, we can assume<EEiE§:$;:§:éfﬁ;

— . ( _ -1 n
p:——l,-@,—-p—.—.—.———-wri-‘be—-—%ﬁ—?:_:ﬁs An = ﬂn (Bn), Bl"l € % . As |.J.n

is regular, we have a compact subset Kh of Bn such that

-n-1 o oa-1
un(Bn-Kn) 2 a. Set H, =T, (Kh). Then H < A, and

_ -n-1
m(An-Hn) = un(Bn-Kn) 2 a.

Therefore
n n n
m(An-QHi) < ? m(A -H,) < ? m(a;-H,) < a/2.

Since m(A ) > a, we have

n n
m(NH,) > a/2 and so NH. # &.
1+ 1+

[e¢]
It remains only to prove that NH; + J. This does not follow at
1

once because Hi is not compact. Let us consider the space

-—00 =

R” (R = [-w,®]), which is compact since R 1is compact. Let
ﬁh be the projection from R onto T and set
ﬁh = ﬁ;l(Kn). Since Hh is continuous, ﬁh is closed in R
and therefore compact. Since ﬁh > H , we have
n_ n
QHi ) ;Hi + g, n=1,2,..
Since every ﬁh is compact, this implies that
Oo_.
?Hn + d.
Take a point x = (xl,xg,...) e ®° 1in this intersection. Since

5 - H;l(Kn), n=1,2,..., we have
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(Xl’x2’°'°’xn) € K, n=
and so
1 .
xneR, n=1,2,..., 1.e.
Then
C
-1 -1
x e I (xl, ’°’Xn) LIS (Kn)

This completes the proof.

1,2, ...
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The Kolmogorov extension theorem can be generalized in
various directions. We will present two generalizations.
One 1s for a countable product of standard Borel spaces and the
other for the projective limit of a directed countable family

of probability measures.

The Kolmogorov extension theorem for standard Borel spaces.

Let (Sangn)’ n=1,2,... be a sequence of standard Borel
. _n .
spaces. Then the product space Tn =157 Si with

UL = ®?;1'£2u is also a standard Borel space for every n.

. . (o9 . _ o
Slmllarl¥8§he space T = M- Si with Tj—_ ®i=le;. Let us
consider the following projection operators:

m,: T > T, Hn(xl’X2’°") = (xl,xg,ou.,xn),

n’

Hn,n+l: Tn+l ~ Tn’ 1-Irl,rwl(xl’XQ"“"XnJrl) =(Xl’XQ""’Xn)°

All these maps are obviously Borel measurable. Suppose that
we are given a regular probability measure M, on (Tn,trn)

for every n.

Theorem 6. If w, =1 for every n, then there

n,n+l°“n+l
exists a unique regular probability measure up on (T,fT)

such that W, = 0,'n for every n.

Proof. Let Ol be the union of the classes n;l(4f;), n=1,2,...
Then (C is obviously a multiplicative class on T generating 7 .

If we have such a measure u on T, y is determined on 7z by

u(a) =y (B) for A= H;ll(B).
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Therefore such a H 1is unique by Theorem 2. Now we will prove
the existence of . Since (Sn,dgn) is standard for every n,
we can assume with no loss of generality that Sn is a Borel
1 el .
subset of R and an —ﬁ n Sns Then Tn is a Borel

subset of R% and :Tn = ®"n T, Let 'ﬁn: R” - R" and

ﬁn,n+l: R > B ve projection maps and i : T - RY  and

i: T > R be identity maps. It is obvious that

oIl

i = ° i
n n,n+l nn,n+l

ne1 @nd 10, = ﬁn.l;

Y,
in fact both maps in the first equality carr&es

n
(Xl’x2’°°"xn+1) €T to éxl’XQ""’Xn) € R° and both maps
in the second equality cardies (xl,xg,...) e T to

n ~ . .
(Xl,xg,ooo,xn) e R°. Let Mo denote the image measure 1My

r‘W
Then y ~ is a regular probability measure on (R, 'é ).

Keeping the above equalities in mind we have

~ .

Tn,n+1’ (ip1 Mp+1) = (ﬁn, n+1® tn1) Mol

)

1-In,n+l""tn+l -

(ln'nn,n+l)'“n+l - lﬁ(nn,n+r

Hn+l

1pdn = Hp-

Applying the Kolmogorov extension theorem to fﬁn}, we have a

regular probability measure |5 on (R®, &) such that

~

Mp = Ip' P
It is easy to see that

T =N, H;ll(Tn) e B° ana TJ=-8"n .
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Since “(Hn (Tn)) = “n(Tn) = 1 for every n, we have
U (T) = 1. Therefore the restriction = p|T is a regular
probability measure on (T,7J ). It is obvious that

M = i-u, because i“l(A) =ANT for Ac R. It remains

only to prove

My = M e

Suppose that B e{fn. Then Bc T  and so i;lB = BN T = B.
Therefore we have

by (B) = p (177B) = (i) (B)
and similarly

(10) (8) = (1, (1) (B) = (1,1 )-y) (B)
But
ip, =N, = TR =T () = {e1)u
= (10 )

erefore = M or € o ince O measures
Theref un(B) (nn)(B) f B L+ Si both

are regular on (Tn,CTn), we have P | R VIS

The projective limit of probability measures. Let A Dbe a

directed and countably infinite set and suppose that we are given

a standard probability space (S _, 2

g a’“a) and a Borel

measurable map L Sg > S, for every pair (a,B) € A x A

B

with a < B satisfying the following conditions:
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(Dl) maﬁ o wﬁy = ©qy for a<d B Y,

(D for o< B.

o) Ho = P Mg

We want to define the projective limit of (Sa,égq,ua), a € A

and denote it by

-
(s, 8,u) = Lin (528 b))
&.—
The projective 1limit S = lima Sa is defined as usual.

Let T denote the product space Hasa’ 18 the projection map

from T onto Sa' The subset S of T that consists of all

x € T such that

pa(x) = waﬁ(pﬁ(x)) for (1< :B

i1s called the projective limit of Sa’ a € A and denoted by
“—
llma Sa'

Let J be the product o-algebra ® o, on T. The trace

o-algebra 63 of TT' on S i.e. tTWW S 1is called the

Q_.
projective limit of QJ;, a € A and denoted by lima . We call

a
the Borel space (S,) the projective limit of (Sa,qga), a€h

—

and denoted by lima(Sa,Qgcﬁ. As every Borel space (SQ,QBQ) is
standard, so is (T, ) by 1.3 Theorem 4. We will prove that
(S,é;) is also standard. By 1.3 Theorem 2 it is enough to

show that S 1s a Borel subset of T, i.e. S € tT. By the

definition S 1s expressed as

S = n BGB where Baﬁ = {XeT:pa(x) =(¢GB°pB)(x)).

« B
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As A is countable, it is enough to show that BaB is a
Borel subset of T for a< B. But this follows at once
by 1.3 Theorem 6.
The restriction of b, to S 1s denoted by ®y %q is
a Borel measurable map from (8,28) into (Sa,egu). It is
obvious that

9, = waﬁewﬁ for a < B.

The regular probability measure u on S introduced in

the following theorem is called the projective limit of

H
a € A 1im in notation.
Mg’ ’ a Ma
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Theorem 7. There exists a unique regular probability measure

on (S,g?) such that

a
Proof. Number the elements of A as {al,ag,..o} and set
. .n . .n o
T, = M5 Sai and J =@®;_; ae%i, i=1,2,..

We will consider the following Borel measurable maps:

m:T>7T, Ox=(p, (x),...,p, (x)).
1 n
Tonert Toer ~ Tor Boynen (Fpo %o oo o Xpg) = (X%, oo uxp).
T T, > Sy pa,n(xl’xg"°°’xn) =x; 1if a= o4 (1 { n).
flg Sq > Ty Tpg(2) = (@ala(Z),waga(Z),-w,@ana(Z))
if a > Q5 Cys o v o5 Ol s

£ 8 > T, £(x) = (p (x),...,p, (x))= (9, (x); -+ 59, (x)

5 ®
an

The following obvious relations will be frequently used:

£, =118,

Py, =Py, ° 0, if a=a; (1 ¢ n),

waﬁ =D, ° an if a = ay (1 {n) and B> Qp5 Qpy oo -
fnY = fna ° way if Qs Qs o v e s O al vy,

fna = Hn,n+l ° fn+l,a if a > Qps Qs v v vs O s O Loy

fn = fna ° @a if Qps Qs v vy O { a.

).

n)
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Suppose that Wy 1is a regular probability measure on (S,xg)
such that u = ¢ -y for a € A. Then If g, 0y, - sy { a,

we have

= (fna°ma)'u - fna(@a'u) = Tha Mo

Therefore for & € f?; we have

-1 _ . _ .
w(f, 7 (B)) = (£,-0)(E) = (£f,,8,)(E),
-1 . .
namely u(fn (E)), E E:Zf n=1,2,... are determined by W,
o € A. Since fgl(E), E € Cg, n=1,2,... form a multiplicative

class generating _xg , the measure u 1is determined by

M a € A by Theroem 2. This proves the uniqueness part of our

a’

theorem.
The above observation also gives a clue of the existence

proof. Define a regular probabllity measure v, on (Tn,<7£) by

v = £f

n na ™

a’

where a 1is any element of a > G s0ps ++-50, . The measure Vv

is well-defined independently of the choice of a by the following

fact:

g M = fnﬁ Mg for aj,Qn,---,Q { a,B.

Take Y > a,B. Then

ay By) = (T Jom, = £ -u

Pay) My T tny

Trha Mg = fna(cp no v’

Similarly

fnﬁouﬁ B fnY‘u'Y and so fna.ua - an'“B'



_2208_

We will use Theorem 6 to obtain a regular probability measure

v on (T,dJ) such that
v =1I°v, n=1,2,.
For this purpose it is enough to observe

v =f .y = (1

n na ~a n,n+l°fn+l,a)'“a

= nn,n+l(fn+l,q'ua) - IIn,n+l'vn+l

where o > Oy 5 Qs v es O s
First we will prove that
Mg =Py Vs Q€ A.

Take n such that a = a, and then take B8 > a. Then

Il

PV = (P efy) v = p (M -v) =PV

= Pan(anHB) = (pan°an) 'HB = CpaB\JB = ua'
Second we will prove that
v(s) = 1.

Since S = ﬂq<ﬁ Baﬁ where

Byg = {x € Tt p,(x) = (9,5°05) ()1,

a
it is enough to show

v(B =1 for a<d{ B.

aB)
Take n such that a,Bp C {al,ag,,,u,an} and then take

Y > Qs Oy v v s O Then



-22.9-
V(Baﬁ) = vix e T: pan(nnx) =(¢aﬁ°pﬁ&(ﬂn(x)ﬂ

= Vo ly € T 2 (V) =(9,5°P)(¥)Y BY v, =T,

= u {z e s : P fny(z) = (cpaﬁepﬁn)(frw(zm by

=u{zes: o

7€ 80 9, (2) = (9,4°95,)(2)]

1l
Il

uy{z € S.: ©_ (z)

v’ Tay Voy(2)) = 1.

Define u to be the restriction of Vv to
regular probability measure on (S,xg). Let 1i:

identity operator. Then we have

i-p = v and 9, = pa°i,

and so

® 0 = (poi)u = p (i) =DV =w,

This shows that n is the measure we wanted to

A%

\) 0
n ny "y

S. Then W

S > T be the

construct.

is

a
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Remark. Theorem 6 is obviously a generalization of the
Kolmogorov extension theorem. Now we will explain that
Theorem 6 is an immediate consequence of Theorem 7. The
spaces Cﬁftrrfpn)’ n=1,2,... in Theorem 6 satisfy the

conditions in Theorem 7 with respect to
A =1{1,2,3,...} with the natural ordering

and

i cee ] for i { J.

i T 0i, i1 ¢ Miga,i40° 3=1,3

Therefore we have the projective limit

—
(E: g s II) = limn (Tl’l’ Tn,un)

~

by Theorem 7. Every x € S ig written uniquely as

X = (Xl’ (Xl’ X2), (Xl’ X2’ X3): oo e )

with X, € Si’ i=1,2,... and conversely every x of this

form is in 8. It is easy to see that the map g:\

~
w: S> T = HnSn that carries the above x to (xl’X2’°")
gives a Borel isomorphic map from (S, ég) onto

(T,T) = (Hnsn,®nw¥n)n The image measure | = ¢@-y 1is the
measure we wanted to construct in Theorem 6.
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Application of the representation theorem

Let S AN € AN be a family of compact Hausdorff topological

7\’
spaces. Then the product space SM = nAeM SA with the product

topology is also compact Hausdorff for every subset M of A.

For M, c M we write 1

1 5 for the natural projection from

M) M,

S onto S,, . Since 1 is continuous, the image

M2 Ml Ml M2

HM M (K) 4is compact if K 1is compact. Using this fact we can
172

easily prove that if u, 1is a F-regular (and so K-regular)

probability measure on SM , then the image measure My = HM M Mo

2 12
is also K-regular. Analogously to the Kolmogorov extension

theorem we have the following.

Theorem 8. Suppose we are given a F-regular (and so K-regular)

My on SM for every finite subset M of

A. If the system {uM} satisfies the Kolmogorov consistency

probability measure

condition:

My M, S “MlanM’“M .

172 2
then we have a unique K-regular probability measure HA on SA
such that
My = nMA'HA for every finite set M c A.

Proof. A real function f on SA is called a tame function if we

have a finite subset M of A and a function g on SM such that

(T) f=g-° Iy,
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f 1is measurable ‘Z%(SA) if and only if g 1s measurable
ZB(SM). Let T be the space of all bounded tame functions
measurable ZQ(SA). It is obvious that T is a real vector space.
For f € T we set
1(£) =fs g(y)uy(ay) -

M
I(f) 1is well defined independently of the expression (T) by

virtue of the consistency condition. It is easy to see that I is
a bounded positive linear functional on T with I(1) = 1.

Every f € C(%Q is expressed as a uniformly convergent limit
of a sequence f € E, n=1,2,... . If f » O, we can take
£ >0, n=1,2,... . We will prove this fact. For x € S we

can find a neighborhood Un(x) such that
f(Un(x)) c (f(x)-1/n, £(x)+1/n).

By the definition of product topology we can assume that the indi-
cator of Un(x) belongs to T. By the covering theorem we have

k(n)

s, < U Un(xi) (k(n) < «).
i=1

Let
c c
) on Un(xl) N...n Un(xi_l) n Un(xi),
(1 = 1,2,...,k(n)).

Then lfn(x)-f(x)l {1/n, x e€8,. Let e ; denote the indicator

of Un(xi). Then
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Therefore f ¢ g, and T > 0 for f > O.

Now we will define L(f) for f e C(S,). Take a sequence

¥

f, € I convergent uniformly to f. Then A

1T, )10 ) | < Ml 2ty s 211, = sup 12(x)]

e el + g -], >0
as n, m > . Set
L(f) = 1im I(f ).
n n

L(f) is well defined independently of the choice of {fn}. As I
is bounded and linear, so is L. If f > O, we can take £, > 0,
so that L(f) > 0. L(1) =1 1is obvious.

By the representation theorem we have a K-regular probability

measure M, on SA such that

L(f) = j; f(x)uA(dx).
A

It is easy to prove that My = I for every finite subset M

My Ma
of A. It is also easy to prove the uniqueness.
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2.3. The Mathematical Set-up of Probability Theory

To study a random phencmenon we take a probability space
(Q,P) where Q 1is the space of all possible outcomes in observ-
ing the phenomenon and P(A) indicates the probability that the

observed outcome drops in A. Q 1is called the sample spacéhgf

the random phenomenon, a point in Q a sample point and P

the probability law governing the phenomenon. Take a generic point w

in Q. A condition a = a(w) depending on  1is called an event
if the set {w:a(w)} is P-measurable, i.e. if this set belongs

to‘?VKP). The P-measure of this set is called the probability (of

occurrence) of o and denoted by P(a). Let S = (S,8) be a
Borel space. A function X(w) with values in S is called an

(S,«é)-valued random variable if it is P-measurable i.e., if it

is measurable‘Vn(P)/an The Borel space (S, ) is called the

range space or sample space of the random variable X. According

as the range space is Rl, Rn, R” or a function space, the random

variable is called a real random variable,an n-dimensional random

vector, a random sequence or a random function. Starting with

these basic notions we can introduce all other notions in terms of
measure theory.

In this book we assume the following.
(A.1) The sample space is a standard Borel space (q,’#) and the
probability law P 1is a regular probability measure on (Q,f}).
(A.2) The range space of every random variable in consideration is

a standard Borel space.
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As we have seen in Chapter 1, practically every space that may
appear as a sample space 1s a standard Bcrel space, SO that these
restrictions are harmless. On the other hand these restrictions will
enable us to formulate many facts in probability theory more natur-
ally.

Suppose that we want to study the coin tossing game in which

we flip a coin infinitely many times and observe the sides coming
out. Every sample point is an infinite sequence with terms O or
1: O stands for tail and 1 for head, sc that the sequence
(0,1,1,0,1,...) means that tail comes out first, head second, head
third, tail fourth, head fifth and so on. The sample space Q is
{O,l}oo and is a compact metrizable space with the usual product
topology. Therefore Q 1s a standard Borel space with the topo-
logical g-algebra T}='f5(c», Let E(iy,iy,...,1,) denote the sub-

set of @ defined by

E(il,i2,..a,in) = {w = (wl,wz,.ou): '”k = lk§ k = l,2,...,n}.

The class 2zof all finite unions of such sets is obviously an

algebra generatingf} . It is natural to define

P(E(iq,ig,...,1)) = 2™,

This can be extended to an elementary probability measure on J{ by
additivity. We will further extend this to a regular probability

measure on (Q,7) using
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2.2 Theorem 3'. Suppose that (i) A €ell , n=1,2,...,

(ii)A1 > A, > ... and (iii) inf P(An) > 0. As A € ac, A is

closed in Q and so compact. Since we have

Ai=An4=¢

DB

[ee]
by (ii) and (iii), we get nl A + ¢, as is desired. We can dis-
cuss the coin-tossing game on the probability space (q, F,P).

Let Xn(w) = yw. for w= (wl,wg,.ao). Then Xn(w) is a random

n
variable taking O or 1 according as the n-th outcome is tail

or head. S _(w) = 2? X.(w) dis a random variable with values in

n i
{0,1,2,...,n} which indicates the number of heads coming out for
the first n throws.

Let us go back to general discussions. If P(a) = 1, we say

that a(w) occurs a.s. (= almost surely). Let an(w), n=1,2,...

be a sequence of events and An denote the set {w: an(w)} for
n=1,2,... . The following equalities are often useful for compu-

tation of probabilities.

{w: an(w) occurs for some n} = U A/
n

{w: a_ (w) occurs for every n} = Q Al

{w: an(w) occurs for an infinite number of n's}
= {u: an(w) i.o.} (i.0. = infinitely often)
n

kyn %ﬁ n - o Lo

{w: an(w) occurs except) a finite number of n's}

=N U A = 1lim sup A
n

=y n A = 1lim inf A .
n kyn T n- oo o
4
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Borel-Cantelli's lemma. If 5 P(A)) { », then P(lim sup A ) = 0.

In other words, if zn P(an) < o, then a, occurs f.o. almost

surely. (f.o. = finitely often.)

Proof. P(lim sup, An) < P(UKZ 0 A) < ZKZ“ P(Ak) for every n.
The right hand side tends to O as n = ® by our assumption.

Let X(w) Dbe an (3,3 )-valued random variable on (q,%#, P).

P
If and only if {w: X(w) € B} € ¥ 4) (B < S), we can define the
probability of the event X(py) € B. Denote the probability of this

event by PX(B), In other words we define Py Dy

p.(B) = P(X"1(B)) for Bc S such that X (B) e 7M(P)

%
i.e. PX is the image measure of P by the map ‘X. The proba-
bility measure PX on S 1s called the probability law of the

map X. By 2.1 Theorem 3 we have the following theorem that does

not always hold without our assumptions (A.1l) and (A.2).

Theorem 1. The probability law of a random variable is a regular
probability measure on the range space of the variable.

Suppose that X and Y are (S,,g)—Valued random variables.
Y is called equivalent to X if Y(w) = X(w) a.s. We will
slightly extend this notion to define equivalence of random vari-
ables with different range spaces. Let X and Y be random
variables with values in (S,d&) and (T,T) respectively. Y 1is

called equivalent to X or a version of X if Y(w) = X(w) a.s.

It is obvious that P, (S n T) = PY(S NT) =1 in this case.

x(
Equivalence of randomfvariables satisfies the usual conditions of

equivalence relation.
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Let _ be a probability measure on an abstract space S and Sl
a subset of S with y(S,;) = 1. The restriction of y to

completely determined by HISl as follows:

1)
denoted by H|81’ is also a probability measure.  1s

u(d) = (u|Sl)(A n Sl)’ A e M.

Let y and y be probability measures on S and T respectively.
If we have U = S n T with y(U) = v(U) = 1 such that y|U = |U,

then we say that {y and v are equivalent to each other. Equi-

valence of probability measures also satisfies the usual condition

of equivalence relation.

Theorem 2. If X and Y are equivalent, then their probabllity

laws are equivalent.

Proof. Set , = {w: X(w)=Y(w)}. Then x(Ql) =Y(Q Denote the

l).
common imagc by U. Then X_l(U) > - Since P(Ql) = 1 by the

assumption, we have P(X‘l(U)) =1 i.e. PX(U) = 1. Similarly

PY(U) = 1. It is now easy to see PX[U= PYIU by noticing that

-1 -

xH(A) noa = YHA) 0o

Let (S,d) be a standard Borel space. If X: Q= S is
4’.6. Meatun 9//3

Borel measurabledand if X(q) = S, then X 1is called a standard

random variable.

Theorem 3. For every (S, )-valued random variable X(y) we have

a standard version with values in a set T €.8 i.e. a standard

(T, ENT)-valued random variable equivalent to X.
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Proof. We can assume with no loss of generality that S 1s a

Borel subset of (0,1] and = B ns. Write E__  for

((k-1)/n, k/n] NS and A, for x~1( Take a set B, € F

k and P(Ank - Bnk) n Y% Bnk'

Then B € # and P(B) = 1 Dbecause P(Uk Bnk) = 1 for every n.

Enk)'

such that Bnk c An = 0. Set B =

Take a point a € S and fix it for the moment. Define Xn(w) by

any fixed point in E_, for y € B, nB (k = 1,2,... n)

a for w € -B;

notice that if € B, N B, then B, N B + ¢ and so E x + d.

¥ : Q- S 1is obviously measurable F/8 . Since |Xn(w) - X(w)] € 1/n
L2 = .

on B and Xn(w) = a Sﬁfﬁg, Y(w) = lim Xn(w) exists for every

w and we have
Y(p) = X(y) on B and = a on (-B.

As Xn: Q> S 1s measurable E%ég for every n, so is Y. Since
P(B) = 1, we have P(X = Y) = 1. For completion of the proof it
is enough to modify Y +to obtain a standard version Z of X.
Since Y"l(Y(Q)) = Q, PY(Y(Q)) = 1 and we have a set T € & such

that PY(T) = 1. Define Z: - T by

Y(y) on Y I(T)

Z(W) = l(

any fixed point in T on q - Y —(T).

Since Y is measurable F/ef , we have Y—l(T) €¥ . It is easy

to check that Z is measurable F/2f A T. Since
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P(Y_l(T)) = Py(T) =1, we have P(Y =2) =1 and so P(X=2) = 1.

It 1s obvious that Z(Q) = T, Therefore Z 1s a standard version
of X with values in (T, J n T).

Let X be a real or complex random variable. The integral
of X(w) over A € M(P), if exists, is denoted by E(X,A).

E(X,q) is denoted simply by E(X) and is called the expectation

or mean value of X. The properties of E(X,A) and E(X) can be

derived from those of integrals.

The space of all complex random variables with

1/
T, =2(x®) 7 <o (1<p <o)

is called the Ip-sgace over (q,%,P), 1°(q, #,P) or P(q) in
notation, where two equivalent random variables are identified.
Lp(Q) is a Banach space. The class of all real random variables
in IP(Q) is denoted by Lﬁ(o,t},P) or L%(Q), It is a real
Banach space. In particular LQ(Q) is a Hilbert space with the

inner product: — Xﬁ?
(X,Y) = E(XyY).

L§(Q) is a real Hilbert space similarly.

The class 77XP) is a complete metric space with the measure
metric:

p(A,B) = P(AO B)

where two sets are identified if they are equivalent i.e. 1f they

differ only by a null set.
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Since (Q,%¥F) is Borel isomorphic with a Borel subset of

Rl and since P is regular, we can easily prove the following.

Theorem 4. M (P), LE(Q) and IP(q)(1 < p { ») are separable.

Let X(w) be an (8,f)-valued random variable. An event

a(y) is said to be determined by the value of X(w), if

x(wl) = x(wg) implies a(wl) (=> a(we). Similarly a (T,°J)-valued

random variable Y(w) 1is said to be determined by the value of X(w),

if X(wl) = X(w,) implies Y(wl) = Y(w,) -

Let pB(s) Dbe an event on the probability space (S,zf,PX).
B con
Then PBA(X(y)) is an event on (Q,7 ,P) determined by the value of

X(w). Let g(s) be a (T,9)-valued random variable on (S,k/,%@).
Then g(X(w)) is a (T,°J)-valued random variable on (Q,%F ,P). ;;?
will prove the converse of this fact. (;:Z::::::i%;?;:::ji¢«7.XﬁP)
Theorem 5. (i) If a(w) is determined by the value of X(w),

then we have an event pB(s) on (S,zf,PX) such that a(w) = B(X(w)).
(ii) If Y(w) is a (T,"T)-valued random variable determined by

the value of X(w), then we have a (T,7])-valued random variable
g(s) on (s,gf,ﬂ§) such that Y(w) = g(X(w)).
bT

Proof. For an event a(y) we consider a random variable la(w)
with values in {0,1} as follows:

la(w) =1 or O according as a(yw) occurs or not. Then
1,(w) = 1ﬁ(w) if and only if a(w) <==> B(w). Keeping this in
mind we can derive (i) from (ii) at once. To prove (ii), define

g: S > T by



Y(w), it =z = X{(w) feor—seme—ur
g(s) =
any fixed point in & if otheruwises s¢ Y(2)
7
J
Since Y(y) is determined by the value of X(w), g is well-
defined. It is obvious that Y(w) = g(X(w)). For every B e J

we have

x (g1 (B)) = (gox)"1(B) = Y 1(B) « /M(P).

Therefore g ~(B) edh\(%@)a This shows that g 1s measurable
c
'Yﬂ(gz?/fj . The rest of the proof is trivial.

c=p

The g 1in the above theorem is uniquely determined only on

X(q). Similarly for the B. Therefore we have the following.

Theorem 5'., If X is a standard random variable, then the B

and the g in Theorem 5 are unique.
By the transformation formula on integrals we will get the

following theorem immediately.

Theorem 6. In the situation of Theorem 5 (or 5') we have

P(alw)) = Bg(A(e)), P(¥(w) € B) = Egfe(e) < B)
tp =

and

E(Y) =I%?(g)( =—£ g(s) %g§ds)) in case Y 1is complex.

o Cep

The B and the g introduced above are called representations

of a and Y respectively. In view of the above theorems we can
discuss all events and all random variables determined by the value
of X(yp) on the sample space (s,of) of X endowed with the

probability law 327 by considering their representations.

Cﬁr
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2.4, conditional probability measures

Let (Q,7F,P) Dbe a standard probability space. For any given
E

E e Y(P) with P(E) D> 0 the conditional probability measure P

under E 1is defined by

(1) PE(a) = P(E N A)/P(E)

where A moves over all sets A with E N A ¢ ZW«P). It is easy
to check that PE is a regular probability measure on (n,i]) with
W(PE) = %P) concentrated on E. Since every event a 1is

represented by the set E = {w:a(w)}, the conditional probability

measure PY under a can be defined by the above formula.

Let X(w) be an (S,A&)-valued random variable. We will define

the conditional probabilityAmeasureﬁvazs, s esS. If PX=s)> 0,

we have

pX=5(a) = P({w:x(w) = s} N A)/P(X = s).

This does not work in general, because it may happen that P(X=s)=0
for some s € A and often even for every s € S. We will define

PX=S, s € S Dby the following three conditions.

(CP.1) pPA=S 45 a regular probability measure on (Q,7) for every
s € S.
(cpP.2) PX=S(A) is Borel measurable in s € (S,x&) for every A € 7

(cP.3) f PX=%(a) P, (as) = P(a N (7 ¢eB)), AT, Be.d.
B
cap
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(CP.1) is an obvious requirement. (CP.2) is imposed to make the
integral in (CP.3) meaningful. (CP.3) is the integral formulation
of the symbolic equation:

A) = P(AN (X e ds))
- P(X € ds) :

PX=S (

X=s is well-defined, we have to prove the

To show that P
following two statements.
(a) There exists such a family {PXZS}S°

(b) If we have two such families, say {P§=S}S and {szs}s, then

pk=s _ pk=S a.e. (P

1 5 on S.

X)

Proof of (a). Fix A € J for the moment and consider a set function

L)), B e &

=
t
I

P(A N X~

Since

u(B) { P(XH(B)) - By (B), B 4,

M is absolutely continuous with respect to PX' By the Radon-
Nikodym theorem we have a Borel measurable function us = ﬁS(A) of

s such that 0¢ W (A) < 1 and that

(2) [ N, (A)Py(ds) = P(a N x"1(B)), A e . B 8.

Since (Q,f}) is a standard Borel space, we can assume with

no loss of generality that Q 1is a Borel subset of Rl and

3 = B1 N Q. We assume that the symbols r and r' below always



denote rationals. Set

~

Fs(r) is obviously Borel measurable in s € S for each r. Then

we have

(21) J[‘ﬁ (r)B(as) = P((=w,r] N X" 1(B))

S 4
B

by setting A = (-w,r] N Q in (2) and noticing X_l(B) c Q. Now

consider the following Borel subsets of S:

Since r < r', we have

P((-w,r] N X71(B)) ¢ P((-w,r'] N X7H(B))

[ Fotmmgan) | Forpgas)
B

B

for every B € 45. This implies that

X) on S,

Set
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Then S1 is also a Borel subset of S with PX—measure 1, because
the right hand side is a countable intersection.
Since ﬁs(r) is increasing in r for every s € Sl’ the

function

(3) F_(8) = 1im F_(r), § ¢ R

s S
ry§
is well-defined and it is non-decreasing and right continuous in §&

for every s € Sl' It is obvious that

1
0 g_Fs(g) {1 for every & € R" and s € Sy.

For s € S - S define Fs(g) to be any fixed increasing right

1
continuous function with 0 F (8) { 1, for example

F_(8) =0 (§8< 0) and =1 (8> 0).

S

It is easy to see that FS(E) is Borel measurable in s € S for

every € e Rl. Keeping PX(SI) =1 1in mind we can derive

(2") [ F_(8)P,(ds) = P((-=,8] N x71(B)), Be I
B
from (2') and (3).
Since F_(8) is increasing and right continuous in § and
()g_Fs(g) { 1, we can find a unique measure v, on G?- with
VS(Rl) = Fs(w) - FS(—w) { 1 by applying 2.2 Theorem 5 to the

function

Gy (8) = (Fg (8) - Fy(-=))/ (Fg (o) - Fy(-=))

in case the denominator is positive an? setting Vg “m % 0 otherwise.

¥
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We will verify the following for every A 565.

(4) VS(A) is Borel measurable in s and

S

f v_(A)P,(ds) = P(a N x1(B)), Be.d.
B

Let B be the class of all A's that satisfy this condition. JD is
obviously a Dynkin class. Since vS(A) = FS(E) for A = (-»,8], (4)

holds for such an A. This implies that £ includes the class

07 = {(-=,8], & ¢ R},

Since O0{¢ generates the O-algebra 651, we have Do 631 by Dynkin's
lemma. This proves (4) for every A € Q}l.

Since Q ¢ 631 and so I ==QSl nQc 631, (4) holds for
every A € t;, in particular for A = Q. Therefore

[ v, (0)P, (ds) = P(a N x"1(s)) = P(Q) = 1 = P (S),
S
. 1

Since O g'vs(ﬂ) g_vS(R ) < 1, the set

S, = {s € S:vs(Q) =1}

is a Borel subset of S with PX—measure 1. It is obvious that

the restriction vSIQ is a probability measure on °J for s € S..

2
Pefine—g——>7y
Set S
the Lebesgue extension of vSIQ if s € S,
X=s
P =

any fixed regular probability measure on (Q, })

if s € S - Sg.
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Since P,(S.) = 1, we can easily verify (CP.1), (CP.2) and (CP.3)

x (Sp)
for PX=S, s € S.

Proof of (b). Since (Q,J) is a standard Borel space, we can find

a countable multiplicative class 0? of sets in 13 which generates

the 0-algebra 73 Since we have

fP)l(=S(A)PX(ds) p(a N X L(B)) = [ P75 (a)P, (as)

B B

for every B € 6&:

Denote the exceptional s-set by NA and set N = UAeﬁ? NA‘ Then
PX(N) = 0. For every s € S T N we have

—

PX=5(a) = PX75(4) for every A e O7.

By 2.2 Theorem 2 we have P?zs = szs for s € S - N. This

completes the proof of (b).



The {PXzS}S is uniquely determined not in the naive sense

but in the sense "up to Py-measure 0." In other words there

are many versions of {szs}s any two of which coincide for

almost every (PX) s € S where the exceptional s-set depends

on the two versions. Therefore for a particular value of s, say
X=g
Sgs P 0 has no unique meaning in general. But we have the

following theorem.

—
e

X=so

Theorem 1. Suppose that P(XJEO) > 0. Then P is uniquely

determined independently of the version. More precisely we have

(a) A e 97K£¥=SO) if and only if A n(X=e,) (P

and
X=s X=s
-1 -1
() B O(8) = P(ANX T(s))/R(XH(sp)), A PR ).
X=sO
Proof: Write u for P and define V(A) to be the right hand

side of (b) if and only if An (X=s,) eM(P). It is obvious
that both | and Vv are regular probability measures on (Q, F).

The assertion of our theorem is equivalent to

uo= \Y {40} /
for every version of pE=%y Setting B =/X72// in the
SN bl

equation in (CP.3), we have

X=s

P O(a)py(isg)) = P(ANX

sq))

for A € EF. Since n and VvV are both regular, we have n=Ve
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For P '(P(E) > 0) we have mentioned that ?7)(P") includes
‘M(P). But we cannot expect?ﬂ(PXzS):aqn(P) even if we allow
an exceptional PX—null s-set. The maximum we can say is
the following.

Theorem 2. TFor every A e7n(P) we have

A e7v(PX=S) a.e. (P

X) on S

where the exceptional s-set depends on A and on the version of

X=s .
{P" "},. For every version we have

MP*=2) 5 9 (P)

for every s such that P(X=s) > O.

Proof: Since A e¢M)(P), we have A A,y € g'such that

1

Ajc Ac A, and P(Ag—Al) =0

by regularity of P. Then we have

_[fxzs(Az-Al)PX(ds) = P((A-A)) nX71(8)) = o.
s

by (CP.3) and so

X=s(

P AQ-Al) =0 a.e. (PX) on S.

This completes the proof of the first part. The second part is

obvious by Theorem 1.

Theorem 3. For every A e M (Pp), PX=S(A) is Py-measurable in

s and we have
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= -1
/PX S(A)PX(ds) = P(AnX ~(B))
B
for every B e?”(PX). Setting B = S, we have

p(a) = [FTEA) By (as),
S

which shows that P is determined by P, and {PX=S}¥.

Remark. P*~S(A) is defined a.e. (Py) on S for A e”(P)

by Theorem 2 and therefore the statement of this theorem is

meaningful.

Proof of the theorem. Take Al and A2 in the proof of Theorem 2.

Then

PP (a) = PR(ag) = PP (a,) ae. (BY) on s,

Since PX=S(A1) is Borel measurable in s and so

P,-measurable in s, PX=S(

. A) is PX-meaéyaable in s and

[Pt @rrg(ae) = [ F0ay) 7y (as) = p(ay nxH(8))
B

- p(anx T(B)) -P(A-A)) NX"T(B)) = P(ANXT(B)).

Therefore our theorem holds for B ¢ Q?. If B e7n(Px), we

have B, ef such that B, c B and PX(B-B = 0. Then we have

1 l)

fPX=S(A)PX(ds) - j PX=S(A)PX(dS) = P(AnX'l(Bl))
B

By

- P(Anx1(B)) - P(Anx"l(B-Bl)) - P(anx"1(B)),

because
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0 { P(AnX T (B-B)) { P(X""(B-B;)) = Py(B-B)) =

For PE(P(EX>O) we have also mentioned that PP ig

concentrated on E. This holds for PX:S for almost every

(PX) s € S, namely

Theorem 4.

P8 (x~ () =1 a.e. (Py) on &, 5

where the exceptional s-set depends on the version of {sztés.

Whatever version we may take, this equation holds for every

s € S with P(X=g) > O.

Proof. Since (S,ed) is a standardiBorel space, it is Borel
isomorphic with a Borel subset of £Sfe$%, Therefore we can

find a sequence of classes of Borel subsets of &S:

& e

E
n

.o B n=1,2,...

nl’ “n2’"° n,k(n)}’

satisfying the following conditions.

(D.1) E,n is a division of S, i.e. E_.,E

nl’ n2""’En,k(n) are

disjoint and S = UiEni°

(D.2) For every nj; Ein+l is a subdivision of éin’ i.e.

every member of E’n. is the union of a number of members in

g

n+1°

(D.3) {ELn} is separating, i.e. for every pair of two
n

different points s and t in S we have Eirl such that

s and t Dbelong to different members of Ein'
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It is easy to see that if En(s) denotes the member of

Eill that contains s, then we have

(5)  Eq(s) o Ej(s) o..0 > {s}.

Let E Dbe any Borel subset of S. Then

fPX=S(x‘1(E))pX(ds) - p(x"HE) nXTH(E)) = Py(E).

B

Since/the integrand is in [0,1] for every s, we have

(6) PX=S(X_1(E)) = 1 for almost every (PX) s € E.
Let N(E) denote the exceptional s-set. Then g}N(E)
Write N, for N(Eni) and N for ba,iNni' Then
Setting E = E_. in (6) we have
X=s /=1 _
P (x (%u))—l, s eB,; - N,
for n=1,2,... and i =1,2,...k(n). Suppose that

Then s € En(s)-N where En(s) is E,; for some 1

on s. Therefore

ni ni ni’
Thus we have

PPN E () = 1

Since X—l(En(s)) d X'l(s) (n>~) by (5), we have

PX=S(x"1(s)) =1  for s e S-N.

) = o.

P(N) = O.
x()

seS-N.

depending

This completes the proof of the first part of our theorem.

The second part is obvious by Theorem 1.
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Suppose that P(E) > 0. Let X(w) Dbe the indicator of E.

X(w) is obviously a real random variable and

E={w: X(w) = 13.

Since P(X=1) = P(E) > 0, Theorem 1 shows that

pX=1 _ pE

Therefore it is enough to discuss only the properties of
{PXzS}S as we will do below.
Take an arbitrary version of {PXZS}S and fix it. Then

we have a family of standard probability spaces
(0, F, %), s e s

On each probability space we can define a random variable, the
probability law (RéTS%;Of a random variable Y, the expectation

EX=S(Z) of a real or complex random variable Z and so on.

(Byés%’is called the conditional proability law of Y under X=s

X=s(

and E Z) (if exists) the conditional expectation of Z under

X=s. Since 7n(PX=S) varies with s, a (T,7J)-valued random
variable on (Q,G},PXzS) for a value of s 1is not always so for

another value of s. But we have the following.

Theorem 5. If Y(w) is a (T,J )-value random variable on
(q,'F,P), then it is so on (Q,S},szs) for almost every

GX) s € S. In particular, if Y(w) is Borel measurable,
i.e. measurable f?&&? , then Y(y) is a (T,7))-valued random

variable for every s € S.
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Proof. The second part is obvious because ‘7n(PX=S) S F~ for
every s. To prove the first part, consider a map Yl: a>p

measurable ?/QB such that T

J

(7) Y, (w) = Y(w) a.e. (P) on Qj

the existence of such a Yl was shown in the first part of the

proof of 2.3 Theorem 3. Let N be the exceptional w-set. Then

[ P rgae) = pinxTH(e)) = (W) = 0
S

by Theorem 3. Therefore

Let M ©be the exceptional s-set. Then

X=%) on q

for s e S-M. As Yl(w) is a (T, )-valued random variable
on (q,F, ") by the second part of our theorem, so is Y(w)

for s € S-M. This completes the proof of the first part.
Theorem 6. Let Z(w) be a real or complex random variable on
(Q,F,P). If z> 0, then

(8) erX=S(Z)Sgds) - E(2,Xx 1(B)) for B eVO(PX).
B
In general, Z e L'(q,%,P) if and only if

(1) 7 € Ll(Q,S},PXzS) for almost every (PX) s € 8

(ii) EX=S(Z) (as a function of g) € Ll(S,Gf,Pk).
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(8) holds for Z e L-(q,%,P).

Proof. If Z is the indicator of a set A e¢?)P), then (8)
holds by Theorem 3. By taking linear combinations and monotone
increasing limit, we can easily verify (8). If 2Z takes

real or complex numbers, then we have
(a)

?
[E==0z) - 5121

5
This implies the second assertion. Writing 2z = z7-27(z7=zv0,27=(-2)h

we can verify (8) for Z real. Writing Z =Rz + 1Pz, we

can verify (8) for Z complex. o ty
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Let X(w) and Y(w) be random variables with values in (s, o)
and (T, %) respectively. Then Z(w) = (X(w),Y(w)) is a random

variable with values in (S x T, J@‘ZT). We want to prove

X=5 .
(P )Y(dt)PX(ds) = P(X’Y)(d(s,t)).
The precise meaning of this symbolic formula is as follows.

Theorem 7. Let f(s,t) be a P - integrable real or complex

(X, Y)
function on S X T. Then

Xzs) -integrable in t € T for almost every

(a) f(s,t) is (P ¥
(PX) s € S.

(b) f f(s,t)(PXzs)Y(dt) is Py -integrable, and

T
(C) !-'I[‘f(S:t)(szs)Y(dt)Px(dS) = f f(S,t)P(X’Y)(d(S,t))-

SxT

Proof. The proof is similar to the proof of Fubini's theorem on
product measures. If f(s,t) is the indicator 1p, ., of

BXxC, B e;zf, ¢ €3I, we can prove (a),(b) and (c) by setting

A=Y 1(C) in Theorem 3. The class ) of all sets E for which
(a), (b) and (c) holds for f = 1lp is a Dynkin class including the
class Ot of all sets E =BXC, B e/@o, C €<y . Since 0t generates
the o-algebra & ® @7 , we have D D &£ ®7F by Dynkin's lemma. The
rest of the proof can be carried out in the same way as the proof

of Fubini's theorem.
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2.5. Iteration of conditioning

Let X(w) be an (S,d )-valued random variable on (Q,%,P)

X=s

and {P 1 the conditional probability measures relative to X

S

defined in the previous section. Let Y(w) be a (T,7)-valued
random variable in (0,9 ,P). Then Y(w) is also a (T,9y)-random
variable on ((L?y,PXzS) for every s € S-N, N Dbeing a Pi-null
subset of S, by virtue of 2.4 Theorem 5. If Y(w) is Borel
measurable i.e. measurable Q;ZEFf/ hen we have N = ¢. Even if
Y(w) is not Borel measurable but only PX-measurable, we can take
a version of {szsi, for which N = §. To prove this, take

a Borel subset M of S with M> N and §(M) = 0 and then

replace PX=S for s € M by the regular probability measure

8, ~on (Q,7F) concentrated at any fixed point w, € Q. From now
0 _

on we will take this version of [PX”S} Then we can again define

s’ Ty=t

X=s):

the conditional probability measures (P , t e T for each

s € 5, so that we obtain a doubly indexed family

X=s ) Y=t

(P , s €8, t eT.

This family has many versions according to the choice of a version
- _ Y=t
of {PX_S}S and the choice of a version of {(PX_S) }t for each

. . X=s Y=t . .
s € S.. Not every version of {(P"7) }S ¢ 1s useful. The only use- .
2

ful version is a jointly Borel measurable version, i.e. a version for

Y=

, = t
which (PX S) (&) is Borel measurable as a function of

(s,t) € (8 x T, S ) for every A €T .
Theorem 1.

(a) There exists a jointly Borel measurable version of

(p Y.t
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Y=t Y=t
X=s X=0 -
(b) Let {(Pl ) }s,t and {(P2 ) }s,t be jointly
X=g, =t
Borel measurable versionsof {(P" %) 1, - Then
2
Y=t Y=t
X=s _ =8

for almost every (P(X Y) (s,t) € SxXT.
2

Proof of (a). Take any version of {P(X’Y)z(s’t)}(s t)
2

version of {PXSSyt)sueh—tha%——¥4w}~—és——?§i§=measayab;e_gg;_evepyyﬁr

fga;pose that A €%, B e and C € y. Applying 2.4 Theorem 7 to

and any

£(s,8) = 15(s)15(6)p D)= ) p),

we have

ffP(X’Y)z(s’t)(A)(PXzS)Y(dt)PXms)
B C

= .[. P(X’Y):(s’t)(A)P(X’Y)(d(S,t))

BXxC

il

P(A N (X,Y)'l(B x C))

P(A N Y () n x1(B))

=~[PXZS(A n Y"H(c))Py(ds).
B

For A and C £fixed, this is true for every B € P and so for

every B eqngPX). By 2.4 Theorem 7(b) and Theorem 3, we have

(1) -]-P(X,Y)=(S:t)(A)(PX=S)Y(dt) - PX5(a n v 1(0))
c
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for almost every (PX) s € S. Let N be the exceptional s-set.
Since PX(N) = 0, we have a Borel subset M of S such that
Nc M and PX(M) = 0. Then (1) holds for s € S-M. Since M
depends on A and C, write it as M(A,C). Since (Q,7%) 1is
standard, we have a countable multiplicative family {An} c F
which generates the c-algebra F. Set M(C) = UnM(An,C). Then
PX(M(C)) = 0 and (1) holds for A = A,n=1,2,... 1if s e S-M(C).
Using Dynkin's lemma as we did several times, we can prove (1)
for every A € 3 if s e S-M(C). Noticing that (T,T) is standard
and using Dynkin's lemma again, we have a PX—null s-set M outside

of which (1) holds for every A € 3 and every C e'J. Now set

/
pX=s for s € S-M.
Mg T
the regular probability measure §, on (Q,F)
0
Lconcentrated at W, for s € M.
and —
P(}*’Y)”(S’t) for s € S-M, t € T
"‘Ls,t -
o) for s e M, t € T.
Yo

Then uS(A) is Borel messurable in s for every A €3 and

[ vo@rrglas) = [ P (apy(as) = a0 x7H(m))
B B

by PX(M) '0. It is obvious that Y(w) is W -measurable for

every s. W (A) 1is Borel measurable in (s,t) because
s,t

P(X’ ¥)=(s, t) is so. We can verify
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J b ) (@0 = w0 ), A T 2 e 8

B

by (1) for s € S-M and by trivial computation for s e M. Thus
{us + is a jointly measurable version of {(PXZS)Y=t}
2

s, t s,t’

_o Y=t
Proof of (b). For any jointly measurable version of {(PX_S) }S "
E

we have

Y=t

(PFE75) " (8) Py, y)(a(s,1))

BXC

Y=t _
=ff(PX‘S) (A)(PX”S)Y(dt)Pst)

B C

-/-PXZS(A n v7H(c))p, (ds)
B

Il

P(A N Y I(c) N xH(B))

Il

P(AN(X,Y)(B x C))

for A eF by applying 2.4 Theorem 7 to

X=3 Y=t
£(s,t) = 15(s)1, () (P*7°) " (a).

Therefore we have

J @7 ) By g (atent)
1 (X, )\ 18> )

= f(PXzS)Y:t(A) P (d(s,t))
B 2 (X, Y) ’
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for E =BXC, B eé, ¢ €. The class of all such sets E is
a multiplicative class generating the o-algebra /Q@fj. Therefore
the above equality holds for every E e«g ®(7 by Dynkin's lemma.
New USe < A,nkuo lesnrnn shcr MW
This implies the conclusion of’ b) ol ind : zﬂ; q 4,

From now on we consider only Jjointly Borel measurable versions

of {(P% ) } ¢ unless stated otherwise.
2
X=g, =t o : < (X, ¥)=(s,t)
Theorem 2. {(P" ) }s,t is a version of (P Y(s,t)"
X=5, 1=t
Proof. Since (P ) (A) is Borel measurable in (s,t) for

every A eg-‘, we have

e Y=t
[ T ) ey (alsr )

BxC
- P(AN (XY)H(BxC)), Beaof, C €7,

as we have shown in the proof of Theorem 1(b). Using Dynkin's

lemma again, we have

JE==)" ) By yyale0) = Ban (1) Hm))

E

for every E eqy@? This completes the proof.
Theorem 2 means that

(szs)th = P(X’Y>=(S’t) a.e. (P(X,Y)) on SXT.



—-52-
If X(w), Y(w), and Z(w) are random variables with values in
(s, &), (T,J) and (U, Y) respectively, then the following
conditional probability measures are equal to each other

a-€-. (P(X,Y,Z)) on S X T x U:

. _, Z=¥
p(X, ¥, 2)=(s,t,u) ((szs)Y t) ,

A

(P(X,Y)=(s,t))zzu’ (szt)(Y,Z)=(t,u).
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2.6. The conditional probability measure relative to a g-algebra.

Let (Q,%,P) be a standard probability space. A o-algebra on
qQ included by 27(P) is called a sub-g-algebra of 7NP). The
system 2 of all sub-c-algebras of 9MN(P) is a semi-ordered system
with respect to the set theoretical inclusion relation. Let g be
a subsystem of 2 The greatest lower bound of g, A"éec Y in
notation, is the set theoretical intersection of all ‘ée=g and the
least upper bound of g, VBeC ‘@ in notation, is the og-algebra
generated by the set theoreti?al union of all “6 € g

If P(ASB) = 0, we say that A is P-equivalent to B, A = B

a.s. in notation. For a given “ge B the class of all A's that

are equivalent to some B € ‘g is also a sub-g-algebra of 977(P) and

is denoted by &. Let él and 52 be sub-O-algebgas of ‘M(P).

If for every B, € \£l we have B, € £2 with B, = gg a.s., then
i c

we write \élc &2 a.s. If &l 62 a.s. and gec 51 8.8S.,

then we write £l = 52 a.s. and él is said to be P-equivalent

to ‘§ X ﬁl c ﬁg a.s. and \61 =\62 a.s. are equivalent to
\Bl c %’2 and @'1 = 82' respectively.

Let & be tlte sub-g-algebra of 7 (P). We can introduce an
equivalence relation in ( relative to 8 by writing W™, if
and only if either wqy,w, € B or wl"”Q € BC for every B € é
Each equivalence class is called an atom in ﬁ . fBvery set
B e# is the union of a (finite or infinite) number of atoms in
£ . An atom in 58 does not belong to $ in general. Therefore

the notion of atoms is not very useful for general sub-g-algebras

of M(P).
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Suppose that ZS is countably generated, i.e. generated by

a countable subfamily of @ . 1In this case the following three
conditions are equivalent.

(A.1) A is an atom in #3, %

(A.2) A is a set ¢ 8 such thag\ Bc A and B e¢® then

B=¢§ or A.

(A.3) A =n Al, Al = A or Ag, n=1,2,... for any given

n
countable subfamily {An} that generates“?@ J/‘In view of (A.2)
<

and (A.3) every atom in“®B belong to B ir B is countably
generated.

Let us mention a remark on the property of being countably
generated. Since (0,7F) is standard, = is countably generated.
But not every sub-g-algebra of ’5— is countably generated in
general as we will show below. Therefore it is obvious that not
every sub-o-algebra of ?”AP) is countably generated in general.
Suppose that Q = [0,1] and 9‘=§ln[0,l]. Then (Q,7F) is
standard. Let AN denote the Lebesgue measure. Consider the
class & that consists of all B e€F with A(B) = 0 or 1. L is
obviously a sub-o0-algebra of F put it is not countably generated.
Suppose that it is generated by {An} c B . Let A De the
intersection of all A with %(An) = 1 minus the union of all
A, with A(A ) = 0. It is obvious that A e ® and A(A) = 1.
Let \331_ be the class of all sets €‘15 that include A or are

included by A, 8 is obviously a sub-g-algebra of & . Since

1

E@ 1 includes all An’ és includes EB . Therefore %61 = 25.

1
Since A(A) = 1, we have a proper subset B of A such that
BeFand A(B) = 1. Then we have B e and B ¢ %51 in

contradtion with 331 = E&.

o)
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If we want to prove only the fact that not every sub-g-algebra
of W’(?x) is countably generated, we can do it more easily by bﬁ"é
cardinal number argument. In fact ’?77(7\) itself is not countably
generated, because the cardinal number of 7 (N) 1is at least
(in fact equal to) 22' as 77(N\) includes all subsets of the

Cantor set, while the cardinal number of every countably generated

c-algebra is at most c.

Theorem 1. For every sub-c-algebra B or M(P) we have a
countably generated sub-g-algebra 6 1 of ’V}?(P) which is

P-equivalent to i% .

Proof. As we have mentioned in 2.3 Theorem A4, IN(P) is separable
with respect to p(A,B) = P(AGDB) and so is B. Let (C ve a
countable p-dense subset of ‘6 and é 1 the g-algebra generated
by @ . We want to prove that \5 1 :ﬁ a.s. It is obvious that

£l c é . Therefore it is enough to prove that for every B €£ we
can find B, ¢ &, such that P(B,© B) = 0. Take A € /T

such that P(An@ B) £ 2™% Noticing the obvious facts

E @g E c g(EeEn)

E O nE, < (EOE,),

we can easily prove that P(B@Bl) = 0 for B = 1lim sup A ¢ ‘51.

f n
Now we will define the conditional probability measure Pé’w

on (Q,3) relative to a sub-O-algebra & of 7(P). The
6 ,w

intuitive meaning of P is given by
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P(ANB

p&w) - 1im  PP() = 1lim AL

Bl a(w) Bla(w)

Be® B e

4

Q
where a(w) is the atom that includes g, but the rggorous

&,

definition of P is given by the following conditions.

(Cp.1") P\é’w is a regular probability measure on (Q,F) for
each w € Q,

(CP.2') The map w ~> Pg’w(A) is measurable if/ﬁl for each A e%,

(CP.3%) [ Pg’w(A)P(dw) = [‘)(AnB), A e Bc®. We will write
B P :

P\é Pﬁ’w if there is no possihlity of confusion.

for

B,w

P is well-defined, because we can prove the following

statements in the same way as we proved (a) and (b) in Section 2.4.

Pﬁ"”o

(a') There exists such a

(b') If we have two such P‘@,w , say PP’w and sz,w’ then

K, w
Pl ’

Péﬁ’w a.s.

There are many versions of Pg"” which are equivalent to each other

in the sense of (b').

Theorem 2. P®°® - P‘&’w 8.S.

(AeF)

Proof. The map w = P °%(A)) is measurable &/8' by (CP.2')
and B o5& . It follows from (CP.3') that (CP.3') remains to

hold even if we replace 8 by @ . Therefore P\é’w is a

version of Pd8 >®  Thus our theorem follows from (b').
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Since "51 :132 a.s." is equivalent to "31 = ?2 , we

have the following by Theorem 2.

Theorem 3. If ‘61 andﬁg are P-equivalent, then
\‘@lﬂ” gg’w
P =P a.s.
&
As an immediate result from Theorem’l and 3, we have the

following.

Theorem 4. For every sub-c-algebra 4 of )(P) we have a countably

8 s W
generated sub-g-algebra '@l of M(P) such that Pﬁ’w =p° L a.s.

Similarly to 2.4 Theorem 2 and 3 we can prove the following.

—————

Theorem 5. Suppose that A € 27)(P). Then
(1) A e%’)(P\é’w) a.S.,

(ii) Pg’w(A) is P-measurable in ,

(111) IPg"” (8)P(dw) = P(An B), BecB .
B

By virtue of Theorem L we can restrict ourselves to the
countably generated g-algebras in discussing the conditional
probability measures. Keeping this in mind we have a theorem for

Pg"” corresponding to 2.4 Theorem 4.
Theorem 6. If “@ is countably generated, then
P\g’w(a(w))z 1 a.s.

where af(w) is the atom in Y that contains w.
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Proof. The idea of the proof is the same as that of 2.4 Theorem 4.

Since we have

[Pﬁ’w(A)P(dw) = P(An A) = P(A)

— A.
»
for A ePr by Theorem 5, we have

Pé’w(A) =1 for w e A-N(A)

where N(A) is a subset of A with P(N(A)) = O.
Let {An} be a countable subfamily of 33 generating %6 and

set

€,
1
AT andN(eq,€,,...56 ) =W(A(E,¢,, ..’.,en))

o5

A€ s€,50005€ ) =
1’72 n i=1

o _ ,c 1 .
where €, = O or 1, Ai = Ai and Ai = Ai’ i =1,2,... .

O or

i

Let N be the union of all N(el,...en), n=1,2,... €
1 (i=1,2,...). Then P(N) = O.

For n fixed,

A(el,eg’co-yen), 61,62,.-.,en=001"l

are disjoint and the union of all such sets is Q. Let an(w)

be the set among those sets that contains . Then
al(w) > ag(m)D...éa(w).
It is easy to see that

ng’w(an(w)) =1 for w e Q=N.



_59_.
Therefore P7§’w(a(w)) = 1im Pas’w(an(w)) =1, w € Q-N. This
completes the proof. ?
Let X(w) be an (S, )-valued random variable and GKX)

the o0-algebra generated by X 1i.e.
-1 -1
o) = x (&) = {(x"(B); Bed}.

Then we define the conditional probability measure Pcixj’w. We

have defined {PX=S}S in Section 2.4. The following theorem

that can be proved easily will connect these two notions with each
other.

Theorem 7. pX=s _ PGfX},w

S:X(w) Qe Se

X=s

where the left hand side means P evaluated at s = X(p).
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It is customary to write PX for PO[X]' Because of the

following theorem we can interpret P65 in terms of PX.

Theorem 8. Let @ be a sub-o-algebra of 7?ﬂfﬂ. Then there exists

a real random variable X(w) such that

G _ x

® = orx] a.s. and so P~ =P" a.s.

Proof. By Theorem 1 we have a countably generated sub-0-algebra &31
of //[(P) which is P-equivalent to B. 1t is enough to prove that

we have a real random variable X such that dgl = o[X]. Let {An}
generate 631 and en(w) the indicator of A, n =1,2,.

Set

It is obvious that X dis a real random variable. As every e is
measurable &51/651, so is X. This implies O[X] c Ga. Since
X(w) Dbelongs to the Cantor set, X(w) has a unique triadic expansion

and so en(w) is determined by X(w) as follows:
2e_(w) = [3™(w)] - 337K (0)], n = 1,2,... ,

[a] denoting the maximum integer < a. Since a - [a] is Borel

measurable from Rl into itself, we have

A = {w:en(w) =1} = {w:x(w) ¢ E}
~n
. 1 .
with some E € QS .  Therefore An € 0[X] for every o. This

implies @, < o[X] and so @3, = o[x].
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As in the case of X=s we can define probabilistic concepts
such as random variables, the probability law (P(B’m)Y of a random
variable Y, the expectation Ee’w(z) of a real or complex random
variable Z etc. on the probability space (Q,?,P6’w). (Pe’w)Y

and E@"”(z) are called the conditional probability law of Y

under 63 and the conditional expectation of Z under 6

respectively.

4

Analogously to 2.4 Theorems 5 and 6 we have the following theorems.

Theorem 9. If Y{/@ is a (T, J )-valued random variable on (Q,3,p),
then it is so on (Q,?,PGB) a.s. In particular, if Y(w) is
measurable o /J, then Y(w) is a (T, )-valued random variable on

(Q,@,P@’) for—every W c—fx
W o~ L,

Theorem 10. Let Z@f’)’ be a real or complex random variable on

(0,%,p). If Zz> 0, then

(1) E(E@’w(z),B) = E(z,B) for B € é

In general, Z e Ll(Q,S,P) if and only if

(i) 2z € Ll(Q,H,Pﬁ’w) a.s.

and

(ii) Ee’w(z) (as a function of W) € Ll(o,"H ,P).
The formula (1) holds for 7Z € Ll(Q,G ,P).

Suppose that @1 c @2 We want to discuss the relation between

PlandPg.
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Theorem 11.

B, &
(1) If Ae 3 E I[P 2(a)] is well-defined for every . This
a probability measure on :; as a function of A. The Lebesgue

. . . . 1
extension of this measure gives a version of P .

(i1) If A e JJ(P), then

Egl[Pﬁg(A B &,

(111) If Z e 1.7(2,3 ,P), then

@ Q
E@)I[E 2(z)] = F l(z).

Proof. (i) is obvious by the definition. If A € ?77(P), then

2%

P A) is P-measurable. Therefore it is P l—measurable a.s. and

B, 6, 8,

E[E (P “(A)),B] = E(P

B(rU2(),8) - P(a 0 B) by ®, - @
_ 5% ), 5)
Thus we have
E[E@l(PQQ(A)),B] = E(P@l(A),B) for B ¢ @l.

QR —
Since E 1(P 2(A)) and P 1(A) are both measurable 531/631,

the above equation implies

@
63 ANE = P63 (A) a.s.

is



-63-
This proves (ii). The last assertion (iii) is obvious for
Z = the indicator of A € ZV(P) by (ii). Using this we can prove
(1ii) for Z .general by a routine method.

Theorem 12. U = E&3(z) a.s. if and only if

(1) U is measurable (3
and

(11) E(U,B) = E(Z,B) for B e (3.

Proof. If U = E63(Z), then U satisfies (1) and (ii) by Theorem 10.

The converse lg obvious.



