Stationary Processes, 1963-64
K. Ito VIII.1.

VIII. POLYNOMIAL APPROXINATEON OF STRICTLY STATTONARY PROCESSES CONTINUOUS

IN PROBABILITY

1. Introduction

Let <£ be the system of all finite intervals.
A yhise noise (with continuous parameter) is defined as a Gaussian

system ilI’ I el with

(1) E(BI) =0, E(BI . BI,) = |1 ~1|
(| | = Lebesgue measure). Since

- 2
(2) E'Ii"xg“ih“f'%51"11(‘0” at >0,

the existence and uniqueness (up to law-equivalence) of white noise is clear.

It follows from (1) and (2) that

(3) aifferential: if (I;) are disjoint, then {BI] are independent.
i

(4) stationary: for any system (I,, I,y -+ » I}, ve have

B ) ~ (B

(B p e ,B 2 CID,B
Il*t In+t (L) Il I

) -
2 In

where I+ t=(8+t; s cI) and (L) means law-equivalence.
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Using (4) we can define an sutomorphism group “t, and @(B)

such that

(5} 81 = Pree

Take any polynomial p({l, bor +oe s 53) and any system of intervals

I » Ik and consider

1, I2, e

(6) X = P(B’l,_t; BXY‘H’" vee BIn*t)

Then x, is a strictly stationary process }:ontinuous in probability. Any

process of the form (6) is called a polynomial stationary Rfocess.

Bow we shall ask a

Question: Givem any strictly stationary process x, continuous in probability,

t
can we find a seguence of polynomiasl stationary processes xén) such that
(7) x(n) > X.
(L)
i.e.
(1) Ve et
(n) (n)
( y N — ( 9 cee )
¢ ty ) L oy by

( ——> means lawv-convergence'.

(v)
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Bowever this question is not patursl, because, even if xén),

n=1l, 2, ... are all polynmmial stationery processes and if x(n)—-;-x.,

x. 18 strictly stationary but not alvays comtinuous in probability.

Therefore we shall introduce the following law-topology.

Definition 1. U(x, ¢) is the collection of all stochastic processes y

such that

8) m, dogl, -oe s Tyl Ttgls vee s Il <&

m n
ze=> |Elexp(i Z 6, v, )) - Blexp(i Z 6, x, )}l < e
=1 3y =9t

(9) oylx,y) = toffe : y € U(x,e)) -

~
py 18 @ metric on the space J of all stochastic processes (two
stochastic processes with the same probability law being identified).
This topology is natursl in the sense that (10) the set of all
strictly stationary processes continuous in probadility form a closed set

of 1, and we can prove the following theorem which gives an affirmative

answer to the ;juestion stated above.
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Approximation Theorem. The set G> of all polynomial processes is a dense

subset of ,Z/ .

The spproximation theorem for grgodic stationary processes continuous
in probability was discussed by N. Wiener in his paper "The Homogeneous Chaos''.
Although neither his statement nor his proof is very clear, his argument containe
a very ingenious idea. Polishing Wiener's method and using Oxtoby-Ulam's idea
used in measure preserving flows, Nisio gave a neat proof to the approximstion

Ml’"
theorem without Ln\-:m; the ergodicity. We shall present her proof here.
N. Wiener: The homogeneous chaoc, Amer. J. Math. 60 (1938), 897-936.

M. Nisio : On polynomial approximation for strictly stationary processes.
J. Meth. Soc., Jepan 12 (1960, 207-226.

In the course of the proof of the theorem we shall often use the

following process-topology (not _aw-topology).

Definition 2. Let Q(@ ,P) be a probability space and let J(Q) be the

space of all stochastic processes defined on a(&,P).
V(x,e) 1s the set of ull processes y defined on the same

probability space such that

(11) h:|<tfl m>P(lyt-xfI>6)<5
and

(12) pv(x,y) = inf(d : vy & V(x,8))
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Corollggl.

(13)
i.e.,

(13')

v(ix, 9/'5) c Ulx,¢) ,

ay(x,y) < ermem i

and so

(148

implies x

Proof. If ¢ > 2, then U(x,¢) = § and so (13) is evident.

Therefore

VIII.5

If x and y are defined on the same probability space, then

ve consider the case ¢ < 2. Assume that y € V(x, e5/5). Then we can see

mme=>

A

IA

ml, leyl, -

m m
[Blexp(1 7, €,y )} - Elexp(d % 8, t, )|
"3 J=1 J

J=1
m i,y 17, x
2, Ele Ity e JtJI
J=1

m

J=1 1

Coe
[y

* s !9-'! 't'l'J cce

L Elexpli8,(y, - % )} - 1]
J

[(Faf:]
——
)
=
]

e
v

|
+
T
\4“
sl
‘_;<

) 'tm' <
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Therefore y € U(x,¢). Thus (13) 1s proved. (13') and (14) follow from

(13) immediately.

2. Case: xt is Cawssian

To make it easier tc understand the problem, let us first consider

the Gaussian case.

In this case we can approximate X, by polynomial stationary
processes of degree 1.

We can assume E(xt) = 0. By the continuity in probability, we
have the Khinchine (Hin¥in) decoaposition)

1(t-8)A

(1) E(xt,xs) =fe ar(n) .

In case 4&F(A) = £(A) d)\, we can express x; as
(2) x, = J g(t-8) dB(s) for some g E,Lz, & real

If g 1is a step function, then x

t itself is a polynomial process of degree 1.

If g 1s a general L2—function, then take a sequence of step functions &,

such that

[ e - gl? a8 —> 0

s xén) = [ gt - s) aB(s)

is a polynomial procese and
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B(1x®) - 5 1?) 2
X, - Xy -flgn-g[ ds —> 0 (umiformly in t)
Therefore
x(n) —_— X end so x(n) —_ X .
Py %

In case dF(A) 1is a geperal measure, take a sequence fn()\) >0 such that

fn()‘) 4N —-> dF()\) (weak*). Then

it 1At

r(t)=[e fn()\-) AN —>r(t) = [ e aF(A)
uniformly in each bounded t-region. Construct a Geussisn process xn(t)

vith mean O and the covariance function rn(t) for each n. Then

X —> X
n b

U

because, a8 n - =,

E (""‘P [i 121 %ty GJ] \/ " F <exp [i Ji <ty OJD I

1 B 1 o
= - = r (t, - ) e }-exp{a-— , r(t,- )99}
exp{ 23’%‘1 o'ty - % %% 23,§=1 7% %%

—> 0 uniformly in 'GJ" i, |t1|<e-l for every € > O.

This completes the proof.

|
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3. Approximatios Theorem for the Discrete Time paremeter Case.

To expiain the crusial point of Wiemer's technique, let us
consider an analogous theorem for the discrete time paremeter case.

We shall first introduce soms preliminary notionms.

White Noise. (Bk’ k ¢ Z) 1is called a white noise with discrete
paerameter, if B,ke Z, are normally (N(O, 1)) and independemtly

distributed.

Polynomial Stationary Process. A process of the form

&) y = P(B » B p oo B )
k ll*k tai'k ln-'-k

(p = polynomial of n real variables)

is called a polynomial stationary process.

Lav-Topology. U(x, £) and pu(x, y) are defined in the same way as

in the continuous time parameter case .

for every (ki) .
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Process-Topology. V(x, g‘) and pv(x, y) are defined in the same

way as in the continuous parameter case

= (n)

(n', X) 20 &= x ' ox in probability for every k.

p(x

3
V(X, ‘5’ ) cVvix, €)

Du(x) y) < ‘.2/ 59;;1: 2]

Approximetior Theorem. Given any strictly stationary sequence

;k(u:rl), k ¢ 2, e* ¢ Q*@, P*), we can find a sequence of polynomial
stationary sequences (&(’n)(wj) of Bk(m), k ¢ 2, e 0(0B, P} such
w

that

x(B) —3 y
(pyy)

We shall first prepare two lemmms.

Lemma 1. If xk(ar*) is bounded, (i.e., I M < » such that
ixk(w*)l < M for every k, o*) and ergodic, then there exists a)‘(’)* € 0%

such that, for every m, 91, cee em, k e , k

1’ m
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= R e

\ n-1 n ) a
(1Y L:Oexp{i ng dek;‘(cua‘qu{axxJ(i ngej ka>}

/

Proof of lessa 1. Fix any (m, 8,5 -ov 8 Ky o 5 K . By

Birkhoff s ergodic theorem, the set of o*

65y O, Kypeny ko

for which (1) holds has P*-measure 1. Therefore

% =
a¥ N Q

91 rational

bas P,-measure 1. Take any point ws from Q*O*. Then (1) holds for

any m, any 8, rationsl and any k . In order to verify (1) for any

m, any 6, (mway be irrational) and any k,, observe

1

L5 3 o) -1 5 |
(2) l"' exp (1 e = {ak ) -= ) exp(i 9! - (CD*))

» % 7 ey 0 T %3 gm0

n-1 m ,
< 2 E Z exp (1 0, X, g(a%)) - exp (i 93 X '&((“%))‘
®g=0 J-1 d Ky 3 k0

< .1; n:11 5 e -9 l ’xk - (G)*)‘

TR0yt d ) 0

<m - M suplo, - 6]

3 J J
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and similarly

(3 B (eIP {1 él % x"a}) T E (exp {1 ng % x‘g} >i

<m - Msup |6 - 631,

3 J
take rational ) such that m - M sup laJ - 93] < &£/3 and determine
J
- le N
Dy = nO,\g__ such that n > n, implies

'% “él exp iél K xkj;z(og)>-z<exp{i z; ejxk }>l<é

£=0

Then n > n., implies

0
1 n-1 g_xv m 3
= ) exp {i 6 . (_m*}}— E(exp (i Z; 2] ), <g.
B 420 le'\ J xkg”’ 0 L oy d kaJ
Lemma 2
a (@) = min(i > 0:[B_ ol <1, B a1 o, 'B_ uyap(@)l > 1)

( =« 1f such 1 does not exist)

satisfies
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(a.0) Ple, <=) =1,
(a.1) P(an = 0) = P(‘n =1l) = 0 = P(.n = n) > P(a.n = n+l)

_>_P(an = o) > .- ZP(an = n4k) > -

. - } 1y B
(a.2) P(an = 1) = L‘L cn*(i) [P(la.n n+k-1) P(an = n+k)]
k=
where
1
e (1) = ¢, 1=0,1,2, ... , k-1
x= O, 1 = k., k+l, . ’
2m
(a.3) P(Oz a, =a-¢ for 2] <m)>1- =

Proof of Lemm 2.

(a.0} Pla < =)
n
= P(3, ;»_o:lB_n+1| <1, |B_n+i+li 1, e, hail > 1)
\, Iq 1

= 1 {by Borel-Cantelli's lemma)
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{a.1). This follows from

Pla, =) =P{IB__ 1<1, |8 ..

el | >1, ..., iBil > 1)

for 1=«<0,1,2, ... ,n
and
Pla_=n+) =Pla 40, 1,2, ..., 11, Inii <1, lni+1| >1, ..., ini+nl > 1)

for i=12, ...

=k)=-0 a8 k - w,

(a.2). Since )| P(an =1) =1, ve get P(a_

i>0

and therefore

Pla =1)= [ [Pla =k-1)-Pla =k)] =2 G+) % [P(a=k4)~Pla. )]
K> 1 ko

(1) * k - [Pla = k-1) - P(a_=k!] #

y ck(i} C K [P(a.u = k-1) - P(an = k)] (@3 @)

kznﬂ

(a.3). By the definition of &, and ¢,, we have, for £ > O,

L

43! 8 = 1 => 8, = i+, 0, 1, ... , or £-1

TN

&
¢, a, # & - =>8 =0,1, ...,4-1
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Q‘an{an-l for some £ =1,2, ... ,m==>8 =0,1,2, ...,0r ml

»=-1
- - =1) <2
P(O‘ athnz for some £ = 1,2, ..., -)SigoP(un 1) <2
(vy (a.4)).
Similarly
P(e, a fa -4 forsome f=-1, -2, ..., -m) _<_§ ,
and so

P(O‘ an = a -4 for every £ =0, +1, +2, ..., +m)> 1-?;? .
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Proof of approximetion theorem

Case 1. x_ 18 ergodic and bounded (l’x!S")-

Consider two processes

( ) *

ykn) - x-an(m)ﬂ( 0”0)
( ) » _ *
”kn = x-okan(m) (0g) = " x—an(m) (‘”o)

»
with the element ®, picked up in Lemms 1 and the random sequence an‘m) defired

in Lemma 2, where Ok is the shift operator acting on the space of functions

measurable @ (B) ( 3)

By Lemma 2/we have

n) (n) om
P(yé = Zk » )i = O, : l, : 2’ . ) i m) 2 1 d “II‘
and so
ov(y(n), z(n)) —_> 0 a8 n 2w
a fortiori

(%) pu(y(n), z(n)) —> 0 a8 n
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On the other hand we have, by Lemme 2 (a.2) Gwud Lemma

=
(a.2), Efexp(i ) GJ yﬁn)(m))}
J=1

=} (o%p) [Pla = mp-1) - Pla_ = n'p))

px0
n B
1 P z
X — 7 exp[i }, 8 g ()]
afp A &0 "kJ s
5 )
—_— Elexp(i 6 (w*))]
I
for every (m, ”ﬁl’ k2, o kn’ 61, e Bm). Furthermore this convergence

is uniform in the set 8S(C) of a1l (m, k , 6 ) such that
(5) m, lk1!; e 'km': !Glln cee 3 'emlf_c}

in fact the pover of the set se(c) of a11 (m, k , 6" = £ &) & s(C)

(* = ¢/6MC) 1s finite and so we can find n = no(e) such that n > n,

implies
Elexp(1 E 1,8 yl({n)(m)}] - E[exp(1 i 2,8 x,(in) (a*))1< €/3
J=1 J J=1 J

for every (m, k, 2 5) & SE(C). Take any (m, X , 6 ) &€ 8(C) and choose

(m, k., z.“) such thet ,‘15 - 81' <b®, 1i=1,2, ... , m. Then
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{2 exp(1 i ] y(n)(mm - Blexp(l i 0, x (@)))] < e
1 97K = 3K

by the same arguxent as in page VIII.11l. Therefore

(n), x) =—>0 as n 4w

(6) nu(y
vhich, combined with (%), implies

(7) pu(z(n), x) —>0 a8 1n - e.
It is pov enough 10 approximate the process zl({n), i.e., the process
of the form @kf(a)) (|£] < M) by polynomial stationary sequences.

By Cameron-Martin's epproximation theorem we can find a sequence of

(@A pamrconn )
random variables of the form
fn(m) = Pn(B_N » B-—N 41 "0 Bl )
n n n
P, polynomial
such that
E(lf (@) - t@)[2) —>0

Then okfn(cn) is a polynomial statiomary sequence and
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E( |8 f (@) - \r(w)ta) = B It (@) - £(a) f) —> o0,
which implies
a,,{o fn, O‘f] —> 0

a fortiori

pgl® £, 81) —>0

This completes the proof of Case 1.
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Case 2. x, 18 bounded (|x | < N).

Topmvethxppmi.timtbommthuém it is enough to
approximate a bounded stationary sequence by bounded ergodic stationary
sequences,

We shall use the following

Theorem: (Oxtoby-Ulam):
Let 0(@ ,P) be a Lebesgue probaebility measure sypace (= separable
atomless probability measure space), ?« the group of all automo~phisms and 9;

that of all ergodic automorphisms. Then
V'rc,?, Ve>o VER,E,..,E @

3 8 = 8(T, «, B, --e s ln) 6?‘ such that P(".[‘ls!1 ~ SEi.) <e€

First notice that it follows at once from this thecrem that

Corollary: Under the same assumptions as above, it holds that
2
() VTE Ye>o0, Ye, ..., €1°=1%a, @ ,p)
38 = 8(T, € £15 eee s fn) £ ?6 such that

fre, - st ll <e, X=1,2, ..., n

(Bere T meuns the function-transformation induced by the set-transformation ',

and similarly for 8.)
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(v) VT € ?’, Ves>o, Vr e 12 ¥ n positive integer.
\z
Js=s(T, ¢ t,n) & %‘ such that

185 - T5¢f < e k=0, +1, ..., +n

¢

‘Proof: (n) is easy. To prove (bt ), observe
k
st - kaﬂ

< ¥ - ¥ weh + 55 Tee - 852 4 on 4 ol - T

sz - orfl + {sioe) - T(PL)|j+ .- + RS(Tk-lf) - T(frk'lr)u

<
‘and
Is % - 7%z
= Je - s®r7Fe)
= fo%a-kr - rir7Ee
< Is(r®e) - wen) |+l e) - 2@ )+ oo sele) - (r7le))
and define
8 s S(T, ¢, £, n) = S(T, ;“; , r 0, 7% e L, P2) 4n (a).

Let x.k(m), w & Q(@,P), be any given bounded stationary sequence.
We can assume that (B = @ (x). Therefore 0(A,P) 1is a separable probability

measure space. Let T be an automorphism which carries X to X4l Then
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x = ¢ where o) = xo(m).

Now we shall comstruct a Lebesgue probability space 5(6,?)’
an automorphism T on it and a bounded function £(®) such that
;k(g) = i# f(®) is equivalent in law to xk(a)) as processes.

Let (U be the class of all atoms. (R 1s a disjoint system,

clearly countable and invariant under T. Therefore ({ is of the form

lid 12-1
G( = (A TA;, -oo 5 T TA, ATA, o005 T Agsenns )
‘1
* =
(*) T A, = A
Therefore we get a disjolnt decomposition of Q:
Q= (u TiA)UQ 0 : atomless
1} J o o)
We shall define @ as follows
~ 3 U = .
8= () xm) va, s ll.ul P(A); IiJ : interval

TR N~ A NN A N
Ill 121 122

Ill 112
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T 1s defined es follows: T = ¥ on a, (=a)-
Tx = x + P(a,) (-od :1,(1\))

¥ : Ii.l -———> I12
, . .,
ce> I -
Ip o {dentity
Iiti-l ---> 1,

~

? 1s defined ( 2@ ,F) will be defined in natural vay

@) = ) on Q

i}

(o}

L

£rda,) 6o T, 3 =0, 1, ceey £y

; ~
Then there exists a homomorphism U :@_S_i_gt_gl) @

U TJA1~--> I, f -7

n, --->0 T -7

Therefore (P-2(d), k & 2) o (T*¢(0), k & 2).
L

Thus we can assume that O(0,P) 1s a Lebesgue probability measure

gpace and T 1s an automorphism on (3 and

xk(m) = ka(cn) f : bounded meas.
Using (b) proved sbove, there exists s, € ?’e for every n

such that
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us:rnr"rﬂ<% for k| <n

Qv(ﬂ;f, T°r) <-!-1; <> O

and so

py(S.L, T'L) --->0

Since Sn is ergodic, Y Sif, k ©£Z, 1s also ergodic, This completcs the

proof of case 2.

Case %. General case.

This can be reduced to case 2 by truncation.



