Stationary Processes, 1963-64
K. Ito VII.1

VII. FOURIER ANALYSIS (F SAMPLE FUNCTIONS OF
STATIONARY PROCEBSES

1. Generalizsation of Fourier Trensforms.

(a) Formal Definitions. '

Fourier Transform; f{t) = Fg(t) = / eiM' g(A) aa

Inverse Fourier transform; g/A) = .‘ff()\) = }1‘; [/ e‘u‘t rit) ar

(v) 8€L2:feL2

A
ft) = g(t) = L.i.m. [ e“‘t g(A) an
A-w A
I't 1 A e
gN) = Fe(r) = 1im 5 [ e £(t) at
A-aw -A

(e) g€ 12 4 f continuous, vanishing at + w

£{t, =JFg(t) = J e

Y ,
g(\) = ?(t) =a.e., lim 1lim -2%1-( i
E-+0Q0A 2w A

1M ) an Lebesgue integral)

e-i?\t e 1t 1

“TEE £(t) at
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() & complex measure of bounded variation

& f=¥% continuous bounded

iat

F(ag) {t) = ]m e aG(\) (8tieltjes integral)

A b
G(b) - 6(a) = lim 2—1“- f f eI @ r(t) & (P. Lévy's formula)
A

Ao N

G(x+0) + G(x-0)

G(X) = 5

Special Case. 40 purely discontinuous
of =%d3 almost periodic function in Bohr's sense

(e) 5. Bochner: integrated Fourier transform

() L. Schwartz: Fourier transform of slowly increasing distributions.

2. Pourier Transform of 8lowly Incressing Distributions.

\ _
(a) Space ot (-:,J £ ¢C and lxm f(n'(x)l bounded for each (m,n)
space
def

) el
Il = L 2
m,n m,n
el = sup 2™ £(®) ()]
’ x
!pru -0 (p » =)

i f;')n)(x) -0 uniformly in x (p —» )
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T e J is called & rapidly decreasing function.

:/is a linear topological space 'in fact a Prechet space)

{nvariant under derivation and Fourier trensform.
1
(b) 8pace j’: J is the dual space of J, i.e.,

u € J o u is a continuous linear functional defined on ./J
deft

{u, 9) = the value of u(eA et olef).

u € ./ is called a slowly increasing distribution.

J '13 a topological space invariant under derivation and Fourier

transform

o~
{de
N -

topology in ./ ! pacudo-topology u, - 0 <=> (un, ¢) - 0 for all g

(11) derivetion in « (D1, 9) = - (u, @)
£

(111) Fourier transforms in .o’

gu’ <P) = <u)ﬁ Q’>
def

Fu, & = (u,Fo)
def

Tt is easy to see j’:j'l,ﬁ “F-1



Stationary Processes, 1963-64
K. Ito ViI.4

Example 1. A functiomn g 1is called a slowly increasing functiom 1if

————

f.ii—("ﬂdxm- | for some p > 0

1+ nfP

«B0

Such function g 1is a glowly increasing distribution in the

sense
(g, ®) = [ &(N) o(A) an
It is easy to see

) A
Fg = lim (1n /) / it g(A) aa
-A

A=

Example 2. A locally bounded variation complex measure 4G 1is called

a slowg increnaing measure if

(-]
j dG | (A aA < » for some p >0
9 1+ |l

Such mesasure is & slowly increasing distribution in the sense

(&, ¢) = f @A) aG(A)

It is easy to see
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A
¥ = 1n (10 [ % ()
Ae -A

Baaple 3.

felf (1<p<w)

=> f 1is a slowly increasing function
Example 4. 3 1s clearly a slowly increasing measure and

Fo =, 3‘5.%‘—
F1-F1li1.0om

Fr1-F'1-8

Example 3.

(08, Fe)
= {8, D¥p)
= D (0)

(F B, o)

d 1At
d')\.{oo e " o(t) flt,ko

eI 1o (t) dt'

=0

/
= fw itp(t) d{:
F(m) = 1t

Example 6. If dG 1is a slovly increasing messure then G(A)

slowly increasing function and

IG = &G

ViI.5

is a
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3. Spectral Decomposition of the Semple Functions of Weakly Statiomary

Processes.

(a) Let =x(t) = x(t, ®) be a weakly stationary process with

(l) (x(t\, 1) = 0
and
(2) rit) ® (x(t +8), x(s))

is continuous.

Then we have

(3) Hin&in decomposition: r(t) = [ eiﬂ‘ ar(A)

= f eit%

(4) Kolmogorov-Cramer decomposition: x(t) aM(A)

(b) Regularisgation of x(t).

Theorem 1. Given a weakly stationary process with (1) and (2), there
Aheoream . _ .
exists a function f£(t, ®) Borel measurable in (t, ®) such that, for

each t,
(5) £(t, o) = x(t, o) for a.a. ®

Such f(t, ®) is uniquely determined up to dt.dP(®)-measure O and

is called the regularization of x(t).
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Theorem 2. The regularization f(t, @) 4in Theorem 1 is a slowly

increasing function of t for a.a. w. In fact

(6) f ‘Md&(-, for a.a o

- 1+t

(c) Regularization of M(A). Let M(A) denote M(-w, A]. Then M(A)

is right continuous in the LZ(Q)-nom and has orthogonal increment$.

Theorem 3. There exists a function G(A, ®) Borel measurable in

(A, ®) such that, for each A,
(6) G/A, w) = M(A, o), for a.a. ®

Such G 1s uniquely determined up to d\-dP(w)-measure O and is

called the regularization of M{A, ®)

Theordm 4. The regularization G(A, ®) 1ie a slowly increasing function

of A\ for a.a. o and so D.)\ G ed' fora.a o. In fact
o®
f _.._____é__!G()\’ )I d\ < for a.a. ®

1L+
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(d) Spectral Decomposition. Let x/t) be a weakly stationary process

with the Kolmogorov-Cramer decomposition
x(t) = [ o' au(n;

and f£(t, ®) and G(A, ®) Dbe the regularizations of x(t) and M(A)

respectively.

Theorem 5. f = F[IG] for a.a. o where ¥ is the Fourier transform

in J



Stationary Process, 1963-64 Vii.0

KoItO

(e) Examples. We use the same notatioms as before. By taking

DOSb'g separatle version if neeessary, we cam assume that f(t,c)
Y

and G{(A,wW) are nepa&le and measuradle.

Ex.l. If r(t) = D& ol’nt vith‘:,'./.; < o , them

(t,w) = zu N-n(w) oiknt ’
where Mp = M(),+0) - M(A - 0), 2im | <wo  adee,
GAw) = M, vouded variation on (~w,® ),

A <A

.2, If x(t) is Gaussian and F(») is comtinucus and ;trietly
inocreasing, them

f(t,«) is unbounded in —ow<t®s for a.a.w .

6(),w) is continuous in - cx < 00  but m;t of bounded variation
on any small A-interval for a.a, @ ,
Ex.3. If x(t) is Gaussiam, them G(A,») has omnly the first kind
discostinuities in X\ for a.s. w. o
Ex.4.(Yu. K. Belajev) If r(t) is analytiec im -oo¢ t<’(for example if
g"“ecm 4F(N ) < @ for every c > 0, in partieular if the suppert
oi:ud.F is eompaet),them f(t,w) is analytie in -~ wi(t <oo for &a.2, w .
Ex.5.There existsa strietly stationary proeess whose sample path$
(regularization) are unbox(%’ed om every interval. For example,
take a periodie ﬁmction’with veriod 1 whieh is square summable on
[0,1] and unbounded om every interval; the existenee of such g
is easily sesm. Now set

x(t, @) = gtrw)y, wel)s [0s1]) &

Then x(t, ) satisfies our eomditions.
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L. Generalized Harmonic Anmslysis of Sample Functions of Strictly
Stationary Processes.

Defidition 1. A complex valued functiom f(t) of a real variable

t = /«w, @) 1is said to belong to the Wiener class 'or Wiener-Hopf class)

¥ if

{17 £(t) 1is measursble

T
(2) R(t) =R{(t : £) = 1lim g% ./‘ r{t +s) f(s) A8 is convergent for
T 320 =
-7

a.a. t including t = 0.

€
(3) 1lim %: [/ R{t) dt = R(0)

¢« 4+ 0 ~-€

Remrk 1. Wiener required the existence of R(t) at every point t

and 1ts continuity. Hopf defined R(t) by

B
’\2'\, 1lim -ﬁ%—A— f Pit + 8‘) -f—(s‘f ds
A 9 A
B w

instead of (2).

Remark 2. We can deduce the following properties from (1) and (2) without

using (3)

(L) iR(t1] < R/O} a.e.
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L€
o) 3 J R(t) dt 1s real and < R0}

-€

16} Rit) 1is a measurable positive definite function in the sense that
[ J R(t-8) o(t) ¢ls’ dt ds > 0 for every continuous function ¢
with compact support and so it has Bochmer's representation

iat

R(t) =] = ar{a) for a.a.t.
- .

wker~ dY 1is & bounded measure on {(-m, ®).
Thus the limit of the left side in (3) exists and is < R(0).

The condition (3) clsims that the equality holds.

Remark 3. (3) does not follow from (1) and '2). See the example

flt) = sin(tz). Then R{(t) =0 for t # 0 and R(0) = 1/2.

Definition 2. R(t) is called the auto-correlation function of f£{t)

and d¥ 18 called the spectral measure of f.

1At
Example 1. f(t'=Za e ° oy
=> fg % and Ri{t) = L Eadiz e
. IN s .
Example 2. £(t) = [ e " dG{}) J 6N <
it
2> £Nand R(t =L e la |

n
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where {)‘n) are points of discontinuity of ¢ and a 1s the Jump
at &, for each n.

In these examples the spectral measures are purely discontinuous.
See Theorem 4 for the existence of a function e % with given general

spectrel measure.

Jheorem 1. If f & 3, then

0

2
(7 f-l-—-l-f(tl-dt<w

r

1+t

and f 1e thereiore a slowly increasing function.

n
Proof. Set S : -rl;[ If(a)lg ds. Then S 1s convergent by (2) and
-n
80 bounded
N
Ve N-1 e
I RESCOY P £ e
N bt =0 < €] <ann T HE
< U -2-L(n+1)s+l-nsn] 8, = 0)
n=0 1+
N
- 3 1 - 13 } n S
nel[ 1+/_n-1‘2 1+n2 o

[}
E&’L*’.lz
o
i
~
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which implies (7). f is then a slow'y increasing function by virtue
of Schwarer inequality.
By Theorea 1 we can expreas f ae the Fourier transform of

a distribution ¢ / ! . but we have a more concrete expression.

Theorexz 2. (N. Wiemer'. [f f & %/, then

1
-iAt
1 . e -1
4 3 = ;
(8) g\ = o f r't) T dt
1 g A ;1 e'i}\t
*Lim o l[ + ] £(t) - at
- 1 -A
is well defined and we have
‘ A
(9) fit) = lim 1.i.m. [ ei)\t 5(}""2 - &{d-¢) dx
€ L0 Am €
-A
3 i 18+ €) - g(A - e)|? a
€ + 0 ~
and
o0 a¥lt : £) = w* - lim g + 6)2—_5(\ - €)] .
€ ¢+ 0

Theorem 3. Let xit) be a strictly stationary process with mean O

L]

dF(X)). Then the

]

and continuous covariance function rit;, ( =
regularization f{t, w of x(t) ‘ac a function of t) belongs to H

for a.a.w.
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Furthermore, if xt, v) 1s ergodic. then

co PP, W) o= - (t) for a.a.w.

~~
s
N

~
o]

—~

and so
(13" ar( - ', W)Y = dR(RA) for a.a.w. -

Proof. Consider y(w) = f{t, w! £{0, w) for any fixed t. Then y

is & x)-measurable, y £ Ll-\'n, B.x', P, end
o yw =flt +s, w) f(s, W)

(e page [V 5.6 for the shift cperator @B); The individual ergodic

thzorem shows that

T
R(t, w = R(t, f('; v), = lim 2 /n flt+s, w) f/s, w) ds

2T
T - o7

exists for a.a.w., belongs to LL(Q, @B{x), P), is invariant under the

shift @s and

BIR't, w)] = Ely =r1t)
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Since f£{t, w) 1is Borel measurable im {t, w), we can use
Fubini's theorem to conclude that, for a.a.w. R(t, w, 1is determined
for a.a.t. Since R(C, w) 1is determined for a.i.w, we can say that,
for w £ Qy, P(Ql) =1, R(t, v) 1s determined for es.a.t including

t = 0. By the remark mentioued above, |R(t, w)| < Ir{o, w)|,
€
v = 1t f R(t, w) at
€
€ +0
-€
exists and is real and < R(0, w) for w £9,. But

E{R(0, w) - R(w)]

= r'0) - E[R(w)]

Therefore R = R(0, w) for w € 0, P(Qe} = 1. Thus (1), (2), (3)
hold for f{t, w) 4if Ww¢ Q, n Q,, which proves the first half of

our theorem.

To prove the second half, notice that R(t, w) is invariant

under shifts and so independenc of w.
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Remark 2. 7f ve apply Theorem 2 to f(t, w) 4in Theorem 2, we can get

A
£(t, v) = lim 1l.i.m. f dthghre) - gh-e) g for a.a.w

ctOAm I €
{Botice l.i.m. means limit in the LQ((-OO, o), dt) norm) and this is
a concrete version of f = J(IG) established on page VIII.8 (Theorem 5);
It 18 easy to see that g(A, w) - G(A, w) 1is a constant (depending only

on w) for a.a.v.

Theorem 4. Given any bounded measure dF there exists at least one

function whose spectral measure is dF.

Proof. 1n page 11..25 ('m‘eorem 5) we proved the existence of an
ergodic strictly stationary process with the covariance function
rit) = [ ei)\t dF(A\). Then the second part of Theorem 3 proved above
shows that almost all sample functions (regularization) has the autoe

correlation function r{t) and so the spectral measure dF.



