Stationary Processes, 1963-64 K. Ito

VI. PREDICTION AND MOVING AVERAGE REPRESENTATION

Linear Problem. (discrete time parameter). Let $x_n \in \mathbb{Z}$, be a complex-valued weakly stationary stochastic sequence with mean 0. We have the following decompositions:

$$r(n) = r_x(n) = \int_{\Gamma} e^{i2\pi \lambda n} dF(\lambda)$$
 $\Gamma = R|Z$

$$x_n = \int_{\Gamma} e^{i2\pi\lambda n} dM(\lambda), (M(\Lambda_1), M(\Lambda_2)) = F(\Lambda_1 \cap \Lambda_2)$$

 x_n is called <u>trivial</u> if $\Gamma(0) = 0$, i.e., if $x_n = 0$.

1. Definitions.

 $L_{min}(\mathbf{x}) = \text{closed linear subspace of } L^2(\Omega, \mathcal{B}, P) \text{ spanned by } x_k, m \le k \le n.$

$$L_{n}(x) = L_{-\infty,n}(x)$$

$$L(x) = L_{\infty}(x) = L_{-\infty,\infty}(x) = \bigvee_{n} L_{n}(x)$$

$$L_{-\infty}(x) = \Lambda L_n(x)$$
 (= the space of remote past), $m < n \implies L_m(x) \subset L_n(x)$

shift operator U : unitary operator U determined by U $x_n = x_{n+1}$, n $\in \mathbb{Z}$, $U^n L_m(x) = L_{m+n}(x)$

Definition 1. x_n is called (purely) non-deterministic if $L_{\infty}(x) = 0$ and (purely) deterministic if $L_{\infty}(x) = L(x)$.

Definition 2. $x_n^d = P_{L_{\infty}}(x) \cdot x_n$, $n \in \mathbb{Z}$, is a deterministic stationary sequence and is called the <u>deterministic</u> part of x_n .

Definition 3. $x_n^i = P_{L(x) \bigcirc L_{-\infty}(x)} \cdot x_n$ is a non-deterministic stationary sequence and is called the non-deterministic part of x_n .

Definition 4. $x_n = x_n^1 + x_n^d$ is called the Wold decomposition of x_n

Corollary 1. $L(x^d) = L_{\infty}(x)$, $L(x^i) = L(x) \bigcirc L_{\infty}(x)$.

Definition 5. Two stationary sequences x_n and y_n which may be defined on different probability spaces are called (weakly) equivalent (in symbol $x_n \sim y_n$) if $r_x(n) \equiv r_y(n)$.

Corollary 2. $x_n \sim y_n$ iff \exists isomorphism $\forall : L(x) \rightarrow L(y)$ with $\forall x_n = y_n$, $n \in \mathbb{Z}$.

Corollary 3. A stationary sequence equivalent to a deterministic one is also deterministic. Similarly for "non-deterministic".

Definition 6. An orthonormal sequence ξ_n ($(\xi_n, \lambda) = 0$, $(\xi_n, \xi_m) = \delta_{nm}$) is called white light or white noise.

The Hincin measure of ξ_n is the uniform distribution on Γ :

$$r_{\xi}(n) = \delta_{no} = \int_{\Gamma} e^{i2\pi\lambda n} d\lambda,$$

from which the adjective "white" comes.

$$\frac{\text{Corollary 4}.}{\Gamma} = \int_{\Gamma} e^{i2\pi\lambda n} M_{\xi}(d\lambda), \quad (M(\Lambda_{1}), M(\Lambda_{2})) = \int_{\Lambda_{1}} \Lambda_{2} d\lambda$$

Corollary 5. A white noise is non-deterministic.

Corollary 6. A sequence equivalent to a white noise is also a white noise, and any two white noises are equivalent.

<u>Definition 7.</u> A stationary sequence x_n is said to have <u>linear regression</u> if it satisfies a linear difference equation with constant coefficients:

$$x_n + a_1 x_n + \cdots + a_m x_{n-m} = 0.$$

Corollary 7.

x, has linear regression

<==> the Hincin measure increases only with a finite number of jumps.

2. Moving Average Representation.

Given a white noise ξ_n and a (non-random) two-sided sequence a $E(a_n) \in L^2(Z)$, form

$$y_n = \sum_m a_{n-m} \xi_m$$

i.e.,

Then y is also a stationary sequence with

$$r_y(n) = \int_{\Gamma} e^{i2\pi\lambda n} |\alpha(e^{-i2\pi\lambda})|^2 d\lambda$$

where

$$\mathbf{a}(\zeta) = \sum_{\mathbf{n} \in \mathbf{Z}} \mathbf{a_n} \zeta^{\mathbf{n}}$$

In fact

$$y_{n} = \sum_{m} a_{n \le m} \int_{\Gamma} e^{i2\pi\lambda m} M_{\xi}(d\lambda) = \int_{\Gamma} e^{i2\pi\lambda n} a(e^{-i2\lambda}) M_{\xi}(d\lambda)$$

so that

$$r_y(n) = (y_n, y_0) = \int_{\Gamma} e^{i2\pi\lambda n} |a(e^{-i2\pi\lambda})|^2 d\lambda$$

Theorem 1. $L(a * \xi) = L(\xi)$ and $L(a * \xi) = L(\xi) \iff e(e^{-i2\pi\lambda}) \neq 0$ a.e.

Proof. Use the following Tallberian Theorem for Fourier series: Let $a \in \ell^2(Z)$.

c.
$$\ell$$
, $m[\alpha * a, \alpha \in \ell^1(Z)] = \ell^2(Z)$
 $\iff a(e^{-i2\pi\lambda}) \neq 0, a.e.$

Definition 1. Let x_n be a stationary sequence. If we have

$$x \sim a * \xi$$
 $a \in \ell^2(Z)$, $\xi = \text{white noise}$,

a * & is called a moving average representation of x.

Corollary 1. If x has a moving average representation a * § with $a(e^{-i2\pi\lambda}) \neq 0$, a.e., then we can find a white noise $\eta_n \in L(x)$ such that

$$x = a * \eta$$

Proof. If $a(e^{-12\pi\lambda}) \neq 0$, then

$$L(y) = L(\xi),$$
 for $y = a * \xi$

Since $x \sim y$, we have an isomorphism $V : L(x) \to L(y)$ such that $Vx_n = y_n$. Set $\eta_n = V^{-1} \xi_n$. Then $y = a * \xi$ goes over into $x = a * \eta$ by V^{-1} . Theorem 2. In order for x_n to have a moving average representation, it is necessary and sufficient that the Hincin measure of x is absolutely continuous.

Proof. (i) Assume that $x \sim y = a + \xi$. Then

$$r_x(n) = r_y(n) = \int_{\Gamma} e^{i2\pi\lambda n} |a(e^{-i2\pi\lambda})|^2 d\lambda$$

(ii) Assume that

$$(\mathbf{x}_{\mathbf{p}} \ \mathbf{x}_{2}) = \int_{\Gamma} e^{i2\pi(\mathbf{p}-2)\lambda} f(\lambda) d\lambda, \qquad f \in L^{1}(\Gamma)$$

Then $\sqrt{f(\lambda)} \in L^2(\Gamma)$. Consider the Fourier expansion of $\sqrt{f(\lambda)}$

$$\sqrt{f(\lambda)} = \sum_{m} a_{m} e^{-12\pi\lambda m} = a(e^{-12\pi\lambda})$$

with $a = (a_n) \in \ell^2(Z)$. Let ξ_n be a white noise. Then

because

$$r_{y}(n) = \int e^{i2\pi\lambda n} |a(e^{-i2\pi\lambda})|^{2} d\lambda$$
$$= \int e^{i2\pi\lambda n} f(\lambda) d\lambda = r_{x}(n).$$

Remark 1. The representation is not unique. We can use the expansion of any function $\sqrt{f(\lambda)} e^{i\phi(\lambda)}$, $\phi(\lambda)$ being real and measurable.

Remark 2.
$$f(\lambda) \neq 0$$
 (a.e.) $\iff a(e^{-2\pi\lambda}) \neq 0$ (a.e.) $\iff L(a * \xi) = L(\xi)$ $\iff x = a * \eta, \qquad \eta_n \in L(x), \ (\eta_n) = \text{ white noise.}$

Definition 2. A moving average representation $x \sim a * \xi$ is called backward if $a_n = 0$ for n < 0 and forward if $a_n = 0$ for n > 0.

Corollary 2. If $x \sim a * \xi$ is backward, then

$$L_n(a * \xi) \sum_{n} L_n(\xi)$$

Theorem 3. The following three conditions are equivalent for a non-trivial stationary sequence x_n .

- (i) \mathbf{x}_{n} has a backward moving average representation,
- (ii) x_n is non-deterministic,
- (iii) the Rinčin measure of \mathbf{x}_n is absolutely continuous with the density $f(\lambda)$ satisfying

$$\int_{\Gamma} \log f(\lambda) d\lambda > -\infty .$$

Proof. (i) \Longrightarrow (ii)

$$\mathbf{L}_{\mathbf{n}}(\mathbf{a} + \mathbf{\xi}) \subset \mathbf{L}_{\mathbf{n}}(\mathbf{\xi})$$

and so

$$L_{\infty}(\mathbf{a} + \boldsymbol{\xi}) \subset L_{\infty}(\boldsymbol{\xi}) = 0$$

Therefore a * & is non-deterministic and so is x.

 $(ii) \rightarrow (i)$

$$L_{-1}(x) \subset L_0(x)$$

$$\begin{bmatrix} \therefore L_{-1}(x) = L_{0}(x) \implies L_{n-1}(x) = U^{n} \ L_{-1}(x) = U^{n} \ L_{0}(x) \\ = L_{n}(x) \implies L_{\infty}(x) = L_{\infty}(x) = 0 \\ \implies x_{n} \text{ is trivial (contrary to the assumption)} \end{bmatrix}$$

...
$$x_0 \notin L_{-1}(x)$$
, $\xi_0' = x_0 - P_{L_{-1}}(x) \cdot x_0 \neq 0$

Set
$$\xi_0 = \frac{\xi_0'}{\|\xi_0'\|}$$
 and $\xi_n = u^n \xi_0$. Then

$$L_0(x) = L_{-1}(x) \oplus \{\xi_0\},$$

and applying U to both sides, we get

$$L_{n}(x) = L_{n-1}(x) \bigoplus \{\xi_{n}\}$$

$$L_{0}(x) = L_{-\infty}(x) + c.l.m. \{\xi_{0}, \xi_{1}, \xi_{-2}, ...\}$$

$$= c.l.m. \{\xi_{0}, \xi_{-1}, \xi_{-2}, ...\}$$

$$x_0 = \sum_{m} a_m \xi_{-m}$$

where

$$\mathbf{a}_{\mathbf{m}} = \begin{cases} (\mathbf{x}_{0}, \ \boldsymbol{\xi}_{-\mathbf{m}}) & \mathbf{m} \ge 0 \\ 0 & \mathbf{m} < 0 \end{cases}$$

Then

$$x_{n} = U^{n} x_{0} = \sum_{m} a_{m} U^{n} \xi_{-m} = \sum_{m} a_{m} \xi_{n-m}$$
$$= \sum_{m} a_{n-m} \xi_{m}$$

To prove (i) <=> (iii) we shall use the following known

Theorem: In order for a non-negative f $\in L^1(\Gamma)$ to be expressed as

$$f(\lambda) = \left| \sum_{n > 0} a_n e^{-i2\pi \lambda n} \right|^2$$

with $0 < \frac{\pi}{n} |a_n|^2 < \infty$, $a_n = 0$ for n < 0, it is necessary and sufficient that

(This theorem is (1) po to particular induction in the results in the Section 4)

(1) → (111) If x ~ a * § (backward), then

$$r_{x}(x) = r_{a + \xi}(n) = \int_{\Gamma} e^{i2\pi \lambda n} \Big|_{n \ge 0} \sum_{n \ge 0} a_{n} e^{-i2\pi \lambda n} \Big|^{2} d\lambda$$

and so the Hinčin measure of \mathbf{x}_n is absolutely continuous with the density

$$f(\lambda) = \left| \sum_{n \geq 0} a_n e^{-i2\pi \lambda n} \right|^2$$

low use the above theorem.

(iii) \to (i) If $\int_\Gamma \log f(\lambda) \ d\lambda > -\infty$, then the above theorem shows that $f(\lambda)$ can be expressed as

$$f(\lambda) = \left| \sum_{n} a_n e^{-i2\pi \lambda n} \right|^2 \qquad (a_n = 0 \text{ for } n < 0),$$

and so $x \sim a + \xi$ ($\xi = \text{white noise}^{\top}$ because

$$r_{n \neq \xi}(n) = \int e^{i2\pi\lambda n} f(\lambda) d\lambda = r_{\chi}(n).$$

3. Generalized Poisson Formula.

Theorem of Fatou. Let u(z) be a harmonic function and suppose that

(1)
$$\sup_{0 \le r < 1 - \pi} \int_{-\pi}^{\pi} |u(re^{i\theta})| d\theta < \infty.$$

Then u can be expressed by generalized Poisson formula,

(2)
$$u(re^{i\theta}) = \frac{1}{2\pi} \int_{-\pi}^{\pi} P_{r}(\theta - \phi) \mu(d\phi)$$

$$P_{r}(\mu) = \frac{1 - r^{2}}{1 - 2r \cos \theta + r^{2}} \qquad (Poisson kernel)$$

$$\mu = \psi - \lim_{r \to 1} \mu_{r}, \qquad \mu_{r}(d\theta) = u(re^{i\theta}) d\theta$$

The boundary value $u(e^{i\theta})$ of u(z) exists a.e., and equals the density of the absolutely continuous part of μ_{θ} a.e. (To be more precise, where $\mu'(\theta) = \lim_{\epsilon \to 0} \mu(\theta - \epsilon_1 \mu + \epsilon)/2\epsilon$ exists, the nontangential limit of u(z) as $z \to e^{i\theta}$ exists and equals $\mu'(\theta)$.)

Note. In the general Poisson formula the a.e. existing boundary value $u(e^{i\theta})$ determines only the absolutely continuous part of $\mu(d\theta)$ and so does not always determine the behavior of u(z) in |z| < 1. To determine u(z), |z| < 1, completely, we should know, besides the boundary value $u(e^{i\theta})$, the singular part $s(d\theta)$ of $\mu(d\theta)$, i.e., the weak limit of $s_r(d\theta) = [u(re^{i\theta}) - u(e^{i\theta})] d\theta$ as $r \neq 1$.

Function Class H_1 . (Hardy class of order 1)

Definition 1. A function analytic in |z| < 1 is said to belong to H_1 , iff

(3)
$$\sup_{0 \le r \le 1 - \pi} \int_{-\pi}^{\pi} |g(re^{i\theta})| d\theta < \infty$$

Applying Faton's theorem to the real and imaginary parts, we have

Generalized Poisson formula for H_1 -functions. Any $g \in H_1$ has boundary values $g(e^{i\theta})$ a.e. and

(4)
$$g(re^{i\theta}) = \frac{1}{2\pi} \int_{-\pi}^{\pi} Pr(\theta - \phi) [g(e^{i\phi}) d\phi + s(d\phi)]$$

where s is a complex-valued singular measure of bounded variation defined by

(5)
$$s = w^* - \lim_{r \to 1} s_r, \qquad s_r(d\theta) = (g(re^{i\theta}) - g(e^{i\theta})) d\theta$$

Fundtion Class H (Hardy class of order 2).

Definition 2. A function analytic in |z| < 1 is said to belong to H_1 iff

(6)
$$\sup_{0 < r < 1 - \pi} |g(re^{i\theta})|^2 d\theta < \infty$$

Consider the power series expansion of g(z):

(7)
$$g(z) = \sum_{n \geq 0} a_n z^n$$

Then (6) is equivalent to

(8)
$$\sum_{n \geq 0} |a_n|^2 < \infty$$

Since $g \in H_2 \subset H_1$, $g(e^{i\theta}) = a.e. \lim_{r \to 1} g(re^{i\theta})$ exists. It follows from (7) that

(9)
$$g(e^{i\theta}) = 1.i.m. \sum_{n \to \infty}^{N} a_n e^{in\theta} = 1.i.m.g(re^{i\theta})$$

from which we have

(10)
$$\frac{1}{2\pi} \int_{-\pi}^{\pi} g(e^{i\theta}) e^{-in\theta} d\theta = \begin{cases} a_n & n \geq 0 \\ 0 & n < 0 \end{cases}$$

(11)
$$g(re^{i\theta}) = \sum_{n \geq 0} a_n r^n e^{in\theta}$$

$$= \frac{1}{2\pi} \sum_{n=-\infty}^{\infty} r^{|n|} e^{in\theta} \int_{-\pi}^{\pi} g(e^{i\phi}) e^{-in\phi} d\phi$$

$$= \frac{1}{2\pi} \int_{-\pi}^{\pi} g(e^{i\phi}) \sum_{n=-\infty}^{\infty} r^{|n|} e^{in(\theta-\phi)} d\phi$$

and so

Then

(12)
$$g(re^{i\theta}) = \frac{1}{2\pi} \int_{-\pi}^{\pi} P_r(\theta-\phi) g(e^{i\phi}) d\phi$$

This is Poisson formula for H, functions.

Relation Between H2 and L2.

Let L_{+}^{2} be the subspace of $L^{2}(-\pi, \pi)$ generated by $e^{in\theta}$, $n \ge 0$.

$$T: g(z) = \sum_{n \geq 0} a_n z^n \rightarrow (Tg) (e^{i\theta}) = \sum_{n \geq 0} a_n e^{in\theta} ,$$

$$\left(\sum_{n \geq 0} |a_n|^2 < \infty\right)$$

determines a one-to-one mapping from H_2 onto L_+^2 and we have

- (i) (Tg) $(e^{i\theta})$ is the a.e. boundary value function of g and so can be written as $g(e^{i\theta})$.
- (11) $\mathbf{g}_{\mathbf{r}}(e^{i\theta}) = \mathbf{g}(re^{i\theta}) \in \mathbf{L}_{+}^{2}$ and $\|\mathbf{g}_{\mathbf{r}}\| + \|\mathbf{T}\mathbf{g}\|$ as r + 1. (Notice that $\|\mathbf{g}_{\mathbf{r}}\| = \sum_{n} |\mathbf{a}_{n}|^{2} r^{2n}$).
- (111) Poisson Formula.

$$g(z) = \frac{1}{2\pi} \int_{-\pi}^{\pi} (Tg) (e^{i\Phi}) P_{r}(\theta - \phi) d\phi, \qquad z = re^{i\theta} \qquad (0 \le r < 1)$$

(iv)
$$|g(z)| \le ||Tg|| \frac{1+|g|}{1-|g|}$$

(v)
$$g(z) = \frac{1}{2\pi} \int_{-\pi}^{\pi} \P[(Tg)(e^{i\phi})] \cdot \frac{e^{i\phi} + z}{e^{i\phi} - z} d\phi + i\phi$$

We have already proved (i), (ii) and (iii).

To prove (iv),

$$\begin{split} |g(re^{i\theta})| &\leq \frac{1}{2\pi} \int_{-\pi}^{\pi} |Tg(e^{i\phi})| \frac{1+r}{1-r} \ d\phi \\ &\leq ||Tg|| \frac{1+r}{1-r} \end{split} \qquad \text{(by the Schwarz inequality)}$$

To prove (v), let h(z) be the integral in the right side.

Then

$$R_{h(z)} = \frac{1}{2\pi} \int_{-\pi}^{\pi} R[(2g) (e^{i\phi})] P_{r}(\theta - \phi) d\phi, \qquad z = re^{i\theta}$$

$$= Rg(z)$$

that which implies/h(z) - g(z) is a pure imaginary constant because h(z) and g(z) are analytic.

4. Factorisation theorem for functions in H2.

(1)
$$g(s)=\alpha \cdot \prod_{k=1}^{n} \frac{z-\alpha_k}{1-\alpha_k z} \exp\left\{\frac{1}{2\pi}\int_{-\pi}^{\pi} \frac{e^{i\varphi}+z}{e^{i\varphi}-z} \log |g(e^{i\varphi})| d\varphi\right\},$$

where of is a constant of modulus 1, and

$$(2) \frac{1}{2\pi} \int_{-\pi}^{\pi} \log |\mathbf{g}(\mathbf{e}^{\mathbf{i}\uparrow})| d\varphi = \log |\mathbf{e}| + \sum_{\substack{k=1 \ \alpha_{k} \neq 0}}^{n} \log \frac{1}{|\mathbf{x}|},$$

where a is the first non-vanishing coefficient of the power series expansion of g(z).

The purpose of this section is to extend this theorem to functions in \mathbf{H}_2 .

Lemma 1. Let g(z) be analytic in |z| < 1 and assume (that $g(z) \neq 0$ or |z| < 1) and that $g(0) \neq 0$. Then if $\alpha_1, \ldots, \alpha_n$ are the zero points of g in |z| < r,

$$\frac{1}{2\pi}\int_{-\pi}^{\pi}\log\left|\mathbf{g}(\mathbf{r}e^{i\varphi})\right|d\varphi = \log\left|\mathbf{g}(0)\right| + \sum_{\substack{k=1 \ \alpha_{k} \neq 0}}^{\pi}\log\frac{\mathbf{r}}{|\alpha_{k}|} \geq \log\left|\mathbf{g}(0)\right|.$$

Unless otherwise stated, we repeat every multiple root by its multiplicity.

2. If $g \in H_2$ and if $g(0) \neq 0$, then

(4)
$$\int_{-\pi}^{\pi} |\log|g(re^{i\varphi})| d\varphi$$

 $\leq \int_{-\pi}^{\pi} |g(e^{i\varphi})|^2 d\varphi - 2\pi \log|g(0)|$ for $0 \leq r \leq 1$.

3. If $g \in H_2$, then

$$|g(re^{i\theta})|^{2} \leq \frac{1}{2\pi} \int_{\pi}^{\pi} |g(e^{i\theta})|^{2} P_{r}(\theta-\theta) d\theta$$

$$|g(re^{i\theta})|^{2} \int_{\pi}^{\pi} |g(e^{i\theta})|^{2} P_{r}(\theta-\theta) d\theta \leq \frac{1}{2\pi} \int_{\pi}^{\pi} |g(e^{i\theta})|^{2} P_{r}(\theta-\theta) d\theta$$

$$|g(re^{i\theta})|^{2} \leq \frac{1}{2\pi} \int_{\pi}^{\pi} |g(e^{i\theta})|^{2} P_{r}(\theta-\theta) d\theta$$

4. If $g \in H_2$ and if $\alpha_1, \alpha_2, \ldots$ be the zero points of in |x| < 1, then

$$(7) \qquad \sum_{n \geq 0} (1 - |\alpha_n|) < \infty.$$

Lemma 5. If
$$|\alpha_n| < 1$$
 and if $\sum_{n} (1 - |\alpha_n|) < \infty$,

then the infinite product

(8)
$$\int_{n}^{-\overline{\alpha}_{n}} \frac{z - \alpha_{n}}{|\alpha_{n}|} \frac{z - \alpha_{n}}{1 - \overline{\alpha}_{n} z} \qquad (convention: \quad \frac{\overline{\alpha}_{n}}{|\alpha_{n}|} = 1 \text{ if } \alpha_{n} = 0)$$

defines an enalytic function $B(s) \in H_2$ with the zero points $\{\alpha'_n\}$ and satisfies

$$|B(z)| \le 1 \quad \text{in} \quad |z| < 1,$$

(10)
$$|B(e^{i\phi})| = 1$$
 a.e.

Definition 1. B(z) in Lemma 5 is called the Blaschke product with tero points $\{\alpha_n\}$.

Given $g \in H_2$, let $\{w_n\}$ be its zero points in |z| < 1. Then we can define the Blaschke product with the roots $\{w_n\}$ by Lemma 3 and Lemma 4. Then we have

Lemma 6. h m g/B \in H₂ and has no sero points in |s|<1 and |h(e¹⁴)| = |g(e¹⁴)| s.e.

If $h \in H_2$ and if h has no roots in $|\mathbf{x}| < 1$, then

Lemma 7. $h(\mathbf{x}) = \alpha \cdot \exp\left\{\frac{1}{2\pi} \int_{-\pi}^{\pi} \frac{\mathbf{a}^{1\gamma} + \mathbf{x}}{\mathbf{a}^{1\gamma} - \mathbf{x}} \left[\log |h(\mathbf{a}^{1\gamma})| \, d\gamma - \sigma(\alpha\gamma)\right]\right\}$,

where \propto is a constant of modulus 1 and σ is a bounded non-negative singular measure defined by $d\sigma = \frac{v^{*}-\lim \left(\log |\mathbf{h}(e^{i\phi})| - \log |\mathbf{h}(re^{i\phi})|\right) d\phi}{r+1}$.

<u>Perfinition</u> 2. A function f(s) is called an <u>outer function</u> with the (real) generating density $\omega(e^{i\varphi})$, if it is expressed as

(12)
$$f(z) = \exp\left\{\frac{1}{2\pi}\int_{-\pi}^{\pi} \frac{e^{i\varphi} + z}{e^{i\varphi} - z} \omega(e^{i\varphi})d\varphi\right\}, \quad \omega(e^{i\varphi}) \in L^{1}(-\pi, \pi).$$

Notice that an outer function does not always belong to ${\rm H}_2$.

<u>Definition</u> 5. A function f(s) is called a <u>singular function</u> with <u>generating singular measure</u> do, if it is expressed as

(15)
$$f(z) = \exp\left\{\frac{1}{2\pi}\int_{-\pi}^{\pi} \frac{e^{i\varphi} + z}{e^{i\varphi} - z}(-\sigma)(d\varphi)\right\},$$

where σ is a bounded non-negative singular measure on $(-\pi,\pi)$. Notice that a singular function belongs to H_2 .

Definition 4. A function f analytic in |z| < 1 is called an inner in |z| < 1 function if $|f(z)| \le 1$ (from which it follows that $f \in H_2$) and if $|f(e^{i\varphi})| = 1$ a.e. and the second

Corollary 1. Both Blaschke products and singular functions are inner;

inclary 2
$$\frac{9}{4}$$
 $\frac{1}{4}$ $\frac{1}$

Theorem 2 (Factorization theorem for functions in H2).

Any function $g \in H_2$ can be factorised as

(14) $g = \alpha \cdot B \cdot g_a \cdot s$

of a constant of modulus 1

B : Blaschke product

gm : an outer function in H2

s : a singular function

g in the form (14), then

g is the Blaschke product with the same zero points as g,

B is the Blaschke product with the same zero points as g, g_g is the outer function with generating density $\log |g(e^{i\phi})|$, and

s is the singular function with generating singular measure $\sigma(d\phi)$ defined by

(15)
$$d\sigma(\varphi) = \psi^*-\lim_{r \uparrow 1} \left[\log|g(e^{i\varphi})| - \log|g(re^{i\varphi})|\right] d\varphi$$
.

We have also

(16)
$$\frac{1}{2\pi} \int_{-\pi}^{\pi} \log|g(e^{i\varphi})| d\varphi = \log|a| + \sum_{\alpha_{k} \pm 0} \log \frac{1}{|\alpha_{k}|} + \int_{-\pi}^{\pi} d\sigma(\varphi),$$

where a is the first non-vanishing coefficient of the power series

expansion of g.

g is an inner function with

Corollary 2. g ∈ H. is a Blaschke product iff log g (re¹⁴) uniform

Corollary 2. $g \in H_2$ is a Blaschke product iff $\log |g(re^{i\varphi})|$ uniformly, integrable on $[-\pi,\pi)$.

Corollary 3. $g \in H_2$ is an outer function iff $\log |g(re^{i\varphi})|$ uniformly (in $0 \le r < 1$) integrable on $[-\pi,\pi)$. and g(z) has no properties |g(z)| = |g(z)| = |g(z)| = |g(z)| = |g(z)|. Corollary 4. $g \in H_2$ is a singular function iff g is an inner function which has no zero points in |z| < 1.

5. Determining all backward moving average representations of any non-deterministic stationary sequence.

In this section we shall determine all backward representations of the form

(1)
$$x = a * \xi$$
, $L(x) = L(\xi)$, $U \xi_n = \xi_{n+1}$

for any (non-trivial) non-deterministic stationary sequence x_n.

If x_n has any backward representation, then x_n must be non-deterministic and x_n has a unique backward representation of the form (1) with the same coefficients. This will justify that we consider only non-deterministic stationary sequences and only backward representations of the form (1).

Since x_n is non-deterministic, its Hinčin measure $dF(\lambda)$ is absolutely continuous with density function $f(\lambda)$ satisfying

(2)
$$\int_{\Gamma} \log f(\lambda) d\lambda > -\infty$$

or equivalently (because of the integrability of f)

$$\int_{\Gamma} |\log f(\lambda)| d\lambda < \infty$$

111

In Section 2 we saw that $x = a + \xi$ is a backward representation,

(3)
$$\begin{cases} \mathbf{a_n} = 0 & n < 0 \\ \Sigma |\mathbf{a_n}|^2 < \infty \\ |\Sigma \mathbf{a_n}|^2 = f(\lambda) & \text{a.e.} \end{cases}$$

Using $\{a_n\}$, we shall introduce an analytic function

(4)
$$\mathbf{a}(\mathbf{z}) = \sum_{\mathbf{n}} \mathbf{a}_{\mathbf{n}} \mathbf{z}^{\mathbf{n}} \equiv \sum_{\mathbf{n} > 0} \mathbf{a}_{\mathbf{n}} \mathbf{z}^{\mathbf{n}}$$

Equation (3) can be written in terms of a(z) as

(3')
$$\begin{cases} a \in H_2 \\ |a(e^{-i2\pi\lambda})| = |\lim_{r \to 1} a(re^{-i2\pi\lambda})| = \sqrt{f(\lambda)} \quad \text{a.e.} \end{cases}$$

By the factorization theorem in Section 4, a can be expressed as

(5)
$$a(z) = \alpha B(z) \cdot s(z) \cdot g_{s}(z)$$

where B is the Blaschke product, s is a singular function and g_s is an outer function with generating density $\log \sqrt{f(\lambda)}$ ($\equiv \log |a(e^{-i2\pi\lambda})|$)

Write g_i for $\alpha \cdot B(z) \cdot s(z)$. Then $g_i(z)$ is an inner function which will be called the inner part of a, while g_i will be called the (standard) outer part of a.

Theorem 1. If x is a white noise and if $x = a * \xi$ is a backward representation, then a(z) is an inner function and ξ can be expressed by x as

(6)
$$\xi = a^* * x$$
, $a_n^* = \overline{a}_{-n}$

i.e.,

(7)
$$\xi_{n} = \sum_{k>0} \overline{a}_{k} x_{n+k}$$
 (forward representation)

Proof. Let $\xi_n = \int_{\Gamma} e^{\frac{1}{2\pi}\lambda n} dN(1)$ be the Kolmogorov-Cramer representation of ξ_n . Since ξ_n is a white noise,

$$(M(\Lambda_1), M(\Lambda_2)) = \int_{\Lambda_1} \int_{\Omega} \Lambda_2 d\lambda$$

Then

$$x_n = \int_{\Gamma} e^{i2\pi\lambda n} a(e^{-i2\pi\lambda}) dM(\lambda)$$

Since x is also a white noise, we have

$$|a(e^{-12\pi\lambda})|^2 d\lambda = d\lambda$$

i.e., $|a(e^{-i2\pi\lambda})|=1$ a.e. But $a(z)\in H_2$, and so a(z) is inner. Now observe

$$k \ge 0 \quad \overline{a}_k \quad x_{n+k} = \int_{\Gamma} e^{i2\pi \lambda n} \quad \overline{\lambda}_k = e^{i2\pi \lambda n} \int_{R} e^{i2\pi \lambda$$

which proves (7).

If $x = a * \xi$ is a backward representation, then we have

(8)
$$L_{n}(x) \subset L_{n}(\xi)$$

and

$$L(x) = L(\xi)$$

Equation (8) is clear because $x = a * \xi$ is backward. To prove (9), notice that

$$\left|\sum_{n>0} a_n e^{-i2\pi \lambda n}\right|^2 = f(\lambda) \neq a.e.$$

by virtue of (2), so that (b * a : b $\in L^1(Z)$) is dense in $L^2(Z)$ by the Tauberian theorem.

Keeping (8) and (9) in mind, we shall introduce

Definition 1. A backward representation $x = a^{-x} \xi$ is called canonical if

(10)
$$L_n(x) = L_n(\xi)$$
 for every $n \mapsto (-L_n(x) = L_n(\xi))$

There exists at least one canonical representation of any given non-deterministic stationary sequence x_n . Consider the innovation

$$f_g^u = \frac{\|x^u - \mathbf{h}^{r+1}(\mathbf{x}) \cdot \mathbf{x}^u\|}{\mathbf{h}^{r-1}(\mathbf{x}) \cdot \mathbf{x}^u}$$

and set

$$\mathbf{a}_{n}^{\mathbf{S}} = (\mathbf{x}_{0}, \boldsymbol{\xi}_{-n}^{\mathbf{S}}).$$

Then it is easy to see that $x = a^8 * \xi^8$ is a canonical backward representation.

Definition 2. $x = a^{8} * \xi^{8}$ is called a standard backward representation.

Theorem 2.

(11)
$$\mathbf{a}^{\mathbf{E}}(\mathbf{Z}) = \exp \left\{ \int_{\mathbf{r}} \frac{e^{-\mathbf{1}2\pi\lambda} + \mathbf{Z}}{e^{-\mathbf{1}2\pi\lambda} + \mathbf{Z}} \log \sqrt{f(\lambda)} \, d\lambda \right\}$$

Proof. Let

(12)
$$\mathbf{a}^{\mathbf{a}}(\mathbf{z}) = \mathbf{a}^{\mathbf{i}}(\mathbf{z}) \ \mathbf{a}^{\mathbf{o}}(\mathbf{z})$$

be the factorization of a^6 into its inner and outer parts. Since $|a^8(e^{-i2\pi\lambda})|^2 = f(\lambda)$ a.e., $a^0(z)$ must equal the right side of (11).

To prove (11), it is enough to prove a (3) = 1. Set

(13)
$$\xi = a^{\frac{1}{4}} + \xi^{\frac{1}{8}}$$

Using the Kolmogorov-Cramer representation of ξ^8 , ξ is also a white noise and

$$x = a^{\circ} * \xi$$

By Theorem 1 we can derive from (13)

(15)
$$\xi_n^s = \prod_{k > 0} \overline{a_k^i} \, \xi_{n+k}$$

Since ξ^8 is the innovation of x, we have

$$\xi_n^s \in L_n(x) \subset L_n(\xi)$$
(by (14))

i.e., $\xi_n^s \perp \xi_{n+k}$ (k > 0), which, combined with (15), implies

(16)
$$a_{k}^{1} = 0$$
 (k > 0) i.e., $a^{1}(z) = a_{0}^{1}$

It is clear that $|a_0^1| = 1$ (... $\xi_0 = a_0^1 \xi^6$). Thus $a^8(z) = a_0^1 \cdot a^0(z)$. But it is clear that

$$a^{0}(0) > 0,$$
 $a^{8}(0) > 0$

and so $a_0^1 = 1$.

Theorem 3. If $x = a + \xi$ is any backward representation, and if $a(z) = a^{1}(z) a^{0}(z)$ is the factorization of a(z) into the inner and outer parts of a(z) ($a^{0}(z) = a^{0}(z)$ by Theorem 2), then

(17)
$$\xi_{n} = \sum_{k \geq 0} \overline{a_{k}^{1}} \xi_{n+k}^{s}$$

Proof. Since a^i is inner, $\eta = a^i * \xi$ is a white noise and $x = a^s * \eta$, so that $\eta = \xi^s$, i.e., $\xi^s = a^i * \xi$, which implies (17) by Theorem 1.

Corollary 2. $x = a + \xi$ is a canonical backward representation, iff $a(z) = \alpha a^{\beta}(z)$, α being a constant of modulus 1.

Remark. Let $x = a * \xi$ be any backward representation. Then $L(x) = L(\xi)$ and $L_n(x) \subset L_n(\xi)$. Therefore $\xi_n \in L(\xi) \odot L_{n-1}(\xi) \subset L(x) \odot L_{n-1}(x)$ = $L(\xi_n^s, \xi_{n+1}^s, \dots)$. Therefore $\xi_n = \sum_{k \geq 0} b_k \xi_{n+k}^s$. (b_k does not depend on n because of (1).) Theorem 3 shows that we can express b_k as a_k^T using the inner part $a^1(x)$ of a(x).

In the canonical backward representation x = a * we do not need the future information of x to construct ξ .

6. Prediction. Let $\mathbf{x}_{\mathbf{n}}$ be any stationary sequence with the Hinčin measure of and the Kolmogorov-Gramer orthogonal random measure $\mathfrak{M}(\lambda)$. Let $\mathbf{R}^1 = \mathbf{A} - \mathbf{S}$, $\mathbf{A} \cap \mathbf{S} = \emptyset$ be the decomposition such that $\mathbf{F}_{\mathbf{a}}(\Lambda) = \mathbf{F}(\Lambda \cap \mathbf{A})$ is absolutely continuous and $\mathbf{F}_{\mathbf{a}}(\Lambda) = \mathbf{F}(\Lambda \cap \mathbf{S})$ is singular. It is clear that $\mathbf{F}'(\lambda) = \mathbf{F}'_{\mathbf{a}}(\lambda)$ (= $\mathbf{f}(\lambda)$), $\mathbf{F}'_{\mathbf{s}}(\lambda) = \mathbf{0}$ a.e. Set

(1)
$$M_{g}(\Lambda) = M(\Lambda \cap A), \qquad M_{g}(\Lambda) = M(\Lambda \cap S)$$

and

(2)
$$x_n^a = \int e^{-i2\pi\lambda n} dM_a(\lambda), \quad x_n^s = \int e^{-i2\pi\lambda n} dM_s(\lambda)$$

Then

$$x_{n} = x_{n}^{a} + x_{n}^{s}$$

$$L(x^{a}) \perp L(x^{s})$$

$$L(x) = L(x^{a}) \bigoplus L(x^{s})$$

Recall that x_n can be decomposed as

$$x_n = x_n^1 + x_n^d, x_n^1 : non-deterministic, x_n^d : deterministic$$

$$(4) L(x^1) \perp L(x^d)$$

$$L(x) = L(x^1) \bigoplus L(x^d)$$

Let us examine the relation between two decompositions (3) and (4).

Theorem 1. If $\int \log f(\lambda) d\lambda = -\infty$, then x_n^a , x_n^a and x_n^a are all deterministic and

$$x_n^i = 0,$$
 $x_n^d = x_n = x_n^a + x_n^s$

If $\int \log f(\lambda) d\lambda > -\infty$, then

$$x_n^1 = x_n^a, \qquad x_n^d = x_n^s$$

Definition 1. $x_{n,m} = P_{L_m} \cdot x_n$ is called the <u>predictor</u> of x_n with the information up to time m, and $e_{n,m}^2 = \|x_n - P_{L_m}(x) \cdot x_n\|^2$ is called the mean square error of this predictor $e_{n,m}^2$ depends only on n-m and so we can write e_{n-m}^2 for $e_{n,m}^2$.

If $\int f'\lambda$ d $\lambda = -\infty$, then x_n is deterministic and so $x_{n,m} = x_n$ for every m. Therefore there is no problem of prediction in this case.

Theorem 2. If $\int f(\lambda) d\lambda > -\infty$, then

$$e_m^2 = \sum_{k=0}^{m-1} |a_k|^2$$

where a_k , $k = 0, 1, 2, \dots$ are determined by

$$\sum_{k \geq 0} a_k z^k = \exp \left\{ \frac{1}{2} \int_{\Gamma} \frac{e^{-i2\pi\lambda} + z}{e^{-i2\pi\lambda} - z} \log f(\lambda) d\lambda \right\}$$

The predictor xn, m is obtained as follows:

$$\xi_n = \frac{x_n - P_{n-1}(x) \cdot x_n}{|x_n - P_{n-1}(x) \cdot x_n|} \quad (innovation)$$

$$a_{k} = (x_{0}, \xi_{-k}) = (x_{n}, \xi_{n-k})$$

$$y_{n,m} = \sum_{k \ge n-m} a_k f_{n-k} + x_n^s$$
(see the second)

7. Concrete expression of innovation and predictor.

Let x_n be non-deterministic. Then the Hinčin measure is absolutely continuous with the density $f(\lambda)$ satisfying

(1)
$$\int \log f(\lambda) d\lambda > -\infty$$

We shall introduce the following functions analytic in $|\mathbf{z}| < 1$

(2)
$$\mathbf{a}(\mathbf{z}) = \mathbf{E} \mathbf{a}_{\mathbf{k}} \mathbf{z}^{\mathbf{k}} = \exp \left\{ \frac{1}{2} \int_{\Gamma} \frac{e^{-i2\pi\lambda} + \mathbf{z}}{e^{-i2\pi\lambda} - \mathbf{z}} \log f(\lambda) d\lambda \right\}$$

(3)
$$b(z) = \sum b_k z^k = a(z)^{-1}$$

(4)
$$A_{\mathbf{z}}(z) = \sum_{k \geq \mathbf{z}} a_k z^k$$

(5)
$$C_{\ell}(z) = \sum_{k > \ell} c_{\ell,k} z^{k} = A_{\ell}(z) b(z)$$

It is clear that a(z) is a standard outer function and belongs to H_2 . Therefore $\Sigma |a_n|^2 < \infty$, so that $A_{\ell}(z) \in H_2$. b does not necessarily belong to H_2 , but the a.e. boundary value function $b(e^{-i2\pi\lambda})$ exists and equals $a(e^{-i2\pi\lambda})^{-1}$ a.e. Similarly for $C_{\ell}(z)$.

Now observe the Kolmogorov-Cramer representation for \mathbf{x}_n and \mathbf{t}_n

(6)
$$x_n = \int e^{i2\pi \lambda n} dx_x(\lambda)$$

(7)
$$\mathbf{k_n} = \int e^{\mathbf{i}2\pi\lambda \mathbf{n}} d\mathbf{M}_{\mathbf{g}}(\lambda)$$

Then it is clear that

(9)
$$dM_{\xi}(\lambda) = b(e^{-i2\pi\lambda}) dM_{\chi}(\lambda)$$

Thus we have

(10)
$$\xi_n = \int e^{i2\pi\lambda n} b(e^{-i2\pi\lambda}) dM(\lambda)$$

(11)
$$x_{n,n-\ell} = \int e^{i2\pi\lambda n} A_{\ell} (e^{-i2\pi\lambda}) dM_{\ell}(\lambda)$$

$$= \int e^{i2\pi\lambda n} A_{\ell} (e^{-i2\pi\lambda}) b(e^{-i2\pi\lambda}) dM(\lambda)$$

$$= \int e^{i2\pi\lambda n} C_{\ell} (e^{-i2\pi\lambda}) dM(\lambda)$$

from which we have formal expansions

(10')
$$\xi_{n} = \sum_{k > 0} b_{k} x_{n-k}$$

(11')
$$x_{n,n-\ell} = \sum_{k \geq \ell} c_{\ell,k} x_{n-k}$$

Theorem 1. If $f(\lambda)$ is essentially bounded (i.e., $\exists M < \infty$ such that $f(\lambda) < M$ a.e.), and if $\int f(\lambda)^{-1} d\lambda < \infty$, then the formal expansions (10'), (11') converge and the equalities are true.

Proof. It follows from (2) and (3) that

$$b(z) = \exp\{-\frac{1}{2} \int \cdots \log f(\lambda) d\lambda\}$$
$$= \exp\{\frac{1}{2} \int \cdots \log f(\lambda)^{-1} d\lambda\}$$

and $\int f(\lambda)^{-1} d\lambda < \infty$ implies that $b \in H_2$, so that $\sum |b_p|^2 < \infty$ and $b(e^{-i2\pi\lambda}) = \sum_{k>0} b_k e^{-i2\pi\lambda k}$ (convergence in $L^2(\Gamma d\lambda)$)

$$\begin{aligned} &\|\boldsymbol{\xi}_{n} - \sum_{k=0}^{p} b_{k} \mathbf{x}_{n-k}\|^{2} \\ &= \| \int e^{12\pi\lambda n} \sum_{k>p} b_{k} e^{-12\pi\lambda k} dM(\lambda) \|^{2} \\ &= \int \left| \sum_{k\geq p} \cdots \right|^{2} f(\lambda) d\lambda \\ &\leq M \int \left| \sum_{k>p} \cdots \right|^{2} d\lambda = M \sum_{k>p} \left| b_{k} \right|^{2} \to 0 \qquad (p \to \infty) \end{aligned}$$

Since we have

$$|b(e^{-i2\pi\lambda})|^2 = f(\lambda)^{-1}$$

and

$$C_{\underline{\beta}}(z) = 1 - b(z) \sum_{k < \underline{\beta}} a_k z^k$$

we have

$$\int |C_{\underline{z}}(re^{-i2\pi\lambda})|^2 d\lambda \le 2 \int \left[1 + f(\lambda)^{-1} \left(\sum_{k \le \underline{z}} |a_k|\right)^2\right] d\lambda$$

and therefore $C_{\underline{z}}(z) \in \mathbb{H}_2$. By the same argument as for ξ_n we have

$$\|\mathbf{x}_{\mathbf{n},\mathbf{n}-L} - \sum_{\mathbf{k}=L}^{\mathbf{p}} \mathbf{c}_{L,\mathbf{k}} \mathbf{x}_{\mathbf{n}-\mathbf{k}}\|^{2}$$

$$\leq \mathbf{M} \sum_{\mathbf{k} \geq \mathbf{p}} |\mathbf{c}_{L,\mathbf{k}}|^{2} \to 0 \qquad (\mathbf{p} \to \mathbf{w})$$

In some cases the formal expansion does not converge but its Césaro sum converges and equals the right value, for example

Theorem 2. If
$$f(\lambda) = |1 - e^{-i2\pi\lambda}|^2 = 2(1 - \cos 2\pi\lambda)$$
, then
$$a(z) = 1 - z \qquad (standard outer function)$$
$$x_n = \xi_n - \xi_{n-1} \qquad (standard representation)$$

w and

$$b(z) = \frac{1}{1-z} = 1 + z + z^2 + \cdots$$

The formal expansion for ξ_n i.e., $x_n + x_{n-1} + x_{n-2} + \cdots$ does not converge but we have, for its Césaro sum,

$$\lim_{q \to \infty} \frac{1}{q} \prod_{p=0}^{q-1} (x_n + x_{n-1} + \cdots + x_{n-p}) = \xi_n$$

(Notice that $x_{n,n-1} = -\xi_{n-1} = -\lim_{q \to \infty} \frac{1}{q} \sum_{p=0}^{q-1} (x_{n-1} + \cdots + x_{n-p-1})$ and $x_{n,n-4} = 0$ for 4 > 1.)

Proof.

$$\frac{1}{q} \sum_{p=0}^{q-1} (x_n + x_{n-1} + \cdots + x_{n-p}) = \xi_n - \frac{1}{q} (\xi_{n-1} + \xi_{n-2} + \cdots + x_{n-q})$$

and the norm of the second term is $q^{-1/2}$.

8. Linear difference equation.

Let us consider a linear difference equation

(1)
$$a_0 x_n + a_1 x_{n-1} + \cdots + a_k x_{n-k} = \xi_n$$

where ξ_n is a given white noise.

Theorem 1. If there exists a stationary sequence x_n satisfying (1), then

(2)
$$\mathbf{a}(\mathbf{z}) = \prod_{j=0}^{k} \mathbf{a}_j \mathbf{z}^j$$
 has no roots on $|\mathbf{z}| = 1$

Conversely if (2) holds, then there exists a unique stationary sequence x_n satisfying (1).

Proof. Let us consider the Kolmogorov-Cramer representation of &

(3)
$$\xi_{n} = \int e^{i2\pi \lambda n} dt_{\xi}(\lambda)$$

and assume that

(4)
$$x_n = \int e^{i2\pi \lambda n} dM_x(\lambda)$$

satisfies (1). Then

(5)
$$a(e^{-i2\pi\lambda}) dM_{\pi}(\lambda) = dM_{\pi}(\lambda)$$

and so

(6)
$$|\mathbf{a}(e^{-12\pi\lambda})|^2 d\mathbf{r}(\lambda) = d\lambda$$
, $d\mathbf{r}(\lambda) = the Hinčin measure of $x_n$$

Let N be the set of zero points of $a(e^{-i2\pi\lambda})$ (which is clearly a finite set) and let $\tilde{a}G$ be the restriction of dF over N^C . Then

$$dF \geq dG = |a(e^{-12\pi\lambda})|^{-2} d\lambda.$$

If N $\ni \lambda_0$, then $a(e^{-i2\pi\lambda}) \sim non-vanishing constant <math>\times (\lambda - \lambda_0)$ and so

$$\int dP \ge \int |a(e^{-i2\pi\lambda})|^{-2} d\lambda = -,$$

which is a contradiction. Thus N must be empty. This proves the first half of our theorem.

If (2) holds, then the above argument shows that

and

(8)
$$b(e^{-i2\pi\lambda}) = a(e^{-i2\pi\lambda})^{-1} \in L^2(\Gamma, d\lambda)$$

so that x must be expressed as

(9)
$$x_{n} = \int e^{i2\pi\lambda n} dM_{x}(\lambda) = \int e^{i2\pi\lambda n} b(e^{-i2\pi\lambda}) dM_{\xi}(\lambda)$$

and it is clear that x_n , thus defined, solves (1).

Theorem 2. Assume that (2) holds. Then $b(e^{-i2\pi\lambda}) \in L^2(\Gamma, d\lambda)$ and it can be expanded in Fourier series

(10)
$$b(e^{-12\pi\lambda}) = \prod_{j=-\infty}^{\infty} b_j e^{-12\pi\lambda j}$$

and the solution x_n of (1) is given by

$$x_{n} = \sum_{j} b_{j} \xi_{n-j}$$

If a(z) has no roots in |z| < 1 (and so in $|z| \le 1$), then $b_j = 0$ (j < 0) in (11) and (11) gives a canonical backward representation of x_n .

If a(z) has roots in |z| < 1, then (11) is not backward.

Proof. The first and third parts are clear. To prove the second part, observe that

$$b(z) = a(z)^{-1}$$

$$= a_0^{-1}(1 - \alpha_1 z)^{-1} (1 - \alpha_2 z)^{-1} \cdots (1 - \alpha_k z)^{-1}, (|\alpha_j| < 1)$$

is an outer function in H2.