Stationary Processes, 1963-64
K. Ito

VI. PREDICTION AND MOVING AVERAGE REPRESENTATION

Linear Problem. (discrete time parameter). Let X Be Z, be a complex-

valued weakly stationary stochastic sequence with meen 0. We have the

following decompositions:

12xMmn
e

r(n) = rx(uX = [ ar () r = R|2

r

. - { RES aM(N), (M(A)), M(A)) = F(A| 0 A)

x, 1s called trivial if r(o) = o, i.e., if x = 0.

1. Definitioms.

Lmn(x) = closed linear gubspace of L2(Q,QB, P) spanned by

X, m <k <n.

Ln(x) = Ldn’n(x)
L(x) = L (x) = L, _(x) =V L (x)
? n
L (x) = A.Ln(x) (= the space of remote past), m<n => Lm(x) c Ln(x)

shift operator U : unitary operator U determined by U X, =X 42 DE z,

v L (x) = (x)

Lm+n
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Definition 1. x 1s called (purely) non-deterministic if L__(x) =0

and (purely) deterministic if L__(x) = L(x).

Defiuition 2. x: = PL (x) X Be Z, is a deterministic statiomary
-0

sequence and 1is called the deterministic part of X -

PL(X)(:)LM”(x) * X, 1s a pon-deterministic stationary

sequence and 1s called the non-deterministic part of x -

Definition 3. xi =

Definition 4. x = x1 + xd is called the Wold decomposition of x
n n n n

Corollary 1. L{(x%) = L_(x), L(x") = L(x) ®L_,(x).

-0

Definition 5. Two stationary sequences xn and yn which may be defined

on different probability spaces are called (weakly) equivalent (in symbol

x, ~ yn} if rx(n) = ry(n).

Corollary 2. xﬁ ~y, iff 3 isomorphism VY: L(x) - L{y) with Vxn =¥, 0 € Z.

Corollaery 5. A stationary sequence equivalent to a deterministic one is

also deverministic. Similarly for '"non-deterministic®.
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Definition 6. An orthonormal gequence gn ((gn, 1) = 0, (gn, gn) = bnm)

is called g_h;_gzs light or white noise.

The Hin&in measure of g, 1s the uniform distribution on T:

f eizx)\n
r

rg(n) = bno = d%,

from which the adjective '"white" comes.

PN M (any, (MA), M(A)) = [ @

Corollary b. £ = f
r AN A

Corollary 5. A white noise is non-deterministic.

Corollary 6. A sequence cquivalent to a white nolse 1s also a white noise,

and any two white nolses are equivalent.

Definition 7. A statlionary sequence X, is said to have linear regression

if it satisfies a linear difference equation with constant coefficients:

x, + a; x oo
Corollary 7.
x, has linear regression

==> the Hindin measure increases only with a finite number of jumps.
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2. Moving Average Representation.

Given a white noise ¢ anda (noo-rendom) two-sided sequence

ae (an) € LE(Z), form

Yp = L LI
m

i.e., y=a#®}§

Then Yu is also a stationsry sequence with

2
y r
Where
a(t) = L s, "
n ez
In fact

so that

2
f e121(7\n }a(e"iQKX) l d’\

ry(n) = (yn’ yo) = -
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—i2xk

Theorem . L(a # §) = L(¢) and L(a # §) = L(§) <=m> a(e Y A0 a.e.

Proof. Use the following Ta‘lberian Theorem for Fourier series:

Let a ¢ 32(Z).

c.é.mfa *a, ac¢ :l(z)} = ‘2(z)

-12nA

<==> ale ) £ 0, a.e.

Definition 1. Let X, be a stationary sequence. If we have

x ~a % ¢ a € 12(Z), ¢ = white noise,

a * ¢ 48 called a moving average representation of x.

Corollary 1. If x bhas & moving average representation a ¥ £ with

3(3‘12"k) 4 0, a.e., then we can find a white noise n, € L(x) such that

x =a % q
Proof. If a(e ™) [ 0, then

L(y) = L{¢), for y =a *¢§

Since x ~ y, we have an isoworphism V : L(x) - L(y) such that vk =¥ .

n
Set n = vt E,- Then y =a *§& goes over into x =& * n by VL.
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Theorem 2. In order for X, to bave a moving average representation,

it 1is necessary and sufficient that the Hinin measure of x is

absolutely continuous.
Proof. (i) Assume thet x ~y =a * {. Then
rx(n) = ry(n) = { ei2ﬂ%nla(e’i2“hﬁ2 dA
(11) Assume that
£{A) ax, f e L'(T)
Then VE(N) e L2(F). Consider the Pourier expansion of 'V?TXT
VAR - gam o-12nhm 3(6-1210\)
with a = (am) € ZE(Z). Let &n be a white noise. Then

y=a%§g~x

because

- 2
ry(n) - I e12nknla<e iexk)‘ a

i2n\a
e

- f £(A) dA = r_(n).
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Remark 1. The representation is not unique. We can use the expansion

of any function VE{\) eib\h), #(\) being real and measurable.
-2%\
Remark 2. f£(A) 4 0 (a.8.) <==> &(= Y £ 0 (a.e.)
<o> L{a * £) = L(E)

\4
—>x=a*yn, O 1, € L{x), (qn) = white noise.

Definition 2. A woving aversge representation x ~a % § 13 called

backward if a = 0O for m< 0 and forward if 8, = 0 for n> 0.

Corollazzizr If x~a * ¢ 1is backward, then
L (a * E}‘L (&)
n cC®

Thecrfm:a. The following three conditions are equivalent for a non-
trivial stationary sequence X, -

(1) x has s backward moving average representation,

(11) x, is non-deterministic,
(11i) the Hin¢in measure of x1s ebsoiutely contimuous with the density

£f{(A) satisfying

| log £(A) @A > =
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Proof. (1) ==> (11)

L(a®¢)cr (¢)
and so

L(a*t) =L (&) =0

Therefore a *# ¢ 1s non-deterministic and so is x.

(11) - (1)
L_, (x) i Lo (x)
L () = Lo(x) = I (x) = 0P L (%) = U p () ]

= L

(X)) => L (x) = L_(x) =0

l. => x  1s trivial (contrary to the assumption)

-

- X, £ L_l(x), §O = Xy - PL_l(x) Xy £0
."(') n
Set 8§ . =—— and & =U ¢ . Then
O et o 0
0

Lo (x)

]

L—l(x> @[go})
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and applying Un to both sides, we get

where

Then

L(x) =L (x)®(L)

Lo(x) = L _(x) +c.lm. {8, &, ¢ o) --.)

= C.l-m- {ioj g-l, g_e) "‘]

a { (xo, g_m) ] _>_ O
- 0 m <0
n
/“:U xo=§amung_m=ﬂamgn_m
L% fa

To prove (1) <=> (iii) we shall usc the following known

Theorem: In order for a non-negative f ¢ Ll(I‘) to be expressed as

with

) 2
0< L la 1" <=, &

- -3 2
f(x> = i L; an e i2sthn

=0 for n <0, it is necessary and sufficient that
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xf~ log £(A) A > = St Wedmant e 3ok * {prm)
(They femem 8l g9 Lo pamsgsd Ly b

- s ,\4 t an ® 5,
(1) = (111) If x ~a * ¢ (wsckward), them e recd to e ®Se AFrm 4

12« -12xMn |2
r (n) = r.‘;(n) - fre lu go s e | aa

nd 80 the Hin¥in measure of X 1is absolutely comtimuous vith the

jensity

Jow use the above theorem.

(114) = (1) It [ log £{A) 4A > =, then the above theorem shows that
r

t(A) oan be expressed as

2
£(A) = ‘8 "n e-12x)\nl

(an =0 for n<0),

tnd s0 x ~a *§ (2 = wvhite noise' because

ra'g(n) - f ei?a?\n £(A) A\ = rx(n).
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3. Generslized Polssopn Foxmula .

Theorem of Fatou. Let u(z) be a bharmonic function and suppose that

X 16
(1) sup [ lu(re™”)}a8 < =.
0<r< 1l -m

Then u can be expressed by gemeralized Poissen formuls,

X

i6 1
(2) u(re™”) = 5= {“ P {6 - 9) u(de)
L - r2
F {u) = ) (Poisson kernel)
r l-2rcos 6 +r
%
wo=w - Mot p, ur(de) = u(reie) ae
rtl

The boundary value u(ele) of u(z) exists a.e., and equals the

density of the absolutely continuous part of Hy B-€. (To be more
ps

precise where u'(e) = lim p(o - € u+ €)/2¢ exists, the non-

€ ¢+ 0
tangential limit of u{z) as 2z = e exists and equals u'(e).a

gggg.itIn the general Poisson formula the a.e. existing boundary value
u(eie) determines only the absolutely continuous part of u{dg9) and so
does not always determine the bebavior of uflz) in |z] < 1. To deter-
mine wu{z), |z| < 1, completely, we should know, besides the boundary
value u(eie), the singular part s(dg) of u(dg), i.e., the veak” 1imlt
of ar(de) = [u(reie) - u(eie)] dg as r t 1,

. A% A nA " J-,_y [:7,/@»(]) /A(d?}
(4 e = . .

MA 2 R -

R e p
ot (Toondd amve b M g ppad e s

5 . [
L9 oA g E

1] SN
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Function Class H, . (Bardy clase of order 1)

Definition 1. A function emalytic in |z| < 1 1s said to belong to H,

iff
X 16
(3) sup [ |glre™")|dp <=
0<r<1l-x
Applying Faton's theorem to the real and imeginary paris,
ve bhave

Generalized Poisson formula for Hl-functions. Any g £ Hl has boundary

values g(eie) a.e. and

N
) g(re'®) = = [ Pr(s - o) [&le'®) ap + s(ap))

~X

where 8 18 a complex-valued singular measure of bounded variation
defined by

16

)

(5) 8 ) dg

1]

+*
w - lim e, s_(dg) = (s(reie) - gle
r Ir
rtl
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Fundtion Class H, (Hardy class of order 2).

Definition 2. A function analytic in fz] < 1 1s said to belong to

Hl irf

" 16, ,°
(6) sup [ le(rxe™”)| cb <

0<r«< 1l -xn
Consider the power series exparsion of gl(z':

(1) glz) = a_ 2"

n>0
Then (6) is equivalent to

2
(8) E lan' <>
n>0

S8ince g €M, C K, g(eie) = a.e. lim g(reig) exists. It follows from

rtl
(7) that
ie. N in€ . i6
(9) gle””) = 1.1.m 2 a e = l.i.m.g(re )
n = o =0 rtl

110) = [ gfle
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(11} g(re

-2;; f ge!® T Lol in(6-0) do

N st

and so

n
(12) g(reie‘) = 51; f P {6-9) s(ew) dgp

-3

T™is is Poisson formula for 3‘2 functions.

Relation Between H, and L2

2 — e
2 2 ine
Let L_ be the subspace of L (-n, ") generated by e , n> 0.

Then

Tigle)e [ s 2o (m) () § oo &,

n>0 n>0
(D laff<=)

n>o0

determines a one-to-one mapping from H2 onto Li and we have
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(1) (Tg) (eie) is the a.e. boundary value function of g and so
can be written as g(e“).

(11) (r(ew) = 3(1‘010) EIE and lcrﬂ t gl as r t 1. (Notice
that Mg il = [ lnnla 2%,

n

(111) Poisson Formula.

x
gs) =5 | (1) (NP (9-0ap zare'® (0<r<1)
-X
(1v) la(=)| < trell 3%
1l x i eiq’ + 2z :
(v) slz) =55 [ Al (e H1 . T W tul

We have already proved (i), (11) and (1ii).

To prove (iv),

- 2n

x

le(re'®)] < 2= 1 Ie(e!P| 2L ap
n
l+r

< frell == (by the Schwarz inequality)

To prove (v), let h(z) be the integral in the right side.
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n
An(z) = 5= [ AL(Ts) (D12 (0 - 9) 2o, z=re
-X

= Kg(s)

that
which implies/ h(z) - g(z) is a pure imeginary constlnt’becauee

h(z) and g(z) are analytic.

i6
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4. Factorisstiog theorem for funotions in H,.

Using the classical Poisson formula we can easily prove

fheoren 1 ( Bl fagtoriss orgm). let g{z) be a fumctiom

spalytio om the unit olosed diak (wieh ne Soro_pointyvn—the bewndery,

»
17 O(l’ 0(2, ...,O(n are the sero points of g(z) in |z| < 1, then

n
1) gls)=w’ t -y s
E 1 - dx2 'SD{ T:- log‘g(er)l df}'

vhere O is a constamt of modulus 1, and

(2) g——J lﬂtl(ei?)‘dﬂf = loglel ¢ t 10g ~—m

=1 P‘xl

vhere a is the first non-vanishing coefficient of the power series
expansion of g(3).

The purpose of this séction is to extend this theorem to functions
in Hye
lemms 1. Let g(3) be analytie im |z] <1 and asmeW}

md that g(0) # O, Then if OS,...,o(n are the gero points of g in|z(<r,

(3; 1
' ogw) logle(rel?)ap = log|s(0)] +

), log--- 2> log‘g(O)l.

i
k=1 ‘O(H
(\k*

Unless otherwise stated,we repeat every multiple root by its
multiplicity.
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- 2. If g¢H, and if g(0) # 0, then

i
4) S |1°sfs(re"*)ll ay

-R u

2
sj F(e”)l a¢ — 20N log|e(0)] for 0SrsS1.
-V

gme 3, 1f g €H, , then

3) lg(rejg)‘z S L J )FP e-plag
" ? 2] y 0-yldy  fuocl<fe]
s ] e ,,P(o $)dq < ﬁg PRI AU 2RTY cF <fe
~W
(6) losjs(rew)} S-———- | 1og|elet? )P (0 -¢) et .
-7

- 4. If g € Hy and if °‘1' 0(2,... be the zero points of
- 00
M Zp (1 -ldy]) < o0,

leama 5. If || <1 and if 2. (1 oy ) < o0,

them the infinite product

-Gn z ~Xpn X
(8) ]_,]_ |°(n| = anz ( eonventions Mnl =1 if o( = 0)

fefines an enalytic function B(s) € Hg with the zero points {o(n}
tnd satifies

(9) B(z)$1  in zj<1,

(10) |B(eir)]= 1 a.e,

Definition 1. B(z) in Temma 5 is called the Blaschke product with

tero points {dn} o
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Given g ¢ H, » let{e(n} be its zero points in Js| < 1.
fhen ve can define ths Blaschke produet with the roots {dn} by
fommme 3 and I2mwa 4, Then we have
Joma 6. hmg/B ¢ Hy end bas mo sero points in |s| <1 and

m(el®)l = |g(e!?)] a.e.
IT h €H2 and if h has no roote in Isl(l.""ﬂ

- "
(11)~/h(’) - xp{mrg "“‘ S, [rosnie!n]ay - ‘”‘7)]} ’

vhere is & comstant of modulus 1 and 0 1is a bounded nom-aegative
singnlar measure defined by dv = v’;u. (10‘ R(e!T)| - 10g ‘h(rﬁo”l)d? .
rt1l

Definitiop 2 A funotion f(s) is called an cpter fwnctiom with the (real)
‘eporatmg_degg___z weif ), if 1t is expressed as

i‘f* s 3 L
= ¢ iy 1
(12) r(z) exp{zx 5' . we ]d‘r} o o) C Li(-m, T ).
Fotice that an puter function does not elwvays belong to Hy .

Definitiog 3. A funoction f(s) is called a singular function with

eneratin in mea 40 , if 1t is expressed as

x
(15) £(s) = m{-z-l-‘;j -'-’-;;—’-—:-(-r)(d?}.
- &~

vhere ¢ 1is & bounded non-negative singular measure on (-n,rr).
Notice that a2 singular function belomgs to Hye

Defipitjon 4. A ﬁmcti?gli analytie in /<1 is called an immer

funotion if |f(s)|< 1/(frtm which it follows that f € H,) and if
Ir(ei?)] = 1 a.e. s gt 1o%0

Gorollary 1. Both Blaschks produets amd singular funotions are inner..
E{\:g‘u Q_B 2 3, $o¢ Hz o ‘/ f s ech' ) / —_— / G.e, s )0 48 Crren
( s [ s rvima ‘5 )
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Theorem 2 (Factorizetion theorsm for fungtioms ip Ho).
Any function g € xﬂ can be factorised as

(14) & Sdo-B *gy°s
o/ 1 s constaat of modulus 1
B s Blasechke produet
€y : an outer funoctiom in 82
8 3 a singular function

Such factorization is unique; if there is any swele factorization o
g in the form (14),then {«}

B is the Blasehke produot with the same zero pointsf:s s

g, 13 the cuter function with generating density loglg(ei‘?)l .

and

s is the singular funotion with gemersating singular measure C(d¢)
defined by '
- - 19y] $
(15)  aofy) = vi-lm [108]a(e1?)] - 10g]e(re")|]ap .
We have also

n |
1 1
(16) —,-:-5 log|g(e )| dy = 1oglale log —— Sdo-{J
+0
vhere a is the first non-vanishing coefficient of the power series
expansion of g. : g is an inner functiom with

Corollary 2. g € H2 is a Blaschke produet 1ff /log ‘g(rei‘f’)lunifomlyg
{( in 05 T<1)

integrable on [-% ,T ),
1S

Corollary 3. g €H, is an ocuter funotion iff log ‘g(rei? )|faniformiy

(in 0<r<1) integrable on [-W,M)q a4 (2! heo 2% 4w /‘f““‘f’h‘\’l

v Cwqz <],

Coroilary 4. g € Hy, 1s a singular funoction iff g is an inner .
function which has no zero points in |z| < 1.
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5. Determining all backward moving average representations of any
non-deterministic stationary sequence.

In this section we shall determine all backwerd representations

f_t_;h_g_fom

———

(1) x=a %, L(x) = L(l), U gn = §n+l

for any (non-trivial) non-deterministic stationary sequence x .

If X, has any bdackward representation, then X, must be
non-deterministic and X has a unique backward representation of the
form (1) with the same coefficients. This will justify that we consider
only nou-deterministic stationary nquenceé and only backward repreaeqtations
of the form (1).

Since x  1s non-deterministic, its Hindin measure dF{A)

is absolutely continuous with density function f(A) satisfying

(2) [ log £(A) AA > - =
r

or equivalently {because of the integrability of f)

(2+) J flog £(A)| AN < =
r
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In Bection 2 we eaw that x = a *# { is a buskward representation,

iff

ln = 0 n<oO
(3) zlal®<e

Iz a e 12m 2, £in) - a.e.

Using (an} , we shall introduce an analytic function
n - n
(W) G($)=El‘l = [} a2
n n>0

Equation (3) can be writtem in terms of &a(z) as

. Xk
(31 { ja (e_ie’o‘)l = | lim a (r e'12’0‘)| = YE(N) a.e.
rti
By the factorization theorem in Section 4, 8 can be expressed
as
(5) a(z) = a B(z) * s(z) - gs(z)

where B 1is the Blaschke product, s i1is & singular function and 8,

is an outer function with generating density 1log YITAJ (= log la(e'm“)‘)l)
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Write g, for a B(z) - s(z). Them g (3) 1s an inner
function which will be called the immer part of a, vhile g will

be called the (standard) outer part of a.

Theorem 1. If x is a white noise and 1f x =a # § is a backwarad

representation, then a(z) 1is an imnmer function and § can be expressed

by x as
* *
(6) E =a * X, &n = a-n
i.e.,
(7 in = . Z ;k X (forward representation)
>0

$i2xAn

Proof. Let gn =fe aM(\) be the Kolmogorov-Cramer representation
r

of ‘n Since En is a white noise,

(M(A), WA = [ @A
b AN

x = {' eiQiM 8(8-121{4\) ()

Since X, is also & white noise, we have
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la(e” 2™ % @ « &

VI.2h

i.e., {a(e'm‘)‘) [=1 a.e. Bt a(z) ¢ H,, sad so0 a(z) 1is inner. Now

observe

which proves (7).
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If x=a *§ 1s a backward representation, then we have

(8) L (x) = L (&)
and
(9) Lix} = L(&)

Equation (8) is clear because x =a * § 18 backward. To

prove (9), notice that

l I a e-iEﬂn‘Q = £(A) £ a.e.
n>0

by virtue of (2), so that (b *a : b ¢ zl(z)) 1s dense in 32(2) by

the Tauberian theorem.

Keeping (8) and (9) in mind, we shall introduce

Definition 1. A backwrd representation x =a ¥ § 1is called

canpnical if
(10) L (x) = Ln(E)\ for every n (E;Lo(x) = L_(¢))

There exists at least one canonical representation of any

given non-deterministic statiomary sequeuce xn. Consider the innovation
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T T CA R
t° =
S TR

and set

8 93
a X )
n = o’ e-‘ﬂl

Then it is eesy to sce that x = a® » t' is a canonieal backward

representation.

Definition 2. x = a® » Es is called a standard backward representation.

Theorem 2.
121)\
{11) a (Z) = exp Lf W log Vf!x; d}\}
Proof. Let
(12} a?(z) = a'{2) alz)

be the factorization of a° into iis inner and outer parts. Since

las(e‘m“)‘)l2 = f{\) a.e.. a%(z must equal the right aside of (11).
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To prove (11), it is enough to prove ai(l) Bl Set
s

(13) E=al oy

Using the Kolmogorov-Cramer representation of ;3, £ 1s also a

white noise and
(14) x=8a"%¢
By Theorem 1 we can derive from (13)
8 - ‘I
(15) b = 8 fnex
Since ta is the innovation of x, we have
8
62 € L (x) < L_(¢)
(vy (1%))

i.e., gz L¢,,, (k>o0), vhich, combined with (15), implies

(16) ai: 0 (k >0) i.e., ai(Z) =8

It is clear that laél =1 .0 & = aé t%). Thus a°(2) = a; - a%(2).

But it is clear that
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2°(0) > o, a*(0) >0
1
and so ao =1,

Theorem 3. 1f x=a ® { is agy backward representation, and if
alg) = ai(;) ao(z) is the factorisation of a(s) 4into the inner and

outer parts of a(z) (a°(z) = e'(z) by Theorem 2), ‘then
() S F S

Proof. S8ince al 1s ioner, g = al £ ie a white noise and x =a° * 1y,

o that 1 = £5, 1.e., £° = a® # §, which implies (17) by Theorem 1.

Corollaxy 2. x=a * { 1is a canonical backward representation, 1ff

a(z) = a a®(z), a being a constant of modulus 1.

Remark. Let x =& * § be any backward representation. Then L(x) = L(§)
and Ln(x) c Ln(g). Therefore £ ¢ L(E)@Ln_l(!) < L(x)@Ln_l(x)
= L({:, !:4.1’ ... ). Therefore ¢ = 8 b‘ §:+k . (bk does not depend

k>0

on n because of (1).) Theorem 3 shows that we can express b, as

k
- | .
8, using the inner part a (%) of a(%).
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In the canonical backward representation x =a ®* § we &
not need the future inforwation of x to comstawet l‘.

6. Prediction. Let x, be any stationary sequence with the Hin%in
measure dF and the Kolmogorov-Cramer orthogonal reandom measure OM(A).

Iet R-=A S, ANS =@ be the decomposition euch that F,(A) = F(4 0 A)
is absolutely coutinuous and !.(A) =F(ANS) 1is singular. It is clear

that F'(A) = F2(A) (= £(A)), PI(A' =0 a.e. Bet

(1) Ma(A) = M(A N A)Y, llla(A) = M(A N 8)

and

(2) x: - f e—i2x)n d(.()\), 8 _ f e-iEnM ‘”‘e(")
Then

a 8
X = X +X
n n n

(3) L(x") L L(x*)

L(x) = L(x*) ®L(x®)

Recall that x, can be decomposed as
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(W) L=t L nix%

L(x) = L(xi) @L(:‘)

Let us examine the relation between two decompositions (3)

and (k4).

Theores 1. If [ log £(A) @A = - =, then x, x» and x are all

deterministic and
% = 0,
If [ log £(A\) A\ > - ®», then
Definition 1. x = PL . x‘rl is ealled the predictor of xn with

n,m
m

2 2
the information up to time m, and m™ “xn - PLm( x) xnll

is

called the mean square error of this predictor ei m depends only on
)
n-m &nd so we can write 32 for e2 .
n-m n,m

If [ £'A) A\ = - =, then x 1s deterministic and so

Xiw ™ % for every m. Therefore there is no problem of prediction in
»

this case.
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Theorem 2. If [ £(}\) dA > - =, then

.l
2 ) 2
e aL‘ I l
% a0 ',

where 8 k=0,1, 2, ... are determined by

k rl «e-12x7\*z . ]
= P A) aA
kgo“z e“’\ejr:-'iﬁ'r""« _2108 (\) s

The /\-utb'oG\ Ay A oHansd oo },wws;

;‘ = X ‘__}L:Ll’“bkq ‘ ( ;’nnovar"m)
" fx. "P‘_ﬂ_‘(l)‘l«ﬂ

ﬂp = (1, f_#) = (%, 8t )

<.

— :E; a] ;n—k 1;:13 }n - Qﬂhjwi&"’ @“j\(m {n
ﬁZ,n—m (ALL &Lﬁydvm 1)

)("’ rm
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T. Concrete expression of innovation and predictor.

Let x be non-deterwinistic. Then the Hin¥in measure is

absolutely continuous with the deusity f£/'A)\ eatisfying
(1) [ log £(A) dA> - »

We shell introduce the following functions analytic in

lz] <1

-12%A
(2) a(z)!ttkzkaexp{%fi_—ﬁ,;ﬁ—:logf(k)dk}

r
(3) b(z) m £ bk £ - a(z)'1
(k) Afz) = T a3
k> 4

(5) C,(2) = . ;ﬁ | 4k X . A,(z) b(z)

It is clear that a(z) 1s a standard outer function and belongs

to H2 Therefore I lan|2 < o, g0 that A‘(t) € Hz' b does not necessarily

\

belong to 52’ but the a.e. boundary value function b(e'i2“)‘,a exists and

"12“}) "l

equals af(e a.e. Similarly for C‘(z).

Now observe the Kolmogorov-Cramer representation for x and
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K. Tto
(6) x = [ M a ()
(1) = [ e T A ()

Then it is clear that

(8) U ) = a(e™#) @)
(9) aM N = b(e™ ™) an (A
Thus we have
(10) g, = [ e BN A
(ll) }f-n,n_‘ I eiQﬂM A‘ (e-iz‘ﬂ?\) dM;(A)
- ! eiEﬂM A‘ (e‘igﬂk) b(e-igﬂ?\) dM()\)

{10') £ =

=
L -
n " 2 0 k n-k
(111) x e, . x
n,n-4 K _[>_: P £,k "n-k

Vi.33
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Theorem 1. If f{)\) is essentially bounded (i.e., IM < = guch that
f(A\) <M a.e.), and if [ f(?\)‘l dA < =, then the formal expansions

(10'), (11') converge and the equalities are true.
Proof. It follows from (2) and (%) that

b(z) = exp(- 3 [ -+ log £(A) aN)

1 -1
= exp(g/ -+ log £(})

and [ £(n ! @ <w implies that b e E,, so that = ]bpl2 <o and

b{e-ieﬂ\} = 3 b o~ 127N (convergence in L2(F daa))
k>0 k

gbk nk

i2 -12x \
.y ""“kg b e 1PN quny
P
2
= f ' B ...' (N) oA
k>p
. 2 2
Sufl ‘ dN = M Z] Ibkl -+ 0 (p » )
k>p k>p
Since we have
lb( “12“)‘)| - f':)\)-l

and
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C,(z) = 1 - b(s) .
42 :kg‘ak:’

we have
-127}, (2 -1 \
: a A aA
f le (e 52[[1+r(, <x§;'“")]

and therefore c‘(z) € H,. By the same argument as for gn we have

=, oos - E Cex ¥ k|2
n,n‘ kﬂ‘ » -

2
o I M PN (p =)

In some cases the formal expansion does not converge but its
Césaro sum convarges and equals the right value, for example

-1217\'2

Theorem 2. If f(A\) = |1 - e = 2(1 - cos 2n\), then

a(z) =1 - g (standard outer function)

x =8 -6 4 (standard representation)

o d

b(z) --i-]_i;=1+z+z2+---
The formal expansion for gn i.e., X + X1 *vX 5 + «+- does not

converge but we have, for its Césaro sum,
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-1
1Y
lim = (x, +x + 000+ ) = ¢
Qo q L‘E %n n-1 xh-p n
1 -1
(Notice that x = -§ ==-lima = (x + 0+ X ) and
n,a-1 n-1 Qe q p=0 n-1 n-p-1
xn,n—l =0 for £>1.)
Proof.
-1
1 95 1
RGN SETL IR N - O PN S TLI R SN

1/2

and the norim of the second term is q" .

8.

(1)

Linear difference equation.

Let us consider a linear difference equation

8 % Y8 %1

+ ocee & X

N~

where §n is a given white noise.

Theorem 1.
then
S
(2) a(z) = a, z
J);‘o J

If there existis a stationary csequence xn

ksgn

satisfying (1),

1

|z

has no roots on

)
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Conversely if (2) holds, then there exists a unique statiooary seguence

x satisfying (1).

Proof. Let us consider the Kolmogorov-Cramsr representation of gn

(3) = 1 2% A ()

and assume that

(4) x = [ ' a (n)

satisfies (1). Then

(5) a (o712 @ (n) - a, (N

and so

(6) [a(e'm)‘) |2 ar(n) = dxr, ar(7) = the Hin&in measure of xr;

Let N be the set of zero points of a(e‘m") (which is clearly a

finite set) and let G be the restriction of dF over K°. Then

ar > &G = |a(e‘12x7\)l-2 dA.



Stationary Processes, 1963-64
K. Ito v1.38

If N 3 )\o; then af(e ~ nan-vanishing coanstant X (A - 7\0)

and so

-2

J @ > [ |ale

wvhich is a contradiction. Thus N must be empty. This proves the
first half of our theorem.

If (2) holds, then the above argument shows that

&a (e'izl}\ "'2 d.)\

(7) @ =
and
(8) b(e-12x7\\) = 8(8-1210\)-1 c LQ(P, d)\)

so that x mist be expressed as

(9) x = ] el2™h [ elenhn ( -12mA

n

aM (A = ) dMg(K)

and it is clesr that x , thus defined, solves (1).

-12nA

Theorem 2. Assume that (2) holds. Then b(e *™) ¢ 12(r ap) ana

it can be expanded in Fourler series
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= b, e
J-& J

(10) dle -12xNy

and the solutioun x of (1) 1s given by

(11) xn-%}bd by

If a(z) bas mo roots in |z| <1 (and so in |z| < 1), then by =0
(3 <0) in (11) and (11) gives a canonical backward representation of x -

If a(z) bas roots in |z| < 1, then (11) is not backward.

Proof. The first and third parts are clear. To prove the second part,

observe that

b(g) = a(_z)-l

e Qg ) e (e 27 (el <)

zao

is an outer function in E2



