

からの眺望

河野俊丈

東京大学大学院数理科学研究科 2009年3月 日本数学会市民講演会

幾何学模型の歴史

1870年頃

クンマー(E. Kummer)が, 彼自身の制作による模型を用いて議論を行った.

(1873年のベルリン科学アカデミーの月報)

1880年頃から20世紀初頭

クライン(F. Klein), ブリル(A. Brill)らを中心にMartin Schilling社で石膏による

幾何学模型制作のプロジェクトが展開し、1932年まで継続される.

東大数理と幾何学模型

1910年頃

東京大学理学部数学教室に 中川銓吉 教授が 第一次大戦の頃あるいは、それ以前に輸入.

中川銓吉

1997年10月 - 12月 東京大学創立120周年記念特別展 「学問のアルケオロジー」に展示.

幾何学模型と芸術

- 20世紀はじめ マックス・エルンストがパリで展示されて いた幾何学模型に注目. マン・レイが石膏模型の写真を芸 術雑誌Cahiers d'artに発表.
- ヘンリー・ムーアの彫刻作品にも影響を与える.
- ■2005年~2006年 杉本博司氏によって撮影された東大数 理所蔵の模型の写真,および現在の技術で作成された模型 が,森美術館における展覧会「杉本博司 時間の終わり」 などで展示される(パリのポンピドーセンターなどを巡回).

代数曲面 定曲率曲面,極小曲面 複素関数(楕円関数など) 線織面のモデル

■多面体の針金模型

P(x, y, z)多項式.

代数曲面:空間内で P(x, y, z) = 0を満たす点 全体の集合.

直交する楕円面と 双曲面

P(x, y, z)多項式.

代数曲面:空間内で P(x, y, z) = 0を満たす点 全体の集合.

Clebsch 曲面 – 3次曲面上の27本の直線

$$x_0 + x_1 + x_2 + x_3 + x_4 = 0$$

$$x_0^3 + x_1^3 + x_2^3 + x_3^3 + x_4^3 = 0$$

$$(x_0 : x_1 : x_2 : x_3 : x_4) \in \mathbf{R}P^4$$

Clebsch 曲面 – 3次曲面上の27本の直線

 $x_0 + x_1 + x_2 + x_3 + x_4 = 0$ $x_0^3 + x_1^3 + x_2^3 + x_3^3 + x_4^3 = 0$ $(x_0 : x_1 : x_2 : x_3 : x_4) \in \mathbf{R}P^4$

27本の直線の配置

互いに捩れの位置にある6本の直線2組1, 2, 3, 4, 5, 6; 1', 2', 3', 4', 5', 6' $i, i', j, j', i \neq j$ と交わる直線15本

 $ij, 1 \le i, j \le 6$

直線の配置は美しい 対称性を持つ

27本の直線の配置

特異点をもつ曲面

擬球 – 負の定曲率曲面

$$x = \frac{\cos u}{\cosh v}$$
$$y = \frac{\sin u}{\cosh v}$$
$$z = v - \tanh v$$
$$(0 \le u < 2\pi, \quad 0 \le v < \infty)$$

トラクトリクスの回転面

K < 0

K < 0

K > 0

3角形の内角の和<180度

3角形の内角の和<180度

3角形の内角の和=180度

3角形の内角の和<180度

3角形の内角の和>180度

3角形の内角の和=180度

平均曲率 $H = \frac{1}{2}(k_1 + k_2)$

トラクトリクスを らせんに沿って回転

トラクトリクスを らせんに沿って回転

Dini曲面 – 負の定曲率曲面

$$x = \frac{\cos u}{\cosh v}$$
$$y = \frac{\sin u}{\cosh v}$$
$$z = v - \tanh v + au$$
$$(0 \le u < 2\pi, \quad -\infty < v < \infty)$$

トラクトリクスを らせんに沿って回転

Dini曲面 – 負の定曲率曲面

$$x = \frac{\cos u}{\cosh v}$$
$$y = \frac{\sin u}{\cosh v}$$
$$z = v - \tanh v + au$$
$$(0 \le u < 2\pi, \quad -\infty < v < \infty)$$

Kuen 曲面 – 負の定曲率曲面

$$x = r \cos \varphi, \quad y = r \sin \varphi$$
$$z = \log \tan \frac{v}{2} + a \cos v \quad (0 < v < \pi)$$
$$\varphi = u - \arctan u$$
$$a = \frac{2}{1 + u^2 \sin^2 v}, \quad r = a\sqrt{1 + u^2} \sin v$$

正の定曲率曲面

正の定曲率曲面

平均曲率が一定の曲面

オンジュロイド

楕円を転がして得られる 曲線の回転面

平均曲率が一定の曲面

オンジュロイド

楕円を転がして得られる 曲線の回転面

平均曲率 H=0

カテノイド

ヘリコイド

平均曲率 H=0

カテノイド

Dupin サイクリッド曲面

Dupin サイクリッド曲面

トーラスに球面に関する反転をほどこした曲面. 代数曲面としては4次曲面. 曲率曲線がすべて円となる.

複素関数のグラフ

楕円関数の実数部分

複素関数のグラフ

楕円関数の実数部分

$$\wp(z) = \frac{1}{z^2} + \sum_{m,n\in\mathbf{Z},(m,n)\neq 0} \left(\frac{1}{(z-m-ni)^2} - \frac{1}{(m+ni)^2}\right)$$

ヤコビの楕円積分

$$u = \int_0^\phi \frac{dt}{\sqrt{1 - k^2 \sin^2 t}}$$

ヤコビの楕円積分

$$u = \int_0^\phi \frac{dt}{\sqrt{1 - k^2 \sin^2 t}}$$

東大数理所蔵の正120胞体の模型

乙部融朗氏による正120胞体の模型

{n} 正 n 角形

{n} 正 n 角形 {p, q} 正多角形 {p} がそれぞれの頂点の

{n} 正n角形

{p, q} 正多角形 {p} がそれぞれの頂点の まわりに q 個集まる正則分割

1点から発する光による射影.

立方体の1つの面 を取り除いてそこ から内部を眺めた 像が得られる.

球面の立体射影

正則分割の立体射影

正12面体の立体射影

立方体の射影図

0-セル(頂点) 16 1-セル(辺) 32 2-セル(面) 24 3-セル 8

4次元空間の正多面体のシュレフリー記号

シュレフリー記号 {p, q, r}

正多面体 {p, q} が辺のまわりに r 個集まる.

各頂点のまわりの2次元球面による切り口の 分割のタイプが {q, r}.

空間の分割:正多胞体

4次元空間の正多面体のシュレフリー記号

シュレフリー記号 {p,q,r}

正多面体 {p, q} が辺のまわりに r 個集まる.

各頂点のまわりの2次元球面による切り口の 分割のタイプが {q, r}.

空間の分割:正多胞体

正8胞体 (hypercube)

4次元空間の正多面体のシュレフリー記号

シュレフリー記号 {p, q, r}

正多面体 {p, q} が辺のまわりに r 個集まる.

各頂点のまわりの2次元球面による切り口の 分割のタイプが {q, r}.

空間の分割:正多胞体

正8胞体 (hypercube)

 $\{4, 3, 3\}$

正120胞体の立体射影

3次元ユークリッド空間の120個の領域による分割を与える. 3次元球面の120個のセルによる正則分割.

4次元空間の正多面体(regular polytope)の分類

	シュレフリー記号	3-セル	頂点数
正5胞体	{3, 3, 3}	正4面体	5
正8胞体	{4, 3, 3}	立方体	16
正16胞体	{3, 3, 4}	正4面体	8
正24胞体	{3, 4, 3}	正8面体	24
正120胞体	{5, 3, 3}	正12面体	600
正600胞体	{3, 3, 5}	正4面体	120

シュレフリーにより19世紀半ばに示された.

Ludwig Schläfli (1814 - 1895)

Theorie der vielfachen Kontinuität 1850 - 52

Riemann : Hypothesen welche der Geometrie zu Grunde liegen 1854

双曲幾何のモデル ポアンカレ円板 (双曲平面)

測地線は無限遠の円周と 直交する円弧

三角形の内角の和は 180度より小さい

非ユークリッド幾何のモデル

擬球と双曲平面

擬球の展開図を双曲平面上 に表すことができる.

球面の正則分割(タイルばり)

合同な正多角形が各頂点 のまわりに同じ個数集まっ ている.

{5, 3}

{3, 5}

ユークリッド平面の正則分割 (タイルばり)

{3, 6}

 $\{4, 4\}$

{6, 3}

双曲平面のタイルばり {3,7}型

双曲平面のタイルばり {4,5}型

双曲平面のタイルばり {5, 5}型

双曲平面のタイルばり {7,3}型

3次元球面の正則分割(120胞) {5,3,3}

3次元双曲空間の分割 $\{5, 3, 4\}$

現代の技術による模型の制作

Clebsch曲面

Dini 曲面の制作

協力
ヤマダ精機

