2017 日本数学会

年会プログラム

期 日 2017年3月24日(金)~3月27日(月)

会 場 〒192-0397 東京都八王子市南大沢1丁目1 首都大学東京南大沢キャンパス

連絡先 〒192-0397 東京都八王子市南大沢1丁目1 首都大学東京大学院 理工学研究科数理情報科学専攻

E-mail tmu17mar@mathsoc.jp

(会期中) Tel 090-1791-3483

一般社団法人 日 本 数 学 会

Tel 03-3835-3483

	第1会場	第Ⅱ会場	第Ⅲ会場	第Ⅳ会場	笠 17 	第VI会場	第Ⅷ会場	笠 VIII	第 IX 会場						
	第1云場 講堂	用 出 云 场 11 号館 2 階	- 毎 Ⅲ 云 場 - 11 号館 1 階	第 1V 云場 12 号館 1 階	第 V 会場 12 号館 1 階	第 V1 云場 12 号館 1 階	第 VⅡ 云場 12 号館 1 階	第 VⅢ 会場 12 号館 2 階	第 IA 云場 12 号館 2 階						
	神圣 小ホール	204 教室	11 5 届 1 陌 110 教室	101 教室	102 教室	103 教室	104 教室	201 教室	202 教室						
	函数方程式論	代 数 学	数学基礎論 および歴史	トポロジー	応用数学	統計数学	函数論	幾 何 学	函数解析学						
	9:30~12:00	9:30~11:45			10:30~11:45	9:45~12:00			14:15~16:00						
24日	14:15~16:15 14:25~17:00 14:15~16:40 15:30~17:00 14:15~15:30 14:15~16:05 14:15~16:10 14:15~16:10 14:15~16:10 14:15~16:10 14:15														
(金)	全画特別講演 13:00~14:00 特別講演 特別講演特別講演特別講演特別講演特別講演														
	特別講演														
	16:30~17:30			14:15~15:15	15:50~16:50	$14:15 \sim 15:15$ $15:30 \sim 16:30$	16:20~17:20	16:20~17:20	16:15~17:15						
	函数方程式論	代 数 学	数学基礎論 および歴史	トポロジー	応用数学	統計数学	函数論	幾 何 学	函数解析学						
	9:30~12:00	9:00~12:00	9:15~11:30	10:00~11:50 13:15~14:45	10:00~11:45	9:50~11:30 13:30~14:30	9:40~11:50	9:20~11:30	9:00~12:00						
25日 (土)		特別講演 13:30~14:30	特別講演 13:15~14:15					特別講演13:15~14:15							
()	日本数学会賞授賞式 (講 堂 大 ホ ー ル) · · · · · · · · · · · · · · · · · ·														
	日本数字云真投真式 (講 呈 人 ホ ー ル) · · · · · · · · · · · · · · · · · ·														
				庄	司 俊 明	(同済大数学	:系)	· · · · · · (16	/						
	懇 親	会 (ル	ヴェソンヴェールi		司 俊 明	`	,	(/						
	懇 親 函数方程式論		ヴェソンヴェール 無限可積分系	南大沢)		· · · · · · · · · · · · · · · · · · ·		(18	3:40~17:40)						
	函数方程式論 9:30~12:00	代 数 学		南大沢) · · · · · · · · · · · · · · · · · · ·	応用数学 14:15~16:30	· · · · · · · · · · · · · · · · · · ·	実函数論 9:00~11:55	(18幾何学9:50~11:40	5:40~17:40) 6:00~20:00) 函数解析学 9:30~12:00						
	函数方程式論	代 数 学	無限可積分系	南大沢)	応用数学 14:15~16:30 特別セッション	統計数学	実函数論	(18幾何学9:50~11:40	5:40~17:40) 6:00~20:00) 函数解析学 9:30~12:00						
26日	函数方程式論 9:30~12:00	代 数 学	無限可積分系	南大沢)・・・・ トポロジー 10:00〜12:00 14:15〜15:45	応用数学 14:15~16:30 特別セッション 9:30~12:00	統計数学 9:50~12:00	実函数論 9:00~11:55	(18幾何学9:50~11:40	5:40~17:40) 6:00~20:00) 函数解析学 9:30~12:00						
26日 (日)	函数方程式論 9:30~12:00 14:15~16:15	代 数 学 9:15~12:00	無限可積分系 10:30~11:30	南大沢)・・・・ トポロジー 10:00~12:00 14:15~15:45 企画特別	応用数学 14:15~16:30 特別セッション 9:30~12:00 講演 13:	統計数学 9:50~12:00 00~14:00	実函数論 9:00~11:55 14:15~16:50	(18幾何学9:50~11:4014:15~15:35	i:40~17:40) i:00~20:00) 函数解析学 9:30~12:00 14:15~16:15						
	函数方程式論 9:30~12:00 14:15~16:15 特別講演	代 数 学 9:15~12:00 特別講演	無限可積分系 10:30~11:30 特別講演	南大沢)・・・・ トポロジー 10:00~12:00 14:15~15:45 企画特別 特別講演	応用数学 14:15~16:30 特別セッション 9:30~12:00 講演 13: 特別講演	統計数学 9:50~12:00 00~14:00 特別講演	実函数論 9:00~11:55 14:15~16:50 特別講演	(18幾何学9:50~11:4014:15~15:35特別講演	i:40~17:40) i:00~20:00) 函数解析学 9:30~12:00 14:15~16:15 特別講演						
	函数方程式論 9:30~12:00 14:15~16:15 特別講演	代 数 学 9:15~12:00 特別講演	無限可積分系 10:30~11:30 特別講演 14:15~15:15	南大沢)・・・・ トポロジー 10:00~12:00 14:15~15:45 企画特別	応用数学 14:15~16:30 特別セッション 9:30~12:00 講演 13: 特別講演	統計数学 9:50~12:00 00~14:00 特別講演	実函数論 9:00~11:55 14:15~16:50 特別講演	(18幾何学9:50~11:4014:15~15:35	i:40~17:40) i:00~20:00) 函数解析学 9:30~12:00 14:15~16:15 特別講演						
	函数方程式論 9:30~12:00 14:15~16:15 特別講演 16:30~17:30	代 数 学 9:15~12:00 特別講演 14:30~15:30 15:40~16:40 16:50~17:50	無限可積分系 10:30~11:30 特別講演 14:15~15:15 15:30~16:30	南大沢)・・・・ トポロジー 10:00~12:00 14:15~15:45 企画特別 特別講演	応用数学 14:15~16:30 特別セッション 9:30~12:00 講演 13: 特別講演 16:50~17:50	統計数学 9:50~12:00 00~14:00 特別講演 14:15~15:15	実函数論 9:00~11:55 14:15~16:50 特別講演 17:00~18:00	(18幾何学9:50~11:4014:15~15:35特別講演	i:40~17:40) i:00~20:00) 函数解析学 9:30~12:00 14:15~16:15 特別講演						
	函数方程式論 9:30~12:00 14:15~16:15 特別講演 16:30~17:30 函数方程式論 9:15~12:00	代数学 9:15~12:00 特別講演 14:30~15:30 15:40~16:40 16:50~17:50 代数学 9:15~12:00	無限可積分系 10:30~11:30 特別講演 14:15~15:15 15:30~16:30 無限可積分系	南大沢)・・・・ トポロジー 10:00~12:00 14:15~15:45 企画特別 特別講演	応用数学 14:15~16:30 特別セッション 9:30~12:00 講演 13: 特別講演 16:50~17:50 応用数学 9:30~11:30	統計数学 9:50~12:00 00~14:00 特別講演 14:15~15:15 15:30~16:30	実函数論 9:00~11:55 14:15~16:50 特別講演 17:00~18:00 実函数論 9:00~11:40	(18幾何学9:50~11:4014:15~15:35特別講演	i:40~17:40) i:00~20:00) 函数解析学 9:30~12:00 14:15~16:15 特別講演						
27日	函数方程式論 9:30~12:00 14:15~16:15 特別講演 16:30~17:30 函数方程式論 9:15~12:00	代数学 9:15~12:00 特別講演 14:30~15:30 15:40~16:40 16:50~17:50 代数学	無限可積分系 10:30~11:30 特別講演 14:15~15:15 15:30~16:30 無限可積分系	南大沢)・・・・ トポロジー 10:00~12:00 14:15~15:45 企画特別 特別講演 16:00~17:00	応用数学 14:15~16:30 特別セッション 9:30~12:00 講演 13: 特別講演 16:50~17:50 応用数学 9:30~11:30 14:15~16:20	統計数学 9:50~12:00 00~14:00 特別講演 14:15~15:15 15:30~16:30 統計数学 9:50~12:00	実函数論 9:00~11:55 14:15~16:50 特別講演 17:00~18:00 実函数論	(18幾何学9:50~11:4014:15~15:35特別講演	i:40~17:40) i:00~20:00) 函数解析学 9:30~12:00 14:15~16:15 特別講演						
(日)	函数方程式論 9:30~12:00 14:15~16:15 特別講演 16:30~17:30 函数方程式論 9:15~12:00 14:15~16:15	代数学 9:15~12:00 特別講演 14:30~15:30 15:40~16:40 16:50~17:50 代数学 9:15~12:00	無限可積分系 10:30~11:30 特別講演 14:15~15:15 15:30~16:30 無限可積分系	南大沢)・・・・ トポロジー 10:00~12:00 14:15~15:45 企画特別 特別講演	応用数学 14:15~16:30 特別セッション 9:30~12:00 講演 13: 特別講演 16:50~17:50 応用数学 9:30~11:30 14:15~16:20 講演 13:	統計数学 9:50~12:00 00~14:00 特別講演 14:15~15:15 15:30~16:30 統計数学	実函数論 9:00~11:55 14:15~16:50 特別講演 17:00~18:00 実函数論 9:00~11:40 14:15~16:25	(18幾何学9:50~11:4014:15~15:35特別講演	i:40~17:40) i:00~20:00) 函数解析学 9:30~12:00 14:15~16:15 特別講演						
27日	函数方程式論 9:30~12:00 14:15~16:15 特別講演 16:30~17:30 函数方程式論 9:15~12:00	代数学 9:15~12:00 特別講演 14:30~15:30 15:40~16:40 16:50~17:50 代数学 9:15~12:00	無限可積分系 10:30~11:30 特別講演 14:15~15:15 15:30~16:30 無限可積分系	南大沢)・・・・ トポロジー 10:00~12:00 14:15~15:45 企画特別 特別講演 16:00~17:00	応用数学 14:15~16:30 特別セッション 9:30~12:00 講演 13: 特別講演 16:50~17:50 応用数学 9:30~11:30 14:15~16:20	統計数学 9:50~12:00 00~14:00 特別講演 14:15~15:15 15:30~16:30 統計数学 9:50~12:00	実函数論 9:00~11:55 14:15~16:50 特別講演 17:00~18:00 実函数論 9:00~11:40	(18幾何学9:50~11:4014:15~15:35特別講演	i:40~17:40) i:00~20:00) 函数解析学 9:30~12:00 14:15~16:15 特別講演						

会費およびアブストラクト受付時間は3月24日(金) $8:30\sim15:00$ /25日(土) $8:30\sim16:00$ /26日(日) $8:30\sim16:00$ /27日(月) $8:30\sim13:00$ です.

3月26日(日) 14:00~16:30, 講堂大ホールにおいて市民講演会が行われます. (詳細はP.5)

総合講演

3月25日(土) 講堂大ホール		
日本数学会春季賞受賞者		(15:30~16:30)
庄 司 俊 明 (同済大数学系)	複素鏡映群に付随した Kostka 関数	(16:40~17:40)
	企画特別講演	
3月24日(金)		
第Ⅱ会場		
辻 雄(東大数理)	p 進 Simpson 対応 · · · · · · · · · · · · · · · · · ·	(13:00~14:00)
第Ⅲ会場		
薄葉季路(早大理工)	集合論の宇宙 —Universe と Multiverse— · · · · · · · · · · · · · · · · · · ·	(13:00~14:00)
3月26日(日)		
第 V 会場 特別招待講演(日本応用数理学会	<u>></u>)	
•	形状最適化問題の正則化解法とその応用	(13:00~14:00)
第Ⅵ会場		
水田義弘(広島大*)	変動指数をもつ関数空間	(13:00~14:00)
第VⅢ会場		
古田幹雄(東大数理)	トポロジカル相とバルク・エッジ対応の数学的側面へのイン	(19.00 - 14.00)
	トロダクション	(13:00~14:00)
3月27日(月)		
第Ⅲ会場		
国 場 敦 夫 (東大総合文化)	Matrix products in integrable probability · · · · · · · · · · · · · · · · · · ·	(13:00~14:00)
第V会場		
水 藤 寛(岡山大環境理工)	循環器系疾患の機序理解のための数理科学的アプローチ	(13:00~14:00)

特 別 講 演

3月24日(金)
幾何学 (第 VIII 会場) 本 田 淳 史 (都 城 エ 高 専) 半正定値計量の幾何学と等長実現問題 · · · · · · · · · · (16:20~17:20)
函数論 (第 VII 会場) 松 崎 克 彦 (早 大 教 育) 円周の微分同相写像のタイヒミュラー空間 (16:20~17:20)
函数方程式論 (第 I 会場) 廣 惠 一 希 (城 西 大 理) 線型常微分方程式のアクセサリーパラメーターを巡って · · · (16:30~17:30)
函数解析学 (第 IX 会場) 貝 塚 公 一 (学 習 院 大 理) Stationary scattering theory for invariant differential operators on symmetric spaces of noncompact type · · · · · · · · · · (16:15~17:15)
統計数学 (第 VI 会場) 一 場 知 之 Stochastic analysis for collision of Brownian particles · · · · · (14:15~15:15) (Univ. of California, Santa Barbara)
2016年度(第15回)日本数学会解析学賞受賞特別講演 笹 本 智 弘 (東 エ 大 理) KPZ 方程式と可積分確率相互作用系 · · · · · · · · · · · · (15:30~16:30)
応用数学 (第 V 会場) Ying Miao (筑波大システム情報) [♭] 電子指紋の組合せ理論 (15:50~16:50)
トポロジー (第 IV 会場) 蔦 谷 充 伸 (九 大 数 理) Applications of Stasheff's A_{∞} -theory to Lie groups \cdots (14:15~15:15)
3月25日(土)
数学基礎論および歴史 (第Ⅲ会場) 河 村 彰 星 (東大総合文化) 解析学における計算量 · · · · · · · · · · · · · (13:15~14:15)
代数学 (第Ⅱ会場) S. Carnahan (筑波大数理物質) Recent advances in Moonshine · · · · · · · · · · · (13:30~14:30)
幾何学 (第VIII会場) 北 別 府 悠 (熊 本 大 理) [♭] 測度距離空間上の正則集合について · · · · · · · · · · · (13:15~14:15)
函数論 (第 VII 会場) 足 立 真 訓 (東京理大理工) レビ平坦面上の函数論: 平坦円周束における事例研究 · · · · · (13:15~14:15)
函数方程式論 (第 I 会場) 2016 年度 (第 15 回) 日本数学会解析学賞受賞特別講演 小 池 茂 昭 (東 北 大 理) 完全非線形方程式の L ^p 粘性解の ABP 最大値原理とその応用 (13:30~14:30)

函数解析学 (第 IX 会場) 川村一宏(筑波大数理物質)	Banach-Stone 型のいくつかの定理 · · · · · · · · · · · · · · · · · · ·	(13:15~14:15)
3月26日(日)		
代数学 (第Ⅱ会場) 2017年度(第20回)日本数学会代金子昌信(九大数理)	数学賞受賞特別講演 多重ゼータ値について	(14:30~15:30)
2017年度(第20回)日本数学会代 橋 本 光 靖 (岡山大自然)	数学賞受賞特別講演 可換環論と不変式論	(15:40~16:40)
2017年度(第20回)日本数学会代 桂 利 行 (法 政 大 理 工)	数学賞受賞特別講演 正標数の代数幾何 · · · · · · · · · · · · · · · · · · ·	(16:50~17:50)
幾何学 (第 VⅢ 会場) 奥 田 隆 幸 (広 島 大 理) [♭]	リーマン対称空間内の測地線を共有しない全測地的部分多様 体の組について	(15:50~16:50)
函数方程式論 (第I会場) 西 山 尚 志 (和歌山大教育)	摩擦項を持つ波動方程式の拡散現象について	(16:30~17:30)
実函数論 (第 VII 会場) 柳 研 二 郎 (城 西 大 理)	古典系および量子系におけるエントロピーなどの情報量の周 辺について	(17:00~18:00)
函数解析学 (第IX会場) 橋 本 康 史 (琉 球 大 理)	合同部分群に関する length spectrum の重複度の分布について	(16:30~17:30)
統計数学 (第 VI 会場)		
	境界バイアスのない非対称カーネル密度推定量について	,
藤越康祝(広島大*)	情報量規準に基づく縮小次元の推定法に関する高次元性質・	(15:30~16:30)
応用数学 (第 V 会場) N. Pozar (金 沢 大 理 工)	A level set approach to the crystalline mean curvature flow	(16:50~17:50)
トポロジー (第IV 会場) 宮 澤 康 行 (山 口 大 創 成)	Links with trivial Q -polynomial \cdots	(16:00~17:00)
無限可積分系 (第Ⅲ会場) Ivan Chi Ho Ip (京 大 理)	Positive representation and cluster realization of quantum groups · · · · · · · · · · · · · · · · · · ·	(14:15~15:15)
加藤晃史(東大数理)	Quiver mutation loops and partition q -series \cdots	(15:30~16:30)
3月27日(月)		
函数方程式論 (第 I 会場) 2016 年度 (第 15 回) 日本数学会解	析学賞受賞特別議演	
片山聡一郎(阪 大 理)	##親形波動方程式系の大域解の存在と漸近挙動	(16:30~17:30)

4 特別講演

実函数論 (第ⅥI会場) 村瀬勇介(名城大理工)	日本酒醸造過程の解析と仮似変分不等式	(16:40~17:40)
応用数学 (第V会場) 矢 崎 成 俊 (明 大 理 工)	界面現象に現れる移動境界の追跡法・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	$(16:40\sim17:40)$

市民講演会

日 時 3月26日(日) 14:00~16:30

会 場 講堂大ホール

主 催 日本数学会

共 催 首都大学東京大学院理工学研究科数理情報科学専攻

プログラム 挨 拶 … (14:00~14:10)

小 谷 元 子 (日本数学会理事長・東北大学大学院理学研究科)

講 演 1「ジョン・フォーブズ・ナッシュと弧空間のお話」 · · · · · · (14:10~15:10) 石井 志保子(東京女子大学現代教養学部・東京大学名誉教授)

内 容 ゲーム理論で有名なジョン・フォーブズ・ナッシュを経済学者と思っておられる 人は多いのではないでしょうか.確かに彼はノーベル経済学賞を受賞しています. でもゲーム理論は、ナッシュのほんの一面で、もっともっと偉大な数学の業績が あるのです.数学の最高の賞のひとつであるフィールズ賞を受賞しても不思議は なかったのですが、フィールズ賞の「適齢期」に病気に冒されて、その後永い闘病 生活を送ることになってしまいました。一昨年ようやく数学におけるもうひとつ の最高の賞であるアーベル賞を受賞することによってその真価が世界に広く認め られました.

本講演では、ナッシュの思い入れの強かったひとつの短い論文に焦点を当て、その論文で提起した「ナッシュ問題」を中心に、その問題が解決に至るまでの顛末を、個人的な視点で紹介し、さらにナッシュ問題の代数幾何学における意味についてお話します.

講 演 2「リアルな代数幾何 ~メビウスの帯からトロピカル曲線まで~」

小 林 正 典(首都大学東京大学院理工学研究科)

内 容 幾何学の中でも、円や放物線のように方程式で定まる図形を研究するのが代数幾何です。身の回りの図形は実数の座標で表すのが自然ですが、図形を式に対応させて考えるときはいったん複素数の座標に拡張するのが普通です。なぜなら「代数学の基本定理」のおかげで綺麗に議論できるからです。

しかし実数の世界にも「実代数幾何」があります。テープを一回ひねってから輪にしたものを「メビウスの帯」と呼びます。その中央を切ると一本の大きな輪になります。ではいくつかつなげてから切るとどうなるでしょうか。ここに「史上最悪の難問」とも呼ばれる入試問題の背景が隠れています。問題解決にあたって、代数幾何だけでなく数学の基本的な考え方がいくつか役立ちます。

さらに実数でも代数学の基本定理が成り立つ体系があり、対応して今世紀に登場したのが「トロピカル (熱帯) 幾何」です. 特にトロピカル曲線について説明しますが、離散事象システムへの応用にも触れる予定です.

詳 細 http://mathsoc.jp/meeting/tmu17mar/shimin.html

数学基礎論および歴史

3月24日(金) 第Ⅲ会場

9:0	$00\sim11:30$	
1	増 田 茂 (流体数理古典理論研)	The essential concept in a study of the mathematical physics by Laplace, Gauss and Poisson · · · · · · · 15
2	増 田 茂 (流体数理古典理論研)	The mathematical newness of the new theory of the capillary action by Poisson · · · · · · · · · · · · · · · · · · ·
3	田中紀子(豊田西高)	Paul Lévy の自叙伝的な手記 · · · · · · 15
4	中根美知代	Joseph Fourier による解析学の講義と代数解析 15
5	田中昭太郎	法 3 の整数: ベキ乗・ベキ乗累和・ベキ乗級数を衰垜で表現する 15
6	脇 克 志 (山 形 大 理) 土 橋 拓 馬 (明大総合数理)	図形検索を可能とする和算データベースの構築15
7	小 川 束(四日市大環境情報)	会田安明の数学思想15
8	森 本 光 生 (四日市大関孝和数学研・上智大*)	大成算経巻之十二 (形率) と綴術算経 (再論) ・・・・・・・・・・・15
9	田 村 誠(大阪産大教養)	岳麓書院蔵秦簡『数』算題の配列について · · · · · · · 15
11:	30~12:00 歷史部門懇談会	
14:	15~16:40	
10	増 本 周 平 (東 大 数 理)	On a generalized Fraïssé limit construction · · · · · · · 15
11	横 山 啓 太 (北陸先端大情報)	König's lemma for a tree which has at most finitely many paths in reverse mathematics · · · · · · · · · · · · · · · · · · ·
12	竹 内 耕 太 (筑波大数理物質) 坪 井 明 人 (筑波大数理物質)	On the number of independent strict orders · · · · · · · 10
13	池田宏一郎(法政大経営)	安定かつ small な理論に関する注意 15
14	桔梗宏孝(神戸大情報)	\mathbf{K}_f のジェネリック構造の自己同型群の単純性について $\cdots 15$
15	池 上 大 祐 (東京電機大工)	On supercompactness of ω_1 · · · · · · · · · · · · · · · · · · ·
16	酒 井 拓 史 (神戸大システム情報)	On possible order-types of uncountable linearly ordered structures $\cdots15$
17	渕 野 昌(神戸大システム情報)	Reflection theorems on non-exisitence of orthonormal bases of pre-Hilbert spaces · · · · · · · 15
18	小澤正直(名大情報)	量子論理における含意と竹内の量子集合論: 量子移行原理が成立する含意 結合子の特徴付け15

3月25日(土) 第Ⅲ会場

9:1	5~ [11:3	0					
19	大	藪		卓			b	表現, 他 5 件
20	伴	滉	_	郎	(首都大 (首都大 (首都大	東京理	里工)	2-c. e. 次数の 1-generic 分解 · · · · · · · 15
21	宮	部	賢	志	(明 大	理	工)	よりランダムな列を一様に計算できるか 15
22	只	木孝	孝太	郎	(中 部	大	工)	アルゴリズム的ランダムネスによる量子力学の再構成 II: 離散スペクトル
23	倉	田	俊	彦	(法 政 :	大 経	営)	高階逐次性の分解について · · · · · · · · · · · · · · · · · · ·
24	倉	橋	太	志	(木更津	生工高	専)	PA を含む算術の部分的な選言特性と存在特性 · · · · · · 15
25					(名 大 (木更津			LP の算術的完全性定理について
26	関		隆	宏	(新潟大経	営戦略	本部)	結合則を持たない部分構造論理の Craig の補間定理 15
27	鈴	木	信	行	(静 岡	大	理)	中間述語論理における公理型としての omniscience principles · · · · · · · 15
11:	30~	-12:	00	数	学基礎語	倫おし	で歴り	史分科会総会
13:	15~	-14:	15	特	別講演			
	河	村	彰	星	(東大絲	合文	化)	解析学における計算量
								代数学 3月24日(金) 第Ⅱ会場
9:30)~ :	11:4	5					
		高		茂	(学 習	院	大*)	オイラーの (*) 完全数 10
2					(山 形 (和歌山			有限体上既約な Fibonacci 多項式と Lucas 多項式 · · · · · · · 10
3					(芝 浦 (名大多			オイラー・ザギヤーの多重ゼータ関数の関数関係式10
4	古			淳	(山 口 (浜 松			$\zeta(s)\zeta''(s),\zeta'(s)\zeta''(s)$ の近似関数等式について
5	武	田		渉	(京	大	理)	原点可視格子点と拡張された Riemann 予想 · · · · · · · 15

6 井 上 翔 太 (名大多元数理) The Riesz mean of the Möbius function $\cdots \cdots 10$

7	スリアジャヤアデイルマ (名大多元数理)	ティリクレ <i>L</i> 関数の一階導関数の零点の分布 · · · · · · · · · · · · · · 15
	赤塚広隆(小樽商大)	
8	小澤友美(東北大理)	Hilbert 尖点形式の肥田変形の重さ 1 での古典的な特殊化について · · · · · 15
9	源嶋孝太(阪大理)	$(\mathbf{GSp}_4,\mathbf{GL}_2 imes_{\mathbf{GL}_1}\mathbf{GL}_2)$ に対する不分岐 Shintani 関数の明示公式 \cdots 15
14:	$25\sim17:00$	
10	小 松 亨 (東京理大理工) 岸 康 弘 (愛知教育大教育)	イデアル類群の3ランクが3以上になる虚2次体の族について・・・・・・15
11	伊東杏希子 (神奈川大工)。	虚二次体 $\mathbb{Q}(\sqrt{2^{2s}3^{2t}-k^n})$ の類数の可除性について \cdots 10
12	伊東良純(千葉大理)	一般超幾何関数を用いた虚数乗法を持つ楕円曲線に対する Beilinson 予想
13	小 関 祥 康 (神 奈 川 大 理)	クリスタリン表現の格子と反復拡大 · · · · · · 10
14	谷田川友里(東 大 数 理)	構成可能層の暴分岐と押し出し・・・・・・・・・・・・15
15	寺門康裕(東大数理)	偶数次元完全交叉の行列式と判別式 15
16	<u>山 崎 愛 一</u> (京 大 理) 星 明 考 (新 潟 大 理) Ming-chang Kang (Nat. Taiwan Univ.)	Relation modules of dihedral groups · · · · · · 15
17	星 明 考 (新 潟 大 理) Ming-chang Kang (Nat. Taiwan Univ.) 山 崎 愛 一 (京 大 理)	Degree three unramified cohomology groups (II)
18	星 明考 (新潟大理) Ming-chang Kang (Nat. Taiwan Univ.) 山崎愛一(京大理)	Multiplicative invariant fields of dimension $\leq 6 \cdots 15$
		3月25日(土) 第Ⅱ会場
9:0	0~12:00	
19	長谷部高広 (北 大 理) 辻 栄 周 平 (北 大 理)	Order quasisymmetric function による poset の分類 15
20	樋 口 伸 宏 (横浜国大環境情報) 原 下 秀 士 (横浜国大環境情報)	極小 p-可除群のある特殊化について 15
21	<u>中村周平</u> (日大理工) 佐々木隆二(日大理工)	McLaughlin 群に関連するグラフの位数 2 の自己同型 10
22	櫻井太朗(千葉大理)	When is an element of the Jennings basis central?: A relation to some Morita invariants
23	上 岡 修 平 (京 大 情 報) 森 居 数 広 (京 大 情 報)	対称平面分割に対する積型の分配関数 15
24	成瀬 弘(山梨大教育)	一般化された Hall-Littlewood 函数の母函数表示についての代数的証明と 応用 · · · · · · · · · · · · · · · · · · ·
25	选 III 胡 曲 (車 14 大 樗 超)	SVOA の最小共形重み空間の共形デザインについて 10

0	化粉冶
9 1	代数学

26	Ching Hung Lam	(愛媛大教育) (Academia Sinica) (一橋大経済)	Group-like fusion を持つ頂点作用素代数の構成について 10
27	<u>川 節 和 哉</u> 境 優 一	(Academia Sinica)	四階のモジュラー線形微分方程式と極小 W 代数 10
28		(京大数理研) (Academia Sinica)	擬平滑頂点代数とモジュラー線形微分方程式 10
29	T. Creutzig 川 節 和 哉	(京大数理研) (Univ. of Alberta) (Academia Sinica) (Univ. of Denver)	極小 W 代数のオービフォールドとコセット 10
30		(Academia Sinica) (Academia Sinica) (筑波大数理物質)	格子頂点作用素代数と格子の (-1) -等長写像に付随する \mathbb{Z}_2 -オービフォールド構成と, 中心電荷 24 の正則頂点作用素代数の一意性 \cdots 10
31	元良直輝	(京大数理研)	W 代数の脇本表現 15
13:	30~14:30 特	別講演	
	S. Carnahan	(筑波大数理物質)	Recent advances in Moonshine
			3月26日(日) 第Ⅱ会場
	5~12:00	(小儿子克甫)	
32	岡 田 崇	(小山工高専)	BCOV rings on elliptic curves and the Dedekind eta function via meromorphic ambiguity
33		(九 大 数 理) (横浜国大環境情報)	Superspecial curves of genus 4 in small characteristic $\cdots \cdots 15$
34	榎 園 誠	(阪 大 理)	ある種のファイバー曲面のスロープ上限について15
35	北川真也	(岐阜工高専)	切断がない種数 2 曲線束を備えた有理曲面の構成例 II 15
36	渡邉健太	(日 大 理 工)	K3 曲面上のある種の分解しない Lazarsfeld-Mukai 束の例 10
37	岩 見 智 宏	(九 工 大 工)。	Quasi-thin property for the Cremona group of rank 3 and its application to a rationality of 3-folds with a pencil of rational curves $\cdots 15$
38	安藤哲哉	(千葉大理)	半代数多様体と 4 変数 4 次対称不等式 $\cdots 15$
39		(岡山大自然) (山 梨 大 医)	3 次行列環の部分代数のモジュライ (1) ・・・・・・・・・ 15
40	土基善文	(高 知 大 理)	Non commutative complex projective varieties · · · · · · 15
41	須 山 雄 介	(阪 市 大 理)	有限単純グラフに伴うトーリック Fano 多様体 10
14:	30~15:30 20	017年度(第20回)	日本数学会代数学賞受賞特別講演
		` ,	多重ゼータ値について
15:	40~16:40 20	017年度(第20回)	日本数学会代数学賞受賞特別講演
		` ,	可換環論と不変式論

16:50~17:50 2017年度 (第20回) 日本数学会代数学賞受賞特別講演

桂 利 行 (法 政 大 理 工) 正標数の代数幾何

3月27日(月) 第Ⅱ会場

9:1	$5\sim 1$	2:0	0						
42	桜	井		真					ベイリンソンの単数基準と OPE によるカイラル代数の正則化 15
43	小	島原井		任	(筑派 (金 (筑派	沢ナ	て理	工)	行列 Horner 法の並列化による行列の固有ベクトル計算の効率化について
44		原		任	(筑派 (金 (筑派	沢ナ	て理	工)	行列の最小多項式候補と拡張 Horner 法を用いた逆行列計算について · · · 15
45					(関西 (阪			里工) 報)	グレブナー基底によるコーダルな比較可能グラフの特徴付け 15
46		<u>谷</u> 比		<u>善</u> 之	(阪 (阪		情 情	報) 報)	Gorenstein Fano 凸多面体のファセットとその正規性 · · · · · · · · 15
47	土	谷	昭	善	(阪	大	情	報)	少ない元で生成される有限アーベル群に付随する Gorenstein 単体 · · · · · 15
48	松	田	_	徳	(阪	大	情	報)	Koszul でない Gorenstein 二次代数の構成 · · · · · · · 15
49	谷	口	直	樹	(明	大	理	工)	On the almost Gorenstein property of determinantal rings · · · · · · · 15
50	鴨	井	祐	$\vec{-}$	(明	J	7	商)♭	Multi-graded ring の Gorenstein diagonal subring について
51	鴨	井	祐	二	(明	J	7	商)♭	Heneke-Ulrich ideal で定義される Rees 代数について 10
14:	15~	16:	00						
52	柴	田	康	介	(東	大	数	理)	Rational singularities, ω -mutliplier ideals and cores of ideals $\cdots \cdots 10^{-1}$
53	宮	崎	充	弘	(京者	『教 育	育大教	対育)	Actions of special linear groups to tensors of indeterminates and standard property of a certain Ehrhart ring
54					(東				On the Hochschild cohomology ring of integral cyclic algebras · · · · · · 10
55	板	場	綾	子	(静	岡	大	理)	3 次元 quadratic Artin-Schelter 正則環と superpotential · · · · · · · · 15
56	吉	脇	理	雄	(静岡	大理•	阪市	大理)	Relative derived dimensions for cotilting modules 2 · · · · · · · 15
57	毛上		健		(静 (弘		大大教	,	3-dimensional noetherian cubic Calabi–Yau algebras · · · · · · · 18

幾 何 学

3月24日(金) 第VⅢ会場

9:4	5~ 1	11:4	5						
1	Щ	下	達	也	(北	7	大	理)	Localizations of derivations in C^{∞} -schemes · · · · · · · · · · · · 15
2	竹	内	有	哉	(東	大	数	理)	$Q\text{-prime}$ curvature and Sasakian $\eta\text{-Einstein}$ manifolds $~\cdots~\cdots~15$
3	河	井々	大	朗	(東	大	数	理)	Nearly parallel G_2 多様体の associative 部分多様体の 2 次変形 $$
4	澤	井		洋	(沼	津 _	匚 高	専)	可解多様体上の局所共形ケーラー構造について15
5	野	村	亮	介	(東	大	数	理)	負の正則断面曲率をもつコンパクト Kähler 多様体の標準束の正値性について
6	中	村		聡	(東	北	大	理)	偏極トーリック多様体の対数的 Chow 半安定性について15
7	服	部	広	大	(慶	大	理	工) þ	ある完備リッチ平坦多様体の漸近錐のモジュライ空間について 15
14:	15~	-16:	10						
				之	(東	京耳	里大	理)	ヒルベルト空間内のある種の不変超曲面を発する平均曲率流の崩壊につ いて 15
9	梶	ケ	谷	徹	(阪	市大	数学	研)	対称性を持つ極小ラグランジュ部分多様体のリダクション15
10	赤	嶺業	斤太	郎	(九	大	数	理)	特異点を持つ時間的極小曲面のガウス曲率の振る舞いについて 15
11		<u>賀</u> 友	康		,			理) 工)	複素射影直線から階数 2 の複素グラスマン多様体への同変正則埋め込み の分類 · · · · · · · 15
12			<u>茂</u> 伸			望 口	大	大*) 理)	計量の pullback に関連したある汎関数の stationary map について 15
13	榊			真	(弘	前っ	大理	工) þ	Bi-null 曲線による線織面と marginally trapped 曲面 · · · · · · · 10
14							大 工高		3 次元リーマン多様体が 4 次元ユークリッド空間へ局所等長埋め込み可能 となるための必要十分条件
16:	20~	-17:	20	特	別諱	演			
	本	田	淳	史	(都	城二	匚 高	専)	半正定値計量の幾何学と等長実現問題
									3月25日(土) 第VⅢ会場
9:20		11:3						,	
15							理		曲面上の交点数の拡張とサブセットカレント 15
16					`		数	理)	高次元 Thompson 群への right-angled Artin 群の埋め込みについて · · · · 10
17			<u>リッ</u> 克		(島村	艮大約	<u>ス</u> 総合理 教	,	Growth and cogrowth of normal subgroups of a free group · · · · · · · · 15
18	渡	邊	_	義	(東	北	大	理)	組み合わせ論的微分形式と Gauss-Bonnet の定理 · · · · · · · 10
19	Щ	田	大	貴	(東	北	大	理)	Curvature dimension inequality on directed graphs · · · · · · · 10

20	只	野		誉	(阪	大		理)	Cheeger–Gromov–Taylor type compactness theorems via Bakry–Émery and modified Ricci curvatures · · · · · · · · · · · · · · · · · · ·	
21						皮大数 本 工			Busemann 関数の Hessian と測地線の階数 · · · · · · · · · · · · · · · · · · ·	10
22	永	野	哲	也	(長	崎 県	立	大)	フィンスラー空間の1点で互いに逆向きに進む測地線について	15
23	印	南	信	宏	(新	潟	大	理)	カットローカスの最近点について	15
13:	15~	-14:	15	特	別諱	演				
	北	別	府	悠	(熊	本	大	理)♭	測度距離空間上の正則集合について	
									3月26日(日) 第VⅢ会場	
9:5	0~1	L1:4	0							
24	<u>石</u> 足		<u>青</u>			I.		大) 大)	軌道ハープの比較定理 II	10
25	<u>石</u> 足		<u>青</u>			エ		大) 大)	アダマール多様体上の軌道の漸近挙動	10
26	中	村	友	哉	(早	大	理	工)	擬 Poisson–Nijenhuis 多様体 · · · · · · · · · · · · · · · · · · ·	15
27	$\overline{\mathrm{M}}$.	田 Hel 村			(東	命館 北 北	大	理)	Poisson 多様体上の Courant algebroid と T 双対への応用	15
28	佐	古	彰	史	(東	京 理	大	理)	Φ^3 模型の量子論の行列模型を通した定式化と厳密解 \dots	15
29	坂	田	繁	洋	(宮	崎 大	教	育)	輻射中心による凸体の対称性の特徴づけ	15
30	今	井		淳	(千	葉	大	理)	Riesz エネルギーの正則化と球体の特徴づけ	15
14:	15~	-15:	35							
31	谷	村	慈	則	(東	大	数	理)	可解な階層付きリー代数に対応するリー群を変換群とする Clifford-Klein 形の柔軟性について · · · · · · · · · · · · · · · · · · ·	15
32		羅 ll Ba		輔		命館 iv. Ha			Integrability of geodesic flow on step-two nilpotent Lie groups of H-type with respect to a left-invariant metric · · · · · · · · · · · · · · · · · · ·	10
33	池	田		薫	(慶	大	経	済)♭	半単純 Lie 群のガウス分解と旗多様体の基本群について	15
34	田	崎	博	之	(筑)	皮大数	理物	質)	有向実 Grassmann 多様体の極大対蹠集合の系列 · · · · · · · · · · · · · · · · · · ·	15
35	A.			oye	orgo (Uni	s iv. of iv. of	Pat	,	SU(n) 上の等質アインシュタイン計量について	15
15 :	50~	-16:	50	特	別諱	演				
	奥	田	隆	幸	(広	島	大	理)♭	リーマン対称空間内の測地線を共有しない全測地的部分多様体の組について	

函数論

3月24日(金) 第ⅥI会場

9:3	0~1	11:5	0			
1	<u>齋</u> 藤				(群馬大*•再生核研) b (京 大 情 報)	The general sampling theory by using reproducing kernels · · · · · · · 18
2		藤脇	三		(群馬大*•再生核研) [♭] (NejiLaw Inc.)	$\log 0 = \log \infty = 0$ and applications
3					(大和大教育) (摂南大理工)	Analytic functions concerning with some subordinations · · · · · · · 15
4					(山梨英和大) (山口大理工)	Numerical solution of the radial Loewner equation · · · · · · · 15
5					(龍 谷 大 理 工) (北 大 電 子 研)	対数螺旋格子上の円板充填10
6					(京大人間環境) (東 工 大 理 工)	Abundance of semihyperbolic dynamics in the boundary of the Mandelbrot set · · · · · · · · · 15
7	松	野	高	典	(阪府大工高専)	強分岐被覆理論の一応用 10
8	松	野	高	典	(阪府大工高専)	Hurwitz 群についての一注意 1(
9	志	賀	啓	成	(東工大理工)	On holomorphic motions and the extension problem · · · · · · · 15
14:	15~	-16:	05			
10	小	原	功	任	(徳 島 大 理 工) (金 沢 大 理 工) (筑波大数理物質)	パラメータ付き Bernstein-Sato イデアルとホロノミー D 加群の計算 ・・・ 15
11					(金 沢 大 理 工) (筑波大数理物質)	多変数留数の計算アルゴリズム II (一般の場合) · · · · · · · · 15
12					(九 大 I M I) (筑波大数理物質)	マトリス双対を用いた孤立特異点の不変量の計算15
13	(<u>濱</u> 本	Quee 田	<u>英</u> 竜	ary 隆	Univ. of London) (九州産大工) (広島工大工) (Babeş-Bolyai Univ.)	Bloch functions on bounded symmetric domains · · · · · · · 15
14	(<u>濱</u> 本	Quee ⊞	<u>英</u> 竜	ary 隆	Univ. of London) (九州産大工) (広島工大工) (Babeş-Bolyai Univ.)	Composition operators between Bloch spaces on bounded symmetric domains · · · · · · · 15
15	濱	田	英	隆	(九州産大工)	Weighted composition operators from H^{∞} to the Bloch space of bounded symmetric domains $\cdots 1$

16:20~17:20 特別講演

松 崎 克 彦 (早 大 教 育) 円周の微分同相写像のタイヒミュラー空間

3月25日(土) 第VII会場

9:4	0~11:50	
16	阿部 誠 (広島大理) 中村 豪(愛知工大基礎教育)	開 Riemann 面内の領域に対する強い円板的性質 10
17	奥間智弘(山形大理)	Complex surface singularities with a fixed integral homology sphere link
18	本田竜広 (広島エ大工) Cho-Ho Chu (Queen Mary Univ. of London) 濱田英隆 (九州産大工) G. Kohr (Babeş-Bolyai Univ.)	Bonk's distortion theorem for locally biholomorphic mappings on bounded symmetric domains in \mathbb{C}^n
19	泉池耕平(山口大教育)	2 重単位開円板上の荷重 Hardy 空間における再生核の巡回性について · · 15
20	児 玉 秋 雄 (金沢大理工) り	On proper holomorphic self-mappings of generalized complex ellipsoids and generalized Hartogs triangles
21	<u>山 盛 厚 伺</u> (Academia Sinica) Liyou Zhang (Capital Normal Univ.)	C² 内の準円型領域における原点を保存する正則自己同型写像について
22	細野元気(東大数理) 小池貴之(京大理)	On minimal singular metrics of line bundles whose stable base locus admits holomorphis tubhular neighborhoods · · · · · · · · · · · · · 15
23	松 本 和 子 (東京理大理工)	CP" の複素部分多様体までの Fubini-Study 距離の Levi form に対するTakeuchi の等式
13:	15~14:15 特別講演 足 立 真 訓 (東京理大理工)	レビ平坦面上の函数論: 平坦円周束における事例研究

函数方程式論

3月24日(金) 第1会場

9:3	:30~12:00							
1	塚	本	_	郎	(東	洋大理	工) þ	$x''=t^{lpha\lambda-2}x^{1+lpha}$ の正値解の漸近的行動について —残りの場合 10
2						樽 商 大		Irreducibility of the monodromy representation of Lauricella's $F_C \ \cdots \ 12$
3	西		純	矢	(京	大	理)	遅れ型関数微分方程式の初期値問題の適切性のための必要十分条件 ・・・・ 12
4	山	中	祥	Ŧi.	(京	大 情	報)	Poincaré-Dulac 標準形の局所解析的可積分性 · · · · · · · · · 12

15 函数方程式論

5	菅原大輝(明大理工) 渡辺 浩(明大理工)	2 種の A 型インフルエンザの流行モデル
6	齋 藤 誠 慈 (同志社大理工) 伊 藤 慧 (同志社大理工)	線形・非線形差分方程式に関する振動性定理10
7	齋 藤 誠 慈 (同志社大理工) 池 添 俊 典 (同志社大理工) 野 末 健 太 (同志社大理工)	差分方程式に関する SI モデルの大域的漸近安定性 10
8	柴田徹太郎(広島大工)	Oscillatory bifurcation for semilinear ordinary differential equations $\cdots12$
9	齋藤三郎(群馬大*・再生核研)L. P. Castro(Univ. of Aveiro)M. M. Rodrigues(Univ. of Aveiro)	A fundamental theorem on initial value problems by using the theory of reproducing kernels
10	齋藤三郎 (群馬大*・再生核研) [♭] S. Pinelas (Academia Militar)	Division by zero z/0=0 and differential equations $\cdots 5$
14:	15~16:15	
11	梶 原 尭(首都大東京理工)	空間非一様性をもつ FitzHugh-Nagumo 型反応拡散系におけるヘテロク リニック解の存在について
12	矢ヶ崎一幸 (京 大 情 報) <u>山添祥太郎</u> (京 大 情 報)	無限次元 Hamilton 系における定常解の分岐と非線形 Schrödinger 方程式 への応用 · · · · · · · · 12
13	<u>佐野めぐみ</u> (阪 市 大 理) 高 橋 太 (阪 市 大 理)	Sublinear eigenvalue problems with singular weights related to the critical Hardy inequality $\cdots 10$
14	佐野めぐみ (阪 市 大 理)	有界領域上の一般化された臨界 Hardy 不等式に関連する最小化問題 · · · 12
15	橋 詰 雅 斗 (阪 市 大 理)	低次元における Hardy–Sobolev 不等式に関連する最小化問題について ・12
16	谷地村敏明(東北大情報)	領域の特異摂動と二相固有値問題 12
17	A. R. Mulet (北 大 理)	細い柱状の弾性体の固有振動12
18	劉 暁 静 (茨 城 大 理 工) 堀 内 利 郎 (茨 城 大 理)	p-ラプラシアンを含む精密化された加藤の不等式とその応用 12
19	梅津健一郎 (茨城大教育) U. Kaufmann (Univ. Nacional de Córdoba) H. Ramos Quoirin (Univ. de Santiago de Chile)	Positivity for nontrivial nonnegative solutions of an indefinite sublinear problem · · · · · · · · · · · · · · · · · · ·
16:	30~17:30 特別講演	
	廣惠一希(城西大理)	線型常微分方程式のアクセサリーパラメーターを巡って
		3月25日(土) 第1会場
9:3	0~12:00	
20	児 玉 俊	退化したポテンシャルをもついくつかの特異摂動問題の最小エネルギー 解の凝集現象 12
21	長谷川翔一(東北大理)	双曲空間における Hénon 型方程式の二つの臨界指数 12

22	田中 敏(岡山理大理)	Symmetry-breaking bifurcation for the one-dimensional Hénon equation	19
23	側 島 基 宏(東京理大理工)G. Metafune(Univ. of Salento)C. Spina(Univ. of Salento)	$ x ^{lpha}\Delta$ を主要項にもつ楕円型作用素が生成する解析半群の積分核評価 $\cdot\cdot$	
24	宮本安人 (東大数理) 高橋和音(東大数理)	一般化されたジョセフ・ルンドグレン指数と交点数	10
25	藤田安啓 (富山大理) 山口範和(富山大人間発達)	Hamilton-Jacobi 方程式と高木函数の間の対応構造について	12
26	難 波 時 永 (東 大 数 理) 儀 我 美 一 (東 大 数 理)	Hamilton–Jacobi equations with Caputo's time-fractional derivative $ \cdot \cdot $	12
27	三竹大寿 (広島大工) D. A. Gomes (King Abdullah Univ. of Sci. and Tech.) H. V. Tran (Univ. of Wisconsin-Madison)	ハミルトン・ヤコビ方程式のディスカウント近似に対する選択問題: 非凸型ハミルトニアン	12
28		ハミルトン・ヤコビ方程式のディスカウント近似に対する選択問題:収束率	12
13:	30~14:30 2016年度(第15回) 小池茂昭(東北大理)	日本数学会解析学賞受賞特別講演 完全非線形方程式の L^p 粘性解の ABP 最大値原理とその応用	
		3月26日(日) 第1会場	
9:3	0~12:00		
29	三浦達彦(東大数理)	Zero width limit of the heat equation on moving thin domains $\cdot\cdot\cdot\cdot\cdot$	12
30	原 田 潤 一(秋田大教育文化)	Boundary behavior for solutions of the heat equation with a nonlinear boundary condition	10
31	水上雅昭(東京理大理)	Boundedness and asymptotic stability in a fully parabolic two-species chemotaxis-competition model · · · · · · · · · · · · · · · · · · ·	12
32	小川卓克(東北大理) <u>和久井洋司</u> (東北大理)	質量臨界指数における退化移流拡散方程式の解の非有界性と時間大域解の非存在について	12
33	高棹圭介(東大数理)	体積保存平均曲率流の弱解の存在と単調性公式について	10
34	鈴木 貴(阪大基礎工)	多種分子化学反応 (素過程) を記述する反応拡散系 —再規格化解とその均質化・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	5
35	鈴木 貴(阪大基礎工)	Gierer-Meinhardt 系から得られる非局所項をもつ放物型方程式の解の大域挙動・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	5
36	永 井 敏 隆 山 田 哲 也 (福井工高専)	Global existence of solutions to the Cauchy problem of an attraction-repulsion chemotaxis system in \mathbb{R}^2	12
37	古場 一(阪大基礎工)	時間発展する曲面上における圧縮性流体方程式の保存形や保存則に関して	12
38	本 多 泰 理 (NTTネットワーク基盤技術研・慶大理工) 公 温 之 (慶 大*)	On existence of stationary solution to Kuramoto–Sakaguchi equation	12

14:	$15 \sim 16:15$	
39	柘植直樹(岐阜大教育)	ノズル内の気体の等エントロピー流れ12
40	岡本 葵(信州大工)	Asymptotic behavior of solutions to the short-pulse equation · · · · · · 10
41	$\frac{\begin{tabular}{lll} \underline{\begin{tabular}{lll} \underline{\begin{tabular} \underline{\begin{tabular}{lll} \underline{\begin{tabular}{lll} \underline{\begin{tabular} \underline{\begin{tabular}{lll} \underline{\begin{tabular}{lll} \underline{\begin{tabular} $	Slowly rotating axisymmetric solutions of Euler–Poisson equations $\cdots12$
42	齋藤平和(早大理工)	Compressible fluid model of Korteweg type with free boundary condition: model problem · · · · · · 12
43	寺本有花(九大数理)	On the stability of bifurcating solutions of the artificial compressible system · · · · · · · · · · · · · · · · · · ·
44	若 狭 恭 平 (室 蘭 工 大 工) B. Yordanov (北大国際本部)	On the energy decay for dissipative nonlinear wave equations in one space dimension
45	今 井 啄 人 (公立はこだて未来大) 高 村 博 之 (公立はこだて未来大) 若 狭 恭 平 (室 蘭 エ 大 エ) 加 藤 正 和 (室 蘭 エ 大 エ)	The sharp lower bound of the lifespan of solutions to semilinear wave equations with low power in two space dimensions · · · · · · · · · · 12
46	若 杉 勇 太 (名大多元数理) 側 島 基 宏 (東京理大理工)	Diffusion phenomena for the wave equation with space-dependent damping in an exterior domain · · · · · · · · · · · · · · · · · · ·
16:	30~17:30 特別講演	
	西 山 尚 志 (和歌山大教育)	摩擦項を持つ波動方程式の拡散現象について
		3月27日(月) 第1会場
9:1 47	榎 本 翔 太 (九 大 数 理) 隠居良行(九 大 数 理) M. N. Azlan	Stability of space-time periodic states to the compressible Navier–Stokes equation in an infinite layer · · · · · · · · · 12
48	アハットアブリズ (九 大 数 理) 隠居良行(九 大 数 理)	Large time behavior of solutions to the compressible Navier–Stokes equations in a cylinder under the slip boundary condition · · · · · · · 12
49	P. Maremonti(Second Univ. Naples) <u>清 水 扇 丈</u> (京大人間環境)	Global existence of solutions to 2-D Navier–Stokes flow with non-decaying initial data in exterior domains
50	小 薗 英 雄 (早 大 理 工) <u>清 水 扇 丈</u> (京大人間環境)	Besov 空間値の最大 Lorentz 正則性に基づく Navier-Stokes 方程式の強解 について · · · · · · · · · 12
51	阿部健(京大理)	非減衰初期値に対する 2 次元外部ナヴィエ・ストークス方程式の時間大 域可解性
52	岡 部 考 宏 (弘前大教育) 筒 井 容 平 (信 州 大 理)	Time periodic strong solutions to the incompressible Navier–Stokes equations with external forces of non-divergence form · · · · · · · · 12
53	中 井 拳 吾 (東工大理工)	Direction of vorticity and a refined blow-up criterion for the Navier–Stokes equations with fractional Laplacian · · · · · · · · · 12
54	中 井 拳 吾 (東 工 大 理 工) 斉 木 吉 隆 (一 橋 大 商) 米 田 剛 (東 大 数 理)	Disturbance of the direction vector of vorticity in Hatakeyama–Kambe turbulence model · · · · · · · · · · · · · · · · · · ·

55	平田美沙季 (東京理大理) 来間 俊介 (東京理大理) 水上雅昭 (東京理大理) 横田智巳(東京理大理)	Global existence and boundedness in a 2D two-species chemotaxis-Navier–Stokes system with logistic source $\cdots \cdots 12$
56	小 薗 英 雄 (早 大 理 工) 杉 山 由 恵 (九 大 数 理) 三 浦 正 成 (九 大 数 理)	Existence and uniqueness theorem on mild solutions to the Keller–Segel system coupled with the Navier–Stokes fluid \cdots 12
57	柴田良弘(早大理工)	外部領域でのストークス方程式の自由境界条件問題の L_p - L_q 減衰評価に ついて · · · · · · · · · · · · · · · · · · ·
58	柴田良弘(早大理工)	外部領域でのナヴィエ・ストークス方程式の自由境界問題の時間大域解 の一意存在について10
14:	15~16:15	
	小林徹平(明大理工)	The Green matrix and the Green formulas of the Stokes equations for a half space · · · · · · · · · · · · · · · · · · ·
60	百名亮介(早大理工)	<i>Lp</i> -型の初期値に対する非線形シュレディンガー方程式の適切性について 210
61	星 埜 岳(早 大 理 工)	擬共形生成作用素の剰余項付きライプニッツ則と擬共形不変でない非線型シュレディンガー方程式の解析的平滑化効果への応用 · · · · · · · 12
62	林 雅 行 (早 大 理 工) 成 亥 隆 恭 (京 大 理) 深 谷 法 良 東京理大理)	Global well-posedness for a generalized derivative nonlinear Schrödinger equation $\cdots 12$
63	<u>砂川秀明</u> (阪 大 理) Chunhua Li (Yanbian Univ.)	Remarks on derivative nonlinear Schrödinger systems with multiple masses · · · · · · · · · · · · · · · · · ·
64	鈴木 敏 行 (神奈川大工·工学院大)	Constraction of wave operators for nonlinear Schrödinger equations of L^2 -super-critical cases with inverse-square potentials $\cdots 12$
65	村井宗二郎 (産業技術高専)	外部領域における磁場付き波動方程式の Strichartz 評価について · · · · · 10
66		斉次型臨界非線型項をもつ非線型 Schrödinger 方程式の長距離散乱について 12
67		ゲージ不変な 2 次非線形項を持つ 2 次元 Klein-Gordon 方程式に関する 修正散乱 · · · · · · · · · · · · · · · 12
16:	30~17:30 2016年度(第15回)	日本数学会解析学賞受賞特別講演
	· · · · · ·	非線形波動方程式系の大域解の存在と漸近挙動

実 函 数 論

3月26日(日) 第ⅥI会場

$9:00{\sim}11:55$

1 伊東由文(徳島大*) 測度と積分の公理的方法 (I). ジョルダン測度の定義と存在定理 15

19 実函数論

2	伊東由文(徳島大*)	測度と積分の公埋的方法 (II). リーマン積分の定義とその基本性質 · · · · ·	15
3	坂 田 繁 洋 (宮崎大教育)	たたみ込みの狭義べき凸性	15
4	佐 柄 信 純 (法 政 大 経 済)	Relaxation and purification for nonconvex variational problems in dual Banach spaces: The minimization principle in saturated measure spaces	15
5	国定亮一(早大理工)	Finitely additive measures and additive property · · · · · · · · · · · · · · · · · · ·	
6	川 﨑 敏 治 (日大工・玉川大工)	Henstock-Kurzweil 積分の主値について	15
7	本田あおい (九工大情報工) 岡崎悦明 (ファジィシステム研)	包除積分の非離散化	15
8	松下慎也(秋田県立大)	Krasnosel'skii-Mann iteration の収束について	15
9	厚 芝 幸 子 (山梨大教育人間)	Convergence theorems for a family of nonlinear mappings related to hybrid mappings	15
10	鈴木智成(九工大工)	Banach の縮小原理のもう 1 つの拡張定理	15
11	飯 田 毅 士 (福島工高専)	The Pérez inequality on weighted Morrey spaces · · · · · · · · · · · · · · · · · · ·	15
14:	$15{\sim}16:50$		
12	J. M. Cumanan (信 州 大 理) 筒 井 容 平 (信 州 大 理)	Trace theorems on Wiener amalgam spaces · · · · · · · · · · · · · · · · · · ·	10
13	飯 田 毅 士 (福島工高専) ^b <u>澤 野 嘉 宏</u> (首都大東京理工) 田 中 仁 (筑 波 技 術 大)	Decompositions of Morrey spaces · · · · · · · · · · · · · · · · · · ·	15
14	D. I. Hakim (首都大東京理工) ⁵ 澤 野 嘉 宏 (首都大東京理工)	Complex interpolation of Morrey spaces · · · · · · · · · · · · · · · · · · ·	15
15	中 村 昌 平 (首都大東京理工) ⁵ 澤 野 嘉 宏 (首都大東京理工)	Fourier transform and Morrey spaces · · · · · · · · · · · · · · · · · · ·	15
16	貞 末 岳 (大阪教育大数学教育) 中 井 英 一 (茨 城 大 理)	Characterizations of boundedness for generalized fractional integrals on martingale Morrey spaces · · · · · · · · · · · · · · · · · · ·	
17	冨澤佑季乃 (中 大 理 工) 三 谷 健 一 (岡山県立大情報工) 斎 藤 吉 助 (新 潟 大*) 田中亮太朗 (九 大 数 理)	回転不変ノルムによる幾何学的定数	15
18	田中亮太朗(九 大 数 理)	フォン・ノイマン環の端点の性質とその Tingley 問題への応用について	15
19	水口洋康(新潟大自然)	Radon plane における 2 つの直交の差異 · · · · · · · · · · · · · · · · · · ·	15
20	斎藤吉助 (新潟大理) 小室直人(北教大旭川) 田中亮太朗(九大数理)	James 定数の行列の表現とその応用について	15
21	<u>加藤幹雄</u> (九 エ 大*) 田村高幸(千葉大人文社会)	Some recent results on direct sums of Banach spaces · · · · · · · · · · · · · · · · · · ·	15

17:00~18:00 特別講演

柳 研 二 郎 (城 西 大 理) 古典系および量子系におけるエントロピーなどの情報量の周辺について

3月27日(月) 第Ⅵ云場

9:0	0~11:40	0			
22	原	宇	信	(首都大東京理工)	The Wolff potential estimate for solutions to elliptic equations with signed data · · · · · · 15
23				(東京理大理) [♭] (東京理大理)	A unified method for boundedness in Keller–Segel systems with signal-dependent sensitivity · · · · · · · · · · · · · · · · · · ·
24				(東京理大理) (東京理大理)	Existence of solutions to nonlinear diffusion equations and their approximations with error estimates · · · · · · · · · · · · · · · · · · ·
25				(早 大 理 工) (早 大 理 工)	Finite time blow-up for a Ginzburg–Landau equation without linear term · · · · · · · · · · · · · · · · · · ·
26				(早 大 理 工) (早 大 理 工)	On the maximality of sum of maximal monotone operators in a Hilbert space · · · · · · · · · · · · · · · · · · ·
27				(静岡大創造科学技術) (静 岡 大 理)	半線形関数微分方程式に対する適切性とその応用 15
28				(釧路工高専) (早大教育)	確率保存則方程式に対する非斉次 Dirichlet 問題の適切性 · · · · · · · · · 10
29	都 築		寛	(広島修道大経済)	Solvability of Vlasov–Poisson systems with errors in magnetic field in a half-space · · · · · · · · · · · · · · · · · · ·
30	渡 邉	;	紘	(大分大工)	変数係数を持つ非局所的強退化放物型方程式系に対する時間大域解 15
31	中 村	i	誠	(山 形 大 理)	On the derivation of several second order partial differential equations from the Einstein equation
32	中 村	i	誠	(山 形 大 理)	On the nonrelativistic limit of a semilinear field equation in uniform and isotropic space · · · · · · · · · · · · · · · · · · ·
14:	15~16:	25			
33			_	(高知大教育) (京都教育大)	ある完全塑性モデルの可解性について 15
34		;	紘	(千葉大教育) (大分大工) (Univ. Valencia)	非斉次 Dirichlet 型境界条件を組み入れた結晶粒界運動のフェーズ・フィールドモデル · · · · · · · · · · · · · · · 15
35	中屋敷白 川			(千 葉 大 理) (千 葉 大 教 育)	特異拡散と力学的境界条件に支配される Allen-Cahn 型方程式 · · · · · · · 15
36				(京都教育大教育) (神 奈 川 大 工)	GMS モデルに対する最適制御問題について 15
37				(近畿大システム工) (近 畿 大 工)	Weakly reversible でない化学反応系を記述する常微分方程式の解析 15

38 伊藤昭夫 小松弘和(近畿大システムエ)中島弘之(近畿大工)	心肥大関連因子ネットワークを記述する常微分方程式系における平衡解 への収束性 · · · · · · · · · · · · · · · · · · ·
39 熊 崎 耕 太 (苫小牧工高専)	多孔質媒体内で起こる水分の吸着現象を記述するある自由境界値問題に ついて 15
40 <u>愛木豊彦</u> (日本女大理) S. A. Timoshin (Siberian Branch Russian Acad. Sci.)	コンクリート中性化過程に現れる 1 次元水分輸送方程式の解の存在と一 意性 15
16:40~17:40 特別講演 村 瀬 勇 介 (名 城 大 理 工)	日本酒醸造過程の解析と仮似変分不等式

函数解析学

3月24日(金) 第IX会場

		3月24日(金) 第IX会場
14:	15~16:00	
1	蘆 田 聡 平 (京 大 理)	分子前期解離のレゾナンスの幅の指数評価 · · · · · · · · 15
2	新 國 裕 昭 (前橋工科大)	On the spectra of periodic Schrödinger operators on a super carbon nanotube
3	小森大地(北大理)	局所コホモロジー群の直観的表示とその応用15
4	<u>山 岸 弘 幸</u> (産業技術高専) 亀 高 惟 倫 (阪 大*)	C36 フラーレン上の離散ソボレフ不等式の最良定数15
5	布田 徹(北 大理) 船川大樹(北大理) 命木章斗(信州大工)	原点に defect を持つ多次元量子ウォークの 固有値と局在化について · · · 15
16:	15~17:15 特別講演 貝塚公一(学習院大理)	Stationary scattering theory for invariant differential operators on symmetric spaces of noncompact type 3月25日(土) 第IX会場
0.0	00~12:00	
6	Chungchuan Chen (Nat. Taichung Univ. of Edu.)	Topological dynamics on linear operators · · · · · · · · 15
7	渚 勝(千葉大理)	作用素単調有理関数とその応用 15
8	遠 山 宏 明 (前橋工科大) 伊 佐 浩 史 (前橋工科大) 伊 藤 公 智 (前橋工科大) 亀井栄三郎 渡 邉 雅 之 (前橋工科大)	Relative operator entropies and operator valued divergences via divided difference · · · · · · · · · · · · · · · · · · ·

22	函数解析学

… 10 ⋯ 15 さ ⋯ 15
さ
15
· · 15
15
15
· · 15
o- · · 15
ア ・・ 15
10
15
類 ·· 15
15
· · 15

14:	$15\sim16:15$		
25	$\frac{\text{KL}}{\text{B}} \frac{\text{B}}{\text{B}} \frac{\text{B}}{\text{B}} \frac{\text{B}}{\text{B}} (\text{E} \text{ M} \text{ K} \text{ B} \text{ F})^{\flat}$	Groups of unitaries without property (FH) · · · · · · · · · · · · · · · · · · ·	15
26	安藤浩志 (千葉大理) 松澤泰道 (信州大教育) A. Thom (TU Dresden) A. Törnquist (Univ. Copenhagen)	Unitarizability, Maurey–Nikishin factorization and Polish groups of finite type · · · · · · · · · · · · · · · · · · ·	
27	釣井達也(阪府大理)	有限ハイパー群と有限グラフ	15
28	伊 師 英 之 (名大多元数理・JST さきがけ) 小 原 敦 美 (福 井 大 工)	ヘッセ領域上の群不変ポテンシャル・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	15
29	織田 寛 (拓殖大工) 示野信一(関西学院大理工)	Small <i>K</i> -タイプの球関数	15
30	小林俊行(東大数理·東大IPMU) O. Leontiev (東大数理)	共形変換群 $O(p,q)$ に関する対称性破れ作用素 $\cdot \cdot \cdot \cdot$	15
16:	30~17:30 特別講演 橋 本 康 史 (琉 球 大 理)	合同部分群に関する length spectrum の重複度の分布について	

統計数学

3月24日(金) 第VI会場

9:4	5~12:00	
1	鄭 容 武 (広 島 大 工) 高 橋 博 樹 (慶 大 理 工) J. Rivera-Letelier (Univ. Rochester)	平坦なレート関数を持つ2次写像力学系について 15
2	道 工 勇 (埼玉大教育)	ランダム測度に依る超過程のコンパクト台について 15
3	<u>小 川 重 義</u> (立命館大理工) 植 村 英 明 (愛知教育大教育)	確率フーリエ変換の逆変換式について・・・・・・・・・・・・10
4	竹内敦司(阪市大理)	Malliavin calculus for marked Hawkes processes · · · · · · · · 15
5	鈴木由紀(慶大医)	A diffusion process with a contracted Brownian potential · · · · · · · 15
6	田 口 大 (立命館大理工) リ ボ (Univ. of New South Wales)	On the Euler–Poisson scheme for SDEs with positive jumps and Hölder continuous coefficient · · · · · · · · · · · · · · · · · · ·
7	長 井 英 生 (関西大システム理工)	Large deviation control for quadratic semi-martingale functionals · · · · 15
8	長 井 苺 生(関西大システム理工)	Large deviation control under model uncertainty

	14:15~1	15:15	特別講演
--	---------	-------	------

一場知之

Stochastic analysis for collision of Brownian particles

(Univ. of California, Santa Barbara)

15:30~16:30 2016年度 (第15回) 日本数学会解析学賞受賞特別講演

笹 本 智 弘 (東 エ 大 理) KPZ 方程式と可積分確率相互作用系

3月25日(土) 第VI会場

9:5	0~11:30		
9	堀口正之(神奈川大理)	On a multivariate Bayesian control problem in Markov decision processes · · · · · · · · · · · · · · · · ·	15
10	野村 昇(高知大理)	部分空間での条件付分布に基づく象限確率の計算	10
11	高 橋 勇 人	Recent progress on random sequences with respect to conditional probabilities · · · · · · · · · · · · · · · · · · ·	15
12	Yujie Xue (早 大 理 工) 谷 口 正 信 (早 大 理 工)	Local Whittle likelihood approach for L^p -norm spectra $\cdot \cdot \cdot \cdot \cdot$	10
13	明 石 郁 哉 (早 大 理 工) J. Fan (Princeton Univ.)	Self-normalized and random weighting approach to likelihood ratio test for the model diagnostics of stable processes · · · · · · · · · · · · · · · · ·	15
14	明石郁哉 (早大理工) Shuyang Bai (Univ. of Georgia) M. S. Taqqu (Boston Univ.)	Quantile regression-based self-normalized block sampling method for linear regression model with dependent errors	15
15 11:	福山克司(神戸大理) 阪口晋次 (あいおいニッセイ同和損保) 島部理(浜田電機工業) チュクルマルティーナ (神戸大理) 30~12:00 統計数学分科会総会	Metric discrepancy results for geometric progressions with ratios 3/2, 4/3, 8/3, 10/3, 13/6 and 17/8	5
	30~14:30 <u>劉</u> <u>言</u> (早 大 理 工) Kun Chen (Southwestern Univ. of Finance and Economics)	A frequency domain bootstrap for irregularly spaced spatial data $ \cdots $	15
	Ngai Hang Chan (Chinese Univ. of Hong Kong) 谷口正信(早大理工)		
17	田村百合絵 (早 大 理 工) 谷 口 正 信 (早 大 理 工)	高次元時系列の sphericity 検定統計量の漸近理論 · · · · · · · · · · · · · · · · · · ·	10
18	谷田義行(早大理工) 谷口正信(早大理工)	Asymptotic theory of Whittle estimator for high dimensional time series	10
19	矢田和善(筑波大数理物質) 青嶋 誠(筑波大数理物質)	高次元固有ベクトルの一致性について	15

9:50~12:00

3月26日(日) 第VI会場

20	間	野	修	平	(統	計数	汝 理	研)	分割の可乗測度と有理正規曲線に付随する A 超幾何系 15
21	清		智	也	(東	大情	報理	!工)	座標ごとの変換によって得られる Stein 型の等式とその性質 15
22	小	Щ	民	雄	(滋	重	賀	大)	標準正規分布に従う独立な確率変数の冪乗和に関する積分公式 15
23			宜 Fauz				数 数		Modified gamma kernel density estimator · · · · · · · 10
24	生	亀	<u>大</u> 清 貞	貴	(東	京理	大理	!工)	順序カテゴリ正方分割表における対角指数条件付き対称モデルの一般化 と分解・・・・・・・・・・・・・・・・・・・・・・・・・・・10
25	生		清貞	貴	(東	京理		!工)	正方分割表における周辺オッズを用いた周辺同等性からの隔たりを測る 方向付き尺度 · · · · · · · · · · · · · · · · · · ·
26	生	亀	憲清貞	貴	(東	京理	大理	!工)	正方分割表における累積確率を用いた対称性からの隔たりを測る尺度 10
27	三田	畑		輔治	(東	京理 京理		!工) !工)	Decomposition of marginal homogeneity using model based on complementary log-log transform for square contingency tables
28	三田	枝畑	<u>谷太</u> 祐 耕 貞	輔治	(東 (東	京理 京理	大理 大理	!工) !工)	A measure of departure from partial marginal homogeneity for square contingency tables
14:	15^	~15:	15	特	別諱	演			
	<i>五</i> .	+	嵐	岳	(筑波	大シス	ステム	情報)	境界バイアスのない非対称カーネル密度推定量について
15:		~16: 越	: 30 康		別講 (広	演 』	<u>ਤ</u> ਹੋ	大*)	情報量規準に基づく縮小次元の推定法に関する高次元性質
									3月27日(月) 第VI会場
9:5	0~	12: 0	0						
29	鈴	木		譲	(阪	7	大	理)	連続変量を含む相互情報量の推定 15
30	橋	本真	真太	郎	(広	島	大	理)	対数正則変動関数に基づく非対称な位置尺度母数分布族のロバスト推定 15
31	佃		康	司	(東	大総	合文	(化)	大きな母数をもった Ewens 抽出公式のポアソン近似について 15
32		<u>森</u> 山	陽				理国		The Dantzig selector for diffusion processes with covariates · · · · · · · 10
33	若	木	宏	文	(広	島	大	理)	線形混合モデルのモデル選択規準について 15

34	桒 田 正 秀 (国 際 自 然 研) 兵 頭 義 史 (岡山理大総合情報研・国際自然研) 弓 場 弘 (国 際 自 然 研)	Characteristics of balanced third-order designs of resolution R*($\{10,01\}$) with $N < \nu(m)$ and NSV ₂ ≥ 1 for 3^m factorials $\cdots 15$
35	松 原 和 樹 (中央学院大商) 景 山 三 平 (東京理大理数センター)	Some existence of hierarchical 3-designs · · · · · · · 15
36	地 寄 頌 子 (東京理大理工) 木 村 優 偉 (東京理大理工) 宮 本 暢 子 (東京理大理工)	A recursive construction of difference systems of sets · · · · · · · 10

応 用 数 学

3月24日(金) 第V会場

10:	30~11:45	
1	潮 和彦	Balanced C_{10} -foil designs and related designs $\cdots 15$
2	Diogo Kendy Matsumoto (芝浦工大工)	Navigation groupoids and its application · · · · · · · 15
3	坂本優太郎(電 通 大)	Hamilton cycles in double generalized Petersen graphs $\cdots \cdots 15$
4	野 口 健 太 (東京電機大情報)	最適 1-平面グラフの閉曲面への 2 胞体埋め込み · · · · · · 15
14:	15~15:30	
5	R. Bass (Georgia Southern Univ.) C. Magnant (Georgia Southern Univ.) 小 関 健 太 (国立情報学研・JST ERATO) B. Pyron (Georgia Southern Univ.)	ある種の rainbow な部分グラフを持たない K_n の辺着色の特徴付け \cdots 10
6	藤田慎也(横浜市大国際総合)	辺着色グラフの分割問題10
7	藤 沢 潤 潤 (慶 大 商) R. E. L. Aldred (Univ. of Otago) 斎 藤 明 (日 大 文 理)	Edge proximity conditions for matching extendability of graphs $\cdots 15$
8	奈良知惠 (明大MIMS) 伊藤仁一(熊本大教育) E. D. Demaine (MIT) M. L. Demaine (MIT)	直交多面体の連続的平坦折りたたみ・・・・・・・15

15:50~16:50 特別講演

Ying Miao (筑波大システム情報) 電子指紋の組合せ理論

3月25日(土) 第V会場

10:	00~	11:45			
9		出 智 国立情幸	也 _服 学研・JST ERATO)	正規化多重ゼータ値の対称和と集合の分割 ・・・・・・・・・・・・・・・・・1	l5
10		野 紀	生 (宇都宮大教育) 雄 (横浜国大理工) 巖 (小 山 工 高 専)	有限グラフの第2種四元数重み付きゼータ関数1	15
11	今!		嚴 (小山工高専) 雄(横浜国大工) 生(東北大情報)	Szegedy walk と staggered QW の時間発展行列の固有値	15
12	齋	藤	渓 (横浜国大工)	1 次元格子上の四元数量子ウォーク 1	15
13	川 今!	合 野 紀	尭 (横浜国大理工) 光 (横浜国大工) 雄 (横浜国大工) 弥 (横浜国大工)	1 次元 3 状態量子ウォークの定常測度 1	ւ5
14	鈴	木 章	斗 (信州大工)	空間依存するコインをもつ 2 次元 2 状態量子ウォークの弱収束定理 ・・・・ 1	15
14:	00~	14:15	2016年度日本数学会	会応用数学研究奨励賞授賞式	
				3月26日(日) 第V会場	
9:3	0~12	2:00	特別セッション「凸多	多面体論の現代的潮流」	
	村	井	聡 (阪 大 情 報)	凸多面体の面の数え上げ論の近況 · · · · · · · · · · · · · · · · · · ·	10
	東	谷 章	弘 (京都産大理)	格子凸多面体論のこれまでとこれから 4	10
	日.	比 孝	之(阪 大 情 報)	凸多面体と可換代数と統計の奏でる三重奏を聴く 4	10
14:	1 5~ :	16:30			
15	赤	松 雅	之 (海上保安大)	摂動関数による2変数関数の双対問題1	15
16	堀	口俊	二 (新潟産大経済)	拡張複素ニュートン法とリーマン面, いろいろな収束比較式 1	١0
17	坂	口 文	則(福井大工)	微分方程式の整数型解法に現れる余剰解の超函数成分について 1	ι5
18		塚 厚 国際学	二 :院大総合教育センター)	一般 J 積分の特異点への感度を考慮する形状最適化に関する検討 1	15
19	(京大渡	部善	<u>彦</u> 合教育研究推進センター) 隆(九 大 情 報) 宏(九 大 I M I)	あるコンパクト作用素のレゾルベントに対する下側評価について 1	ւ5
20			喜(東 大 数 理) 一(東 大 数 理)	多角形領域上の Poisson 方程式に対する不連続 Galerkin 法の L^∞ 誤差評価	l5
21			<u>也</u> (愛 媛 大 理) 太 (一 橋 大 商)	Approximating surface area by interpolations on triangulations · · · · · · 1	15
22	田 i	端正	久(早大理工)	ナヴィエ・ストークス方程式のための風上要素選択スキームの収束性 1	15

16:50~17:50 特別講演

N. Pozar (金 沢 大 理 工) A level set approach to the crystalline mean curvature flow

3月27日(月) 第V会場

9:3	0~11:30	
23	図 谷 紀 良 (神戸大システム情報) Jinliang Wang (Heilongjiang Univ.) Ran Zhang (Harbin Inst. of Tech.)	感染齢構造と非線形接触項を持つ HIV モデルの解析 15
24	石 渡 哲 哉 (芝浦エ大システム理工) 石 渡 恵 美 子 (東 京 理 大 理) 中 田 行 彦 (島根大総合理工) 三 木 勝 博	タイムラグが引き起こす爆発現象について: リミットサイクル振動モデル を題材に · · · · · · · · · · · · · · · · · 15
25	松 江 要 (九大IMI・九大I2CNER)	擬ポアンカレコンパクト化と爆発解
26	松 江 要 (九大IMI・九大I2CNER)	コンパクト化・爆発解と特異衝撃波 15
27	土屋拓也(早大理工) 米田 元(早大理工)	Einstein 方程式の適切な離散式の構築について
28	浦川遼介 (早大理工) 土屋拓也(早大理工) 米田 元(早大理工)	非平坦時空におけるアインシュタイン方程式の拘束伝播方程式の解析 15
29	村川秀樹(九大数理)	非線形拡散問題に対する線形解法
14:	15~16:20	
30	川 原 田 茜 (京都教育大教育) 宮 路 智 行 (明大研究・知財) 中 野 直 人 (JSTさきがけ・北大理)	Empirical CA construction method for the viscous Burgers equation and its characteristics · · · · · · · · · · · · · · · · · · ·
31	清水雄貴 (京 大 理) 坂上貴之(京 大 理)	トーラス上の渦力学15
32	後藤田剛 (京 大 理) R. Krasny (Univ. of Michigan)	渦層モデルを用いた渦パターン形成の数値シミュレーション 15
33	宮 路 智 行 (明大MIMS) 小 川 知 之 (明大総合数理) 関 坂 歩 幹 (明大MIMS)	さざ波立つ矩形波へのトーラス分岐 15
34	関坂歩幹(明大MIMS)	周期境界条件における固有値の集積現象 15
35	李 聖林(広島大理)	非対称細胞分裂におけるパターン形成と数理的問題15
36	<u>小林俊介</u> (明大理工) 坂元孝志(明大理工)	Oscillatory hexagonal pattern in a 2-dimensional integro-differential reaction diffusion system

16:40~17:40 特別講演

矢 崎 成 俊 (明 大 理 工) 界面現象に現れる移動境界の追跡法

トポロジー

3月24日(金) 第IV会場

10:	00~12:00	
1	溝田裕介(九州産大工)	C^{∞} 級の持ち上げ可能ベクトル場について 15
2	佐 野 貴 志 (北海学園大工) 小 林 真 人 (秋 田 大 理 工) 山 本 稔 (弘 前 大 教 育)	多角形の全周投影変換
3	加葉田雄太朗 (北 大 理) M. Barajas (ICMC-USP)	クロスキャップの射影 15
4	一 木 俊 助 (横浜国大環境情報)	Composing generic linearly perturbed mappings and immersions/injections
5	韓 呼 和 (横浜国大環境情報) 西 村 尚 史 (横浜国大環境情報)	The Wulff construction for convex integrands · · · · · · 15
6	<u>山 本 卓 宏</u> (九 州 産 大 工) 佐 伯 修 (九 大 I M I)	2 色付けられた多様体上の安定写像の特異ファイバーとその応用 15
14:	15~15:15 特別講演	
	蔦谷充伸(九大数理)	Applications of Stasheff's A_{∞} -theory to Lie groups
15:	30~17:00	
7	Jin-ho Lee (Samsung Fire・Marine Insurance) 宮内敏行(福岡大理) 向井純夫(信州大*) 小原まり子(信州大理)	The generators on 23-th, 24-th and 25-th homotopy groups of the n-th rotation group · · · · · · · · · · · · · · · · · · ·
8	加藤久男(筑波大数理物質)	トポロジカルエントロピーと連続体の不分割性15
9	森 淳秀(大阪歯大歯)	情報幾何のトポロジー15
10	若月 駿(東大数理)	Sullivan 代数の semi-pure 性について
11	桐木 紳 (東海大理) 相馬輝彦(首都大東京理工)	ホモクリニック接触と非自明遊走領域: Takens 最終問題の解・Colli-Vargas 予想の証明 · · · · · · · · · · · · · · · · · · ·

3月25日(土) 第IV会場

10:	00~11:50	
12	久野恵理香(東工大理工)	向き付け不可能曲面の写像類群のアーベル部分群10
13	<u> </u>	境界付き有向曲面のトレリ群の写像類群内での distortion について 10
14	大森源城(東工大理工)小林竜馬(石川工高専)	境界付き向き付け不可能曲面の写像類群の単純な無限表示15
15	大森源城(東工大理工)	向き付け不可能曲面のツイスト部分群の Dehn twist による生成系について15
16	辻 俊輔(東大数理)	向き付け不可能曲面におけるジョンソン準同型10
17	辻 俊輔(東大数理)	カウフマン・ブラケット・スケイン代数と写像類群10
18	辻 俊輔(東大数理)	カウフマン・ブラケット・スケイン代数による整数係数ホモロジー 3 球 面の不変量の構成 · · · · · · · 10
13:	15~14:45	
19	畑 岡 真 梨 (日本女大理)	対称的ハンドル体群とその表示 15
20	<u>北野晃朗</u> (創価大理工) A. T. Tran	Brieskorn ホモロジー 3 球面の基本群の $SL(2;\mathbb{C})$ -表現の Reidemeister torsion から定まる多項式について
	(Univ. of Texas at Dallas)	
21	<u>寺垣内政一</u> (広島大教育) 茂手木公彦 (日 大 文 理)	3次元多様体の基本群に含まれる共役ねじれ元と両側不変順序 10
22	清水達郎(京大数理研)	SU(2) Chern-Simons 摂動論について 10
23	浅野知紘(東大数理)	Symplectic Khovanov homology における transverse element · · · · · · 15
		3月26日(日) 第Ⅳ会場
10:	00~12:00	
24	村尾 智 (筑波大数理物質) 飯島悠介 (筑波大数理物質)	カンドルの完全連結成分分解10
25	石 井 敦 (筑波大数理物質) 岩 切 雅 英 (佐 賀 大 工) 鎌 田 聖 一 (阪 市 大 理) Jieon Kim (阪 市 大 理) 松 崎 尚 作 (早 大 教 育) 大城佳奈子 (上 智 大 理 工)	The algebraic structure of a partially multiplicative biquandle \cdots 10
26	瀧村祐介(学習院中)	A pre-order of chord diagrams on knot projections $\cdots 15$
27	伊藤 昇(東大数理)	Spaces of chord diagrams on spherical curves II · · · · · · · 15
28	中村拓司 (大阪電通大工) 斎藤昌彦 (Univ. of South Florida) 佐藤 進(神戸大理)	2 橋結び目のパレット数について 10
	中西康剛(神戸大理)	

29	和丨	田康	載 (早 大 教 育)	ミルナー型の絡み目不変量10
30	小言	沢	誠 (駒澤大総合)	Unknotting submanifolds of the 3-sphere by twistings · · · · · · · 10
31	稲葉清日	山 梨 美ゆき 田 聡	玄(日本女大理) 佳(日本女大理) 江(日本女大理) 美(日本女大理) 梨(日本女大理)	一般化されたジェンガゲームとその最大種数 15
14:	15~ 1	15:45		
32			子 (東 海 大 理) 男 (東 海 大*)	Minimal chart における crossing を含まない領域について 15
33	佐	藤光	樹 (東工大理工)	A full-twist formula for the ν^+ -invariant $\cdots 15$
34	佐	藤光	樹 (東工大理工)	CP^2 -sliceness and Floer homologically thin knots $\cdots 15$
35			生 (筑波大数理物質) 哉 (阪市大数学研)	スライスリボン予想とハンドルスライド15
36	<u>森</u> 境		<u>二</u> (阪府大生命環境) 一 (信 州 大 理)	The space of short ropes and the classifying space of the space of long knots · · · · · · · · · · · · · · · · · · ·
16:		1 7:00 澤 康	特別講演 行(山口大創成)	Links with trivial Q -polynomial

無 限 可 積 分 系

3月26日(日) 第Ⅲ会場

$10:30\sim11:30$							
	クイバーのミューテーションと q -二項係数の等式 $\dots 15$						
2 小寺諒介(京 大 理)	Higher level Fock spaces and affine Yangian · · · · · · 15						
3 直 井 克 之 (東京農工大工)	$U_q(\mathbf{L}\mathfrak{g})$ 加群に対するテンソル積と古典極限を取る操作の非可換性について						
4 竹山美宏(筑波大数理物質)	On the eigenfunctions for the multi-species q -Boson system $\cdots 15$						
14:15~15:15 特別講演 Ivan Chi Ho Ip (京 大 理)	Positive representation and cluster realization of quantum groups						
15:30~16:30 特別講演							
加藤晃史(東大数理)	Quiver mutation loops and partition q -series						

3月27日(月) 第Ⅲ会場

LO:	$0:15\sim 12:00$							
5	Ш	上	拓	志	(青学大理	! エ)	4 次元 Painlevé 型方程式の完全な退化図式 · · · · · · · · 15	
6					(明 石 工 高 (神 戸 大		<i>q</i> 差分ガルニエ系について · · · · · · · · · · · · · · · · · · ·	
7					(明 石 工 高 (神 戸 大		q 差分ガルニエ系から q 差分パンルヴェ系への簡約 $\dots 15$	
8	渋	Ш	元	樹	(阪 大情	報)	A generalization of multivariate Meixner, Charlier and Krawtchouk polynomials · · · · · · · · · · · · · · · · · · ·	
9	大	Щ	陽	介	(徳島大理	! エ)	q -超幾何級数 $_2\varphi_0(a,0;-;q,x)$ の q -Stokes 現象 $$	
.0	大	Щ	陽	介	(徳島大理	! エ)	q -超幾何級数 $_1\phi_1(0;a;q,x)$ の q -Stokes 現象 \cdots 15	