Bockstein maps and local cohomology

Uli Walther

Sapporo, August 2009

Joint with Anurag Singh (Utah)

- Bockstein basics
- 2 Local cohomology
- 3 Stanley–Reisner theory
- 4 Main Theorem

Bockstein Setup

R commutative Noetherian ring M R-module p nzdv on M $F\colon R\operatorname{-mods} \to R\operatorname{-mods}$ covariant additive $R\operatorname{-linear} \delta\operatorname{-functor}.$

Remark

More general setups are possible, including the case of singular cohomology with coefficients in the R-module M.

Needed is an endomorphism of a complex.

Bockstein definition

From

$$0 \to M \xrightarrow{p} M \to M/pM \to 0$$

we obtain

$$\mathsf{F}^k(M/pM) \overset{\delta_p^k}{\to} \mathsf{F}^{k+1}(M) \overset{p}{\to} \mathsf{F}^{k+1}(M) \overset{\pi_p^{k+1}}{\to} \mathsf{F}^{k+1}(M/pM).$$

The Bockstein map $\beta_p^k = \beta_p^k(F, M)$ is

$$\pi_p^{k+1} \circ \delta_p^k \colon \operatorname{\mathsf{F}}^k(M/pM) \to \operatorname{\mathsf{F}}^{k+1}(M/pM).$$

A cohomology operation.

Bockstein Examples

• $(R, p, F) = (\mathbb{Z}, p, H_{Sing}^{\bullet}).$

Classical case, used to study lens spaces.

In 3D:
$$L(p,q) = \mathbb{S}^3 / \begin{pmatrix} \omega & 0 \\ 0 & \omega^q \end{pmatrix}$$
, $\omega^p = 1$. (Tietze 1908)

Fact: L(5,1), L(5,2) have equal π_1 and H_* , but are not homotopy equivalent.

Fact: L(7,1), L(7,2) homotopy equivalent but not homeomorphic.

•
$$(R, p, F) = (R, f, H^{\bullet}(f; -)).$$

 $H^{0}(f; R/pR) = (0: {}_{R/pR}f), \quad H^{1}(f; R/pR) = R/(p, f)R,$
 $\beta(r \operatorname{mod}(p)) = \frac{fr}{p} \operatorname{mod}(p, f).$

F=Local cohomology (next).

Definition of local cohomology

Setup

R =commutative ring,

$$(f_1,\ldots,f_t)R=I\subseteq R$$
 an ideal,

M an R-module.

Consider $\check{C}_i^{ullet} = \left(R \to R[f_i^{-1}]\right)$ and

$$\check{C}_f^{\bullet} = \bigotimes_{1}^t \check{C}_i^{\bullet}$$

Definition

$$H_I^k(M) := H^k(M \otimes \check{C}_f^{\bullet}).$$

Why care about local cohomology?

- If $\sqrt{I} = \sqrt{J}$ then $H_I^{\bullet} = H_J^{\bullet}$ ("geometric").
- $R = \mathbb{C}[x_1, \dots, x_n], V = \text{Var}(I), U = \mathbb{C}^n \setminus V.$

$$E_2^{p,q} = H_{deRham}^p(H_I^q(R)) \Rightarrow H_{sing}^{p+q+n-1}(U).$$

- (R, \mathfrak{m}) local: $\left[H_{\mathfrak{m}}^{<\dim(R)}(R) = 0\right] \Leftrightarrow [R \text{ is CM}].$
- Relations to hypergeometric systems, Riemann–Hilbert correspondence, tight closure, topology.

Stanley-Reisner theory

Setup

$$R = \mathbb{C}[x_1, \dots, x_n], \ \Delta \subseteq \Delta_n = n$$
-simplex, $\mathfrak{m} = \mathbf{x}R$.

Definition

$$I_{\Delta} = \{ \mathbf{x}^{\sigma} \mid \sigma \notin \Delta \} R, \quad S_{\Delta} = R/I_{\Delta}$$

(squarefree monomial) Stanley-Reisner ideal, and ring.

Example

Here, $I_{\mathbb{RP}^2} = (x_1 x_2 x_5, \dots, x_4 x_5 x_6) R$.

Stanley–Reisner, local cohomology, Bockstein

Theorem (Hochster, simplified)

For $0 \neq p \in \operatorname{Spec} \mathbb{Z}$,

$$H^{i}_{\mathfrak{m}}(S_{\Delta}/\rho S_{\Delta})_{0} = \widetilde{H}^{i-1}(\Delta, \mathbb{Z}/\rho \mathbb{Z}).$$

(Really, Hochster describes all graded pieces...)

Theorem (SW)

The Bockstein construction respects the decomposition of Hochster's theorem.

Moreover, the following are equivalent:

- Bocksteins are zero on $H_{\mathfrak{m}}^{\bullet}(S_{\Delta}/pS_{\Delta})$;
- Bocksteins are zero on $H_{I_0}^{\bullet}(R/pR)$;
- Bocksteins are zero on certain subcomplexes of Δ .

Bockstein and Stanley-Reisner

Example

A nonzero Bockstein in topology:

$$H^1_{sing}(\mathbb{RP}^2,\mathbb{Z}/2\mathbb{Z})=H^2_{sing}(\mathbb{RP}^2)=\mathbb{Z}/2\mathbb{Z}$$

Resolution of the Stanley–Reisner ideal:

$$0 \rightarrow R \rightarrow R^7 \rightarrow R^{15} \rightarrow R^{10} \rightarrow R \rightarrow R/I_{\Delta} \rightarrow 0.$$

Last map: $(x_1, ..., x_6, 2)$.

Diagram chase: the 2 is responsible for nonzero

$$eta_{\mathbf{2}}^2 \colon H^3_{I_{\Delta}}(R/2R) \to H^4_{I_{\Delta}}(R/2R)$$

via $(0,0,0,0,0,0,1) \in \operatorname{Ext}^3_{R/2R}(R/(2,I_{\Delta}),R/2R) \to$ $H^3_{I_{\Lambda}}(R/2R) \rightarrow H^4_{I_{\Lambda}}(R/2R) \leftarrow Ext^3_{R/2R}(R/(2,I_{\Delta}),R/2R) \ni (1).$

Finiteness of local cohomology

Setup

R Noeth., M fin. gen., I ideal.

- Grothendieck: \mathfrak{m} maximal $\Rightarrow H^{\bullet}_{\mathfrak{m}}(M)$ Artinian
- Huneke: Ass $(H_I^i(R))$ finite?
- Huneke–Sharp, Lyubeznik: *R* regular containing field then yes.
- Singh: In general, no (next slide).
- Lyubeznik: R mixed char., regular, local, unramified, then yes.
- Lyubeznik: R regular then $H_I^i(R)$ finite Ass ? (open for $\mathbb{Z}[x_1, \ldots, x_n]$!!!)

Example (Singh)

Setup

$$R = \mathbb{Z}[x, y, z, u, v, w]/(xu + yv + zw), I = (x, y, z), 0$$

- $\eta_p = [(u/yz, -v/xz, w/xy)] \in H^2_L(R/pR)$.
- $\beta_p^2(\operatorname{Frob}(\eta_p)) = \left\lceil \frac{(ux)^p + (vy)^p + (wz)^p}{p(xyz)^p} \right\rceil \neq 0.$
- Thus, $\delta \colon H_I^2(R/pR) \to H_I^3(R)$ sends $\operatorname{Frob}(\eta_p)$ to $\delta(\operatorname{Frob}(\eta_p)) \neq 0$.
- p kills Frob (η_p) , hence also $\delta(\text{Frob}(\eta_p))$.
- So $H_L^3(R)$ can't have finite Ass.

Main Theorem

Theorem

$$R = \mathbb{Z}[x_1, ..., x_n], I = (f_1, ..., f_t)R, p \text{ nzdv on } H^{k+1}(f; R).$$

Then

$$\beta_p^k \colon H_I^k(R/pR) \to H_I^{k+1}(R/pR)$$

is zero.

Remark

$$\left|\bigcup_{k\in\mathbb{N}}\operatorname{Ass}(H^{k+1}(f;R))\right|<\infty.$$

Counterexamples to Lyubeznik can't be found with Singh's method!

Idea of proof

•
$$H_I^k(R) = \varinjlim_{i \in \mathbb{N}} H^k(f^i; R)$$

- Let p nzdv on $H_I^{k+1}(R)$.
- $\psi \colon R \to R$, $\psi_p(x_i) = x_i^p$ is flat.
- Ψ : R-mods $\to R$ -mods, $\Psi(M) = M \otimes_R {}^{\psi}R$ exact.
- $\Psi^e\left(H^{k+1}(f;R)\stackrel{p}{\to} H^{k+1}(f;R)\right)$ injective.
- Bockstein to $\Psi^e(f)$ is zero.
- Mod p, $\Psi(f) = f^p$, prove comparison for Bocksteins, done.

Thank you!