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■ Iterated Loop Spaces and Little Cubes.

— Iterated loop spaces, little cubes, and the braid arrangement.

— The Eilenberg-Moore spectral sequence (EMSS).

■ The Salvetti complex for the braid arrangement.

— The Salvetti complex.

— Cells of the Salvetti complex for the braid arrangement.

■ Main Results.

— Double loop spaces.

— More highly iterated loop spaces and higher dimensional Salvetti

complexes.

■ More Arrangements?

— The “center of mass” arrangement.
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■ For a space X with a base point x0, the n-fold loop space of X is

ΩnX = {f : In → X | ϕ(∂In) = x0} = Ω(Ωn−1X).

■ It has n-kinds of multiplications

µi : ΩnX × ΩnX −→ ΩnX

for 1 ≤ i ≤ n corresponding to the coordinates of In.
PSfrag replacements

X
f

g

0 1
2

1
x0
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■ µi ' µj for any i, j

f g -

f
g

-

g
f

-
g

f
- g f

=⇒ The multiplication is homotopy commutative if n ≥ 2.

■ For n ≥ 1, the space of little n-cubes is

Cn(1) =

{
c : In → In

∣∣∣∣
c = `1 × · · · × `n,
`i : I → I affine embedding

}
.

■ For n ≥ 1 and j ≥ 1, the configuration space of j little n-cubes is

Cn(j) =
{
(c1, · · · , cj) ∈ Cn(1)j | ci(IntIn) ∩ ck(IntIn) = ∅ if i 6= k} .
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■ {Cn(j)}j forms an operad Cn.

c1
c2

d1 d2

d3

e1 e2

∈ C2(2)× C2(3)× C2(2)

7−→

1
2

3

4 5
∈ C2(5).
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■ (May’s Recognition Principle. 1972) Y has a weak homotopy type of

n-fold loop space if and only if Y admits an action of Cn

Cn(j)× Y j −→ Y.

■ (May’s Approximation Theorem. 1972) When X is “well-pointed” and

path-connected, we have a weak equivalence

ΩnΣnX '
w

Cn(X),

where ΣnX is the n-fold suspension of X and

Cn(X) =




∐

j

Cn(j)×Σj
Xj




/

∼
.



Little Cubes and Iterated Loop Spaces

Introduction

Outline

Iterated Loop Spaces
and Little Cubes

Iterated Loop Spaces

Iterated Loop Spaces

Little Cubes
Little Cubes and
Iterated Loop Spaces

Little Cubes and
Iterated Loop Spaces

Configuration Spaces
and Iterated Loop
Spaces
Homology of Iterated
Loop Spaces

The Serre Spectral
Sequence
The Eilenberg-Moore
Spectral Sequence

My Thesis Problem

The Idea of Gravity
Filtration

The Gravity Filtration

The Snaith Splitting

The Gravity Spectral
Sequence

The Spectral
Sequence
The Braid
Arrangement

Combinatorics

The Salvetti Complex
of the Braid
Arrangement

Higher Dimensions

Other Arrangements?

8 / 59

■ (May’s Recognition Principle. 1972) Y has a weak homotopy type of

n-fold loop space if and only if Y admits an action of Cn

Cn(j)× Y j −→ Y.

■ (May’s Approximation Theorem. 1972) When X is “well-pointed” and

path-connected, we have a weak equivalence

ΩnΣnX '
w

Cn(X),

where ΣnX is the n-fold suspension of X and

Cn(X) =




∐

j

Cn(j)×Σj
Xj




/

∼
.



Little Cubes and Iterated Loop Spaces

Introduction

Outline

Iterated Loop Spaces
and Little Cubes

Iterated Loop Spaces

Iterated Loop Spaces

Little Cubes
Little Cubes and
Iterated Loop Spaces

Little Cubes and
Iterated Loop Spaces

Configuration Spaces
and Iterated Loop
Spaces
Homology of Iterated
Loop Spaces

The Serre Spectral
Sequence
The Eilenberg-Moore
Spectral Sequence

My Thesis Problem

The Idea of Gravity
Filtration

The Gravity Filtration

The Snaith Splitting

The Gravity Spectral
Sequence

The Spectral
Sequence
The Braid
Arrangement

Combinatorics

The Salvetti Complex
of the Braid
Arrangement

Higher Dimensions

Other Arrangements?

9 / 59

■ In the construction of Cn(X) we did not use the operad structure of

Cn.

We only used

(c1, · · · , cn) ∈ Cn(j) 7−→ (c1, · · · , ci−1, ci+1, · · · , cn) ∈ Cn(j−1).

■ Define

F (Rn, j) =
{
(x1, · · · ,xj) ∈ (Rn)j

∣∣
xi 6= xk if i 6= k

}
.

This is called the configuration space of j points in R
n.
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■ We have a Σj -equivariant homotopy equivalence

F (Rn, j) 'Σj
Cn(j).

■ The collection {F (Rn, j)}j is closed under the “removing points”

operation.

■ (Segal, 1973) We have a weak homotopy equivalence

ΩnΣnX '
w




∐

j

F (Rn, j)×Σj
Xj




/

∼

for a well-pointed path-connected space X .
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Problem. Use Cn(j) or F (Rn, j) to study the homol-

ogy of ΩnΣnX .

■ Several methods are known for studying the homology of iterated loop

spaces.

— The Serre spectral sequence.

— Homology operations.

— The Eilenberg-Moore spectral sequence.

— · · ·
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■ We have a fibration

ΩnΣnX −→ PΩn−1ΣnX −→ Ωn−1ΣnX.

where PY = {` : I → Y | `(0) = y0} ' ∗.
■ And we obtain a spectral sequence

E2
s,t
∼= Hs(Ω

n−1ΣnX;ht(Ω
nΣnX))

=⇒ hs+t(PΩn−1ΣnX) ∼= hs+t(∗)

for a homology theory h∗(−).

■ This method works if h∗(−) = H∗(−; Fp). (Araki-Kudo, Dyer-Lashof,

Browder, F. Cohen.)

■ When h∗(−) is not an ordinary homology (e.g. K-theory), this method

fails.
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■ We have a fibration

ΩnΣnX −→ PΩn−1ΣnX −→ Ωn−1ΣnX.

where PY = {` : I → Y | `(0) = y0} ' ∗.
■ And we obtain a spectral sequence

E2
s,t
∼= Hs(Ω

n−1ΣnX;ht(Ω
nΣnX))

=⇒ hs+t(PΩn−1ΣnX) ∼= hs+t(∗)

for a homology theory h∗(−).

■ This method works if h∗(−) = H∗(−; Fp). (Araki-Kudo, Dyer-Lashof,

Browder, F. Cohen.)

■ When h∗(−) is not an ordinary homology (e.g. K-theory), this method

fails.
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■ For a multiplicative homology theory h∗(−) satisfying the Künneth

isomorphism, we have a spectral sequence

E2
s,t
∼= Cotor

h∗(Y )
s,t (h∗(∗), h∗(∗)) =⇒ hs+t(ΩY ),

which may or may not converge.

■ When h∗ is a nonconnective homology theory, such as K-theory, the

spectral sequence behaves badly.

■ We have

E2
s,t
∼= Cotorh∗(Ωn−1ΣnX)(h∗(∗), h∗(∗))

=⇒ hs+t(Ω
nΣnX).

Does this converge?
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Problem: Filter Cn(j) or F (Rn, j) to study the conver-

gence of the Eilenberg-Moore spectral sequence

E2
s,t
∼= Cotorh∗(Ωn−1ΣnX)(h∗(∗), h∗(∗))

=⇒ hs+t(Ω
nΣnX).

■ (F. Cohen) Filter F (Rn, j) by the number of distinct first coordinates?

 Not good for constructing a spectral sequence.

■ Corresponding filtartion on Cn(j)?
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Idea: Filter Cn(j) by measuring the overlaps in the

first coordinates.
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■ There exists a filtration on Cn(j)

∅ = F−j−1Cn(j) ⊂ F−jCn(j) ⊂ · · ·

⊂ F−2Cn(j) ⊂ F−1Cn(j) = F0Cn(j) = Cn(j).

satisfying the following conditions:

— c = (c1, · · · , cj) ∈ F−sCn(j)⇐⇒ there exists

{1, · · · , j} = S1 q · · · q Ss+k (k ≥ 0)

such that each collection of cubes {ci | i ∈ S`} is “stable under

gravity (and anti-gravity)” with respect to the first coordinate.

— In other words, we need to divide {c1, · · · , cj} into at least s
groups each of which is “stable under gravity (and anti-gravity)”

with respect to the first coordinate.



The Snaith Splitting

Introduction

Outline

Iterated Loop Spaces
and Little Cubes

Iterated Loop Spaces

Iterated Loop Spaces

Little Cubes
Little Cubes and
Iterated Loop Spaces

Little Cubes and
Iterated Loop Spaces

Configuration Spaces
and Iterated Loop
Spaces
Homology of Iterated
Loop Spaces

The Serre Spectral
Sequence
The Eilenberg-Moore
Spectral Sequence

My Thesis Problem

The Idea of Gravity
Filtration

The Gravity Filtration

The Snaith Splitting

The Gravity Spectral
Sequence

The Spectral
Sequence
The Braid
Arrangement

Combinatorics

The Salvetti Complex
of the Braid
Arrangement

Higher Dimensions

Other Arrangements?

17 / 59

■ The filtration on Cn(j) is not compatible with the base point relation in

the definition of

Cn(X) =




∐

j

Cn(j)×Σj
Xj




/

∼
.

■ (Snaith, 1974.) We have a stable homotopy equivalence

Σ∞Cn(X) ' Σ∞




∨

j

Cn(j)+ ∧Σj
X∧j




hence

h̃∗(Cn(X)) ∼=
⊕

j

h̃∗(Cn(j)+ ∧Σj
X∧j).
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■ The gravitiy filtration on each Cn(j) defines a filtration on the j-th

Snaith summand Cn(j)+ ∧Σ X∧j .

■ We obtain a spectral sequence

E2(j) =⇒ h̃∗(Cn(j)+ ∧Σ X∧j)

for each j.

■ By taking the direct sum, we obtain a spectral sequence

E2 =
⊕

j

E2(j) =⇒
⊕

j

h̃∗(Cn(j)+ ∧Σ X∧j)

∼= h̃∗




∨

j

Cn(j)+ ∧Σ X∧j




∼= h̃∗(Cn(X))
∼= h̃∗(Ω

nΣnX).

■ And we obtain a “stable” filtration on Cn(X).
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Theorem (T., 1994). The spectral sequence has the following properties:

■ Each summand converges strongly.

■ When h∗(−) satisfies the Künneth formula,

E2 ∼= Cotorh∗(Ωn−1ΣnX)(h∗(∗), h∗(∗)).

■ The spectral sequence is isomorphic to the Eilenberg-Moore spectral

sequence from the E2-term.

Braid Arrangement?
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■ We have

Cn(j) ' F (Rn, j)

= R
j ⊗ R

n −
⋃

i,i′

Li,i′ ⊗ R
n,

where

Li,i′ = {(x1, · · · , xj) ∈ R
j | xi = xi′}.

■ {Li,i′ | 1 ≤ i < i′ ≤ j}: a central arrangement in R
j .

■ hj =
{
(x1, · · · , xj) ∈ R

j
∣∣ x1 + · · ·+ xj = 0

}
.

■ Aj−1 = {Li,i′ ∩ hj | 1 ≤ i < i′ ≤ j}: the braid arrangement.

■ Aj−1 is a real essential central arrangement in hj .
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Question: What does the combinatorics of the braid ar-

rangements {Aj−1}j≥1 tell us about the homology of

ΩnΣnX?

Question: Can we construct the “gravity spectral se-

quence” in terms of the combinatorics of the braid arrange-

ments {Aj−1}j≥1?



Combinatorics

Introduction

Outline

Iterated Loop Spaces
and Little Cubes

Iterated Loop Spaces

Iterated Loop Spaces

Little Cubes
Little Cubes and
Iterated Loop Spaces

Little Cubes and
Iterated Loop Spaces

Configuration Spaces
and Iterated Loop
Spaces
Homology of Iterated
Loop Spaces

The Serre Spectral
Sequence
The Eilenberg-Moore
Spectral Sequence

My Thesis Problem

The Idea of Gravity
Filtration

The Gravity Filtration

The Snaith Splitting

The Gravity Spectral
Sequence

The Spectral
Sequence
The Braid
Arrangement

Combinatorics

The Salvetti Complex
of the Braid
Arrangement

Higher Dimensions

Other Arrangements?

21 / 59

Question: What does the combinatorics of the braid ar-

rangements {Aj−1}j≥1 tell us about the homology of

ΩnΣnX?

Question: Can we construct the “gravity spectral se-

quence” in terms of the combinatorics of the braid arrange-

ments {Aj−1}j≥1?



The Salvetti Complex of the
Braid Arrangement

Introduction

Outline

Iterated Loop Spaces
and Little Cubes

The Salvetti Complex
of the Braid
Arrangement

Real Hyperplane
Arrangements

The Face Lattice of
the Braid Arrangement

Complexification

Complements

The Salvetti Complex

Iterated Loop Spaces

Iterated Loop Spaces

Cells of the Salvetti
Complex of the Braid
Arrangement

Example

Example
The Eilenberg-Moore
Spectral Sequence
The Eilenberg-Moore
Spectral Sequence

Salvetti Cells
Classical Computation
with EMSS

Salvetti Cells

Higher Dimensions

Other Arrangements?

22 / 59



Real Hyperplane Arrangements

Introduction

Outline

Iterated Loop Spaces
and Little Cubes

The Salvetti Complex
of the Braid
Arrangement

Real Hyperplane
Arrangements

The Face Lattice of
the Braid Arrangement

Complexification

Complements

The Salvetti Complex

Iterated Loop Spaces

Iterated Loop Spaces

Cells of the Salvetti
Complex of the Braid
Arrangement

Example

Example
The Eilenberg-Moore
Spectral Sequence
The Eilenberg-Moore
Spectral Sequence

Salvetti Cells
Classical Computation
with EMSS

Salvetti Cells

Higher Dimensions

Other Arrangements?

23 / 59

■ V : a finite collection of nonzero vectors in a real inner product space

V .

■ A: the associated real central hyperplane arrangement in V .

■ L(A): the face poset.

■ L(0)(A): the set of chambers.

■ (Gel′fand-Rybnikov, 1989)

L(A) ⊂ Map(V, S1)

as posets, where S1 = {0 < +1,−1}.
■ Matroid product

◦ : L(A)× L(A) −→ L(A).
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■ Define the set of ordered partition of {1, · · · , j} by

Πj =

j∐

s=1

{λ : {1, · · · , j} → {1, · · · , s} | surjections} .

■ For λ ∈ Πj , define

Fλ =

{
(x1, · · · , xj) ∈ R

j

∣∣∣∣
xi < xi′ if λ(i) < λ(i′)
and xi = xi′ if λ(i) = λ(i′)

}

Then

L(Aj−1) = {Fλ | λ ∈ Πj} .

■ Chambers correspond to bijections, hence

L(0)(Aj−1) = Σj .
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■ S2 = {0, e1,−e1, e2,−e2} with 0 < ±e1 < ±e2.

■ Define i1, i2 : S1 ↪→ S2 by

i1(0) = i2(0) = 0

i1(±1) = ±e1

i2(±1) = ±e2.

■ Map(E,S1)
(i1)∗ //

(i2)∗
// Map(E,S2)

■ For L ⊂ Map(E,S1),

L⊗ C = {(i1)∗(F ) ◦ (i2)∗(G) | F,G ∈ L}.
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Definition. For a real central arrangement A in V , define

L(1)(A) = {X ∈ L(A)⊗ C | X(v) 6= 0 for all v ∈ V} .

Theorem (Salvetti (1987), Björner-Ziegler (1992)).

BL(1)(A) ' V ⊗ C−
⋃

L∈A

L⊗ C,

where

B : Posets ↪→ Small Categories
B
−→ Spaces

is the classifying space functor (order complex).
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Theorem (Salvetti, 1987). The simplicial complex BL(1)(A) has a

structure of regular cell complex having cells D(F,C) in one-to-one

correspondence with pairs (F,C) of a chamber C and a face F ≤ C .

■ We denote this cell complex by

Sal(A) =
⋃

(F,C)

D(F,C).

■ Sal(A) is called the Salvetti complex ofA.

Double loop spaces and the Salvetti complex of the braid Arrangement?
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■ We have

Ω2Σ2X '
w

C2(X)

=




∐

j

C2(j)×Σj
Xj




/

∼

'




∐

j

F (C, j)×Σj
Xj




/

∼
.

■ The configuration space F (C, j) is the complement of the

complexification of the braid arrangementAj−1.

■ We have a Σj -equivariant homotopy equivalence

F (C, j) 'Σj
Sal(Aj−1).
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■ The Snaith splitting

Σ∞C2(X) ' Σ∞
∨

j

C2(j)+ ∧Σj
X∧j

implies

Σ∞C2(X) ' Σ∞
∨

j

Sal(Aj−1)+ ∧Σj
X∧j .

Question: Is there a filtration on Sal(Aj−1) correspond-

ing to the gravity filtartion on C2(j)?

Answer: The skeletal filtration defined by Salvetti.
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For an ordered partition λ ∈ Πj of rank r and σ ∈ Σj which is a

subdivision of λ, define a symbol S(λ, σ) as follows:

S1

i1,1

i1,2

...

i1,s1

S2

i2,1

...

i2,s2

· · ·

Sj−r

where

■ for each 1 ≤ i ≤ j − r, Si is a vertically stacked squares of length

|λ−1(i)|, and

■ labels in squares in Si are given by λ−1(i) ordered by σ from the

bottom to the top.
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A1 = {{0}}: an arrangement in h1
∼= R.
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■ The picture in the previous slide looks like an element in C2(j).

Theorem (T., math/0602085). 1. By mapping S(λ, σ) to the

corresponding “picture” in C2(j), we obtain a filtration preserving

Σj -equivariant map

Sal(Aj−1) ↪→ C2(j).

2. These maps induce an isomorphism of the associated spectral

sequences.
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Corollary. The skeletal filtration on {Sal(Aj−1)}j≥1 induces the

Eilenberg-Moore spectral sequence

E2 ∼= Cotorh∗(ΩΣ2X)(h∗, h∗) =⇒ h∗(Ω
2Σ2X).

Corollary. The E1-term can be described as

E1
−s,∗

∼=
⊕

j

Cj−s(Sal(Aj−1))⊗Σj
h̃∗(ΣX)⊗j

∼=
⊕

j

h∗(∗)〈S(λ, (1| · · · |j)) | λ ∈ Oj,j−s〉 ⊗ h̃∗(ΣX)⊗j

where

Oj,j−s = {λ ∈ Πj | λ : {1, · · · .j} → {1, · · · , s}order preserving} .
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Consider the cell

1

2
∈ C1(Sal(A1)).

We have

1

2
⊗ x2

2n−1 ∈ C1(Sal(A1))⊗Σ2
H̃∗(S

2n−1; F2)
⊗2 ∈ E1

−1,∗.

The d1-differential is

d1(
1

2
⊗ x2

2n−1) = 1 2 ⊗ x2
2n−1 + 2 1 ⊗ x2

2n−1

= 1 2 ⊗ x2
2n−1 + 1 2 ⊗ x2

2n−1

= 2 1 2 ⊗ x2
2n−1

= 0.
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■ Consider

E2 = CotorH∗(ΩS2n+1;F2)(F2, F2) =⇒ H∗(Ω
2S2n+1; F2).

■ H∗(ΩS2n+1; F2) ∼= F2[x2n] as primitively generated Hopf algebras.

■ CotorF2[x2n](F2, F2) ∼= Ext(F2[x2n])∗(F2, F2).

■ As algebras

(F2[x2n])∗ ∼=
⊗

a≥0

F2[(x
2a

2n)∗]/(((x2a

2n)∗)2).

■ ExtF2[y]/(y2)(F2, F2) ∼= F2[τ(y)]. (deg τ(y) = deg y − 1.)

■ E2 ∼= F2

[
τ((x2a

2n)∗) | a ≥ 0
]
∼= E∞ ∼= H∗(Ω

2S2n+1; F2) as

algebras.
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■ We denote

Qa
1(x2n−1) = τ((x2a

2n)∗).

■ Qa
1(x2n−1) ∈ E2

−1,∗.

■

Q1(x2n−1)←→
1

2
⊗ x2

2n−1.

■

Q2
1(x2n−1)←→

1

2

3

4

⊗ x4
2n−1.
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■ Sn = {0, e1,−e1, · · · , en,−en}

0 ≤ ±e1 < · · · < ±en.

■ For a real central arrangement A, a poset

L(n−1)(A) ⊂ Map(V, Sn)

is anaolgously defined.

Theorem (Björner-Ziegler (1992), De Concini-Salvetti (2000)).

BL(n−1)(A) ' V ⊗ R
n −

⋃

L∈A

L⊗ R
n.
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■ Sn = {0, e1,−e1, · · · , en,−en}

0 ≤ ±e1 < · · · < ±en.

■ For a real central arrangement A, a poset

L(n−1)(A) ⊂ Map(V, Sn)

is anaolgously defined.

Theorem (Björner-Ziegler (1992), De Concini-Salvetti (2000)).

BL(n−1)(A) ' V ⊗ R
n −

⋃

L∈A

L⊗ R
n.
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■ For real central arrangement A, L(n−1)(A) is a finite poset.

■ BL(n−1)(A) is a finite simplicial complex.

■ There are too many simplices in BL(n−1)(A).

Proposition (De Concini-Salvetti, 2000). There exists a structure of

regular cell complex on BL(n−1)(A) whose cells are labelled by

sequences of faces (C,F1, · · · , Fn−1) where C is a chamber, F1 is a

face of C , F2 is a face of F1, and so on.

■ BL(n−1)(A) equipped with the above cell structure is denoted by

Sal(n−1)(A).
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Skeletal filtration on Sal(n−1)(Aj−1)

 Filtration on Sal(n−1)(Aj−1)+ ∧Σj
X∧j

' Cn(j)+ ∧Σj
X∧j

 Stable filtration on ΩnΣnX.

Theorem. For any homology theory h∗(−), we obtain a strongly

convergent spectral sequence

E1 ∼=
⊕

j

C∗

(
Sal(n−1)(Aj−1)

)
⊗Σj

h̃∗

(
X∧j

)
=⇒ h∗ (ΩnΣnX) .
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■ When h∗(−) is multiplicative and satisfies the strong form of the

Künneth formula, the E1-term is a functor of h̃∗(X),

E1 ∼=
⊕

j

C∗(Sal(n−1)(Aj−1))⊗Σj
h̃∗(X)⊗j.

■ It directly computes h∗(Ω
nΣnX) from h∗(X).

■ The Eilenberg-Moore spectral sequence computes h∗(Ω
nΣnX) from

h∗(Ω
n−1ΣnX).

■ When n = 2, the above spectral sequence accidentally coincides with

the Eilenberg-Moore spectral sequence.

The oriented matroid ofAj−1 =⇒ Homology of ΩnΣnX
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■ Analogous cell complexes have been discovered independently.

— Milgram’s model for ΩnΣnX by using the permutohedra.

— Free iterated monoidal categories by Balteanu, Fiedorowicz,

Schwänzl, and Vogt.

— · · ·

■ Relations?
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■ Milgram constructed a cell complex Jn(j) by gluing permutohedra

Pn = Conv({(σ(1), · · · , σ(n)) | σ ∈ Σn}) ⊂ R
n.

■ He also proved

ΩnΣnX '




∐

j

Jn(j)×Σj
Xj




/

∼
.



Iterated Monoidal Category

Introduction

Outline

Iterated Loop Spaces
and Little Cubes

The Salvetti Complex
of the Braid
Arrangement

Higher Dimensions

Higher Dimensions

Cellular Structure

Spectral Sequence

Spectral Sequence
Alternative
Constructions

Milgram’s Model

Iterated Monoidal
Category

Relatioins

Other Arrangements?

45 / 59

■ Balteanu, Fiedorowicz, Schwänzl, and Vogt introduced then notion of

n-fold monoidal category in their study of iterated loop spaces.

■ For any set S (or a small category), they defined a free n-fold monoidal

category Fn(S) generated by S.

(i122i2)21(i322i422i5)

■ LetMn(j) be the full subcategory of Fn({1, · · · , j}) consisting of

objects in which each i appears exactly once.

■ Let Jn(j) be the full subcategory ofMn(j) consisting of objects in

which 21 appears in the outer most level, 22 appears in the next level,

and so on.
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■ Jn(j) is a poset and is isomorphic to L(n−1)(Aj−1) as posets. Thus

BJn(j) = Sal(n−1)(Aj−1).

■ When n = 2, we have a homeomorphism

J2(j) ∼= BJ2(j).

■ When n > 2, Jn(j) and BJn(j) are different but there exists a

cellular surjection

Jn(j) −→ BJn(j)

which is a homotopy equivalence.
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■ I, J ⊂ {1, · · · , k}.

■ LI,J =
{
(x1, · · · , xk) ∈ R

k
∣∣ |J |

∑
i∈I xi = |I|

∑
j∈J xj

}
.

■ Ct
k−1 = {LI,J | I, J ⊂ {1, · · · , k}, |I| = |J | = t, I 6= J}.

■ Ct
k−1 = {LI,J | I, J ⊂ {1, · · · , k}, |I| = |J | ≤ t, I ∩ J = ∅}

■ We have the following inclusions

Ak−1 = C1
k−1 ⊂ C

2
k−1 ⊂ · · · ⊂ C

[ k
2
]

k−1 ⊃ · · · ⊃ C
k−1
k−1 = Ak−1.

■ Mt(C, k) = C
k −

⋃
LI,J∈C

t
k−1

LI,J ⊗ C.



Cohen-Kamiyama Conjecture

Introduction

Outline

Iterated Loop Spaces
and Little Cubes

The Salvetti Complex
of the Braid
Arrangement

Higher Dimensions

Other Arrangements?

The “Center-Of-Mass”
Arrangement Ct

k−1

Cohen-Kamiyama
Conjecture
Experimental
Calculations:
2-primary case
Experimental
Calculations:
2-primary case
Experimental
Calculations:
2-primary case
Experimental
Calculations:
2-primary case
Experimental
Calculations: odd
primary case
Experimental
Calculations: p = 3

and k = 4

Experimental
Calculations: p = 3

and k = 4

Experimental
Calculations: p ≥ 5

and k = 4

Experimental
Calculations: odd
primary case

Experimental
Calculations: odd
primary case

49 / 59

Conjecture (F. Cohen-Kamiyama, math/0611732). Let p be an odd prime.

The inclusion of arrangements

ipk : Ak−1 ↪→ Cp
k−1

induces an isomorphism

ipk : H∗(Mp(C, k)/Σk; Fp(±1))
∼=
−→ H∗(F (C, k)/Σk; Fp(±1)).

■ If the conjecture were to be true, P 2np+1(p) = S2np ∪p e2np+1

retracts off from Σ2Ω2S2n+1
(p)

for an odd prime p.

■ This is the main conjecture in Gray’s program (Trans. A.M.S. 1993) of

unstable homotopy theory of Moore spectra à la

Cohen-Moore-Neisendorfer.
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■ Cohen and Kamiyama proved that

i24 : H∗(M2(C, 4)/Σ4; F2) −→ H∗(F (C, 4)/Σ4; F2)

is not an isomorphism, by using homology and cohomology operations.

■ We can directly compute both homology groups by using the Salvetti

complex.
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Proposition.
H3(F (C, 4)/Σ4; F2) ∼= F2.

The generator corresponding to Q2
1(x) ∈ H7(Ω

2S3; F2) is denoted by

1

2

3

4
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Proposition. C3(M2(C, 4))⊗Σ4
F2) ∼= F2 ⊕ F2 generated by

1

2

3

4
+

,

1

2

3

4
−

.

Proposition. H3(M2(C, 4)/Σ4; F2) ∼= F2 generated by

1

2

3

4
+

+

1

2

3

4
−
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The inclusion map M2(C, 4) ↪→ F (C, 4) induces

1

2

3

4
+

+

1

2

3

4
−

7−→

1

2

3

4

+

1

2

3

4

= 0.

Thus

i24 : H3(M2(C, 4)/Σ4; F2) −→ H3(F (C, 4)/Σ4; F2)

is not an isomorphism.
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■ Mp(C, k) ↪→ F (C, k)?

■ We have the following inclusions

Ak−1 = C1
k−1 ⊂ C

2
k−1 ⊂ · · · ⊂ C

[ k
2
]

k−1 ⊃ · · · ⊃ C
k−1
k−1 = Ak−1.

■ If p < k
2 ,

Ak−1 = C1
k−1 ⊂ C

2
k−1 ⊂ · · · ⊂ C

p
k−1 ⊂ · · · ⊂ C

[ k
2
]

k−1.

■ If k > p > k
2 , Cp

k−1 = Ck−p
k−1

and we have

Ak−1 = C1
k−1 ⊂ C

2
k−1 ⊂ · · · ⊂ C

k−p
k−1 ⊂ · · · ⊂ C

[ k
2
]

k−1.
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■ Mp(C, k) ↪→ F (C, k)?

■ We have the following inclusions

Ak−1 = C1
k−1 ⊂ C

2
k−1 ⊂ · · · ⊂ C
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2
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2 ,
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■ If k > p > k
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k−1 = Ck−p
k−1 and we have

Ak−1 = C1
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k−1 ⊂ · · · ⊂ C

k−p
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■ If p = 3 and k = 4,

A3 = C1
3 ⊂ C

2
3 ⊃ C

3
3(= A3)

■ The map

H∗(M2(C, 4)/Σ4; F3(±1)) ∼= H∗(Sal(C2
3)/Σ4; F3(±1))

−→ H∗(Sal(C1
3)/Σ4; F3(±1))

∼= H∗(F (C, 4)/Σ4; F3(±1))

is not an isomorphism.

■ C2
3 doesn’t behave very well.

■ But we don’t need C2
3 in order to go from C3

3 to C1
3 .
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Theorem.

Hi(Sal(C2
3)/Σ4; F3(±3)) ∼=





0, i = 0

F3, i = 1

F3 ⊕ F3, i = 2

F3, i = 3.

Note that

Hi(Sal(C1
3)/Σ4; F3(±3)) ∼=





0, i = 0

F3, i = 1 (βQ1(x)x)

F3, i = 2 (Q1(x)x)

0, i = 3.



Experimental Calculations: p ≥ 5 and k = 4

Introduction

Outline

Iterated Loop Spaces
and Little Cubes

The Salvetti Complex
of the Braid
Arrangement

Higher Dimensions

Other Arrangements?

The “Center-Of-Mass”
Arrangement Ct

k−1

Cohen-Kamiyama
Conjecture
Experimental
Calculations:
2-primary case
Experimental
Calculations:
2-primary case
Experimental
Calculations:
2-primary case
Experimental
Calculations:
2-primary case
Experimental
Calculations: odd
primary case
Experimental
Calculations: p = 3

and k = 4

Experimental
Calculations: p = 3

and k = 4

Experimental
Calculations: p ≥ 5

and k = 4

Experimental
Calculations: odd
primary case

Experimental
Calculations: odd
primary case

57 / 59

Theorem. If p ≥ 5, the map

H∗(M2(C, 4)/Σ4; Fp(±1)) ∼= H∗(Sal(C2
3)/Σ4; Fp(±1))

−→ H∗(Sal(C1
3)/Σ4; Fp(±1))

∼= H∗(F (C, 4)/Σ4; Fp(±1))

is an isomorphism.
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Conjecture. If p < k
2 , the inclusions

Ak−1 = C1
k−1 ⊂ C

2
k−1 ⊂ · · · ⊂ C

p
k−1

induce isomorphisms of homology groups

H∗(Mp(C, k)/Σk; Fp(±)) ∼= H∗(Sal(Cp
k−1)/Σk; Fp(±1))

∼=
−→ H∗(Sal(Cp−1

k−1)/Σk; Fp(±1))
∼=
−→ · · ·
∼=
−→ H∗(Sal(C1

k−1)/Σk; Fp(±1))
∼=
−→ H∗(Sal(Ak−1)/Σk; Fp(±1))
∼= H∗(F (C, k); Fp(±1)).



Experimental Calculations: odd primary case

Introduction

Outline

Iterated Loop Spaces
and Little Cubes

The Salvetti Complex
of the Braid
Arrangement

Higher Dimensions

Other Arrangements?

The “Center-Of-Mass”
Arrangement Ct

k−1

Cohen-Kamiyama
Conjecture
Experimental
Calculations:
2-primary case
Experimental
Calculations:
2-primary case
Experimental
Calculations:
2-primary case
Experimental
Calculations:
2-primary case
Experimental
Calculations: odd
primary case
Experimental
Calculations: p = 3

and k = 4

Experimental
Calculations: p = 3

and k = 4

Experimental
Calculations: p ≥ 5

and k = 4

Experimental
Calculations: odd
primary case

Experimental
Calculations: odd
primary case

59 / 59

Conjecture. If k
2 < p < k, the inclusions

Ak−1 = C1
k−1 ⊂ C

2
k−1 ⊂ · · · ⊂ C

k−p
k−1

induce isomorphisms of homology groups

H∗(Mp(C, k)/Σk; Fp(±))
∼=
−→ H∗(Sal(Cp

k−1)/Σk; Fp(±1))

= H∗(Sal(Ck−p
k−1)/Σk; Fp(±1))

∼=
−→ H∗(Sal(Ck−p−1

k−1 )/Σk; Fp(±1))
∼=
−→ · · ·
∼=
−→ H∗(Sal(C1

k−1)/Σk; Fp(±1))
∼=
−→ H∗(Sal(Ak−1)/Σk; Fp(±1))
∼= H∗(F (C, k); Fp(±1)).
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