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Cohomology jumping loci Characteristic varieties

Characteristic varieties
• X connected CW-complex with finite k -skeleton (k ≥ 1)
• G = π1(X , x0): a finitely generated group
• k field; Hom(G, k×) character variety

Definition
The characteristic varieties of X (over k):

V i
d (X ,k) = {ρ ∈ Hom(G, k×) | dimk Hi(X ,kρ) ≥ d},

for 0 ≤ i ≤ k and d > 0.

For each i , get stratification Hom(G,k×) ⊇ V i
1 ⊇ V i

2 ⊇ · · ·
If k ⊆ K extension: V i

d (X , k) = V i
d (X ,K) ∩ Hom(G, k×)

For G of type Fk , set: V i
d (G,k) := V i

d (K (G,1), k)

Note: Vd (X ,k) := V1
d (X ,k) = V1

d (π1(X ), k)
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Cohomology jumping loci Characteristic varieties

Let X ab → X be the maximal abelian cover.

Definition
The Alexander varieties of X (over k):

W i
d (X , k) = V (Ed−1(Hi(X ab, k))),

the subvariety of Spec Λ = Hom(G,k×) defined by the ideal of codim
d − 1 minors of a presentation matrix for Hi(X ab,k), viewed as module
over Λ = kH1(X ,Z).

Proposition (Papadima–S. 2008)⋃q
i=0 V

i
1(X ,k) =

⋃q
i=0W

i
1(X , k), ∀ 0 ≤ q ≤ k

=⇒ V1
1 (X ,C) \ {1} =W1

1 (X ,C) \ {1} [E. Hironaka 1997]
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Cohomology jumping loci Tangent cones

Tangent cones and exponential tangent cones

The homomorphism C→ C×, z 7→ ez induces

exp : Hom(G,C)→ Hom(G,C×), exp(0) = 1

Let W = V (I) be a Zariski closed subset in Hom(G,C×).

Definition
The tangent cone at 1 to W :

TC1(W ) = V (in(I))

The exponential tangent cone at 1 to W :

τ1(W ) = {z ∈ Hom(G,C) | exp(tz) ∈W , ∀t ∈ C}
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Cohomology jumping loci Tangent cones

Both types of tangent cones
are homogeneous subvarieties of Hom(G,C)

are non-empty iff 1 ∈W
depend only on the analytic germ of W at 1
commute with finite unions and arbitrary intersections

Moreover,
τ1(W ) ⊆ TC1(W )

I = if all irred components of W are subtori
I 6= in general

τ1(W ) is a finite union of rationally defined subspaces
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Cohomology jumping loci Tangent cones

Computing τ1(W )
Let W be a Zariski closed subset of (C×)n.
Since τ1 commutes with intersections, may assume W = V (f ), where

f =
∑
u∈S

cutu1
1 · · · t

un
n

is a non-zero Laurent polynomial, with f (1) = 0, and support S ⊆ Zn.
Let P be the set of partitions p = S1

∐
· · ·
∐

Sr of S, satisfying∑
u∈Si

cu = 0, for i = 1, . . . , r .

For each such partition p, set

L(p) := {z ∈ Cn | 〈u − v , z〉 = 0, ∀u, v ∈ Si , ∀1 ≤ i ≤ r}.

Clearly, L(p) is a rational linear subspace in Cn. Then:

τ1(W ) =
⋃

p∈P
L(p).
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Cohomology jumping loci Resonance varieties

Resonance varieties
Let A = H∗(X , k). If char k = 2, assume H1(X ,Z) has no 2-torsion.
Then: a ∈ A1 ⇒ a2 = 0. Get cochain complex (“Aomoto complex")

(A, ·a) : A0 a // A1 a // A2 // · · ·

Definition

The resonance varieties of X (over k):

Ri
d (X , k) = {a ∈ A1 | dimk H i(A, ·a) ≥ d}

Homogeneous subvarieties of A1 = H1(X ,k): Ri
1 ⊇ Ri

2 ⊇ · · ·

Theorem (Libgober 2002)

TC1(V i
d (X ,C)) ⊆ Ri

d (X ,C)

Equality does not hold in general (Matei–S. 2002)
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Cohomology jumping loci Tangent cone theorem

Formality

Definition
1 A group G is 1-formal if its Malcev Lie algebra, mG = Prim(Q̂G), is

quadratic.
2 A space X is formal if its minimal model is quasi-isomorphic to

(H∗(X ,Q),0).

X formal =⇒ π1(X ) is 1-formal.
X1, X2 formal =⇒ X1 × X2 and X1 ∨ X2 are formal
G1, G2 1-formal =⇒ G1 ×G2 and G1 ∗G2 are 1-formal
M1, M2 formal, closed n-manifolds =⇒ M1#M2 formal
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Cohomology jumping loci Tangent cone theorem

Tangent cone theorem

Theorem (Dimca–Papadima–S., Duke 2009)

If G is 1-formal, then exp : (R1
d (G,C),0)

'−→ (V1
d (G,C),1). Hence

τ1(V1
d (G,C)) = TC1(V1

d (G,C)) = R1
d (G,C)

In particular, R1
d (G,C) is a union of rationally defined subspaces in

H1(G,C) = Hom(G,C).

Example

Let G = 〈x1, x2, x3, x4 | [x1, x2], [x1, x4][x−2
2 , x3], [x−1

1 , x3][x2, x4]〉. Then

R1
1(G,C) = {x ∈ C4 | x2

1 − 2x2
2 = 0}

splits into subspaces over R but not over Q. Thus, G is not 1-formal.
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Cohomology jumping loci Tangent cone theorem

Example

X = F (Σg ,n): the configuration space of n labeled points of a
Riemann surface of genus g (a smooth, quasi-projective variety).
π1(X ) = Pg,n: the pure braid group on n strings on Σg .

Using computation of H∗(F (Σg ,n),C) by Totaro (1996), get

R1
1(P1,n,C) =

{
(x , y) ∈ Cn × Cn

∣∣∣∣ ∑n
i=1 xi =

∑n
i=1 yi = 0,

xiyj − xjyi = 0, for 1 ≤ i < j < n

}
For n ≥ 3, this is an irreducible, non-linear variety (a rational normal
scroll). Hence, P1,n is not 1-formal.
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BNSR invariants Σ-invariants

Bieri–Neumann–Strebel–Renz invariants

G finitely generated group C(G) Cayley graph.
χ : G→ R homomorphism Cχ(G) induced subgraph on vertex set
Gχ = {g ∈ G | χ(g) ≥ 0}.

Definition
Σ1(G) = {χ ∈ Hom(G,R) \ {0} | Cχ(G) is connected}

An open, conical subset of Hom(G,R) = H1(G,R), independent of
choice of generating set for G.

Definition

Σk (G,Z) = {χ ∈ Hom(G,R) \ {0} | the monoid Gχ is of type FPk}

Here, G is of type FPk if there is a projective ZG-resolution P• → Z,
with Pi finitely generated for all i ≤ k .
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BNSR invariants Σ-invariants

The BNSR invariants Σq(G,Z) form a descending chain of open
subsets of Hom(G,R) \ {0}.
Σk (G,Z) 6= ∅ =⇒ G is of type FPk .
Σ1(G,Z) = Σ1(G).
The Σ-invariants control the finiteness properties of normal
subgroups N /G with G/N is abelian:

N is of type FPk ⇐⇒ S(G,N) ⊆ Σk (G,Z)

where S(G,N) = {χ ∈ Hom(G,R) \ {0} | χ(N) = 0}.
In particular:

ker(χ : G� Z) is f.g.⇐⇒ {±χ} ⊆ Σ1(G)
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BNSR invariants Σ-invariants

Let X be a connected CW-complex with finite 1-skeleton, G = π1(X ).

Definition

The Novikov-Sikorav completion of ZG:

ẐGχ =
{
λ ∈ ZG | {g ∈ suppλ | χ(g) < c} is finite, ∀c ∈ R

}
ẐGχ is a ring, contains ZG as a subring =⇒ ẐGχ is a ZG-module.

Definition

Σq(X ,Z) = {χ ∈ Hom(G,R) \ {0} | Hi(X , ẐG−χ) = 0, ∀ i ≤ q}

Bieri: G of type FPk =⇒ Σq(G,Z) = Σq(K (G,1),Z), ∀q ≤ k .
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BNSR invariants Tangent cone bound

Exponential tangent cone upper bound

Theorem (Papadima–S. 2008)
If X has finite k-skeleton, then, for every q ≤ k,

Σq(X ,Z) ⊆
(
τR

1
( ⋃

i≤q

V i
1(X ,C)

)){

. (*)

Thus: Each Σ-invariant is contained in the complement of a union of
rationally defined subspaces. Bound is sharp:

Example
Let G be a finitely generated nilpotent group. Then

Σq(G,Z) = Hom(G,R) \ {0}, V q
1 (G,C) = {1}, ∀q

and so (*) holds as an equality.
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BNSR invariants Resonance bound

Resonance upper bound
Corollary

Suppose exp : (Ri
1(X ,C),0)

'−→ (V i
1(X ,C),1), for i ≤ q. Then:

Σq(X ,Z) ⊆
(⋃

i≤q

Ri
1(X ,R)

){

.

Corollary

Suppose G is a 1-formal group. Then Σ1(G) ⊆ R1
1(G,R){.

In particular, if R1
1(G,R) = H1(G,R), then Σ1(G) = ∅.

Example

The above inclusion may be strict: Let G = 〈a,b | aba−1 = b2〉.
Then G is 1-formal, Σ1(G) = (−∞,0), yet R1

1(G,R) = {0}.
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Applications Kahler manifolds

Kähler and quasi-Kähler manifolds

A compact, connected, complex manifold M is Kähler if there is a
Hermitian metric h such that ω = Im(h) is a closed 2-form.
A manifold X is called quasi-Kähler if X = X \ D, where X is
Kähler and D is a divisor with normal crossings.

Formality properties:
M Kähler⇒ M is formal

(Deligne, Griffiths, Morgan, Sullivan 1975)
X = CPn \ {hyperplane arrangement} ⇒ X is formal

(Brieskorn 1973)
X quasi-projective, W1(H1(X ,C)) = 0⇒ π1(X ) is 1-formal

(Morgan 1978)
X = CPn \ {hypersurface} ⇒ π1(X ) is 1-formal

(Kohno 1983)
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Applications Kahler manifolds

Theorem (Arapura 1997)

Let X = X \ D be a quasi-Kähler manifold. Then:

1 Each component of V1
1 (X ) is either an isolated unitary character,

or of the form ρ · f ∗(H1(C,C×)), for some torsion character ρ and
some admissible map f : X → C.

2 If either X = X or b1(X ) = 0, then each component of V i
d (X ) is of

the form ρ · f ∗(H1(T ,C×)), for some unitary character ρ and some
holomorphic map f : X → T to a complex torus.

Here, f : X → C is admissible (or, a pencil) if f is a holomorphic,
surjective map to a connected, smooth complex curve C, and there is
a holomorphic, surjective extension f : X → C with connected fibers.

Corollary

All components of V i
d (X ,C) passing through 1 are subtori of

Hom(G,C×), provided i = d = 1, or X is Kähler, or W1(H1(X ,C)) = 0.
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Applications Kahler manifolds

Let X be a quasi-Kähler manifold, G = π1(X ).

Theorem (Dimca–Papadima–S., Duke 2009)

Let {Vα}α be the irred components of V1
1 (G) containing 1. Set

T α = TC1(Vα). Then:

1 Each T α is a p-isotropic subspace of H1(G,C), of dim ≥ 2p + 2,
for some p = p(α) ∈ {0,1}.

2 If α 6= β, then T α
⋂
T β = {0}.

Assume further that G is 1-formal. Let {Rα}α be the irred components
of R1

1(G). Then:

3 {T α}α = {Rα}α.

4 R1
d (G) = {0} ∪

⋃
α : dimRα>d+p(α)Rα.
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Applications Kahler manifolds

Let X be a quasi-Kähler manifold, G = π1(X ).

Theorem (Papadima–S. 2008)

1 Σ1(G) ⊆ TCR
1 (V1

1 (G,C)){.

2 If X is Kähler, or W1(H1(X ,C)) = 0, then R1
1(G,R) is a finite union

of rationally defined linear subspaces, and Σ1(G) ⊆ R1
1(G,R){.

Example

Assumption from (2) is necessary. E.g., let X be the complex
Heisenberg manifold: bundle C× → X → (C×)2 with e = 1. Then:

1 X is a smooth quasi-projective variety;
2 G = π1(X ) is nilpotent (and not 1-formal);
3 Σ1(G) = R2 \ {0} and R1

1(G,R) = R2.
Thus, Σ1(G) 6⊆ R1

1(G,R){.
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Applications Kahler manifolds

For Kähler manifolds, we can say precisely when the resonance upper
bound for Σ1 is attained.

Theorem (Papadima–S. 2008)

Let M be a compact Kähler manifold with b1(M) > 0, and G = π1(M).
The following are equivalent:

1 Σ1(G) = R1
1(G,R){.

2 If f : M → C is an elliptic pencil, then f has no multiple fibers.

Proof uses results of Arapura, DPS, and Delzant.
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Applications Toric complexes

Toric complexes and right-angled Artin groups
Definition
Let L be simplicial complex on n vertices. The associated toric
complex, TL, is the subcomplex of the n-torus obtained by deleting the
cells corresponding to the missing simplices of L.

Special case of “generalized moment angle complex”.
π1(TL) is the right-angled Artin group associated to graph Γ = L(1):

GΓ = 〈v ∈ V (Γ) | vw = wv if {v ,w} ∈ E(Γ)〉.

K (GΓ,1) = T∆Γ
, where ∆Γ is the flag complex of Γ.

H∗(TL,k) is the exterior Stanley-Reisner ring of L, with generators
the duals v∗, and relations the monomials corresponding to the
missing simplices of L.
TL is formal, and so GΓ is 1-formal.
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Applications Toric complexes

Example

Γ = K n ⇒ GΓ = Fn

Γ = Kn ⇒ GΓ = Zn

Γ = Γ′
∐

Γ′′ ⇒ GΓ = GΓ′ ∗GΓ′′

Γ = Γ′ ∗ Γ′′ ⇒ GΓ = GΓ′ ×GΓ′′

Using a result of Aramova, Avramov, Herzog (2000), we get:

Theorem (Papadima–S., Adv. Math. 2009)

Ri
d (TL,k) =

⋃
W⊂VP

σ∈LV\W
dimk eHi−1−|σ|(lkLW

(σ),k)≥d

kW,

where LW is the subcomplex induced by L on W, and lkK (σ) is the link
of a simplex σ in a subcomplex K ⊆ L.

Similar formula holds for V i
d (TL,k), with kW replaced by (k×)W.

In particular: exp : (Ri
d (TL,C),0)

'−→ (V i
d (TL,C),1).
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Applications Toric complexes

Non-propagation of resonance
Remark
Given a graded algebra A, we say resonance “propagates" if

Ri
1(A) ⊆ Rk

1(A), ∀i ≤ k , provided Aj 6= 0, for i ≤ j ≤ k

If A is the Orlik-Solomon algebra, then resonance propagates.
But this is not the case for the exterior Stanley-Reisner ring.

Example

Let Γ = Γ1
∐

Γ2, where Γj = Knj and nj ≥ 2, e.g.:��	�

�� ��	�

�� ��	�

�� ��	�

��
Then:

Ri
1(GΓ,k) =

{
kn1+n2 , if i = 1,
kn1 × {0} ∪ {0} × kn2 , if 1 < i ≤ min(n1,n2).
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Applications Toric complexes

Using (1) resonance upper bound, and (2) computation of Σk (GΓ,Z)
by Meier, Meinert, VanWyk (1998), we get:

Corollary (Papadima-S. 2008)

Σk (TL,Z) ⊆
( ⋃

i≤k

Ri
1(TL,R)

){

Σk (GΓ,Z) =
( ⋃

i≤k

Ri
1(T∆Γ

,R)
){

Theorem (Dimca–Papadima–S. Duke 2009)

The following are equivalent:

1 GΓ is a quasi-Kähler group
2 Γ = Kn1,...,nr := K n1 ∗ · · · ∗ K nr

3 GΓ = Fn1 × · · · × Fnr

1 GΓ is a Kähler group
2 Γ = K2r

3 GΓ = Z2r
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Applications Toric complexes

Bestvina–Brady groups: NΓ = ker(ν : GΓ � Z), where ν(v) = 1

Theorem (Dimca–Papadima–S., JAG 2008)

The following are equivalent:

1 NΓ is a quasi-Kähler group
2 Γ is either a tree, or

Γ = Kn1,...,nr , with some ni = 1,
or all ni ≥ 2 and r ≥ 3.

1 NΓ is a Kähler group
2 Γ = K2r+1

3 NΓ = Z2r

Example
Γ = K2,2,2  GΓ = F2 × F2 × F2
NΓ = the Stallings group = group of the X3 arrangement
NΓ is finitely presented, but H3(NΓ,Z) has infinite rank, so NΓ not FP3.

Alex Suciu (Northeastern University) Cohomology jumping loci Sapporo, August 2009 26 / 35



Applications 3-manifolds

3-manifolds

Question (Goldman–Donaldson 1989, Reznikov 1993)
Which 3-manifold groups are Kähler groups?

Reznikov (2002) and Hernández-Lamoneda (2001) gave partial
solutions.

Theorem (Dimca–S., JEMS 2009)

Let G be the fundamental group of a closed 3-manifold. Then G is a
Kähler group⇐⇒ G is a finite subgroup of O(4), acting freely on S3.

Idea of proof: compare the resonance varieties of (orientable)
3-manifolds to those of Kähler manifolds.
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Applications 3-manifolds

Proposition

Let M be a closed, orientable 3-manifold. Then:
1 H1(M,C) is not 1-isotropic.

2 If b1(M) is even, then R1(M,C) = H1(M,C).

On the other hand, it follows from [DPS 2009] that:

Proposition

Let M be a compact Kähler manifold with b1(M) 6= 0. If
R1(M,C) = H1(M,C), then H1(M,C) is 1-isotropic.

But G = π1(M), with M Kähler⇒ b1(G) even.
Thus, if G is both a 3-mfd group and a Kähler group⇒ b1(G) = 0.
Using work of Fujiwara (1999) and Reznikov (2002) on Kazhdan’s
property (T), as well as Perelman (2003)⇒ G finite subgroup of O(4).
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Applications 3-manifolds

Question
Which 3-manifold groups are quasi-Kähler groups?

Theorem (Dimca–Papadima–S. 2008)

Let G be the fundamental group of a closed, orientable 3-manifold.
Assume G is 1-formal. Then the following are equivalent:

1 m(G) ∼= m(π1(X )), for some quasi-Kähler manifold X.

2 m(G) ∼= m(π1(M)), where M is either S3, #nS1 × S2, or S1 × Σg .
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Applications Hyperplane arrangements

Hyperplane arrangements

Let A be an arrangement of hyperplanes in C`, with complement
X = C` \

⋃
H∈AH, and group G = π1(X ).

Resonance varieties R1
d (X ,C) are very much understood.

Propagation of resonance: Ri
1(X ,C) ⊆ Rj

1(X ,C), ∀i < j ≤ `.
Tangent cone formula:

exp : (Ri
d (X ,C),0)

'−→ (V i
d (X ,C),1), ∀i ,d > 0

In particular, TC1(V i
d (X ,C)) = Ri

d (X ,C).
Components of V1

d (X ,C) passing through 1 are combinatorially
determined.
V1

1 (X ,C) may contain translated subtori, e.g., if A is the deleted
B3 arrangement.
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Applications Hyperplane arrangements

Using (1) res upper bound and (2) propagation of resonance, we get:

Theorem

Σq(X ,Z) ⊆ Rq
1(X ,R){

Problem

Let G = G(A) be an arrangement group.
1 Compute the BNS invariant Σ1(G).
2 Does the equality Σ1(G) = −Σ1(G) hold?
3 Even stronger, does the equality Σ1(G) = R1(G,R){ hold?
4 If it doesn’t, is the BNS invariant combinatorially determined?

Remark
For a complexified real arrangement, Σ1(G) = −Σ1(G), which is
consistent with the symmetry property of R1(G,R){.
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Applications Hyperplane arrangements

Boundary manifold
Let A = {`0, . . . , `n} be an arrangement of lines in CP2. The boundary
manifold of A is the closed, orientable 3-manifold M = M(A) obtained
by taking the boundary of a regular neighborhood of

⋃n
i=0 `i in CP2.

Theorem (Cohen–S., GTM 08, Dimca–Papadima–S., IMRN 08)

Let A = {`0, . . . , `n} be an arrangement of lines in CP2, and let M be
the corresponding boundary manifold. The following are equivalent:

1 The manifold M is formal.
2 The group G = π1(M) is 1-formal.

3 TC1(V1(G,C)) = R1(G,C).

4 The group G is quasi-projective.
5 A is either a pencil (and so M = ]nS1 × S2), or A is a near-pencil

(and so M = S1 × Σn−1).
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Applications Hyperplane arrangements

Milnor fibration

f ∈ C[z0, . . . , zd ] weighted homogeneous polynomial of degree n,
with positive integer weights (w0, . . . ,wd ).
V (f ) the zero-set of f : Cd+1 → C.
X = Cd+1 \ V (f ) its complement.
Milnor fibration: f : X → C∗.
Milnor fiber: F = f−1(1). It is a smooth affine variety, with the
homotopy type of a d-dimensional, finite CW-complex. When
(V (f ),0) is reduced, F is connected.
Geometric monodromy: h : F → F ,
(z0, . . . , zd ) 7→ (ξw0z0, . . . , ξ

wd zd ), where ξ = exp(2πi/n).
If f is homogeneous, F is a regular, n-fold cyclic cover of
U = CPd \ V (f ).
Hence, we may compute b1(F ) from V1

d (U,C).

Alex Suciu (Northeastern University) Cohomology jumping loci Sapporo, August 2009 33 / 35



Applications Hyperplane arrangements

Question (Papadima–S., BMSR 2009)

Is the Milnor fiber of a reduced polynomial always 1-formal?

Example (Zuber 2009)

Let A be the monomial arrangement in C3, defined by the polynomial

f (z0, z1, z2) = (z3
0 − z3

1 )(z3
0 − z3

2 )(z3
1 − z3

2 )

Then TC1(V1(F ,C)) 6= R1(F ,C).
Hence, by the Tangent Cone Theorem, F is not 1-formal.
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Applications Hyperplane arrangements

Example (Fernández de Bobadilla 2009)

Let

f (z0, . . . , z10) = z0z2z3z5z6 +z0z2z4z7 +z1z2z4z8 +z1z3z5z9 +z1z3z4z10

f is weighted homogeneous of degree 5, with weights
(1,1,1,1,1,1,1,2,2,2,2).
The Milnor fiber F is homotopy equivalent to the complement of
the coordinate subspace arrangement A = {H1, . . . ,H5} in C6,
with Hi = {xi = xi+1 = 0}.
F is 2-connected.
As shown in [Denham–S., PAMQ 2007], there are classes
α, β, γ ∈ H3(F ,Z) = Z5 such that the triple Massey product
〈α, β, γ〉 ∈ H8(F ,Z) = Z is non-zero.
Hence, F is not formal.
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