

Arrangements and Combinatorics

Richard P. Stanley

M.I.T.

Arrangements and Combinatorics $-p_{c}$

An introduction to hyperplane arrangements, in *Geometric Combinatorics* (E. Miller, V. Reiner, and B. Sturmfels, eds.), IAS/Park City Mathematics Series, vol. 13, American Mathematical Society, Providence, RI, 2007, pp. 389–496.

math.mit.edu/~rstan/arrangements/arr.html

Arrangements and Combinatorics – p. 2

A poset (partially ordered set) is a set P and relation \leq satisfying $\forall x, y, z \in P$:

- (P1) (reflexivity) $x \le x$
- (P2) (antisymmetry) If $x \le y$ and $y \le x$, then x = y.

(P3) (transitivity) If $x \le y$ and $y \le z$, then $x \le z$.

Arrangements and Combinatorics – p. 3

K: a field

 \mathcal{A} : a (finite) arrangement in $V = K^n$

 $\mathbf{rk}(\mathcal{A})$ (rank of \mathcal{A}) : dimension of space spanned by normals to $H \in \mathcal{A}$

Subspaces X, Y, W

Y = any complement to subspace X of K^n spanned by normals to $H \in A$

$$\boldsymbol{W} = \{ v \in V : v \cdot y = 0 \ \forall y \in Y \}.$$

If char(K) = 0 can take W = X.

Essentialization

$\operatorname{codim}_W(H \cap W) = 1, \ \forall H \in \mathcal{A}$ Essentialization of \mathcal{A} :

$\mathbf{ess}(\mathcal{A}) = \{ H \cap W : H \in \mathcal{A} \},\$

an arrangment in W.

Arrangements and Combinatorics $-p_{1}$

Essentialization

$\operatorname{codim}_{W}(H \cap W) = 1, \ \forall H \in \mathcal{A}$ Essentialization of \mathcal{A} : $\operatorname{ess}(\mathcal{A}) = \{H \cap W : H \in \mathcal{A}\},\$

an arrangment in W.

$$\operatorname{rk}(\operatorname{ess}(\mathcal{A})) = \operatorname{rk}(\mathcal{A})$$

Essentialization

$\operatorname{codim}_W(H \cap W) = 1, \ \forall H \in \mathcal{A}$ Essentialization of \mathcal{A} :

$$\mathbf{ess}(\mathcal{A}) = \{ H \cap W : H \in \mathcal{A} \},\$$

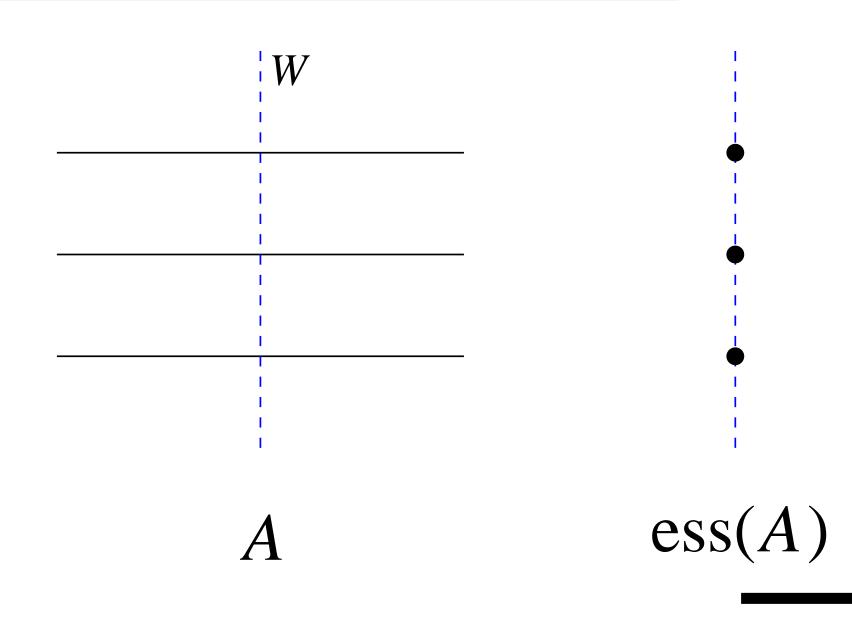
an arrangment in W.

$$\operatorname{rk}(\operatorname{ess}(\mathcal{A})) = \operatorname{rk}(\mathcal{A})$$

 $\label{eq:rk} \begin{array}{l} \mathcal{A} \text{ is essential if } ess(\mathcal{A}) = \mathcal{A} \text{, i.e.,} \\ \mathsf{rk}(\mathcal{A}) = \dim(\mathcal{A}) \text{.} \end{array}$

Arrangements and Combinatorics -p, θ

Example of essentialization



Arrangements and Combinatorics $-p_{1}$

The intersection poset

$L(\mathcal{A})$: **nonempty** intersections of hyperplanes in \mathcal{A} , ordered by **reverse** inclusion

Include V as the bottom element of L(A), denoted $\hat{\mathbf{0}}$.

Note. $L(\mathcal{A}) \cong L(ess(\mathcal{A}))$

The intersection poset

$L(\mathcal{A})$: **nonempty** intersections of hyperplanes in \mathcal{A} , ordered by **reverse** inclusion

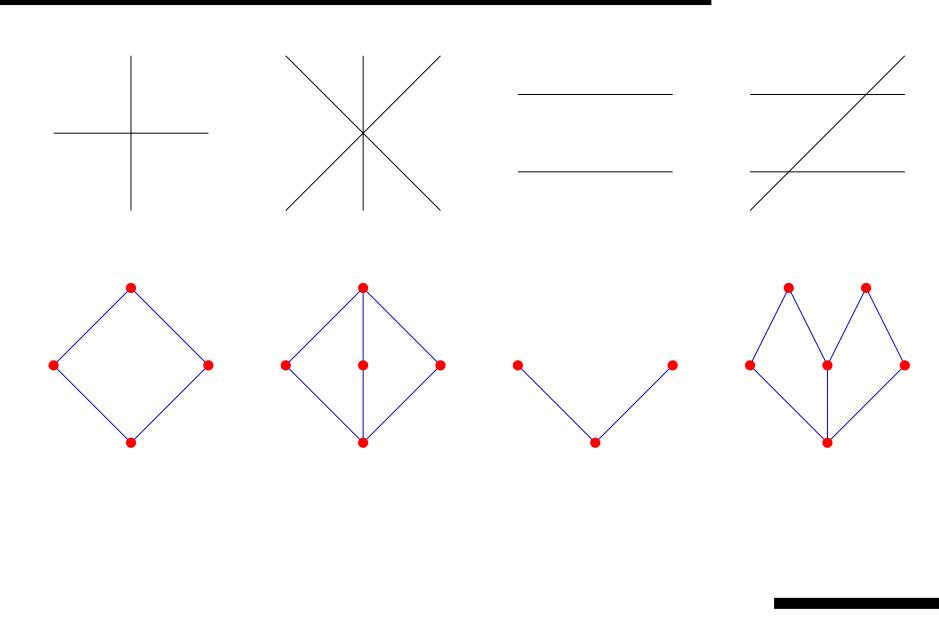
Include V as the bottom element of L(A), denoted $\hat{\mathbf{0}}$.

Note. $L(\mathcal{A}) \cong L(ess(\mathcal{A}))$

 $L(\mathcal{A})$ is the most important combinatorial object associated with \mathcal{A} .

Arrangements and Combinatorics – p. 8

Examples of intersection posets



Chain of length *k*: $x_0 < x_1 < \cdots < x_k$

Graded poset of rank n: every maximal chain has length n

Rank function: $\rho(x)$ is the length k of longest chain $x_0 < x_1 < \cdots < x_k = x$.

Rank function on $L(\mathcal{A})$

Proposition. L(A) is graded of rank equal to rk(A). Rank function:

$$\operatorname{rk}(x) = \operatorname{codim}(x) = n - \dim(x),$$

where dim(x) is the dimension of x as an affine subspace of V.

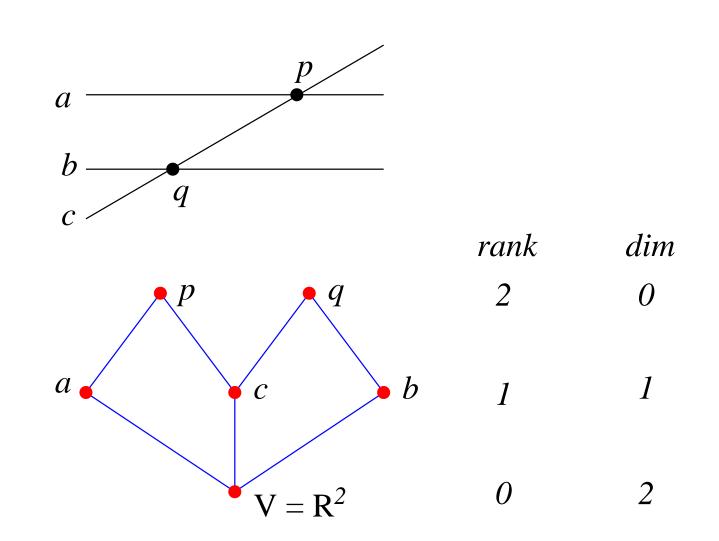
Rank function on $L(\mathcal{A})$

Proposition. L(A) is graded of rank equal to rk(A). Rank function:

 $\operatorname{rk}(x) = \operatorname{codim}(x) = n - \dim(x),$

where dim(x) is the dimension of x as an affine subspace of V.

Proof. Straightforward.



P is locally finite: every interval $[x, y] = \{z : x \le z \le y\}$ is finite. Int(*P*) = set of (nonempty) intervals of *P*

P is locally finite: every interval $[x, y] = \{z : x \le z \le y\}$ is finite. Int(*P*) = set of (nonempty) intervals of *P* Define $\mu = \mu_P$: Int(*P*) $\rightarrow \mathbb{Z}$ (the Möbius function of *P*) by:

$$\mu(x, x) = 1, \text{ for all } x \in P$$

$$\mu(x, y) = -\sum_{x \le z < y} \mu(x, z), \text{ for all } x < y \text{ in } P.$$

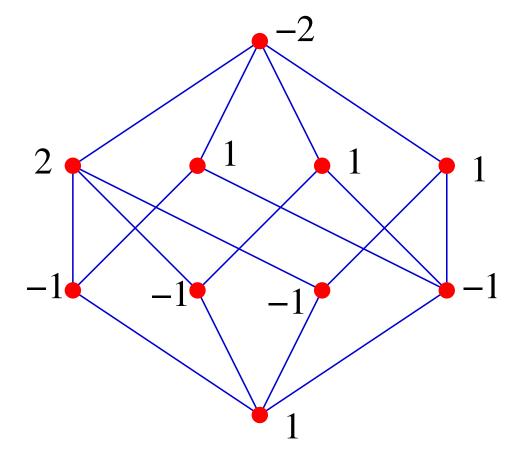
P is locally finite: every interval $[x, y] = \{z : x \le z \le y\}$ is finite. Int(*P*) = set of (nonempty) intervals of *P* Define $\mu = \mu_P$: Int(*P*) $\rightarrow \mathbb{Z}$ (the Möbius function of *P*) by:

$$\mu(x,x) = 1, \text{ for all } x \in P$$

$$\mu(x,y) = -\sum_{x \le z < y} \mu(x,z), \text{ for all } x < y \text{ in } P.$$

Write $\mu(\mathbf{x}) = \mu(\hat{0}, x)$.

Example of Möbius function



Numbers denote $\mu(x)$.

Möbius inversion formula

P = finite poset

 $f, g \colon P \to L$ (a field, or even just an abelian group)

Theorem. Equivalent:

$$f(x) = \sum_{y \ge x} g(y), \text{ for all } x \in P$$
$$g(x) = \sum_{y \ge x} \mu(x, y) f(y), \text{ for all } x \in P.$$

Arrangements and Combinatorics $-p_{1}$

Möbius inversion formula

P = finite poset

 $f, g \colon P \to L$ (a field, or even just an abelian group)

Theorem. Equivalent:

$$f(x) = \sum_{y \ge x} g(y), \text{ for all } x \in P$$
$$g(x) = \sum_{y \ge x} \mu(x, y) f(y), \text{ for all } x \in P.$$

Proof. Straightforward.

The characteristic polynomial

Definition. The *characteristic polynomial* $\chi_{\mathcal{A}}(t)$ of the arrangement \mathcal{A} is defined by

$$\boldsymbol{\chi}_{\boldsymbol{\mathcal{A}}}(\boldsymbol{t}) = \sum_{x \in L(\boldsymbol{\mathcal{A}})} \mu(x) t^{\dim(x)}.$$

The characteristic polynomial

Definition. The *characteristic polynomial* $\chi_{\mathcal{A}}(t)$ of the arrangement \mathcal{A} is defined by

$$\boldsymbol{\chi}_{\mathcal{A}}(\boldsymbol{t}) = \sum_{x \in L(\mathcal{A})} \mu(x) t^{\dim(x)}$$

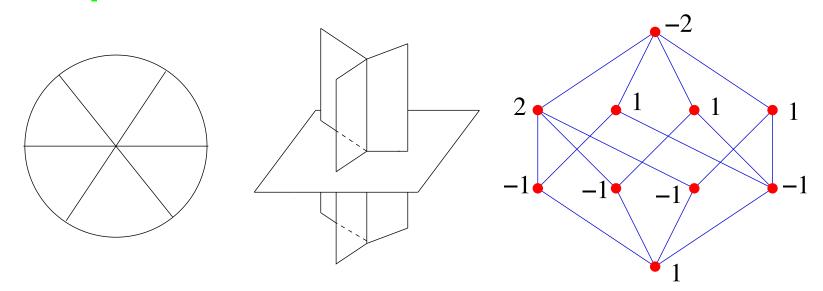
Note. x = V contributes t^n , and each $H \in \mathcal{A}$ contributes $-t^{n-1}$. Hence

$$\chi_{\mathcal{A}}(t) = t^n - (\#\mathcal{A})t^{n-1} + \cdots$$

Arrangements and Combinatorics -p, 16

An example

Example.



$$\chi_{\mathcal{A}}(t) = t^3 - 4t^2 + 5t - 2 = (t - 1)^2(t - 2).$$

Arrangements and Combinatorics – p. 17

Suppose all hyperplanes in A are linearly independent, and #A = n. Then all intersections are nonempty and distinct, so

 $L(\mathcal{A}) \cong \boldsymbol{B_n},$

the **boolean algebra** of all subsets of $[n] = \{1, ..., n\}$, ordered by inclusion.

Arrangements and Combinatorics – p. 18

Characteristic polynomial of B_n

Easy induction argument: $\mu(\hat{0}, x) = (-1)^{n-\dim x}$. Hence

$$\chi_{\mathcal{A}}(t) = \sum_{i=0}^{n} \binom{n}{i} (-1)^{n-i} t^{i} = (t-1)^{n}.$$

ons Reg

Let $K = \mathbb{R}$. Region (or chamber) of \mathcal{A} : connected component of $\mathbb{R}^n - \bigcup_{H \in \mathcal{A}} H$.

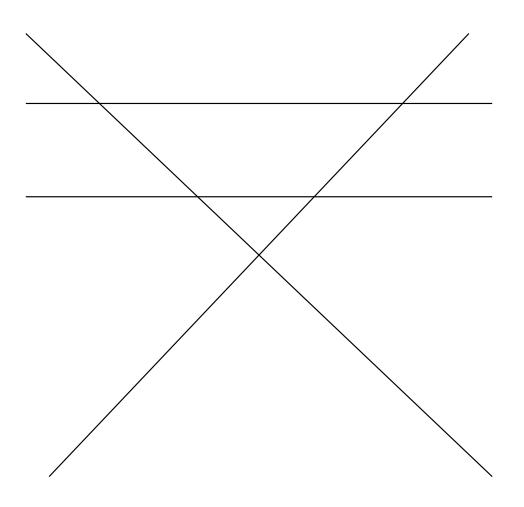
 $r(\mathcal{A}) =$ number of regions of \mathcal{A}

A region R of A is **relatively bounded** if it becomes bounded in ess(A).

 $b(\mathcal{A}) =$ number of relatively bounded regions of \mathcal{A}

Arrangements and Combinatorics – p. 20

Example of $r(\mathcal{A})$ and $b(\mathcal{A})$



 $r(\mathcal{A}) = 10, \quad b(\mathcal{A}) = 2$

Arrangements and Combinatorics $-p_{1}2^{2}$

Zaslavsky's theorem (1975)

Current goal:

Theorem. Let \mathcal{A} be an arrangement of rank r in \mathbb{R}^n . Then

$$r(\mathcal{A}) = (-1)^n \chi_{\mathcal{A}}(-1)$$
$$b(\mathcal{A}) = (-1)^r \chi_{\mathcal{A}}(1).$$

Arrangements and Combinatorics $-p_{1}$ 22

Zaslavsky's theorem (1975)

Current goal:

Theorem. Let A be an arrangement of rank r in \mathbb{R}^n . Then

$$r(\mathcal{A}) = (-1)^n \chi_{\mathcal{A}}(-1)$$
$$b(\mathcal{A}) = (-1)^r \chi_{\mathcal{A}}(1).$$

Proof will be by induction on #A (the number of regions).

Arrangements and Combinatorics – p. 22

Subarrangements and restrictions

subarrangement of A: a subset $B \subseteq A$

For $x \in L(\mathcal{A})$ define

$\mathcal{A}_{x} = \{ H \in \mathcal{A} : x \subseteq H \} \subseteq \mathcal{A}$

Subarrangements and restrictions

subarrangement of A: a subset $B \subseteq A$

For $x \in L(\mathcal{A})$ define

$$\mathcal{A}_{x} = \{ H \in \mathcal{A} : x \subseteq H \} \subseteq \mathcal{A}$$

Also define the **restriction** of A to x to be the arrangement in the affine space A:

$$\mathcal{A}^{x} = \{ x \cap H \neq \emptyset : H \in \mathcal{A} - \mathcal{A}_{x} \}.$$

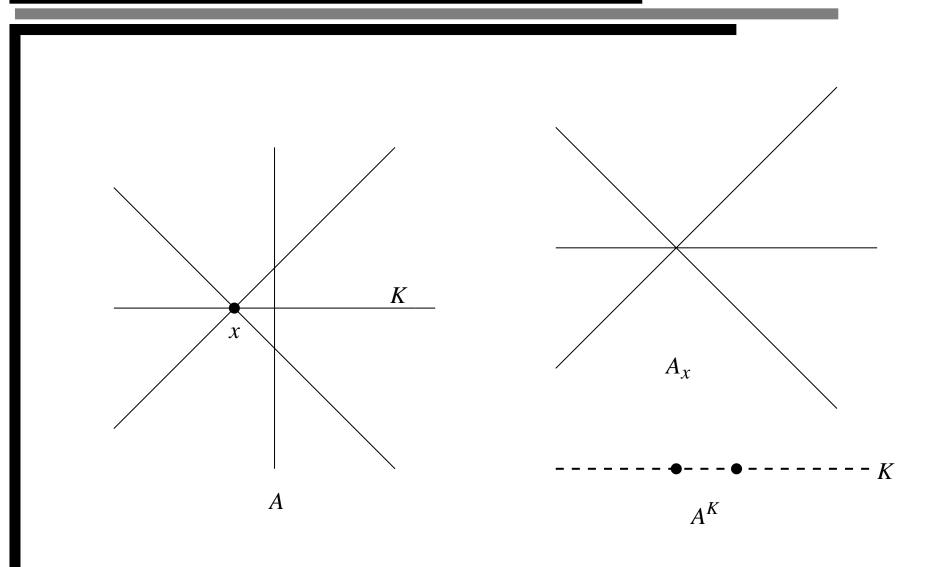
 $L(\mathcal{A}_x)$ and $L(\mathcal{A}^x)$

Note that if $x \in L(\mathcal{A})$, then

$$L(\mathcal{A}_x) \cong \Lambda_x := \{ y \in L(\mathcal{A}) : y \leq x \}$$
$$L(\mathcal{A}^x) \cong V_x := \{ y \in L(\mathcal{A}) : y \geq x \}.$$

Arrangements and Combinatorics $-p_{1}2^{2}$

Example of A_x and A^x



Arrangements and Combinatorics $-p_{1}$ 25

Triple of arrangments

Choose $H_0 \in \mathcal{A}$. Define

 $\mathcal{A}' = \mathcal{A} - \{H_0\}$

Triple of arrangments

Choose $H_0 \in \mathcal{A}$. Define

$$\mathcal{A}' = \mathcal{A} - \{H_0\}$$

$$\mathcal{A}'' = \mathcal{A}^{H_0}.$$

Call $(\mathcal{A}, \mathcal{A}', \mathcal{A}'')$ a triple of arrangements with distinguished hyperplane H_0 .

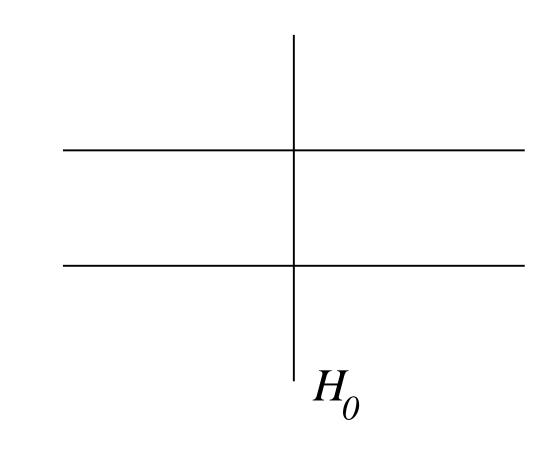
Arrangements and Combinatorics – p. 26

Recurrence for $r(\mathcal{A})$ and $b(\mathcal{A})$

Lemma. Let (A, A', A'') be a triple of real arrangements with distinguished hyperplane H_0 . Then

 $r(\mathcal{A}) = r(\mathcal{A}') + r(\mathcal{A}'')$ $b(\mathcal{A}) = \begin{cases} b(\mathcal{A}') + b(\mathcal{A}''), & \text{if } \operatorname{rk}(\mathcal{A}) = \operatorname{rk}(\mathcal{A}') \\ 0, & \text{if } \operatorname{rk}(\mathcal{A}) = \operatorname{rk}(\mathcal{A}') + 1. \end{cases}$

The case $rk(\mathcal{A}) = rk(\mathcal{A}') + 1$



Note that r(A) equals r(A') plus the number of regions of A' cut into two regions by H_0 . Easy to give a bijection between regions of A' cut in two by H_0 and regions of A'', proving

$$r(\mathcal{A}) = r(\mathcal{A}') + r(\mathcal{A}'').$$

Note that r(A) equals r(A') plus the number of regions of A' cut into two regions by H_0 . Easy to give a bijection between regions of A' cut in two by H_0 and regions of A'', proving

$$r(\mathcal{A}) = r(\mathcal{A}') + r(\mathcal{A}'').$$

Proof of recurrence for b(A) analogous. \Box

Arrangements and Combinatorics – p. 29

The deletion-restriction recurrence

Lemma. Let $(\mathcal{A}, \mathcal{A}', \mathcal{A}'')$ be a triple of real arrangements. Then

$$\chi_{\mathcal{A}}(t) = \chi_{\mathcal{A}'}(t) - \chi_{\mathcal{A}''}(t).$$

Lemma. Let $(\mathcal{A}, \mathcal{A}', \mathcal{A}'')$ be a triple of real arrangements. Then

$$\chi_{\mathcal{A}}(t) = \chi_{\mathcal{A}'}(t) - \chi_{\mathcal{A}''}(t).$$

Zaslavsky's theorem ($r(A) = (-1)^n \chi_A(-1)$) is an immediate consequence of above lemma and the recurrence r(A) = r(A') + r(A'').

Arrangements and Combinatorics – p. 30

Lemma. Let $(\mathcal{A}, \mathcal{A}', \mathcal{A}'')$ be a triple of real arrangements. Then

$$\chi_{\mathcal{A}}(t) = \chi_{\mathcal{A}'}(t) - \chi_{\mathcal{A}''}(t).$$

Zaslavsky's theorem ($r(A) = (-1)^n \chi_A(-1)$) is an immediate consequence of above lemma and the recurrence r(A) = r(A') + r(A'').

The proof for b(A) is analogous but a little more complicated.

Arrangements and Combinatorics -p, 30

Whitney's theorem

To prove:
$$\chi_{\mathcal{A}}(t) = \chi_{\mathcal{A}'}(t) - \chi_{\mathcal{A}''}(t)$$
.

Basic tool (H. Whitney, 1935, for linear arrangements). A subarrangement $\mathcal{B} \subseteq \mathcal{A}$ is central if $\bigcap_{H \in \mathcal{B}} H \neq \emptyset$.

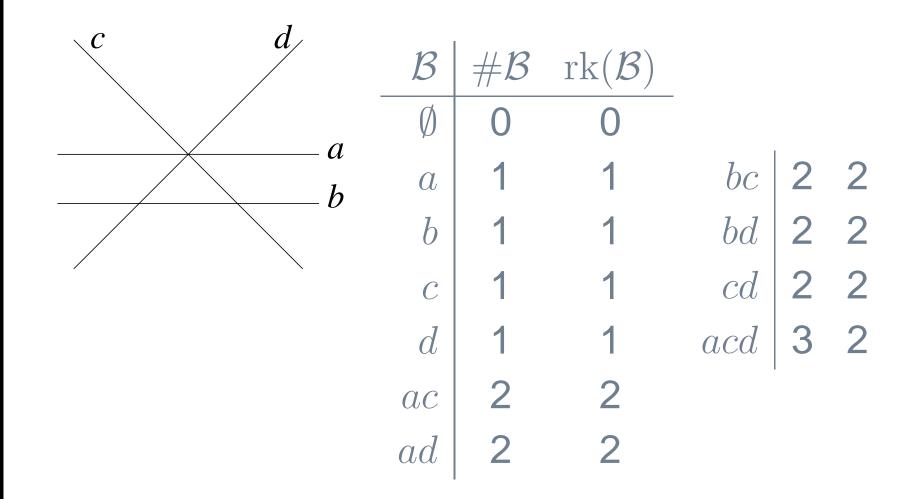
To prove:
$$\chi_{\mathcal{A}}(t) = \chi_{\mathcal{A}'}(t) - \chi_{\mathcal{A}''}(t)$$
.

Basic tool (H. Whitney, 1935, for linear arrangements). A subarrangement $\mathcal{B} \subseteq \mathcal{A}$ is central if $\bigcap_{H \in \mathcal{B}} H \neq \emptyset$.

Theorem. Let \mathcal{A} be an arrangement in an n-dimensional vector space. Then

$$\chi_{\mathcal{A}}(t) = \sum_{\substack{\mathcal{B} \subseteq \mathcal{A} \\ \mathcal{B} \text{ central}}} (-1)^{\#\mathcal{B}} t^{n-\mathrm{rk}(\mathcal{B})}.$$

Example of Whitney's theorem



 $\Rightarrow \chi_{\mathcal{A}}(t) = t^2 - 4t + (5 - 1) = t^2 - 4t + 4.$

Easy fact: Every interval $[\hat{0}, z]$ of $L(\mathcal{A})$ is a **lattice**, i.e., any two elements x, y have a **meet** (greatest lower bound) $x \land y$ and join (least upper bound) $x \lor y$.

Easy fact: Every interval $[\hat{0}, z]$ of $L(\mathcal{A})$ is a **lattice**, i.e., any two elements x, y have a **meet** (greatest lower bound) $x \land y$ and **join** (least upper bound) $x \lor y$.

Lemma (crosscut theorem for $L(\mathcal{A})$). For all $z \in L(\mathcal{A})$,

$$\mu(z) = \sum_{\substack{\mathcal{B} \subseteq \mathcal{A}_z \\ z = \bigcap_{H \in \mathcal{B}} H}} (-1)^{\#\mathcal{B}}.$$

Proof of Whitney's theorem

Lemma (crosscut theorem for $L(\mathcal{A})$). For all $z \in L(\mathcal{A})$,

Proof of Whitney's theorem

Lemma (crosscut theorem for $L(\mathcal{A})$). For all $z \in L(\mathcal{A})$,

$$\mu(z) = \sum_{\substack{\mathcal{B} \subseteq \mathcal{A}_z \\ z = \bigcap_{H \in \mathcal{B}} H}} (-1)^{\#\mathcal{B}}.$$

Note that $z = \bigcap_{H \in \mathcal{B}} H$ implies that $\operatorname{rk}(\mathcal{B}) = n - \dim z$. Multiply both sides by $t^{\dim(z)}$ and sum over z to obtain

$$\chi_{\mathcal{A}}(t) = \sum_{\substack{\mathcal{B} \subseteq \mathcal{A} \\ \mathcal{B} \text{ central}}} (-1)^{\#\mathcal{B}} t^{n-\mathrm{rk}(\mathcal{B})}. \quad \Box$$

Alternative formulation

Later: coefficients of $\chi_A(t)$ alternate in sign. More strongly, if rk(x) = i then

 $(-1)^i \mu(x) > 0.$

Alternative formulation

Later: coefficients of $\chi_A(t)$ alternate in sign. More strongly, if rk(x) = i then

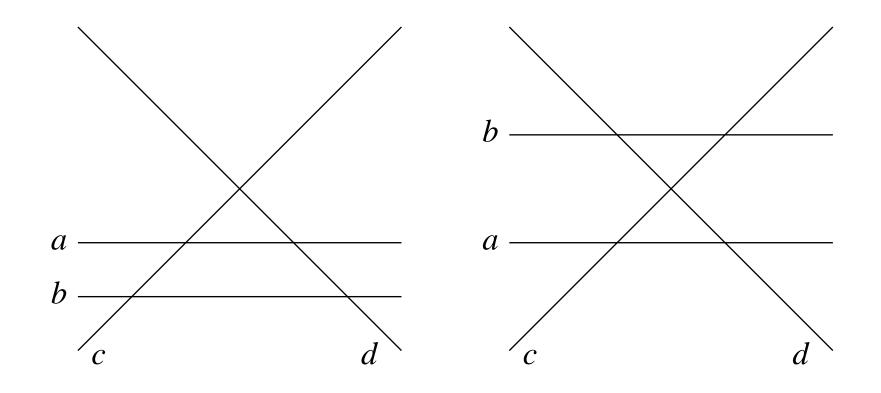
 $(-1)^i\mu(x) > 0.$

Thus:

$$r(\mathcal{A}) = \sum_{x \in L_{\mathcal{A}}} |\mu(x)|$$
$$b(\mathcal{A}) = \left| \sum_{x \in L_{\mathcal{A}}} \mu(x) \right|$$

Corollary. Let A be a real arrangement. Then r(A) and b(A) depend only on L(A).

Corollary. Let A be a real arrangement. Then r(A) and b(A) depend only on L(A).



$\boldsymbol{\mathcal{R}}(\mathcal{A})$: set of regions of \mathcal{A}

Definition. A (closed) **face** of a real arrangement \mathcal{A} is a set

 $\emptyset \neq \mathbf{F} = \overline{R} \cap x,$

where $R \in \mathcal{R}(\mathcal{A})$, $x \in L(\mathcal{A})$, and $\overline{\mathbf{R}}$ = closure of R.

Arrangements and Combinatorics – p. 37

$\boldsymbol{\mathcal{R}}(\mathcal{A})$: set of regions of \mathcal{A}

Definition. A (closed) **face** of a real arrangement \mathcal{A} is a set

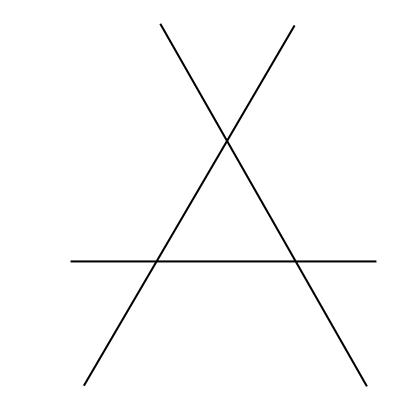
$$\emptyset \neq \mathbf{F} = \overline{R} \cap x,$$

where $R \in \mathcal{R}(\mathcal{A})$, $x \in L(\mathcal{A})$, and $\overline{\mathbf{R}}$ = closure of R.

 $f_k(\mathcal{A})$: number of k-dimensional faces (k-faces) of \mathcal{A}

Arrangements and Combinatorics $-p_{1}37$

Example of $f_i(\mathcal{A})$



 $f_0(\mathcal{A}) = 3, f_1(\mathcal{A}) = 9, f_2(\mathcal{A}) = r(\mathcal{A}) = 7$

Arrangements and Combinatorics – p. 38

Formula for $f_k(\mathcal{A})$

 $f_k(\mathcal{A}) = \sum |\mu(x,y)|$ $x \in L(\mathcal{A}) \qquad y \ge x$ $\operatorname{corank}(x) = k$

Formula for $f_k(\mathcal{A})$

 $f_k(\mathcal{A}) = \sum |\mu(x, y)|$ $x \in L(\mathcal{A}) \quad y \ge x$ $\operatorname{corank}(x) = k$

Proof. Easy consequence of Zaslavsky's formula for r(A). \Box

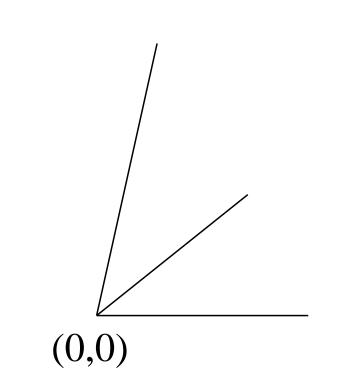
Zonotopes

Let $X, Y \subseteq K^n$

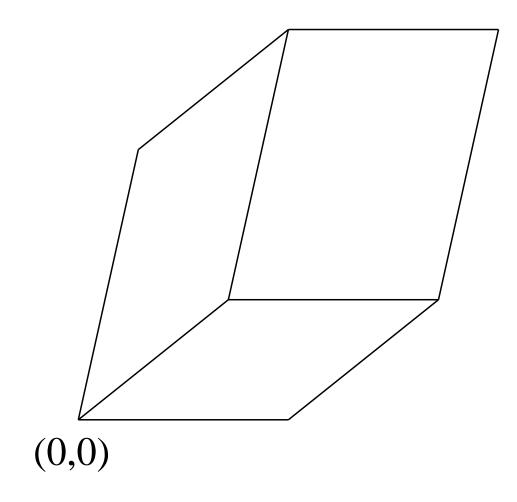
Minkowski sum: $X + Y = \{x + y : x \in X, y \in Y\}$

zonotope: a Minkowski sum $L_1 + \cdots + L_k$ of line segments in \mathbb{R}^n

Example of zonotope



Example of zonotope



Characterization of zonotopes

Theorem. Let \mathcal{P} be a convex polytope. The following are equivalent.

- \mathcal{P} is a zonotope.
- Every face of \mathcal{P} is centrally-symmetric.
- Every 2-dimensional face of \mathcal{P} is centrally-symmetric.

The zonotope of a real arrangement

- A: a real central arrangement
- n_1, \ldots, n_k : normals to $H \in \mathcal{A}$
- L_i : line segment from 0 to n_i
- Z(A): the zonotope $L_1 + \cdots + L_k$

Number of faces of $Z(\mathcal{A})$

Theorem. Let $f_i(Z(\mathcal{A}))$ denote the number of *i*-dimensional faces of $Z(\mathcal{A})$. Then

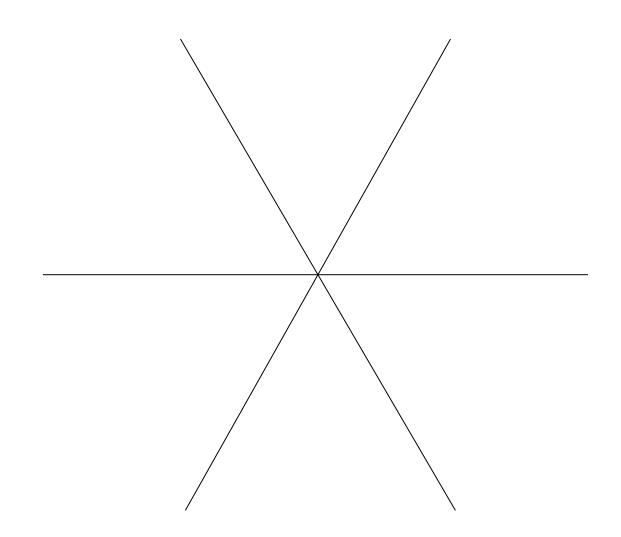
$f_i(Z(\mathcal{A})) = f_{n-i}(\mathcal{A}).$

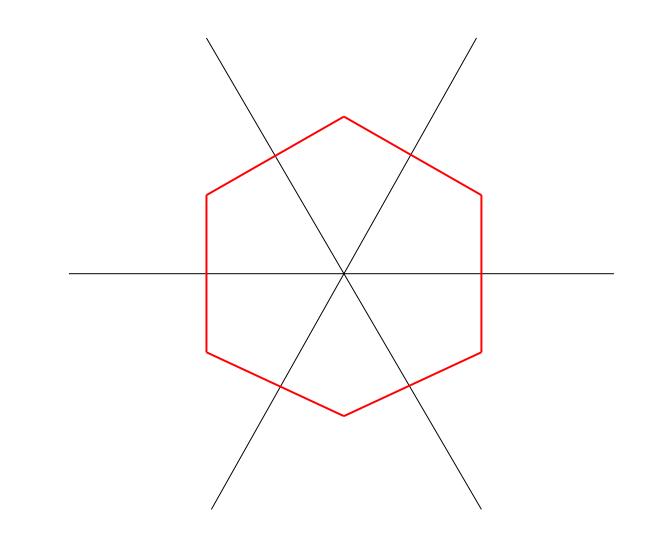
Number of faces of $Z(\mathcal{A})$

Theorem. Let $f_i(Z(\mathcal{A}))$ denote the number of *i*-dimensional faces of $Z(\mathcal{A})$. Then

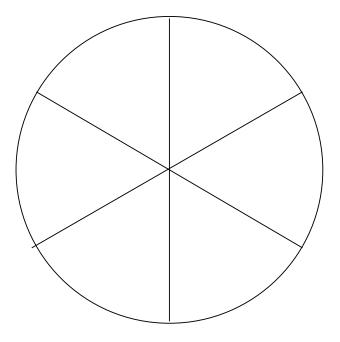
$f_i(Z(\mathcal{A})) = f_{n-i}(\mathcal{A}).$

Informally, Z(A) is a "dual object" to A.

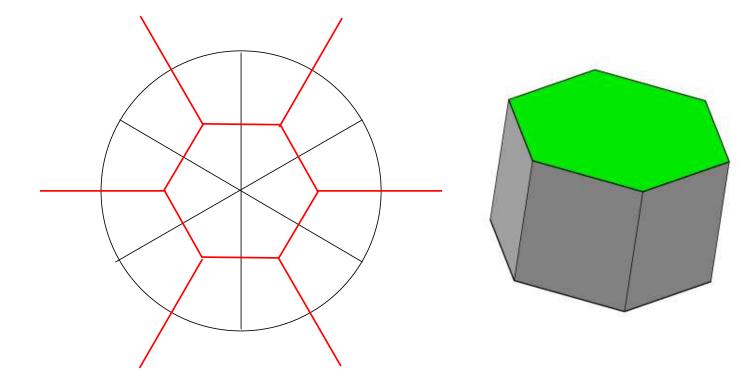




Another example

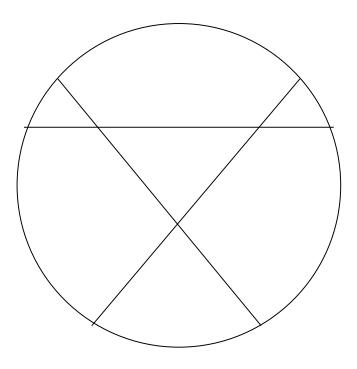


Another example

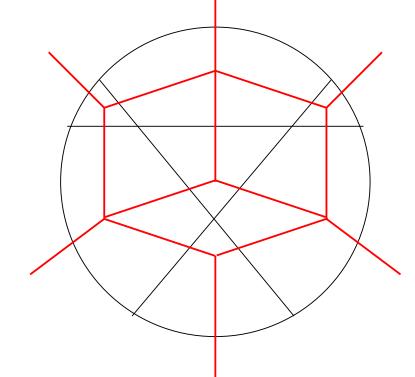


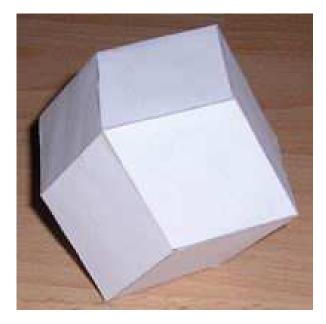
hexagonal prism

Another example



Another example





rhombic dodecahedron

Arrangements and Combinatorics $-p_{1}47$

G: graph on vertex set [n] (no loops or multiple edges)

G: graph on vertex set [n] (no loops or multiple edges)

E(G): edge set of G

G: graph on vertex set [n] (no loops or multiple edges)

E(G): edge set of G

 \mathcal{A}_{G} : arrangement in K^{n} with hyperplanes $x_{i} = x_{j}$ if $ij \in E(G)$

G: graph on vertex set [n] (no loops or multiple edges)

E(G): edge set of G

 A_G : arrangement in K^n with hyperplanes $x_i = x_j$ if $ij \in E(G)$

If $G = K_n$, the complete graph on [n], then \mathcal{A}_{K_n} is the braid arrangement \mathcal{B}_n .

Arrangements and Combinatorics – p. 48

partition of a finite set S: $\pi = \{B_1, \ldots, B_k\}$, such that

$$B_i \neq \emptyset, \quad \bigcup B_i = S, \quad B_i \cap B_j = \emptyset \ (i \neq j)$$

- B_i is a **block** of π .
- Π_S : set of partitions of S

Let $\pi, \sigma \in \Pi_S$. Then π is a refinement of σ , written $\pi \leq \sigma$, if every block of π is contained in a block of σ .

Arrangements and Combinatorics – p. 49

G: graph on vertex set [n]

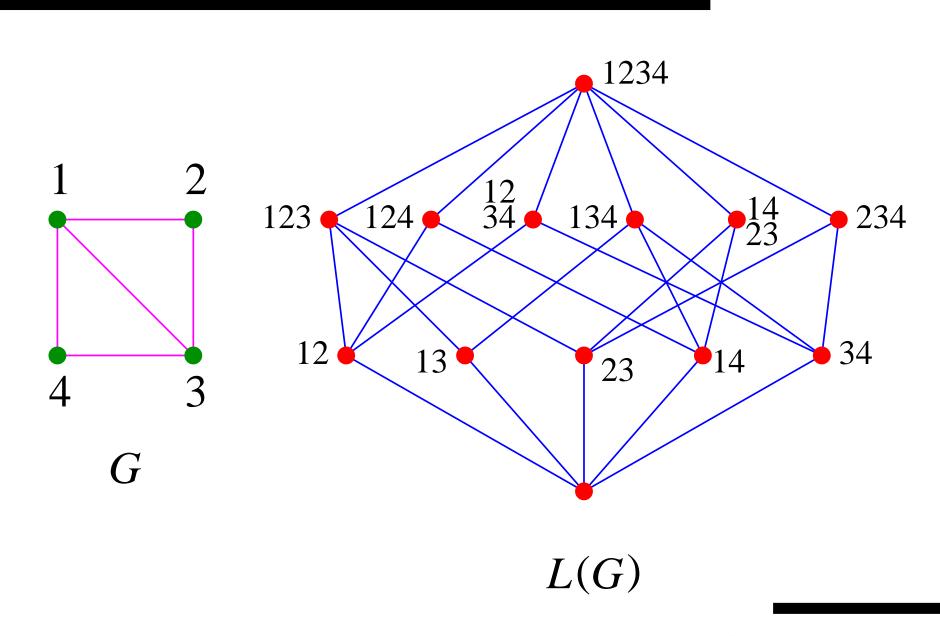
connected partition of [n]: a partition of [n] for which each block induces a connected subgraph of G

G: graph on vertex set [n]

connected partition of [n]: a partition of [n] for which each block induces a connected subgraph of G

bond lattice L(G) of G: set of connected partitions of [n], ordered by refinement

Example of bond lattice



Arrangements and Combinatorics – p. 5²

Bond lattices and intersection posets

- **G**: graph with bond lattice L(G)
- \mathcal{A}_G : graphical arrangement
- **Theorem.** $L(G) \cong L(\mathcal{A}(G))$

Bond lattices and intersection posets

- **G**: graph with bond lattice L(G)
- \mathcal{A}_G : graphical arrangement

Theorem. $L(G) \cong L(\mathcal{A}(G))$

Proof. Let H_{ij} be the hyperplane defined by $x_i = x_j, ij \in E(G)$. Let $x \in L(A)$. Define vertices $i \sim j$ if $x \subseteq H_{ij}$. Then \sim is an equivalence relation whose equivalence classes form a connected partition of [n], etc. \Box

coloring of G is $\kappa \colon [n] \to \mathbb{P} = \{1, 2, \dots\}$

coloring of G is $\kappa : [n] \to \mathbb{P} = \{1, 2, ...\}$ proper coloring: $\kappa(i) \neq \kappa(j)$ if $ij \in E(G)$

coloring of G is $\kappa : [n] \to \mathbb{P} = \{1, 2, ...\}$ proper coloring: $\kappa(i) \neq \kappa(j)$ if $ij \in E(G)$ chromatic polynomial: For $q \ge 1$, $\chi_G(q) = \#\{\text{proper } \kappa : [n] \to [q]\}$

coloring of G is $\kappa : [n] \to \mathbb{P} = \{1, 2, ...\}$ proper coloring: $\kappa(i) \neq \kappa(j)$ if $ij \in E(G)$ chromatic polynomial: For $q \ge 1$, $\chi_G(q) = \#\{\text{proper } \kappa : [n] \to [q]\}$

Easy fact: $\chi_G(q) \in \mathbb{Z}[q]$

 $\chi_{\mathcal{A}(G)}(t)$

Theorem. $\chi_{\mathcal{A}(G)}(t) = \chi_G(t)$

 $\chi_{\mathcal{A}(G)}$

Theorem.
$$\chi_{\mathcal{A}(G)}(t) = \chi_G(t)$$

Proof. Let $\sigma \in L(G)$. $\chi_{\sigma}(q) = \text{number of } f: [n] \rightarrow [q] \text{ such that:}$ a, b in same block of $\sigma \Rightarrow f(a) = f(b)$ a, b in different blocks, $ab \in E \Rightarrow f(a) \neq f(b)$.

Continuation of proof

Given any $f: [n] \rightarrow [q]$, there is a unique $\sigma \in L(G)$ such that f is enumerated by $\chi_{\sigma}(q)$. Hence $\forall \pi \in L(G)$,

$$q^{\#\pi} = \sum_{\sigma \ge \pi} \chi_{\sigma}(q).$$

Arrangements and Combinatorics $-p_{1}55$

Continuation of proof

Given any $f: [n] \rightarrow [q]$, there is a unique $\sigma \in L(G)$ such that f is enumerated by $\chi_{\sigma}(q)$. Hence $\forall \pi \in L(G)$,

$$q^{\#\pi} = \sum_{\sigma \ge \pi} \chi_{\sigma}(q).$$

Möbius inversion $\Rightarrow \chi_{\pi}(q) = \sum_{\sigma \geq \pi} q^{\#\sigma} \mu(\pi, \sigma).$

Continuation of proof

Given any $f: [n] \rightarrow [q]$, there is a unique $\sigma \in L(G)$ such that f is enumerated by $\chi_{\sigma}(q)$. Hence $\forall \pi \in L(G)$,

$$q^{\#\pi} = \sum_{\sigma \ge \pi} \chi_{\sigma}(q).$$

Möbius inversion $\Rightarrow \chi_{\pi}(q) = \sum_{\sigma \geq \pi} q^{\#\sigma} \mu(\pi, \sigma).$

Note $\chi_{\hat{0}}(q) = \chi_G(q)$. \Box

Characteristic polynomial of \mathcal{B}_n

Recall: $\mathcal{B}_n = \mathcal{A}(K_n)$ (braid arrangement)

Characteristic polynomial of \mathcal{B}_n

Recall: $\mathcal{B}_n = \mathcal{A}(K_n)$ (braid arrangement)

$L_{\mathcal{B}_n} \cong \Pi_n,$

the lattice of all partitions of [n] (ordered by refinement)

Characteristic polynomial of \mathcal{B}_n

Recall: $\mathcal{B}_n = \mathcal{A}(K_n)$ (braid arrangement)

$$L_{\mathcal{B}_n}\cong \Pi_n,$$

the lattice of all partitions of [n] (ordered by refinement)

Clearly
$$\chi_{K_n}(q) = q(q-1)\cdots(q-n+1).$$

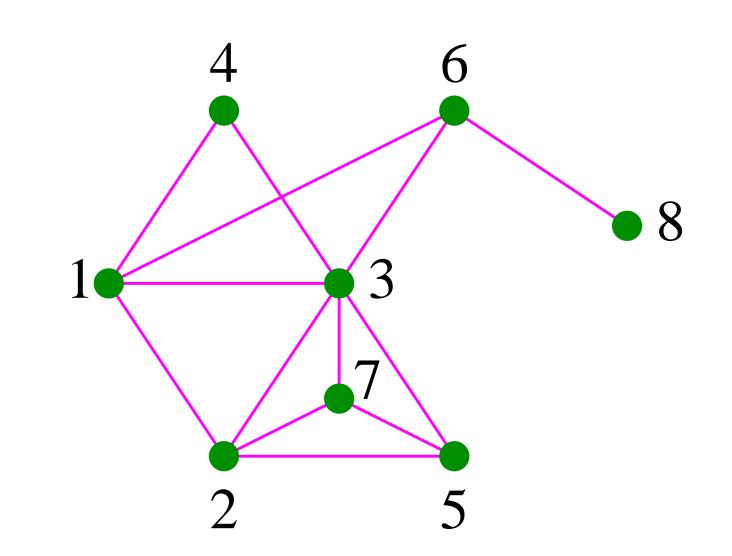
 $\Rightarrow \chi_{\mathcal{B}_n}(t) = t(t-1)\cdots(t-n+1).$

Arrangements and Combinatorics -p.56

A graph *G* is chordal (triangulated, rigid circuit) if the vertices can be ordered v_1, \ldots, v_n so that for all *i*, v_i is connected to a clique (complete subgraph) of the restriction of *G* to $\{v_1, \ldots, v_{i-1}\}$. A graph *G* is chordal (triangulated, rigid circuit) if the vertices can be ordered v_1, \ldots, v_n so that for all *i*, v_i is connected to a clique (complete subgraph) of the restriction of *G* to $\{v_1, \ldots, v_{i-1}\}$.

Known fact: *G* is chordal if and only if every cycle of length at least four has a chord.

Example of a chordal graph



Chordal graph coloring

Let v_1, \ldots, v_n be a vertex ordering so that for all i, v_i is connected to a clique of the restriction G_{i-1} of G to $\{v_1, \ldots, v_{i-1}\}$.

Chordal graph coloring

Let v_1, \ldots, v_n be a vertex ordering so that for all i, v_i is connected to a clique of the restriction G_{i-1} of G to $\{v_1, \ldots, v_{i-1}\}$.

Let a_i be the number of vertices of G_{i-1} to which v_i is connected (so $a_1 = 0$). Once v_1, \ldots, v_{i-1} are (properly) colored, there are $q - a_i$ ways to color v_i . Hence

Chordal graph coloring

Let v_1, \ldots, v_n be a vertex ordering so that for all i, v_i is connected to a clique of the restriction G_{i-1} of G to $\{v_1, \ldots, v_{i-1}\}$.

Let a_i be the number of vertices of G_{i-1} to which v_i is connected (so $a_1 = 0$). Once v_1, \ldots, v_{i-1} are (properly) colored, there are $q - a_i$ ways to color v_i . Hence

$$\chi_G(q) = (q - a_1)(q - a_2) \cdots (q - a_n).$$

Arrangements and Combinatorics – p. 59

Orientation of *G*: assignment \mathfrak{o} of a direction $i \rightarrow j$ or $j \rightarrow i$ to each edge.

Acyclic orientation: an orientation with no directed cycles

-1) $\chi_G(\cdot$

$R_{\mathfrak{o}} = \{ (x_1, \dots, x_n) \in \mathbb{R}^n : x_i < x_j \text{ whenever } i \to j \text{ in } \mathfrak{o} \}.$

Arrangements and Combinatorics $-p_{1}6^{2}$

 χ_G

 $R_{\mathfrak{o}} = \{ (x_1, \dots, x_n) \in \mathbb{R}^n : x_i < x_j \text{ whenever } i \to j \text{ in } \mathfrak{o} \}.$

Then $R_{\mathfrak{o}}$ is a region of $\mathcal{A}(G)$, and conversely. (Conditions are consistent because \mathfrak{o} is acyclic.)

Arrangements and Combinatorics – p. 6²

 $\chi_G($

 $R_{\mathfrak{o}} = \{ (x_1, \dots, x_n) \in \mathbb{R}^n : x_i < x_j \text{ whenever } i \to j \text{ in } \mathfrak{o} \}.$

Then $R_{\mathfrak{o}}$ is a region of $\mathcal{A}(G)$, and conversely. (Conditions are consistent because \mathfrak{o} is acyclic.) **ao**(*G*): number of acyclic orientations of *G*

Theorem. $r(A_G) = (-1)^n \chi_G(-1) = ao(G).$

Arrangements and Combinatorics – p. 6²

 $\chi_G(-$

 $R_{\mathfrak{o}} = \{ (x_1, \dots, x_n) \in \mathbb{R}^n : x_i < x_j \text{ whenever } i \to j \text{ in } \mathfrak{o} \}.$

Then R_o is a region of $\mathcal{A}(G)$, and conversely. (Conditions are consistent because o is acyclic.) **ao**(*G*): number of acyclic orientations of *G*

Theorem. $r(A_G) = (-1)^n \chi_G(-1) = ao(G).$

This proof is due to Greene (1977).

Arrangements and Combinatorics – p. 6²

 $-1)^i \mu(x,y)$

Goal: interpret $(-1)^i \mu(x, y)$ combinatorially, where $i = \operatorname{rank}(x, y)$.

 $^{\imath}\mu(x,y)$

Goal: interpret $(-1)^i \mu(x, y)$ combinatorially, where $i = \operatorname{rank}(x, y)$.

For simplicity we deal only with hyperplane arrangements, though the "right" level of generality is **matroid theory**.

A: central arrangement

circuit: a minimal linearly dependent subset of ${\cal A}$

 H_1, H_2, \ldots, H_m : ordering of A

A: central arrangement

circuit: a minimal linearly dependent subset of ${\cal A}$

 H_1, H_2, \ldots, H_m : ordering of \mathcal{A}

broken circuit: a set $C - \{H\}$, where *C* is a circuit and *H* the last element of *C* in the above ordering

Arrangements and Combinatorics – p. 63

A: central arrangement

circuit: a minimal linearly dependent subset of ${\cal A}$

 H_1, H_2, \ldots, H_m : ordering of \mathcal{A}

broken circuit: a set $C - \{H\}$, where *C* is a circuit and *H* the last element of *C* in the above ordering

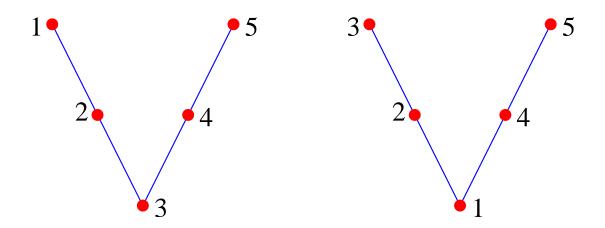
broken circuit complex:

 $BC(\mathcal{A}) = \{ F \subseteq \mathcal{A} : S \text{ contains no broken circuit} \}$

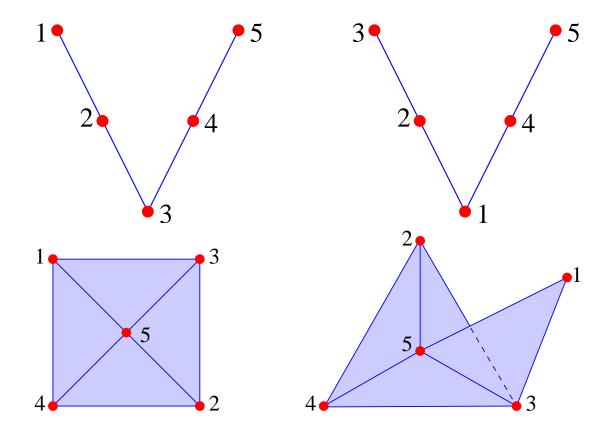
Arrangements and Combinatorics – p. 63

Note: $BC(\mathcal{A})$ is a simplicial complex, i.e., $F \in BC(\mathcal{A}), G \subseteq F \Rightarrow G \in BC(\mathcal{A}).$

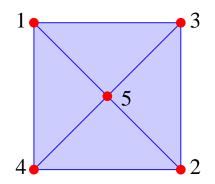
Note: $BC(\mathcal{A})$ is a simplicial complex, i.e., $F \in BC(\mathcal{A}), G \subseteq F \Rightarrow G \in BC(\mathcal{A}).$

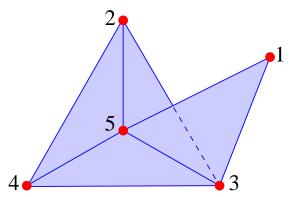


Note: $BC(\mathcal{A})$ is a simplicial complex, i.e., $F \in BC(\mathcal{A}), G \subseteq F \Rightarrow G \in BC(\mathcal{A}).$

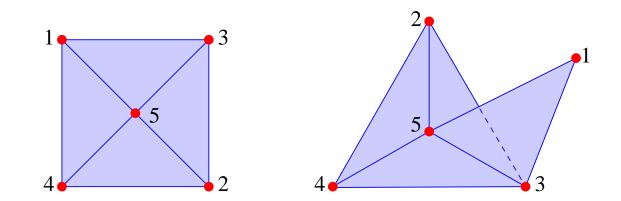


Example (continued)





Example (continued)

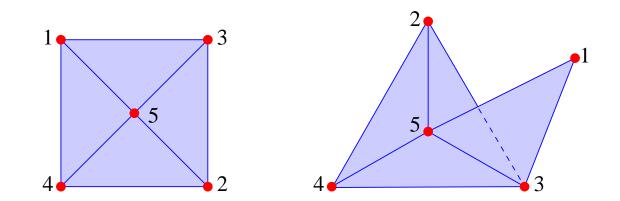


 $f_i = f_i(BC(\mathcal{A}))$: # *i*-dim. faces of BC(\mathcal{A})

$$f_{-1} = 1, f_0 = 5, f_1 = 8, f_2 = 4$$

Arrangements and Combinatorics $-p_{1}$ 65

Example (continued)



 $f_i = f_i(BC(\mathcal{A}))$: # *i*-dim. faces of BC(\mathcal{A})

$$f_{-1} = 1, f_0 = 5, f_1 = 8, f_2 = 4$$

 $\chi_A(t) = t^3 - 5t^2 + 8t - 4$

Arrangements and Combinatorics -p.65

$$L = L_{\mathcal{A}}$$

y covers x in L: x < y, $\exists x < z < y$ $\mathcal{E}(L)$: edges of Hasse diagram of L, i.e,

 $\mathcal{E}(L) = \{(x, y) : y \text{ covers } x\}$

Labelings

$\boldsymbol{\lambda} \colon \mathcal{E}(L) \to \mathbb{P}$ is a labeling of L

Arrangements and Combinatorics $-p_{1}67$

$\boldsymbol{\lambda} \colon \mathcal{E}(L) \to \mathbb{P}$ is a labeling of L

If C: $x = x_0 < x_1 < \cdots < x_k = y$ is a saturated chain from x to y (i.e., each x_{i+1} covers x_i), define

$$\boldsymbol{\lambda}(\boldsymbol{C}) = (\lambda(x_0, x_1), \lambda(x_1, x_2), \dots, \lambda(x_{k-1}, x_k)))$$

$\boldsymbol{\lambda} \colon \mathcal{E}(L) \to \mathbb{P}$ is a labeling of L

If C: $x = x_0 < x_1 < \cdots < x_k = y$ is a saturated chain from x to y (i.e., each x_{i+1} covers x_i), define

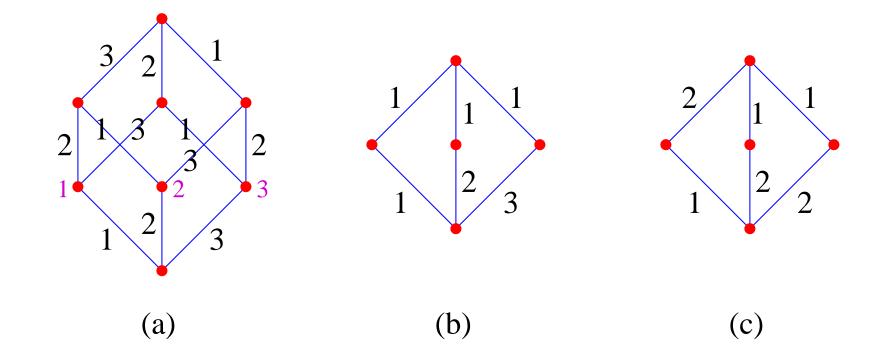
$$\boldsymbol{\lambda}(\boldsymbol{C}) = (\lambda(x_0, x_1), \lambda(x_1, x_2), \dots, \lambda(x_{k-1}, x_k))$$

\boldsymbol{C} is increasing if

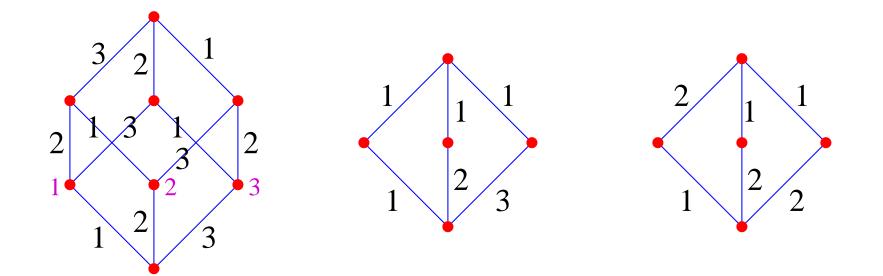
$$\lambda(x_0, x_1) \leq \lambda(x_1, x_2) \leq \cdots \leq \lambda(x_{k-1}, x_k).$$

Arrangements and Combinatorics – p. 67

E-labelings



E-labelings



(a) (b) (c) **E-labeling**: a labeling for which every interval [x, y] has a unique increasing chain.

Arrangements and Combinatorics – p. 68

Labeling and Möbius functions

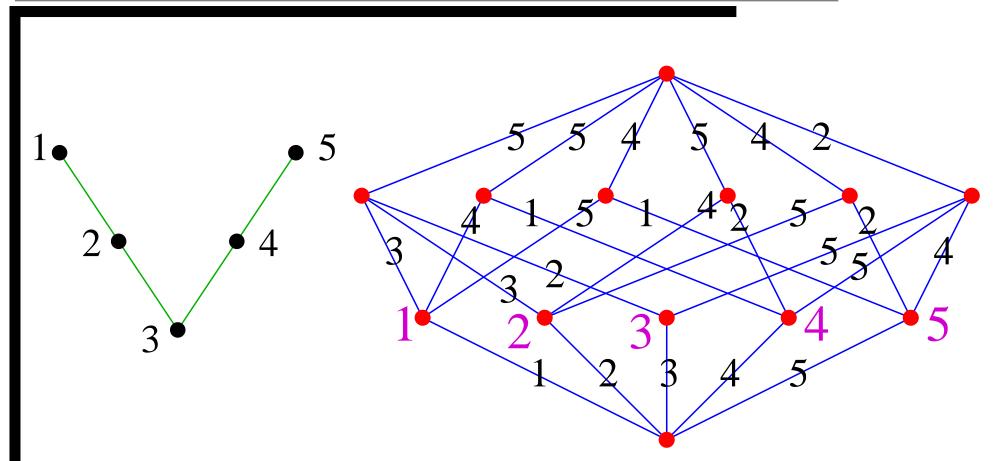
Theorem. Let λ be an *E*-labeling of *L*, and let $x \le y$ in *L*, rank(x, y) = k. Then $(-1)^k \mu(x, y)$ is equal to the number of strictly decreasing saturated chains from *x* to *y*, i.e.,

$$(-1)^{k} \mu(x, y) = \#\{x = x_{0} < x_{1} < \dots < x_{k} = y :$$
$$\lambda(x_{0}, x_{1}) > \lambda(x_{1}, x_{2}) > \dots > \lambda(x_{k-1}, x_{k})\}.$$

H_1, \ldots, H_m : ordering of \mathcal{A} (as before) If y covers x in $L(\mathcal{A})$ then define

 $\tilde{\boldsymbol{\lambda}}(\boldsymbol{x},\boldsymbol{y}) = \max\{i : x \lor H_i = y\}.$

Example of λ



Arrangements and Combinatorics $-p_{1}7^{2}$

Properties of λ

Claim 1. Define $\lambda : \mathcal{E}(L(\mathcal{A})) \to \mathbb{P}$ by $\lambda(x, y) = m + 1 - \tilde{\lambda}(x, y).$

Then λ is an *E*-labeling.

Arrangements and Combinatorics $-p_{1}72$

Claim 1. Define $\lambda \colon \mathcal{E}(L(\mathcal{A})) \to \mathbb{P}$ by

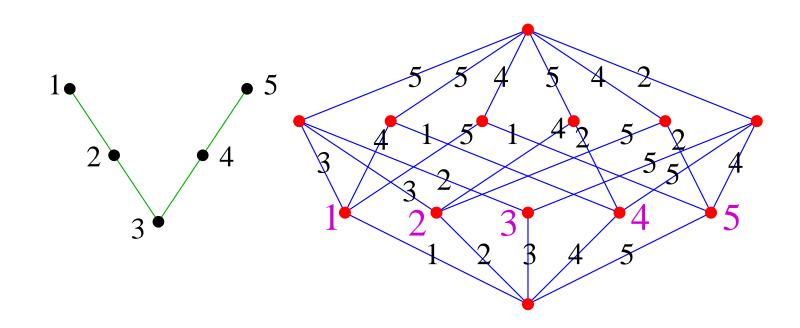
$$\boldsymbol{\lambda(x,y)} = m + 1 - \tilde{\lambda}(x,y).$$

Then λ is an *E*-labeling.

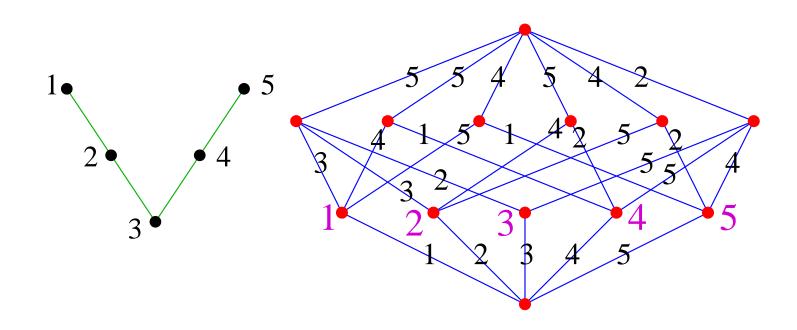
Claim 2. The broken circuit complex BC(M)consists of all chain labels $\lambda(C)$ (regarded as a set), where *C* is an increasing saturated chain from $\hat{0}$ to some $x \in L(M)$. Moreover, all such $\lambda(C)$ are distinct.

Arrangements and Combinatorics $-p_{1}72$

Example of Claim 2.



Example of Claim 2.



broken circuits : 12, 34, 124BC(\mathcal{A}) = { $\emptyset, 1, 2, 3, 4, 5, 13, 14, 15, 23, 24, 25, 35, 45,$ 135, 145, 235, 245}

Broken circuit theorem

Immediate consequence of Claims 1 and 2:

Theorem.
$$\chi_{\mathcal{A}}(t) = \sum_{F \in BC(\mathcal{A})} (-1)^{\#F} t^{n-\#F}$$

Arrangements and Combinatorics $-p_{1}74$

Broken circuit theorem

Immediate consequence of Claims 1 and 2:

Theorem.
$$\chi_{\mathcal{A}}(t) = \sum_{F \in BC(\mathcal{A})} (-1)^{\#F} t^{n-\#F}$$

Corollary. The coefficients of $\chi_{\mathcal{A}}(t)$ alternate in sign, i.e., $\chi_{\mathcal{A}}(t) = t^n - a_1 t^{n-1} + a_2 t^{n-2} - \cdots$, where $a_i \ge 0$. In fact

 $(-1)^i \mu(x, y) > 0$, where $i = \operatorname{rank}(x, y)$.

Arrangements and Combinatorics $-p_{1}74$

A glimpse of topology

[x, y]: (finite) interval in a poset P c_i : number of chains $x = x_0 < x_1 < \cdots < x_i = y$ Note. $c_0 = 0$ unless x = y.

A glimpse of topology

[x, y]: (finite) interval in a poset P

c_i: number of chains $x = x_0 < x_1 < \cdots < x_i = y$

Note. $c_0 = 0$ unless x = y.

Philip Hall's theorem (1936). $\mu(x, y) = c_0 - c_1 + c_2 - \cdots$

The order complex

P: a poset

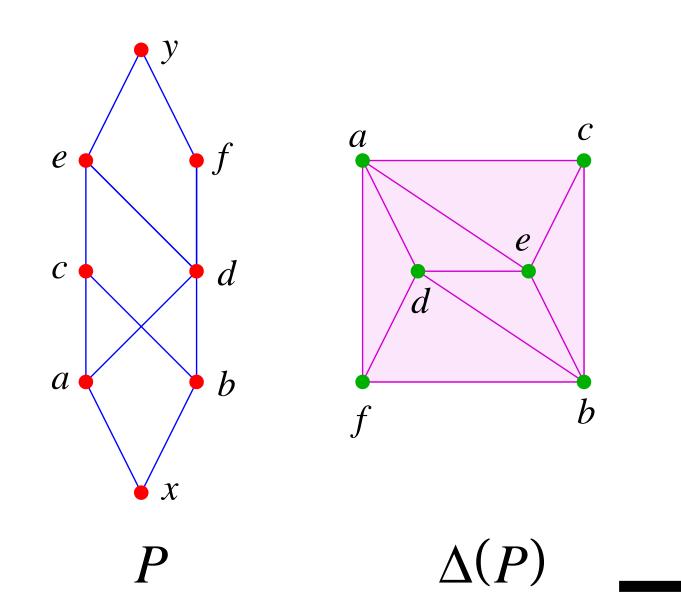
order complex of *P*:

$$\Delta(P) = \{\text{chains of } P\},\$$

an abstract simplicial complex.

Write $\Delta(x, y)$ for the order complex of the open interval $(x, y) = \{z \in P : x < z < y\}.$

Example of an order complex



Arrangements and Combinatorics $-p_{1}77$

Euler characteristic

Δ : finite simplicial complex

- $f_i = \# i$ -dimensional faces of Δ
- Note: $f_{-1} = 1$ unless $\Delta = \emptyset$.

Euler characteristic

Δ : finite simplicial complex

- $f_i = \# i$ -dimensional faces of Δ
- Note: $f_{-1} = 1$ unless $\Delta = \emptyset$.
- Euler characteristic: $\chi(\Delta) = f_0 f_1 + f_2 \cdots$

Δ : finite simplicial complex

- $f_i = \# i$ -dimensional faces of Δ
- Note: $f_{-1} = 1$ unless $\Delta = \emptyset$.

Euler characteristic: $\chi(\Delta) = f_0 - f_1 + f_2 - \cdots$

reduced Euler characteristic: $\tilde{\chi}(\Delta) = -f_{-1} + f_0 - f_1 + f_2 - \cdots$

Note: $\tilde{\chi}(\Delta) = \chi(\Delta) - 1$ unless $\Delta = \emptyset$.

Philip Hall's theorem restated

Theorem. For x < y in a finite poset,

$$\mu(x, y) = \tilde{\chi}(\Delta(x, y)).$$

Arrangements and Combinatorics $-p_{1}$, 79

Philip Hall's theorem restated

Theorem. For x < y in a finite poset,

$$\mu(x, y) = \tilde{\chi}(\Delta(x, y)).$$

Recall for any finite simplicial complex Δ ,

$$\tilde{\chi}(\Delta) = \sum_{j} (-1)^{j} \dim \widetilde{H}_{j}(\Delta; K),$$

where $H_j(\Delta; K)$ denotes reduced simplicial homology over the field K.

A topological question

For x < y in L(A), with $i = \operatorname{rank}(x, y)$, we have $d := \dim \Delta(x, y) = i - 2.$ In particular, $(-1)^d = (-1)^i$.

A topological question

For x < y in $L(\mathcal{A})$, with $i = \operatorname{rank}(x, y)$, we have $\mathbf{d} := \dim \Delta(x, y) = i - 2.$ In particular, $(-1)^d = (-1)^i$.

We get:

$$\sum_{j=0}^{d} (-1)^{d-j} \dim \widetilde{H}_j(\Delta; K) = (-1)^i \mu(x, y) > 0.$$

A topological question

For x < y in $L(\mathcal{A})$, with $i = \operatorname{rank}(x, y)$, we have $\mathbf{d} := \dim \Delta(x, y) = i - 2.$ In particular, $(-1)^d = (-1)^i$.

We get:

$$\sum_{j=0}^{d} (-1)^{d-j} \dim \widetilde{H}_j(\Delta; K) = (-1)^i \mu(x, y) > 0.$$

Is there a topological reason for this?

Arrangements and Combinatorics – p. 80

Folkman's theorem

Previous slide: $\sum_{j=0}^{d} (-1)^{d-j} \dim \widetilde{H}_j(\Delta; K) > 0.$

Arrangements and Combinatorics – p. 8²

Folkman's theorem

Previous slide:
$$\sum_{j=0}^{d} (-1)^{d-j} \dim \widetilde{H}_j(\Delta; K) > 0.$$

Theorem (Folkman, 1966).

$$\widetilde{H}_{j}(\Delta; K) \begin{cases} = 0, \ j \neq d \\ \neq 0, \ j = d. \end{cases}$$

Note. dim $\widetilde{H}_d(\Delta; K) = (-1)^d \mu(x, y)$

Arrangements and Combinatorics -p, 8°

Folkman's theorem

Previous slide:
$$\sum_{j=0}^{d} (-1)^{d-j} \dim \widetilde{H}_j(\Delta; K) > 0.$$

Theorem (Folkman, 1966).

$$\widetilde{H}_{j}(\Delta; K) \begin{cases} = 0, \ j \neq d \\ \neq 0, \ j = d. \end{cases}$$

Note. dim $\widetilde{H}_d(\Delta; K) = (-1)^d \mu(x, y)$

Early result in topological combinatorics.

Arrangements and Combinatorics – p. 81

Cohen-Macaulay posets

A finite poset *P* is **Cohen-Macaulay** (over *K*) if after adjoining a top and bottom element to *P*, every interval [x, y] satisfies:

If $d = \dim \Delta(x, y)$ then $\widetilde{H}_j(\Delta(x, y); k) = 0$ whenever $j \neq d$.

Cohen-Macaulay posets

A finite poset *P* is **Cohen-Macaulay** (over *K*) if after adjoining a top and bottom element to *P*, every interval [x, y] satisfies:

If $d = \dim \Delta(x, y)$ then $\widetilde{H}_j(\Delta(x, y); k) = 0$ whenever $j \neq d$.

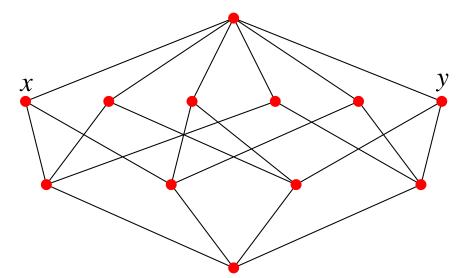
Folkman's theorem, restated. If A is central then L(A) is Cohen-Macaulay.

Let \mathcal{A} be central. An element $x \in L(\mathcal{A})$ is modular if for all $y \in L$ we have

 $\operatorname{rk}(x) + \operatorname{rk}(y) = \operatorname{rk}(x \wedge y) + \operatorname{rk}(x \vee y).$

Let \mathcal{A} be central. An element $x \in L(\mathcal{A})$ is modular if for all $y \in L$ we have

 $\operatorname{rk}(x) + \operatorname{rk}(y) = \operatorname{rk}(x \wedge y) + \operatorname{rk}(x \vee y).$



x is not modular: rk(x) + rk(y) = 2 + 2 = 4, $rk(x \land y) + rk(x \lor y) = 0 + 3 = 3$

Simple properties

Easy: $\hat{0} = K^n$, $\hat{1} = \bigcap_{H \in \mathcal{A}} H$ (the top element), and each $H \in \mathcal{A}$ is modular.

More properties

$x, y \in L(\mathcal{A})$ are complements if $x \wedge y = \hat{0}$, $x \vee y = \hat{1}$.

 $x, y \in L(\mathcal{A})$ are complements if $x \wedge y = \hat{0}$, $x \vee y = \hat{1}$.

Theorem. Let r = rk(A). Let $x \in L$. The following four conditions are equivalent.

(i) x is a modular element of L.

(ii) If $x \wedge y = \hat{0}$, then $\operatorname{rk}(x) + \operatorname{rk}(y) = \operatorname{rk}(x \vee y)$.

(iii) If x and y are complements, then rk(x) + rk(y) = n.

(iv) All complements of x are incomparable.

Arrangements and Combinatorics – p. 85

Two additional results

Theorem.

- (a) (transitivity of modularity) If x is a modular element of L and y is modular in the interval [0, x], then y is a modular element of L.
- (b) If x and y are modular elements of L, then $x \wedge y$ is also modular.

Modular element factorization thm.

Theorem. Let *z* be a modular element of L(A), A central of rank *r*. Write $\chi_z(t) = \chi_{[\hat{0},z]}(t)$. Then

$$\chi_L(t) = \chi_z(t) \left[\sum_{\substack{y: y \land z = \hat{0}}} \mu_L(y) t^{r - \operatorname{rk}(y) - \operatorname{rk}(z)} \right]$$

Theorem. Let *z* be a modular element of L(A), A central of rank *r*. Write $\chi_z(t) = \chi_{[\hat{0},z]}(t)$. Then

$$\chi_L(t) = \chi_z(t) \left[\sum_{\substack{y: y \land z = \hat{0}}} \mu_L(y) t^{r - \operatorname{rk}(y) - \operatorname{rk}(z)} \right]$$

Since each $H \in \mathcal{A}$ is modular in $L(\mathcal{A})$, we get: Corollary. For all $H \in \mathcal{A}$,

$$\chi_L(t) = (t-1) \sum_{y \wedge H = \hat{0}} \mu(y) t^{n-1-\operatorname{rk}(y)}.$$

A central arrangement \mathcal{A} (or $L(\mathcal{A})$) is supersolvable if $L(\mathcal{A})$ has a maximal chain $\hat{0} = x_0 < x_1 < \cdots < x_r = \hat{1}$ of modular elements x_i .

A central arrangement \mathcal{A} (or $L(\mathcal{A})$) is supersolvable if $L(\mathcal{A})$ has a maximal chain $\hat{0} = x_0 < x_1 < \cdots < x_r = \hat{1}$ of modular elements x_i .

In this case, let $a_i = \# \{ H \in \mathcal{A} : H \leq x_i, H \leq x_{i-1} \}.$

Corollary. If \mathcal{A} is supersolvable, then

$$\chi_{\mathcal{A}}(t) = t^{n-r}(t-a_1)(t-a_2)\cdots(t-a_n).$$

Arrangements and Combinatorics – p. 88

Chordal graphs, revisited

For what graphs G is \mathcal{A}_G supersolvable? **Recall:** $x_i = x_j$ for $ij \in E(G)$

Chordal graphs, revisited

For what graphs G is A_G supersolvable?

Recall: $x_i = x_j$ for $ij \in E(G)$

Recall that a **chordal graph** has a vertex ordering v_1, \ldots, v_n so that for all i, v_i is connected to a clique of the restriction G_{i-1} of G to $\{v_1, \ldots, v_{i-1}\}$.

Chordal graphs, revisited

For what graphs G is A_G supersolvable?

Recall: $x_i = x_j$ for $ij \in E(G)$

Recall that a **chordal graph** has a vertex ordering v_1, \ldots, v_n so that for all i, v_i is connected to a clique of the restriction G_{i-1} of G to $\{v_1, \ldots, v_{i-1}\}$.

If v_i is connected to a_i vertices of G_{i-1} , then

$$\chi_G(q) = (q - a_1)(q - a_2) \cdots (q - a_n).$$

Arrangements and Combinatorics – p. 89

Supersolvable graphs

Suggests that

$G \text{ chordal} \Rightarrow G (\text{or } \mathcal{A}_G) \text{ supersolvable.}$

Supersolvable graphs

Suggests that

 $G \text{ chordal} \Rightarrow G (\text{or } \mathcal{A}_G) \text{ supersolvable.}$

In fact:

Theorem. *G* is chordal if and only if A_G is supersolvable.

Terao (1980) defined free arrangements ${\cal A}$ and proved

$$\chi_{\mathcal{A}}(t) = (t - a_1) \cdots (t - a_n),$$

where $a_i \in \{0, 1, 2, ...\}$. (Definition not given here.)

Terao (1980) defined free arrangements ${\cal A}$ and proved

$$\chi_{\mathcal{A}}(t) = (t - a_1) \cdots (t - a_n),$$

where $a_i \in \{0, 1, 2, ...\}$. (Definition not given here.)

Supersolvable arrangements are free.

Arrangements and Combinatorics – p. 9²

Terao (1980) defined free arrangements ${\cal A}$ and proved

$$\chi_{\mathcal{A}}(t) = (t - a_1) \cdots (t - a_n),$$

where $a_i \in \{0, 1, 2, ...\}$. (Definition not given here.)

Supersolvable arrangements are free.

Open: is freeness of A a combinatorial property? That is, does it just depend on $\chi_A(t)$?

Arrangements and Combinatorics – p. 9²

Finite fields and good reduction

\mathcal{A} : arrangement over \mathbb{Q}

By multiplying hyperplane equations by a suitable integer, can assume \mathcal{A} is defined over \mathbb{Z} .

Finite fields and good reduction

\mathcal{A} : arrangement over \mathbb{Q}

By multiplying hyperplane equations by a suitable integer, can assume \mathcal{A} is defined over \mathbb{Z} .

Consider coefficients modulo a prime p to get an arrangment A_q defined over the finite field \mathbb{F}_q , $q = p^k$.

Finite fields and good reduction

\mathcal{A} : arrangement over \mathbb{Q}

By multiplying hyperplane equations by a suitable integer, can assume \mathcal{A} is defined over \mathbb{Z} .

Consider coefficients modulo a prime p to get an arrangment A_q defined over the finite field \mathbb{F}_q , $q = p^k$.

 \mathcal{A}_q has good reduction if $L_{\mathcal{A}} \cong L_{\mathcal{A}_q}$.

Arrangements and Combinatorics – p. 92

Almost always good reduction

Example. $\mathcal{A} = \{2, 10\}$: affine arrangement in $\mathbb{Q}^1 = \mathbb{Q}$. Good reduction $\Leftrightarrow p \neq 2, 5$.

Almost always good reduction

Example. $\mathcal{A} = \{2, 10\}$: affine arrangement in $\mathbb{Q}^1 = \mathbb{Q}$. Good reduction $\Leftrightarrow p \neq 2, 5$.

Theorem. Let \mathcal{A} be an arrangement defined over \mathbb{Z} . Then \mathcal{A} has good reduction for all but finitely many primes p.

Almost always good reduction

Example. $\mathcal{A} = \{2, 10\}$: affine arrangement in $\mathbb{Q}^1 = \mathbb{Q}$. Good reduction $\Leftrightarrow p \neq 2, 5$.

Theorem. Let \mathcal{A} be an arrangement defined over \mathbb{Z} . Then \mathcal{A} has good reduction for all but finitely many primes p.

Proof idea. Consider minors of the coefficient matrix, etc.

Theorem. Let \mathcal{A} be an arrangement in \mathbb{Q}^n , and suppose that $L(\mathcal{A}) \cong L(\mathcal{A}_q)$ for some prime power q. Then

$$\chi_{\mathcal{A}}(q) = \# \left(\mathbb{F}_{q}^{n} - \bigcup_{H \in \mathcal{A}_{q}} H \right)$$
$$= q^{n} - \# \bigcup_{H \in \mathcal{A}_{q}} H.$$

Proof

Let $x \in L(\mathcal{A}_q)$ so $\#x = q^{\dim(x)}$ (computed either over \mathbb{Q} or F_q). Define $f, g: L(\mathcal{A}_q) \to \mathbb{Z}$ by f(x) = #x $g(x) = \#\left(x - \bigcup_{y > x} y\right)$ $\Rightarrow g(\hat{0}) = g(\mathbb{F}_q^n) = \# \left(\mathbb{F}_q^n - \bigcup_{H \in \mathcal{A}_q} H \right).$

Proof concluded

Clearly $f(x) = \sum g(y)$. $y \ge x$

Proof concluded

Clearly
$$f(x) = \sum_{y \ge x} g(y)$$
.

Möbius inversion \Rightarrow

$$g(x) = \sum_{y \ge x} \mu(x, y) f(y)$$
$$= \sum_{y \ge x} \mu(x, y) q^{\dim(y)}$$

Proof concluded

Clearly
$$f(x) = \sum_{y \ge x} g(y)$$
.

Möbius inversion \Rightarrow

$$g(x) = \sum_{y \ge x} \mu(x, y) f(y)$$
$$= \sum_{y \ge x} \mu(x, y) q^{\dim(y)}$$

$$x = \hat{0} \Rightarrow g(\hat{0}) = \sum_{y} \mu(y) q^{\dim(y)} = \chi_{\mathcal{A}}(q)$$

Graphical arrangements

G: graph on vertex set $1, 2, \ldots, n$

 \mathcal{A}_{G} : graphical arrangement $x_{i} = x_{j}$, $ij \in E(G)$

Graphical arrangements

G: graph on vertex set 1, 2, ..., n *A_G*: graphical arrangement $x_i = x_j$, $ij \in E(G)$ finite field method: for p >> 0 (actually, all p), $\chi_{A_G}(q) = \#\{(\alpha_1, ..., \alpha_n) \in \mathbb{F}_q^n : \alpha_i \neq \alpha_j \text{ if } ij \in E(G)\}$

Graphical arrangements

G: graph on vertex set 1, 2, ..., n *A_G*: graphical arrangement $x_i = x_j$, $ij \in E(G)$ finite field method: for p >> 0 (actually, all p), $\chi_{A_G}(q) = \#\{(\alpha_1, ..., \alpha_n) \in \mathbb{F}_q^n : \alpha_i \neq \alpha_j \text{ if } ij \in E(G)\}$ $= \chi_G(q)$

Graphical arrangements

G: graph on vertex set 1, 2, ..., n *A_G*: graphical arrangement $x_i = x_j$, $ij \in E(G)$ finite field method: for p >> 0 (actually, all p), $\chi_{A_G}(q) = \#\{(\alpha_1, ..., \alpha_n) \in \mathbb{F}_q^n : \alpha_i \neq \alpha_j \text{ if } ij \in E(G)\}$ $= \chi_G(q)$

The braid arrangement $\mathcal{B}(B_n)$

 $x_i - x_j = 0, \quad 1 \le i < j \le n$ $x_i + x_j = 0, \quad 1 \le i < j \le n$ $x_i = 0, \quad 1 \le i \le n$

The braid arrangement $\mathcal{B}(B_n)$

$$x_i - x_j = 0, \quad 1 \le i < j \le n$$
$$x_i + x_j = 0, \quad 1 \le i < j \le n$$
$$x_i = 0, \quad 1 \le i \le n$$

Thus for p >> 0 (actually p > 2),

$$\chi_{\mathcal{B}(B_n)}(q) = \#\{(\alpha_1, \dots, \alpha_n) \in \mathbb{F}_q^n :$$

$$\alpha_i \neq \pm \alpha_j \ (i \neq j), \ \alpha_i \neq 0 \}.$$

The braid arrangement $\mathcal{B}(B_n)$

$$x_i - x_j = 0, \quad 1 \le i < j \le n$$
$$x_i + x_j = 0, \quad 1 \le i < j \le n$$
$$x_i = 0, \quad 1 \le i \le n$$

Thus for p >> 0 (actually p > 2),

$$\chi_{\mathcal{B}(B_n)}(q) = \#\{(\alpha_1, \dots, \alpha_n) \in \mathbb{F}_q^n :$$

$$\alpha_i \neq \pm \alpha_j \ (i \neq j), \ \alpha_i \neq 0 \}.$$

Choose α_1 in q-1 ways, then α_2 in q-3 ways, etc.

Arrangements and Combinatorics – p. 98

Characteristic polynomial of $\mathcal{B}(B_n)$

$\Rightarrow \chi_{\mathcal{B}(B_n)}(q) = (q-1)(q-3)\cdots(q-2n+1)$

Characteristic polynomial of $\mathcal{B}(B_n)$

$\Rightarrow \chi_{\mathcal{B}(B_n)}(q) = (q-1)(q-3)\cdots(q-2n+1)$

In fact, $\mathcal{B}(B_n)$ is supersolvable.

$x_i - x_j = 0, \ 1 \le i < j \le n$ $x_i + x_j = 0, \ 1 \le i < j \le n$

$$x_i - x_j = 0, \ 1 \le i < j \le n$$

 $x_i + x_j = 0, \ 1 \le i < j \le n$

Exercise: If $n \ge 3$ then

 $\chi_{\mathcal{B}(D_n)} = (q-1)(q-3)\cdots(q-2n+3)\cdot(q-n+1).$

$$x_i - x_j = 0, \ 1 \le i < j \le n$$

 $x_i + x_j = 0, \ 1 \le i < j \le n$

Exercise: If $n \ge 3$ then

$$\chi_{\mathcal{B}(D_n)} = (q-1)(q-3)\cdots(q-2n+3)\cdot(q-n+1).$$

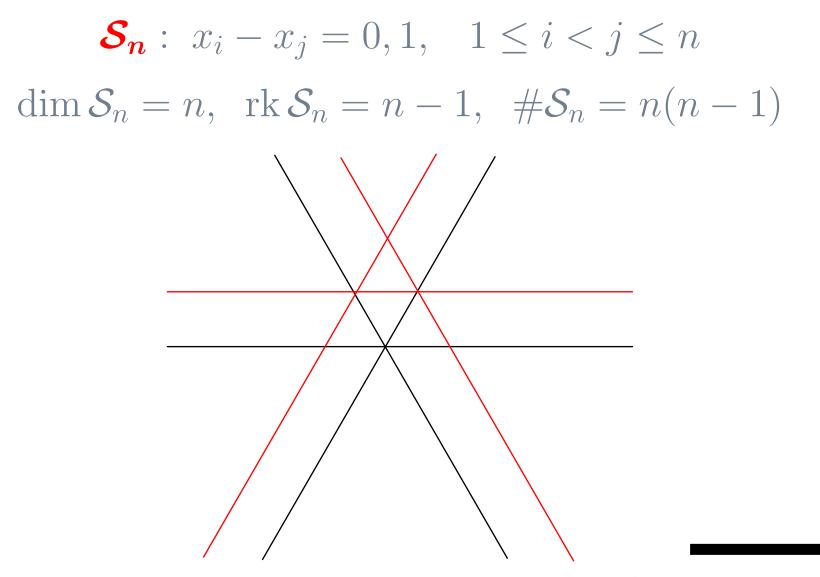
Not supersolvable ($n \ge 4$), but it is free.

Arrangements and Combinatorics – p. 100

The Shi arrangement

 $S_n: x_i - x_j = 0, 1, \quad 1 \le i < j \le n$ dim $\mathcal{S}_n = n$, rk $\mathcal{S}_n = n - 1$, $\# \mathcal{S}_n = n(n-1)$

The Shi arrangement



Arrangements and Combinatorics – p. 10²

Characteristic polynomial of S_n

Theorem.
$$\chi_{\mathcal{S}_n}(t)=t(t-n)^{n-1}$$
, so $r(\mathcal{S}_n)=(n+1)^{n-1},\ b(\mathcal{S}_n)=(n-1)^{n-2}$

Characteristic polynomial of S_n

Theorem.
$$\chi_{\mathcal{S}_n}(t) = t(t-n)^{n-1}$$
, so
 $r(\mathcal{S}_n) = (n+1)^{n-1}, \ b(\mathcal{S}_n) = (n-1)^{n-1}.$

Proof. Finite field method \Rightarrow

 $\chi_{\mathcal{S}_n}(p) = \#\{(\alpha_1, \dots, \alpha_n) \in \mathbb{F}_p^n :$ $i < j \Rightarrow \alpha_i \neq \alpha_i \text{ and } \alpha_i \neq \alpha_i + 1\},$

for p >> 0 (actually, all p).

Arrangements and Combinatorics – p. 102

Proof continued

Choose $\boldsymbol{\pi} = (B_1, \ldots, B_{p-n})$ such that

$$\bigcup B_i = [n], \ B_i \cap B_j = \emptyset \text{ if } i \neq j, \ 1 \in B_1.$$

Choose $\boldsymbol{\pi} = (B_1, \ldots, B_{p-n})$ such that

$$\bigcup B_i = [n], \quad B_i \cap B_j = \emptyset \text{ if } i \neq j, \quad 1 \in B_1.$$

For $2 \le k \le n$ there are p - n choices for i such that $k \in B_i$, so $(p - n)^{n-1}$ choices in all.

Arrange the elements of \mathbb{F}_p clockwise on a circle.

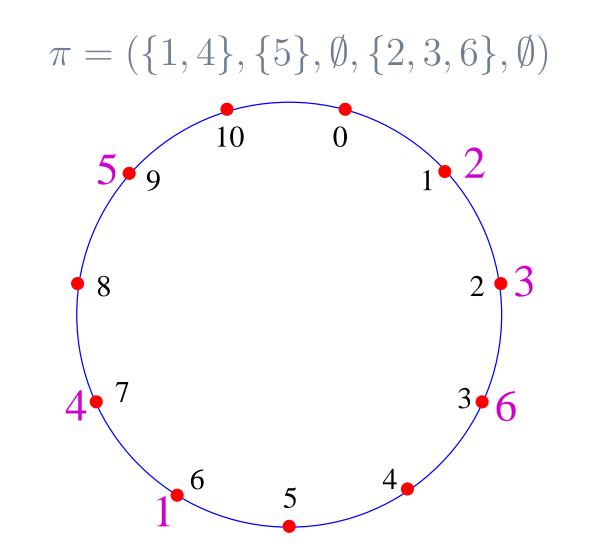
Place $1, 2, \ldots, n$ on some n of these points as follows.

Place elements of B_1 consecutively (clockwise) in increasing order with 1 placed at some element $\alpha_1 \in \mathbb{F}_p$.

Skip a space and place the elements of B_2 consecutively in increasing order.

Skip another space and place the elements of B_3 consecutively in increasing order, etc.

Example for p = 11, n = 6



α_i : position (element of \mathbb{F}_p) at which *i* was placed

 α_i : position (element of \mathbb{F}_p) at which *i* was placed

Previous example: $(\alpha_1, ..., \alpha_6) = (6, 1, 2, 7, 9, 3) \in \mathbb{F}_{11}^6$

 α_i : position (element of \mathbb{F}_p) at which *i* was placed

Previous example: $(\alpha_1, ..., \alpha_6) = (6, 1, 2, 7, 9, 3) \in \mathbb{F}_{11}^6$

Gives bijection

$$\{(\pi = (B_1, \dots, B_{p-n}), \alpha_1)\} \to \mathbb{F}_p^n - \bigcup_{H \in (\mathcal{S}_n)_p} H.$$

 α_i : position (element of \mathbb{F}_p) at which *i* was placed

Previous example: $(\alpha_1, ..., \alpha_6) = (6, 1, 2, 7, 9, 3) \in \mathbb{F}_{11}^6$

Gives bijection

$$\{(\pi = (B_1, \dots, B_{p-n}), \alpha_1)\} \to \mathbb{F}_p^n - \bigcup_{H \in (\mathcal{S}_n)_p} H.$$

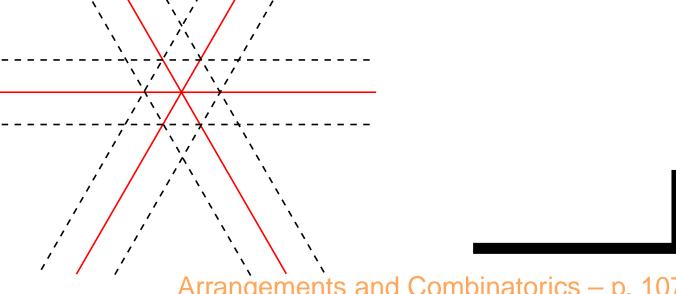
 $(p-n)^{n-1}$ choices for π and p choices for α_1 , so $\chi_{\mathcal{S}_n}(p) = p(p-n)^{n-1}.$

The Catalan arrangement

$$\mathcal{C}_{n}: x_{i} - x_{j} = 0, -1, 1, \quad 1 \leq i < j \leq n$$
$$\dim \mathcal{C}_{n} = n, \quad \operatorname{rk} \mathcal{C}_{n} = n - 1, \quad \# \mathcal{S}_{n} = 3 \binom{n}{2}$$

The Catalan arrangement

$$\mathcal{C}_{n}: x_{i} - x_{j} = 0, -1, 1, \quad 1 \leq i < j \leq n$$
$$\dim \mathcal{C}_{n} = n, \quad \operatorname{rk} \mathcal{C}_{n} = n - 1, \quad \# \mathcal{S}_{n} = 3 \binom{n}{2}$$



Char. poly. of Catalan arrangment

Theorem.

$$\chi_{c_n}(t) = t(t-n-1)(t-n-2)(t-n-3)\cdots(t-2n+1),$$
 so

$$r(\mathcal{C}_n) = n!C_n, \quad b(\mathcal{C}_n) = n!C_{n-1},$$

where
$$C_m = \frac{1}{m+1} \binom{2m}{m}$$
 (Catalan number).

Char. poly. of Catalan arrangment

Theorem.

$$\chi_{c_n}(t) = t(t-n-1)(t-n-2)(t-n-3)\cdots(t-2n+1),$$
 so

$$r(\mathcal{C}_n) = n!C_n, \quad b(\mathcal{C}_n) = n!C_{n-1},$$

where
$$C_m = \frac{1}{m+1} \binom{2m}{m}$$
 (Catalan number).

Easy to prove using finite field method.

Char. poly. of Catalan arrangment

Theorem.

$$\chi_{c_n}(t) = t(t-n-1)(t-n-2)(t-n-3)\cdots(t-2n+1),$$
 so

$$r(\mathcal{C}_n) = n!C_n, \quad b(\mathcal{C}_n) = n!C_{n-1},$$

where
$$C_m = \frac{1}{m+1} \binom{2m}{m}$$
 (Catalan number).

Easy to prove using finite field method.

Each region of the braid arrangement \mathcal{B}_n contains C_n regions and C_{n-1} relatively bounded regions of the Catalan arrangemt \mathcal{C}_n .

Catalan numbers

≥ 172 combinatorial interpretations of C_n at

math.mit.edu/~rstan/ec

The Linial arrangement

$$\mathcal{L}_{n}: x_{i} - x_{j} = 1, \quad 1 \leq i < j \leq n$$
$$\dim \mathcal{L}_{n} = n, \quad \operatorname{rk} \mathcal{L}_{n} = n - 1, \quad \#\mathcal{L}_{n} = \binom{n}{2}$$

The Linial arrangement

$$\mathcal{L}_{n}: x_{i} - x_{j} = 1, \quad 1 \leq i < j \leq n$$
$$\dim \mathcal{L}_{n} = n, \quad \operatorname{rk} \mathcal{L}_{n} = n - 1, \quad \#\mathcal{L}_{n} = \binom{n}{2}$$

Char. poly. of Linial arrangment

Theorem.
$$\chi_{\mathcal{L}_n}(t) = \frac{t}{2^n} \sum_{k=1}^n \binom{n}{k} (t-k)^{n-1},$$

SO

$$r(\mathcal{L}_n) = \frac{1}{2^n} \sum_{k=1}^n \binom{n}{k} (k+1)^{n-1}$$

$$b(\mathcal{L}_n) = \frac{1}{2^n} \sum_{k=1}^n \binom{n}{k} (k-1)^{n-1}$$

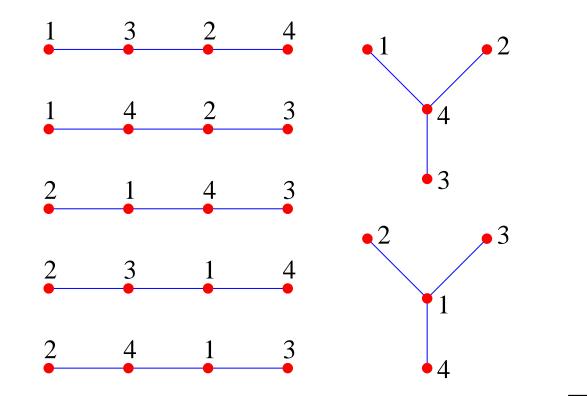
Arrangements and Combinatorics – p. 11²

Postnikov: (difficult) proof using Whitney's theorem

Athanasiadis: (difficult) proof using finite field method

An alternating tree on [n] is a tree on the vertex set [n] such that every vertex is either less than all its neighbors or greater than all its neighbors.

An alternating tree on [n] is a tree on the vertex set [n] such that every vertex is either less than all its neighbors or greater than all its neighbors.



Alternating trees and \mathcal{L}_n

f(n): number of alternating trees on [n]

Theorem (Kuznetsov, Pak, Postnikov, 1994).

$$f(n+1) = \frac{1}{2^n} \sum_{k=1}^n \binom{n}{k} (k+1)^{n-1}$$

Alternating trees and \mathcal{L}_n

f(n): number of alternating trees on [n]

Theorem (Kuznetsov, Pak, Postnikov, 1994).

$$f(n+1) = \frac{1}{2^n} \sum_{k=1}^n \binom{n}{k} (k+1)^{n-1}$$

Corollary. $f(n+1) = r(\mathcal{L}_n)$

Alternating trees and \mathcal{L}_n

f(n): number of alternating trees on [n]

Theorem (Kuznetsov, Pak, Postnikov, 1994).

$$f(n+1) = \frac{1}{2^n} \sum_{k=1}^n \binom{n}{k} (k+1)^{n-1}$$

Corollary. $f(n+1) = r(\mathcal{L}_n)$

No combinatorial proof known!

Arrangements and Combinatorics – p. 114

The threshold arrangment

$$\mathcal{T}_{n}: x_{i} + x_{j} = 0, \quad 1 \leq i < j \leq n$$
$$\dim \mathcal{T}_{n} = n, \quad \operatorname{rk} \mathcal{T}_{n} = n, \quad \# \mathcal{T}_{n} = \binom{n}{2}$$

The threshold arrangment

$$\mathcal{T}_{n}: x_{i} + x_{j} = 0, \quad 1 \leq i < j \leq n$$
$$\dim \mathcal{T}_{n} = n, \quad \operatorname{rk} \mathcal{T}_{n} = n, \quad \# \mathcal{T}_{n} = \binom{n}{2}$$

threshold graph:

- \bullet () is a threshold graph
- G threshold \Rightarrow G \cup {vertex} threshold
- G threshold $\Rightarrow join(G, v)$ threshold

Arrangements and Combinatorics -p, 115

Char. poly. of threshold arrangemen

Theorem. $r(\mathcal{T}_n) = \#$ threshold graphs on [n]. Hence (by a known result on threshold graphs)

$$\sum_{n \ge 0} r(\mathcal{T}_n) \frac{x^n}{n!} = \frac{e^x (1-x)}{2 - e^x}.$$

Char. poly. of threshold arrangemen

Theorem. $r(T_n) = \#$ threshold graphs on [n]. Hence (by a known result on threshold graphs)

$$\sum_{n\geq 0} r(\mathcal{T}_n) \frac{x^n}{n!} = \frac{e^x(1-x)}{2-e^x}.$$

Theorem. $\sum_{n\geq 0} \chi_{\tau_n}(t) \frac{x^n}{n!} = (1+x)(2e^x - 1)^{(t-1)/2}$

$$\chi_{\mathcal{T}_3}(t) = t^3 - 3t^2 + 3t - 1$$

$$\chi_{\mathcal{T}_4}(t) = t^4 - 6t^3 + 15t^2 - 17t + 7$$

$$\chi_{\mathcal{T}_5}(t) = t^5 - 10t^4 + 45t^3 - 105t^2 + 120t - 51.$$

Let

 $\chi_{\mathcal{T}_n}(t) = t^n - a_{n-1}t^{n-1} + \dots + (-1)^n a_0.$

Let

$$\chi_{\mathcal{T}_n}(t) = t^n - a_{n-1}t^{n-1} + \dots + (-1)^n a_0.$$

Thus $\sum a_i = \#\{\text{threshold graphs on } [n]\}.$

Let

$$\chi_{\mathcal{T}_n}(t) = t^n - a_{n-1}t^{n-1} + \dots + (-1)^n a_0.$$

Thus $\sum a_i = \#\{\text{threshold graphs on } [n]\}.$

Open: interpret a_i as the number of threshold graphs on [n] with some property.

Minkowski space $\mathbb{R}^{1,3}$

 $\mathbb{R}^{1,3}$: Minkowski spacetime with one time and three space dimensions

$$p = (t, x) \in \mathbb{R}^{1,3}, \quad x = (x, y, z) \in \mathbb{R}^3$$

 $|p|^2 = t^2 - |x|^2 = t^2 - (x^2 + y^2 + z^2)$

Ordering events in $\mathbb{R}^{1,3}$

Let $p_1, \ldots, p_k \in \mathbb{R}^{1,3}$. In different reference frames (at constant velocities with respect to each other) these events can occur in different orders (but never violating causality).

Ordering events in $\mathbb{R}^{1,3}$

Let $p_1, \ldots, p_k \in \mathbb{R}^{1,3}$. In different reference frames (at constant velocities with respect to each other) these events can occur in different orders (but never violating causality).

Main question: what is the maximum number of different orders in which these events can occur?

The hyperplane of simultaneity

Let
$$p_1 = (t_1, x_1), \ p_2 = (t_2, x_2) \in \mathbb{R}^{1,3}.$$

For a reference frame at velocity v, the Lorentz transformation $\Rightarrow p_1, p_2$ occur at the same time if and only if

$$t_1 - t_2 = (\boldsymbol{x_1} - \boldsymbol{x_2}) \cdot \boldsymbol{v}.$$

The set of all such $v \in \mathbb{R}^3$ forms a hyperplane.

Arrangements and Combinatorics – p. 12²

The Einstein arrangement

Thus the number of different orders in which the events can occur is the number of regions R of the **Einstein arrangement**

$$\mathcal{E} = \mathcal{E}(p_1, \ldots, p_k)$$

defined by

$$t_i - t_j = (x_1 - x_2) \cdot v, \ 1 \le i < j \le k,$$

such that |v| < 1 (the speed of light) for some $v \in R$.

Arrangements and Combinatorics – p. 122

Intersection poset of \mathcal{E}

Can insure that $v \in R$ for all R by taking p_1, \ldots, p_k sufficiently "far apart".

Can maximize $r(\mathcal{E})$ for fixed k by choosing p_1, \ldots, p_k generic.

Intersection poset of \mathcal{E}

Can insure that $v \in R$ for all R by taking p_1, \ldots, p_k sufficiently "far apart".

Can maximize $r(\mathcal{E})$ for fixed k by choosing p_1, \ldots, p_k generic.

In this case, $L(\mathcal{E})$ is isomorphic to the rank 3 truncation of $L(\mathcal{B}_k) \cong \Pi_k$.

Recall

$$\chi_{\mathcal{B}_k}(t) = t(t-1)\cdots(t-k+1) = c(k,k)t^k - c(k,k-1)t^{k-1} + \cdots,$$

where c(k, i) is the number of permutations of $1, 2, \ldots, k$ with *i* cycles (signless Stirling number of the first kind).

Arrangements and Combinatorics – p. 124

Computation of $r(\mathcal{E})$

Corollary.

$$\chi_{\mathcal{E}}(t) = c(k,k)t^3 - c(k,k-1)t^2 + c(k,k-2)t - c(k,k-3)$$

$$\Rightarrow r(\mathcal{E}) = c(k,k) + c(k,k-1) + c(k,k-2) + c(k,k-3) = \frac{1}{48} \left(k^6 - 7k^5 + 23k^4 - 37k^3 + 48k^2 - 28k + 48 \right)$$

