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Let A be the Orlik-Solomon algebra of C/\ A,
with |A| = n. For each a = Y ase; € A1, we
consider the complex (A, a).

The th term is A;, and differential is Aa:

(A,a): 0—Ag-+A]- LA 4. 2 A)—0.

Arose in

e hypergeometric functions (Aomoto)

e cohomology with local system coefficients
—Esnault, Schechtman, Viehweg
—Schechtman, Terao, Varchenko

The resonance varieties of A are the loci of
pointsa =" ae; < (a1 : -+ an) € Pr—1 for
which (A, a) fails to be exact, that is..

Definition 1 For each k > 1,
RF(A) = {a e P 1 | H*(A,q) # 0.

Yuzvinsky: for generic a, (A,a) is exact.



Definition 2 [1 partition of A is neighborly if
VY € L>(A), = block of N,

pY)<|YNa|—Y Cm.

Falk: proved that components of R1(A) arise
from neighborly partitions, and conjectured that
RY(A) is a union of linear components.

T his was proved by

e Cohen—Suciu and by

e Libgober—Yuzvinsky R1(A) = HL,LTF
e Cohen—Orlik also true for R22(A)
e Falk can fail if characteristic = 0.

Libgober—Yuzvinsky connects R(A) to pen-
cils/nets/webs; recent work in this area by:

e Falk—Yuzvinsky

e Pereira—Yuzvinsky

Recall conjectural connection to LCS ranks ¢p.:

Conjecture 3 (Suciu) Under certain conditions,

[[Q-tH%= T[] @@ - (dim(L;)t)

k>1 LiGRl(.A)



Example 4 Let A = V(zy(z —y)z) C P2, and
E = A(C%), with generators eq,...,eq. The

Orlik-Solomon algebra
A = E/(0(e1eze3),d(e1enezes)), with

e1 Nep —eqg Negz+enx Nes

d(eienes)

To compute RI(A), we need only the first
two differentials in the Aomoto complex. Use

e13, €14, €23, €24, €34 AS a basis for As.

4
e1 — e1 A () aze;) = ageyn + aze13 + azeys.
i=1
Since ejp = €13 — €23, a2€e12 = a2(€13 — 623)1

giving (aQ -+ a3)€13 + agqeq14 — anen3. compute!

[ a> + a3 —a1 —a1 0
i al ] aq 0] 0] —al
an —an a1 +a3z3 —as 0]
as 0 as 0O —a>
0. Cl | as | ot L 0] 0] as —as | 5
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n
Letting a = ) a;e;, we have
i=1

RY(A) Hl(A, Aa)

3b € E1 | a A b vanishes in A
dbe E1|anbel

decomposable 2-tensors in I

P(I2) N Gr(2,E1) C P(A\? Eq)

11111

I» is determined by the intersection lattice L(A)
in rank < 2, so to study R(A), let A C P2
Grassmannian gives fastest compution of R1(.A).

Problem Code up for RZ2(A) (Segre map).

Note interesting connection to syzygies. Since

a/\bEIQ—>a,/\b=Zcifi, c; € C, f; € Ip, the

relations a Aa Ab =0 = bA a A b vield linear
syzydgies on I»:

Y acifi=0=> bef;.
That is,

RY(A) is related to Torg(A, C)s3



Example 5 For A = V(zy(z — y)z) C P2, the

Orlik-Solomon algebra is just
A= FE/d(ereze3),

since the relation 9(ejesezes) is redundant:

O(erezezeq) = e1 A O(ereze3) — egd(erenes)
Observe that
61/\62—€1A€3—|—€2/\€3 — (61 —62)/\(62—63)
This means that the line

s(e1 — e2) +t(ex —e3) € R*(A) CP(FEy)

Parametrically, this may be written

(s:t—s:—t:0)=V(ag,a1 + a>+ a3)

Such components of R!(A) are called local.

(Compute) the corresponding linear syzygies.



WHO CARES? Conjecturally, R}(A) is (some-
times) connected to the LCS ranks. But it is
always connected to the Chen ranks! Intro-
duced by K. T. Chen, these are the LCS ranks
of the maximal metabelian quotient of G

0:(G) = ¢r(G/G"),
where G' = [G, G].

Conjecture 6 (Suciu) Let G = G(A) be an
arrangement group, and let hy be the number
of components of R1(A) of dimension r. Then,
for k> 0:

T—I—k—l)'

0p(G) = (k=1) > he*

r>1

For Example 3, R1(A) ~ P! and thus

0,(G) = (k—1).



How to determine the Chen ranks? The Alexan-
der invariant G'/G” is a module over Z[G/G].
For arrangements, Z[G/G'] = Laurent polyno-
mials in n-variables.

Massey: > 010t = HS(9r ¢'/G" ® Q, 1)
k>0

Easier to work with is the linearized Alexander
invariant B of Cohen-Suciu

(Ao ® E3) ® S2F>®S—B—0, where
A is built from Koszul diff. and (E> — A5)?.

Theorem 7 (Cohen-Suciu)

V(ann B) = R1(A)

Theorem 8 (Papadima-Suciu) For k > 2,

N 0, t" = HS(B, ).
k>2

In particular, the Chen ranks are combinatori-
ally determined, and depend only on L(A) in
rank < 2.



Example 9 Recall the matroid for Az is:

For A3, B is the cokernel of the matrix on the

first slide. (compute) R1(A43) =

V(z1 + x4 + 5,20, 22, 23)1
V(z2 4+ 23 + x5, 0, 71, 74)1
V(zg + 23 + 24,71, 22, 74)1
V(zg + x1 + 22,23, 24, 75)1

V(zg + x1 + z2,20 — 5,21 — 23,T2 — T4).
and (compute) the Hilbert Series of B:

(42 42t3—t*) /(1—t)? = 4t°+10t3415¢*+20t°+- - -
Magic Trick! (compute) Torf(Asz,C);y1
Magic Trick! (compute) free resolution of the

cokernel of last map in the Aomoto complex.
9



Theorem 10 (Eisenbud-Popescu-Yuzvinsky)
For an arrangement A, the Aomoto complex

is exact, as a sequence of S-modules:

0—AgR®SLAI®SL--- LA, RS—F(A)—O0.

Theorem 11 (—, Suciu) The linearized Alexan-
der invariant B is functorially determined by

the Orlik-Solomon algebra:

B = Exty H(F(A),S).

Use this, localization, and the result of Libgober-
Yuzvinsky that R1(A) =IIL; to obtain:

Theorem 12 (—, Suciu) For k> 0,

dimLz-—l—k—l)

0(G) > (k—1) ) "

LiERl (.A)

Problem Prove the remaining inequality! Note:
0.(GR) is polynomial in k, of degree = dim R1(A).
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WHAT MAKES ALL THIS WORK IS BGG:
the Bernstein-Gelfand-Gelfand correspondence.

Let S = Sym(V*) and E = A(V). BGG is an
iIsomorphism between derived categories of

e bounded cpxs of coherent sheaves on P(V*).
e bounded cpxs of f.gen’d, graded E—modules.

From this, can extract functors
R: f.gen’d, graded S-modules — linear free
E-complexes.

L: f.gen'd, graded E-modules — linear free
S-complexes.

Point: can translate problems to possibly sim-
pler setting. For example, we'll see this gives a
fast way to compute sheaf cohomology, using
Tate resolutions.
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P a f'gend, graded E-module, then L(P) is the
complex

o S®Py14S®@P%SQP;_1%. ..,

n
wherea = ) x;,®Qe¢;, SOthat 1Qp+— > x;Qe; Ap
i=1

Note: elts of V* deg = 1, elts of V deg = —1.

Example 13 P = E = AC3. Then we have
0—S®Ey—S®F,—S®E—S®F;3—0.
Clearly 1 — Y3 z; ® e;. For dy
e1 — —Ipeip — xr3€e13
ep > T1€12 — T3€23
e3 — x1€e13 + r2€e23
do : e1p — T3€123, €13 > —T2€123 €23 > T1€123

Thus, L(FE) is

T —T> I 0

o —x3 0] T1

T3 0 —x3 X2
—_

The Koszul complex!

St 53 3 (73 —w2 7] St
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M a f'gend, graded S-module, then R(M) is
the complex

o —EQM; 1-*EQ M;-*E ® M;1 1%

n
wherea= > e;®x;, SO 1Q@m+— > e; Qx; - m,
1=1

and F is the C-dual of E:
E ~ E(n) = Hom¢(E,C).
Just as L(P) = S®c P, R(IM) = Hom¢(E, M).

Example 14 M = C[wo,xl]/(wgwl,x%>. Then
O—EQMy—FEQM —EQMy—FEQ® Mz—---

l—eg®Rxg+e1 @xy
:Uol—>60®:c%—|—el®:c0x1

x1|—>eo®xox1—|—el®x%

] — eg ® ToT] + €1 ®:cn+1

Thus, R(M) is

0 ] e L] e L]

E(2)* E(3)? E(4)! ——= E(5)!
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This complex is exact, except at the second
step. Obviously the kernel of

[O 61}
is generated by o = [1,0] and 8 = [0, e1], with
relations im(d1) = B8+ egax = 0,e18 = 0, so
that

HY(R(M)) ~ E(3)/eg A €1

Compute this, and compute the free resolution
of M. This illustrates

Theorem 15 (Eisenbud-Flgystad-Schreyer)
HI(R(M))j4; = Tor? (M,C); 4.

Corollary 16 The Castelnuovo-Mumford reg-
ularity of M is < d iff H(R(M)) = 0 for all
1 > d.

14



What can be said about higher resonance va-
rieties? Cohen—Orlik proved that for £ > 2,

RF(A) = J L; linear.
Suciu showed union need not be disjoint.

Theorem 17 (Eisenbud-Popescu-Yuzvinsky)

Resonance persists: p € RF(A) — p € RFT1(A).

The key observation is a € RF(A) C P(E) means

H*(A,a) # 0 < Tory . (F(A),S/I(p)) # 0.

T he result follows from interpreting this in terms
of Koszul cohomology.

Theorem 18 (Denham, —) As for R1(A), higher

resonance may be interpreted via Ext:

RF(A) = |J V(annExt!=F(F(A), 9)).
k'<k

Differentials in free resolution can be analyzed
using BGG and Grothendieck spectral sequence
(work in progress, Denham, —).
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For a coherent sheaf F on Pd, there is a f'gend,

graded S-module M whose sheafification is F.

If 7 has Castelnuovo-Mumford regularity r, then
the Tate resolution of F is obtained by splic-

ing the complex R(M>,):

O—>E®MT—CZIE®MT+1—>E®MT+2_>’

with a free resolution Pe for the kernel of d":

P — 1 E®M,—E®M.4q1—
W 7
ker(d")
o 0

By Corollary 16, R(M>,) is exact except at
the first step, so this vields an exact complex
of free E-modules.

Example 19 Since M = S has regularity zero,
we obtain Cartan resolutions in both direc-
tions, with splice map E — E = E(d+1) multi-
plication by egAe1A---Neg = Ker | eg, -+ ey t
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Theorem 20 (Eisenbud-Flgystad-Schreyer)
The ith free module T* in a Tate resolution for

JF satisfies
T'=@E® H (F(—j)).
J
Example 21 Twisted cubicI C S = Clx, vy, z, w]

—Z w
Y —Z

Display as a betti table:

[ yz—fL'Z Yz —rw ZQ—yU) :|

0 — S(=3)? S(—2)3 S S/I

sz = dim@ TOI’,?(M, C)z—l-]
total | 1

3
0 1 -
1 - 3

N TN

This has regularity one, so now we can (com-

pute) the Tate resolution:
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Plugging these numbers into Theorem 20, we
see that

i 3| —2]-1]0]1]2
Ri(FG)| 8 | 5| 2 ]0/0]0
R9(FG)| 0o | O | O |1/4|7

Does this make sense?
SO

W (F (i) = R (Op1(3i)) = RO(Op1(—3i — 2))
and

hO(F(i)) = hO(Op1(3i)) =3i+ 1, i > 0

THE END! THANK YOU!
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