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§Basics

Let A ⊆ V = Cℓ

be a central arrangement with |A| = n, and

S = Sym(V ∗).

S =
⊕

i∈Z

Si

is a Z-graded ring:

si ∈ Si and sj ∈ Sj −→ si · sj ∈ Si+j

Similar definition for a graded S-module M .

S0 = C, so Mi is a C–vector space.

Definition 1 The Hilbert Function

HF(M, i) = dimC Mi.

Definition 2 The Hilbert Series

HS(M, i) =
∑

Z

dimC Mit
i.

Notation: M(i)j = Mi+j.
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Exercise: HS(C[x1, . . . , xℓ], t) = 1
(1−t)ℓ.

Example 3 S = C[x, y], M = S/〈x2, xy〉. Then

i Mi M(−2)i

0 1 0

1 x, y 0

2 y2 1

3 y3 x, y

4 y4 y2

HS(M, i) =
1 − 2t2 + t3

(1 − t)2

HS(M(−2), i) =
t2(1 − 2t2 + t3)

(1 − t)2

Makes sense: S(−i) has generator in degree i.
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Compute from free resolution:

0 −→ S(−3)

[

y
−x

]

−−−−−→ S(−2)2

[

x2 xy
]

−−−−−−−−→ S −→ S/I

e1 7→ x2

e2 7→ xy

HS(M, i) =
t3 − 2t2 + 1

(1 − t)2

Example 4 Twisted cubic I ⊆ S = C[x, y, z, w]

0 −→ S(−3)2

[

−z w
y −z
−x y

]

−−−−−−−−−−→ S(−2)3

[

y2−xz yz−xw z2−yw
]

−−−−−−−−−−−−−−−−−−−−−−−−→ S −→ S/I

Display as a betti table:

bij = dimC TorSi (M, C)i+j.

total 1 3 2
0 1 – –
1 – 3 2

b21 = dimC TorS
2(S/I, C)3 = 2.
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§D(A) and freeness

For each i, fix V (li) = Hi ∈ A. Let QA =
n
∏

i=1
li

Definition 5 D(A) = {θ ∈ DerC(S)|θ(li) ∈ 〈li〉}

∀ li with V (li) ∈ A. A is free ↔ D(A) is free.

Exercise: if θE =
ℓ
∑

i=1
xi∂/∂xi, then

D(A) ≃ S · θE ⊕ syz(Jac(QA)),

where syz is the syzygy module and Jac(QA)

is the jacobian ideal of QA.

Proposition 6 (K. Saito) A is free exactly when

there exist ℓ elements

θi =
ℓ

∑

j=1

fij
∂

∂xj
∈ D(A)

such that the determinant of the matrix [fij]

is a nonzero constant multiple of the defining

polynomial QA.
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Compute D(A) for arrangements in P2:

Example 7 [A3 and Nonfano]

Example 8 [S3]

π(D3, t) = (1 + t)(1 + 3t)2 = π(S3, t).
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Theorem 9 (Terao) If D(A) ≃
ℓ

⊕

i=1
S(−ai), then

π(A, t) =
∏

(1 + ait) =
∑

dimC Hi(Cℓ \ A)ti.

Conjecture 10 (Terao) If char = 0, then free-

ness of D(A) depends only on LA.

Example 11 [ZieglerAB] Compute D(A) for

arrangement

1

5

4
8 3

2

9

6

7

where 6 triple points lie on/off a conic.
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Definition 12 Dp(A) ⊆ Λp(DerC(S)) consists

of θ such that

θ(li, f2, . . . , fp) ∈ 〈li〉,∀ V (li) ∈ A, fi ∈ S.

Theorem 13 (Solomon-Terao) χ(A, t) =

(−1)ℓlimx→1

∑

p≥0

HS(Dp(A); x)(t(x − 1) − 1)p.

Problem How does

pdimDp(A)

depend on LA?

Theorem 14 (Yuzvinsky) If Â a closed sub-

arrangement of A, then pdimD(A) ≥ pdimD(Â).

Aside from this, virtually nothing is known!
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G a (simple) graph on ℓ vertices and edges E.

Put AG = {zi − zj = 0 | (i, j) ∈ E ⊆ Cℓ}

Stanley AG is supersolvable ↔ G is chordal.

Kung,– Induced k-cycle → pdimD(AG)≥k−3

Example 15 G has induced 6-cycle (compute)

Example 16 G has induced 4-cycle (compute)

Problem Graph theory formula for pdimD(AG)?
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Proving freeness: three ways

1. Addition-Deletion Theorem (Terao)

(A′,A,A′′) a triple: A′ = A \ H,A” = A|H.

Any two below imply third.

• D(A) ≃ ⊕n
i=1S(−bi)

• D(A′) ≃ S(−bn + 1) ⊕n−1
i=1 S(−bi)

• D(A′′) ≃ ⊕n−1
i=1S/L(−bi)

2. Supersolvable (Terao, via AD)

3. Multiarrangements (Yoshinaga)

A ⊆ P2 is free ↔

• π(A, t) = (1 + t)(1 + at)(1 + bt) and

• D(A|H ,m) ≃ S/L(−a) ⊕ S/L(−b),

holds ∀H =V (L)∈A, with m(Hi)=µA(H ∩Hi).

§Multiarrangements

Definition 17 (A, m): assign a multiplicity mi

to each hyperplane.

D(A, m) = {θ | θ(li) ∈ 〈l
mi
i 〉}.
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Example 18 [Ziegler, again!] Consider the two

multiarrangements in P1

A1 = (1,0), (0,1), (1,1), (1,−1)) ×+ in A2

A2 = (1,0), (0,1), (1,1), (1, a)) (a 6= −1)

To compute D(A1, (1,1,3,3)), we must find

all θ = f1(x, y)∂/∂x + f2∂/∂y such that

θ(x) ∈ 〈x〉, θ(x + y) ∈ 〈x + y〉3

θ(y) ∈ 〈y〉, θ(x − y) ∈ 〈x − y〉3

So compute kernel of





















1 0 x 0 0 0

0 1 0 y 0 0

1 1 0 0 (x + y)3 0

1 −1 0 0 0 (x − y)3




















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Theorem 19 (Abe, Terao, Wakefield)

Ψ(A, m, t, q) =
ℓ

∑

p=0

HS(Dp(A, m, q))(t(q−1)−1)p

χ((A, m), t) = (−1)ℓΨ(A,m, t,1).

If D1(A, m) ≃ ⊕S(−di) then

χ((A, m), t) =
ℓ

∏

i=1

(1 + dit).

Abe, Terao, Wakefield also prove an addition-

deletion theorem for multiarrangements, using

Euler multiplicity for the restriction.

Hilbert-Burch Thm −→ any (A, m) ⊆ P1 is free.

Problem ∃ other arrangements which are free

for any m? No! Abe, Terao, Yoshinaga: any

such is a product of 1 and 2-dim arrangements.

Problem Characterize pdimD(A, m).

Problem Supersolvability for multiarrangements?
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§Arrangements of hypersurfaces

Saito’s criterion still holds. Are there other

freeness theorems? Addition-Deletion theorem

(even for C ⊆ P2)?

Example 20 For the arrangement C ⊆ P2

Compute D(C)

For a good theory, must control singularities.

Definition 21 Plane curve singularity is quasi-

homogeneous ↔ ∃ holo ∆ vars so f(x, y) =
∑

cijx
iyj is weighted homogeneous: ∃ α, β ∈ Q

s.t.
∑

cijx
i·αyj·β is homogeneous.
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Definition 22 The Milnor number at (0,0) is

µ(0,0)(C) = dimC C{x, y}/〈
∂f

∂x
,

∂f

∂y
〉.

The Tjurina number at (0,0) is

τ(0,0)(C) = dimC C{x, y}/〈
∂f

∂x
,

∂f

∂y
, f〉.

for general p, just translate. For V (Q) ⊆ P2,

note the degree of Jac(Q) =
∑

p∈sing(V (Q)) τp.

Example 23 Let C be as below:

If p an ordinary sing with k distinct branches,

then µp(C) = (k − 1)2, so the sum of the Mil-

nor numbers is 20. Compute deg(J). What

happens at the origin?
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Theorem 24 (K. Saito) If C = V (f) has an

isolated sing. at the origin, then

f ∈ Jac(f) ↔ f is quasihomogeneous.

For a qhomogeneous line/conic arrangement,

∃ addition/deletion theorem (–,Tohaneanu).

Compute D(C) for

Can use AD to show this. Now change C to C′

via: y = 0 −→ x−13y = 0 and compute D(C′).
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§Orlik–Terao algebra

The Orlik–Terao algebra is (almost) a sym-

metric version of the Orlik-Solomon algebra.

If codim∩m
j=1Hij < m, then ∃ cij with

m
∑

j=1

cij · lij = 0 a dependency.

IA = 〈
m
∑

j=1

cij(yi1 · · · ŷij · · · yim) | over all deps〉

Definition 25 The Orlik-Terao algebra is

C(A) = C[x1, . . . , xn]/IA.

Example 26 A = V (x1 ·x2 ·x3 ·(x1+x2+x3)),

the only dependency is

l1 + l2 + l3 − l4 = 0, thus C(A) =

C[y1, y2, y3, y4]/〈y2y3y4+y1y3y4+y1y2y4−y1y2y3〉.
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Artinian version of Orlik-Terao algebra is

AOT = C(A)/〈x2
1, . . . , x2

n〉.

Theorem 27 (Orlik-Terao)

HS(AOT) = π(A, t)

answering a question of Aomoto. For the pre-

vious example, Hilbert series of AOT is

1 + 4t +
(4

2

)

t2 + (
(4

3

)

− 1)t3

Theorem 28 (Terao)

HS(OT, t) = π

(

A,
t

1 − t

)

.

Can show that

0 → IA → C[x1, . . . , xn]
φ
→ C





1

l1
, . . . ,

1

ln



 → 0,

so V (IA) ⊆ Pn−1 is irreducible and rational.

Problem What is the geometry of V (IA)?
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Definition 29 A is 2-formal if all dependen-

cies are generated by dependencies among three

hyperplanes.

Theorem 30 (Falk-Randell) K(π,1) and qOS

arrangements are 2-formal.

Theorem 31 (Yuzvinsky) Free arrangements

are 2-formal.

WARNING! ZieglerA is 2-formal, ZieglerB is

not. How to detect?

Formality involves the actual dependencies, which

are captured by C(A)! Compute OT and AOT

for Ziegler arrangements.
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Theorem 32 (–,Tohaneanu)

A is 2-formal ↔ codim(I2) = n − ℓ.

What about other information? Is V (IA) smooth?

Compute for V (y2y3y4+y1y3y4+y1y2y4−y1y2y3).

Notice that the map φ(yi) = 1
li

can be rewritten

as

yi 7→ αi = l1 · l2 · · · l̂i · · · ln.

For simplicity, restrict to P2. For the braid ar-

rangement A3, we obtain a map to P5, whose

image is a rational surface, with Hilbert poly-

nomial (compute!)
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Let X be the blowup of P2 at sing(A), and

DA = (n − 1)E0 −
∑

pi∈L2(A)

µ(pi)Ei.

The intersection pairing on X is given by

E2
0 = 1, E2

i 6=0 = −1 and Ei · Ej 6=i = 0

Since KX = −3E0 +
∑

Ei, we have

D2
A = (n − 1)2 −

∑

p∈L2(A)
µ(p)2

−DAK = 3(n − 1) −
∑

p∈L2(A)
µ(p),

Proudfoot-Speyer (CM) and Riemann-Roch:

H0(DA) =
(n−1)2−

∑

µ(p)2+3(n−1)−
∑

µ(p)
2 + 1

=
(

n+1
2

)

−
∑

p∈L2(A)

(

µ(p)+1
2

)

.

Double count edges between L1(A) and L2(A):

(n

2

)

=
∑

p∈L2(A)

(µ(p) + 1

2

)

,

hence h0(DA) = n.
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Definition 33 Let 3 ≤ k ∈ Z. A k-net in P2 is

a pair (A, Z) where A is a finite set of distinct

lines partitioned into k subsets A =
⋃k

i=1Ai

and Z is a finite set of points, such that:

• for every i 6= j and every L ∈ Ai, L′ ∈ Aj,

L ∩ L′ ∈ Z.

• for every p ∈ Z and every i ∈ {1, . . . , k}, ∃ a

unique L ∈ Ai containing Z.

Falk, Libgober, Pereira, Yuzvinsky resonance

(next talk!) via nets. Let m = |Ai| (all equal).

The existence of a (k, m) net

→ DA = A + B with h0(A) = 2

→ IA ⊇ 2× 2 minors 2×

(

km −
(

m+1
2

)

)

matrix

→ Eagon-Northcott complex

· · · → S2(S
2)∗⊗Λ4G → (S2)∗⊗Λ3G → Λ2G → Λ2S2 → S/I2 → 0.

is subcomplex of resolution of S/IA, G = S(−1)km−(m+1

2 )
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Example 34 For the arrangement A3

P

P

P

P

P

P

2

7

5

6

3P
4

1

Z = triple points gives a (3,2) net,

with Ai = lines thru pi+3, i = 1,2,3.

A = 2E0 −
∑

{p|µ(p)=2}

Ep

B = 3E0 −
∑

p∈L2(A)

Ep.

So n −
(

m+1
2

)

= 6 − 3 = 3 and I contains the

2×2 minors of a 2×3 matrix, whose resolution

we saw at start of the talk! DA almost gives

a De-Concini-Procesi wonderful model: proper

transforms of lines are contracted to points.
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§Compactifications

Fulton-MacPherson F(X, n) combinatorics An.

De Concini-Procesi wonderful model for sub-

space complements (X easy, comb. complex).

M(A) −→ Cℓ ×
∏

D∈G

P(Cℓ/D).

Version for a lattice L: Feichtner-Kozlov.

Definition 35 Building set: G ⊆ L | ∀x ∈ L,

max{G≤x} = {x1, . . . , xm} has [0̂, x] ≃
m
∏

j=1

[0̂, xj]

A building set contains all irreducible x ∈ L.

Definition 36 N ⊆ G is nested if for any set

of incomparable {x1, . . . , xp} ⊆ N with p ≥ 2,

x1 ∨ x2 ∨ · · · ∨ xp exists in L, but is not in G.

Nested sets form a simplicial complex N(G),

vertices = elements of G (vacuously nested).
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Example 37 For A3
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A
A

A
A

A
A

A
A

A
A

A
A

A
A

A
A

A
A

A
AA

H12

H13

H23 H34 H24

H14

3412

123
23

24

13

134
14

234124

(12), (123) is an edge because there are no

incomparable subsets with ≥ 2 elts.

24



Feichtner and Yuzvinsky G building set in

atomic lattice L.

D(L, G) = [xg|g ∈ G]/I,

where I is generated by

∏

{g1,...,gn}6∈N(G)}

xgi and
∑

gi≥H∈L1

xgi

Theorem 38 If A is a hyperplane arrangement

and G a building set containing 1̂, then

D(L, G) ≃ H∗(Y P
A,G, Z),

where Y P
A,G is the wonderful model arising from

the building set G.

Importance is that M0,n ≃ Y P
An−2,G, giving beau-

tiful description of H∗(M0,n, Z) (also Knudson,

Keel) Compute H∗(M0,5, Z).
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