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1.1 Axiom of a root system

Let (F, I) be a pair of

a vector space F over R =(real number field)

a symmetric bilnear form I :F×F →R with rank(I) <∞.

For an non-isotropic α ∈ F (i.e. I(α, α) ̸= 0), we put

α∨ := 2α/I(α, α)

and define a reflection wα ∈ O(F, I) by

wα(u) := u − αI(α∨, u).

The reflection hyperplane Hα (in the dual space F ∗) is defined
by

Hα := {x ∈ F ∗ = HomR(F,R) | ⟨α, x⟩ = 0}.
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Definition. A non-empty subset R of F is called a (generalized)
root system belonging to (F, I) if it satisfies following 1.-5.

1. For any α ∈ R , one has I(α, α) > 0.

2. The subgroup of F generated by R (the weigt lattice of R):
Q(R) := ZR

is a full-lattice of F , i.e. one has a natural isomorphism
Q(R) ⊗Z R ≃ F .

3. For ∀α, β ∈ R, one has I(α, β∨) ∈ Z.

4. For ∀α ∈ R, one has wαR = R.

5. Irreducibility: if there is a decomposition R = R1 ⨿ R2 with
R1 ⊥ R2, then either R1 = ∅ or R2 = ∅.

The Weyl group of the root system R is the group:
W (R) := ⟨wα | α ∈ R⟩.
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Two root systems R and R′ belonging to (F, I) and (F ′, I ′) are

called isomorphic, if there is a linear isomorphism φ : F ≡ F ′ s.t.
φ(R) = R′. Then, automatically, there exists c > 0 such that

I ′ ◦ φ = c · I (that is, I is determined from R up to constant).

For any root system R there exists a constant c > 0 s.t. c · I :

Q(R)×Q(R) → Z defines an even lattice structure on Q(R). We

choose minimal such c and put IR := c · I.

A subspace G of F is called to be defined over Z, if we have

rankR G = rankZ G ∩ Q(R).

The radical rad(I):={x∈F |I(x, y)=0 ∀y∈F} is defined over Z.

A subspace G of rad(I) is called a marking of R if it is defined

over Z. For any marking G, we can define the quotient root

system R̄ := R/G = R mod G as the image of R in F̄ := F/G.
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1.2 Signature of a root system

Signature (or, sign) of a root system R is defined by
sign(R) := sign(I) := (µ+, µ0, µ−)

where µ± (resp. µ0) is the number of positive, negative (resp. 0)
eigenvalues of the bilinear form I.

Definition.

1. R is called finite (or, classical) if sign(R) = (µ+,0,0)

⇔ #R < ∞ ⇔ #W (R) < ∞.

2. R is called affine if sign(R) = (µ+,1,0), and

µ-extended-affine if sign(R) = (µ+,1 + µ,0) (µ ∈ Z≥0).

3. R is called hyperbolic if sign(R) = (µ+,0,1), and

µ-extended-hyperbolic if sign(R) = (µ+, µ,1) (µ ∈ Z≥0).
In particular, 1-extended affine =:elliptic, and 1-extended hyperbolic=:cuspidal.
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Figures 1, 2, 3, 4, 5 and 6.
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1.3 Positive cone of a root system

Let R be a root system belonging to (F, I). Put q(x) := I(x, x)/2.

Definition. 1. A sign decomposition of R is a decomposition:

R = R+ ⨿ R− (1)
such that there exists a linear form l : F → R satisfying relations:

i) l−1(0) ∩ q−1(R≤0) ⊂ rad(I),

ii) ker(l) ∩ rad(I) is a marking (i.e. is defined over Z),

iii) l−1(0) ∩ R = ∅ and R± := {α ∈ R | ±l(α) > 0}.

An element of R+ is called a positive root.

2. The positive cone Q+ with respect to the sign decomposition
is the cone in F spanned over R≥0 by the set of positive roots:

Q± :=
∑

R≥0R± :=
∑

α∈R±
R≥0 α. (2)
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We define the radical of the positive cone Q+ by

rad(Q+) := Q+ ∩ Q− ∩ rad(I) = ker(l) ∩ rad(I).

Theore m. The radical of a cone is a marking of R such that
the quotient root system R̄ := R mod rad(Q+) is either a finite,
an affine or a hyperbolic root system. Then, the datum of the
positive cone Q+ further chooses a chamber C of the quotient
root system R̄ as follows.

First, recall what is a chamber for a finite, an affine or a hyper-
bolic root system R̄ belonging in (F̄ , Ī). In each case, let B be
a domain in the dual space F̄ ∗ :=HomR(F̄ ,R) given as follows.

B0 := F̄ ∗ if R̄ is finite,
B0 := a connected component of F̄ ∗\{x∈ F̄ ∗ |q∗(x)=0} if R̄ is affine,

B0 := a connected component of {x∈ F̄ ∗ |q∗(x)<0} if R̄ is hyperbolic.

A connected component of B0 \ ∪α∈RHα is called a chamber.
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Figures 7, 8 and 9.
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1.4 Chamber associated with a positive cone

For a positive cone Q+, we associate a chamber C as follows:

Let l be a linear form on F defining the sign decomposition
(1) of a root system R. Then the induced linear form l on
F := F/ rad(Q+) belongs to a chamber C of the root system
R = R/ rad(Q+) such that we have the relations:

∗) R+={α ∈ R | α|C > 0} and C ={x ∈ B0 | ⟨ᾱ, x⟩>0 ∀α ∈ R+}.
Here, we denote by ᾱ the image in R̄ of α ∈ R.

Theorem. Let G be a marking of a root system R such
that the quotient root system R mod G is either finite, affine or
hyperbolic. Then, ∗) gives a one to one correspondence:

{ positive cones of R whose radical is equal to G}
≃ { chambers of the root system R̄ := R mod G}.
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1.5 Tits cone of a root system

A chamber C for a finite or an affine root system is a cone over
a simplex. This is not the case for a hyperbolic root system,
since

1. The number of walls of C may be more than rank(F ),

2. The “light cone” B̄0 may cut the polyhedral cone:
Ĉ := {x ∈ F̄ ∗ | ⟨ᾱ, x⟩ ≥ 0 ∀α ∈ R+}.

Definition. We call Ĉ the hull of the chamber C. Put

T (R̄, B0) := ∪C: chamber of R̄ Ĉ

and call it the Tits cone of a finite, an affine or a hyperbolic root
system R̄ (w.r.t. B0).

The Tits cone of a finite, an affine or a hyperbolic root system
is a convex set in F̄ ∗ (which may neither be open nor closed).

12



Figure 10.
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1.6 Simple Root basis

Using a chamber C, we introduce simple root basis Γ̄ for a finite,

an affine or a hyperbolic root system R̄. To the root basis, we

assign a “Dynkin” diagram, where all datum of the root system

R̄ is encoded. For simplicity, we assume that R̄ is reduced (i.e.

Rα ∩ R = {±α} for any α ∈ R).

Definition. For a finite, an affine or a hyperbolic root system R̄

with a chamber C, put

Γ̄ := {ᾱ ∈ R̄ | ᾱ|C > 0 & Hᾱ is a wall of C}.

Here, Hᾱ is a wall of C iff Hᾱ∩ C̄ contains an open subset of Hᾱ.

Lemma. 1. The set Γ̄ is a weak root basis of R̄ , i.e. i) Q(R) =∑
ᾱ∈Γ̄ Zᾱ, ii) W (R) = ⟨wᾱ | ᾱ ∈ Γ̄⟩ and iii) R = ∪ᾱ∈Γ̄W (R)ᾱ.
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2. One has I(ᾱ∨, β̄)≤0 and ᾱ−β̄ ̸∈R̄ ∀ᾱ, β̄∈ Γ̄ with ᾱ ̸= β̄.

3. Any element of R̄+ = {ᾱ ∈ R̄ | ᾱ(C) > 0} is a non-negative

integral linear combination of elements of Γ̄.

Corollary. Let R be a root system with a positive cone Q+ so

that a chamber C of R̄ := R mod Q+ is naturally assigned, and

let π : R → R̄ be the natural projection. Then,

i) The set π−1(Γ̄)∩R is a weak root basis of the root system R.

ii) The cone Q+ is spanned over R≥0 by the set π−1(Γ̄) ∩ R.



Finally, we assign a diagram to the root basis Γ̄.

Definition of the diagram for Γ̄.

1. The set of vertices of the diagrams are in one to one corre-

spondence with the set of roots Γ.

2. Between two distinct vertices α, β, we either equipp or do not

equipp with a laveled edge.

a) If I(α, β) = 0, we put no edge between the vertices.

b) If I(α, β) < 0, we put a real labeled edge ◦ r
M ◦ where

r := I(α, α) : I(β, β) ∈ Q>0 and M := I(α, β∨)I(α∨, β) ∈ Z≥1.

c) If I(α, β) > 0, we put a dotted labeled edge ◦ − r
M − ◦ where

r := I(α, α) : I(β, β) ∈ Q>0 and M := I(α, β∨)I(α∨, β) ∈ Z≥1.
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All edges with labels.
Case I(α, β) < 0.

Sign Name Dynkin Coxeter New
(2,0,0) A1 × A1 ◦ ◦ ◦ ◦ ◦ ◦
(2,0,0) A2 ◦ ◦ ◦ ◦ ◦ 1

1 ◦
(2,0,0) B2 = C2 ◦==⇐=◦ ◦ 4 ◦ ◦ 1:2

2 ◦
(2,0,0) G2 ◦≡≡⇐≡◦ ◦ 6 ◦ ◦ 1:3

3 ◦
(1,1,0) Ã1 ◦ ⇐⇒◦ ◦ ∞ ◦ ◦ 1:1

4 ◦
(1,1,0) B̃C1 ◦==<◦ ◦ ∞ ◦ ◦ 1:4

4 ◦
(1,0,1) ◦ ∞ ◦ ◦ r

M ◦ M > 4

Case I(α, β) > 0.
Sign Name Dynkin Coxeter New

(1,1,0) Ã1 ◦===◦ ◦ ∞ ◦ ◦− 1:1
4 −◦

(1,1,0) B̃C1 ◦ ∞ ◦ ◦− 1:4
4 −◦

The labels r and M on edges are necessary when we study hyperbolic root systems.
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Figures 11, 12.
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Lecture 2: Lie algebras over a root system

1. Axiom of a Lie algebra g̃(R) over a root system R

2. Elementary properties of R-algebras g̃(R)

3. Subalgebra sl2,α for a real root α ∈ R

4. Sub-quotient of g̃(R)

5. Triangular decomposition of g̃(R)

6. Integral (Chevalley) basis of g̃(R)
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2.1 Axiom of a Lie algebra over a root system

R: a root system, K: a coefficient field with ch(K)=0.

A K-vector space g equipped with a K-bilinear map [·, ·] :g×g→
g satisfying [x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0 and [x, x] = 0
∀x, y, z ∈ g is called a Lie algebra. We denote ad(x)(y) := [x, y]
and call the adjoint action of x on y: g → End(g), x 7→ ad(x).

Definition. A Lie algebra g̃(R) is called an R-algebra , or, a Lie
algebra defined over R , if there exists a tuple (g̃, h̃, Ĩ∗, ω, ι) where

1. h̃ is an abelian subalgebra of g̃,

2. Ĩ∗ is a g̃-invariant bilinear form on g̃,

3. ω is a Chevalley involution on g̃,

4. ι is an identification of the set of real roots of g̃ with R,

satisfying Axioms 1-4. in the next pages.
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Axiom 1. h̃ is an abelian Lie subalgebra of g̃ satisfying

i) The normalizer of h̃ in g̃ is h̃ itself.

h̃ = {x ∈ g̃ | [x, h̃] ⊂ h̃}. (3)

ii) The adjoint action of h̃ on g̃ is diagonalizable.

g̃(R) = h̃ ⊕⊕α∈h̃∗\{0}gα, (4)

where h̃∗ := Homk(h̃, K) , and, for α ∈ h̃∗ \ {0} , we put

gα := {x ∈ g̃ | ad(h)(x) = ⟨α, h⟩x for ∀h ∈ h̃}. (5)

If gα ̸= 0, we call α ∈ h̃∗ a root and gα the root space. A non-zero
element of gα is called a root vector of the algebra g̃.

We define the set of roots of the algebra g̃:

∆ := {α ∈ h̃∗ | gα ̸= 0}. (6)
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Axiom 2. The Ĩ∗ is a symmetric K-bilinear form on g̃ satisfying

i) The form Ĩ∗ is g̃-invariant, i.e.

Ĩ∗([x, y], z) = Ĩ∗(x, [y, z]) ∀x, y, z ∈ g̃. (7)

ii) The restriction Ĩ∗ : h̃ × h̃ → K is a perfect pairing.

iii) There does not exists a proper linear subspace h̃′ of h̃ , which

satisfies: a) [gα, g−α] ⊂ h̃′ for all α ∈ ∆, b) Ĩ∗|h̃′×h̃′ is perfect.

Definition. Due to ii), we have an injection: Ĩ∗ : h̃ → h̃∗. The

image, denoted by

F̃K := Ĩ∗(h̃) = Image of Ĩ∗|h̃ , (8)

carries a perfect symmetric bilinear form, denoted by Ĩ. The Ĩ
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induces the inverse isomorphism Ĩ : F̃K ≃ h̃. Put

hx := Ĩ(x) := (Ĩ∗)−1(x) for x ∈ F̃K (9)

such that Ĩ(x, y) = ⟨hx, y⟩ = ⟨x, hy⟩ for x, y ∈ F̃K.

Actually, we shall see that

∆ ⊂ F̃K

Axiom 3. The ω is an involution of g̃ (i.e. a Lie algebra auto-

morphism of g̃ with ω2 = id) such that ω|h̃ = − idh̃.



Axiom 4. There exists an injective K-linear map

ι : Q(R) ⊗Z K −→ F̃K, (10)

satisfying i)-v) (we shall regard Q(R) as a subset of F̃K ).

i) The restriction of the form Ĩ on F̃K to the lattice Q(R) coin-
cides with the form IR on Q(R) for the root system R,

ii) The inclusion map ι induces an inclusion of the set of roots:

R ⊂ ∆, (11)

iii) The algebra g̃ is generated by h̃ and gα for α ∈ R.

iv) The inclusion map (11) induces a bijection:

R ≃ {δ ∈ ∆ | Ĩ(δ, δ) > 0}. (12)

v) The pairing Ĩ∗ : gα × g−α → K is non-zero for any α ∈ R.
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2.2 Elementary properties of R-algebras

1. [gα, gβ] ⊂ gα+β for α, β ∈ ∆, α + β ̸= 0,

[gα, g−α] ⊂ h̃ for α ∈ ∆.

2. Ĩ∗(gα, gβ) = 0 for α, β ∈ ∆, α + β ̸= 0.

3. [x, y] = Ĩ∗(x, y)hα for α ∈ ∆ and x ∈ gα, y ∈ g−α.

5. ω(gα) = g−α for α ∈ ∆.

6. Ĩ∗(ω(x), ω(y)) = Ĩ∗(x, y) for x, y ∈ g̃.

20. The center of the R-algebra g̃ is given by

z(g̃) = hrad(I)K
= rad(I∗|h̃)K. (13)
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2.3 Subalgebra sl2,α for a real root α ∈ R

Definition. An element of R is called a real root of g̃ and an

element of ∆ \ R is called an imaginary root of g̃.

13. Kα ∩ ∆ = {±α} for any real root α ∈ R

14. rankK g±α = 1 for any real root α ∈ R.

Then,
sl2,α := gα ⊕ g−α ⊕ Khα∨

is a Lie-subalgebra of g̃ naturally isomorphic to sl2 = Ke ⊕ Kf ⊕
Kh.

8. The adjoint action of sl2,α for α ∈ R on g̃ is integrable: for

any z ∈ g̃, there exist a finite dimensional subspace of g̃, which

contains z, and is invariant under the adjoint action of sl2,α.

24



Remark. Using exp(x) for α ∈ R and x ∈ gα, adjoint group G̃ad

can be constructed.



Some consequences of sl2,α structure.

12. Let R be a root system with a sign decomposition. Let

π−1(Γ̄) be its root basis introduced in §1.5. Then, for α, β ∈
π−1(Γ̄) with ᾱ ̸= β̄,

i) ad(gα)1−I(α∨,β)gβ = 0 and ii) [g−α, gβ] = 0.

17. Let R be either a finite, an affine or a hyperbolic root

system, and let Γ = Γ̄ be its root basis introduce in §1.5. Then,

g̃ is isomorphic to the Kac-Moody algebra assoicated with the

Cartan matrix {I(α∨, β)}α,β∈Γ.

Remark. If the root system R is neither finite, affine nor hyper-

bolic, then the Lie algebra g̃ is no longer a Kac-Moody algbra.

Eg. elliptic algebras and cuspidal algebras. We do not have a

general criterion (yet) for a root sytem R to have an R-algebra.
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Existence of R-algebras

1. If R is a finite, affine or hyperbolic root system, then, cor-
respondingly, the classical simple Lie algebra, affine algebra and
kac-Moody algebra plays the role of R-algebra.

2. If R is an elliptic root system, then the elliptic algebra plays
the role of R-algebra, where the elliptic algebra is consructed
by 4 different means: 1. vertex algebra defined over Q(R), 2.
Chevalley generators and a generalization of Serre relations, 3.
amalgamation of an affine algebra and a Heisenberg algebra, 4.
universal central extension of a troidal algebra, all of which give
the same algebra (joint work with D.Yoshii).

3. If R is a cuspidal root system, then a similar construction as
the elliptic algebra works and we call the constructed algebra a
cuspidal algebra (joint work with Xiao and Xu).
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4. For further root sytems, the construction using vertex algebra

seems to work. However, we do not know yet exactly, for which

class of root systems, the construction works.

5. Using the integral basis sgiven in 2.6, we, conjecturally, may

be able to define R-algebras by generators and relations.



2.4 Sub-quotient of the algebra g̃(R)

For a marking G of the root system R, we shrink the Cartan
subalgebra h̃ to ĥ := {h ∈ h̃ | ⟨G, h⟩ = 0}. In this section, we
describe R̄ := R/G-algebras as a quotient of ĝ(R) := ĥ⊕⊕α∈∆gα.

Definition. An ideal I of the algebra ĝ is called a G-ideal if it
satisfies the following four condidtions.

I. i) I is diagonalizable with resepct to the adjoint action of ĥ.

I. ii) The intersection I ∩ ĥ is equal to hG.

I. iii) The sum ĥ+I contains the weight space gδ for all δ ∈ G∩∆.
I. iv) I is invariant under the action of ω.

Theorem. Let G be a Ĩ-closed marking (recall §1.2) and I
a G-ideal. Then, ĝ/I carries an R̄ := R/G-algebra structure.
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Corollary. We have the following comparisons of root spaces:

a) For any δ ∈ ∆ ∩ G:

Pδ : gδ −→ ĥ/hG. (14)

b) For any α, α + δ ∈ R with δ ∈ G:

Qα,δ : gα+δ ≃ gα. (15)
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2.5 Triangular decomposition of g̃(R)

Theorem. (Triangular Decompsosition.) Let R be
a root system with a positive cone Q+, and let g̃ = g̃(R) be a
Lie algebra defined over R. Then, the algebra g̃ decomposes
into the direct sum of three subalgebras:

g̃(R) = nQ− ⊕ h̃rad(Q+) ⊕ nQ+, (16)

where the subalgebras are given as follows:

nQ± := the subalgebra of g̃ generated by gα for α ∈ ±π−1(Γ̄)
(17)

and h̃rad(Q+) := h̃ ⊕ ⊕α∈rad(Q+)\{0} gα. (18)

Corollaries. ∆ ⊂ Q− ⨿ rad(Q+) ⨿ Q+.

nQ± = ⊕α∈Q± gα.

∩n∈Z>0
[nQ±, [nQ±, · · · , [nQ±, nQ±] · · · ]] = 0.
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2.6 Integral basis of g̃(R)
Theorem. Let g̃ be an R-algebra defined over C with a positive

cone Q+ and a rad(Q+)-ideal I. There exists

(i) a system of root vectors,

eα ∈ gα for α ∈ ±π−1(Γ̄), (19)

(ii) a system of Z-linear maps

H(δ) : Q(R∨)/(Q(R∨) ∩ Rδ) → gδ for δ ∈ ∆ ∩ rad(Q+) (20)

satisfying the following 1., 2., 3. and 4..

1.

(ii)
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2. (i) ω(eα) = e−α for α ∈ ±π−1(Γ).

(ii)
Q(R∨)/(Q(R∨) ∩ Rδ)

H(δ)
−→ gδ

↓ −1 ↓ ω

Q(R∨)/(Q(R∨) ∩ Rδ)
H(−δ)
−→ g−δ

for δ ∈ ∆∩rad(Q+)

3. For all α, β ∈ π−1(Γ̄)

(i) [eα, e−α] = hα∨

(ii) ad(eα)−I(α∨,β)+1eβ = 0 if ᾱ ̸= β̄,

[eα, eβ] = 0 if ᾱ = β̄.

(iii) [eα, e−β] = 0 if ᾱ ̸= β̄,

(iv) [eα, e−β] = H(α−β)(α∨) if ᾱ = β̄.
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4.
[H(δ)(α∨), H(γ)(β∨)] = I(α, β∨) H(δ+γ)( 2

I(α,α)δ)

= −I(α∨, β) H(δ+γ)( 2
I(β,β)γ),

for α, β ∈ R, δγ ∈ rad(Q+) ∩ ∆.

5. [H(δ)(h), eα] = I(h, α) eα+δ

for α ∈ R, δ ∈ rad(Q+) ∩ ∆ and h ∈ Q(R∨).



Lecture 3: Integrable Representations

1. Integrable modules

2. Highest weight module

3. The dominant integral weight Λ

4. The integrable module L(Λ)

5. The highest part A(Λ)

6. The block decomposition
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3.1 Integrable modules

Let g be a Lie algebra over a field K of characteristic 0. A pair

(V, π) of a K-vector space V and a Lie algebra homomorphism

π : g → EndK(V ) is called a representation. One has the left

action (x, v) ∈ g × V 7→ π(x)v ∈ V . We, sometimes, write xv

instead of π(x)v. The vector space V with the action of g is

called a g-module.

Definition. 1. A g̃(R)-module V is diagonalizable with respect

to the Cartan algebra h̃, if it admits an equi-eigenspace decom-

position:

V = ⊕λ∈F̃V λ, (21)

where one put

V λ = {v ∈ V | π(h)v = ⟨λ, h⟩v ∀h ∈ h̃}. (22)
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An element λ ∈ F̃ is called a weight of the module V , if V λ ̸= 0,

where V λ may not necessarily be of finite dimensional. The set

of all weigts of V is denoted by

P (V ) := {λ ∈ F̃ | V λ ̸= {0}}.

2. Let V be a diagonalizable g̃(R)-module. A vector v ∈ V is

called integrable, if for all real root vector x ∈ g(R)α (α ∈ R),

there exists a positive integer n ∈ Z≥0 such that π(x)nv = 0.

A g̃(R)-module V is called integrable if every element of V is

integrable.

Assertion. If V is integrable then Ĩ(λ, α∨) ∈ Z for any weight

λ ∈ P (V ) and any root α ∈ R. Therefore, Ĩ(λ, Q(R∨)) ⊂ Z.



3.2 Highest weight module

Definition. 1. Let (V, π) be a g̃(R)-module. A nonzero vector

v ∈ V is called a highest weight vector with respect to a positive

cone Q+ (2), if

i) v is a weight vector, i.e. ∃Λ ∈ F̃ s.t. h · v = ⟨Λ, h⟩v ∀h ∈ h̃,

ii) π(nQ+) · v = 0.

2. A g̃(R)-module (V, π) is called a highest weight module if

there is a highest weight vector which generates V over g̃(R).

The linear form on the center Λ|z(g̃(R)) (where Λ is the weight

of a generator v of V ) is independent of a choice of a generating

highest weight vector v, which we call the level of V .
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3.3 The dominant integral weight Λ

We, first, state necessary conditions on an element Λ ∈ F̃ so that

there exists an integrable highest weight module of the highest

weight Λ.

Theorem. Consider the R-algebra g̃(R) over a root system R.

Let Λ be an element of F̃ = Hom(h̃, K). Suppose that there

exists a positive cone Q+ for R and an integrable highest weight

vector v+ of the weight Λ with respect to the cone Q+. Then

the following i)- iv) hold.

i) The Λ is integral in the sense: Ĩ(Λ, γ) ∈ Z ∀γ ∈ Q(R∨).

ii) One has either a) Λ ∈ rad(I) or b) rad(Λ) = rad(Q+), where

rad(Λ) := rad(I) ∩ Λ⊥ = {γ ∈ rad(I) | Ĩ(Λ, γ) = 0}.
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In particular, the quotient root system RΛ := R mod rad(Λ) is

either finite, affine or hyperbolic.

iii) The dual weight hΛ = Ĩ(Λ) ∈ h̃ projects to a vector h̄Λ in the

Tits cone of the root system RΛ in F ∗Λ.

h̄Λ ∈ T (RΛ, B0(Q
+)). (23)

iv) The v+ satisfies the following equations:

(eα)max{0,−Ĩ(Λ,α∨)}+1v+ = 0 (24)

for all α ∈ R.



3.4 The integrable module L(Λ)

We show the converse of the previous theorem.

Theorem. Let R be a root system. Let Λ ∈ F̃ satisfy

i) Integrality: Ĩ(Λ, α∨) ∈ Z for α ∈ R,

ii) The quotient RΛ := R/ rad(Λ) is a root system of Witt index

≤ 1 (i.e. either finite, affine or hyperbolic).

iii) The dual weight hΛ := Ĩ(Λ) projects into the Tits cone T (RΛ).

Then, there exists, up to g̃(R)-isomorphism, a unique pair (L(Λ), v+)

satisfying the following 1. and 2.

1. L(Λ) is an integrable g̃(R)-module and v+ is a weight vector

of L(Λ) of the weight Λ which generates L(Λ).
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v+ is highest with respect to any positive cone Q+ where Λ is
dominant (⇔

def
the dual weight hΛ projects into the hull of the

chamber C of the cone Q+ ).

2. Let v be an integrable weight vector of weight Λ in a g̃(R)
module L which is highest with respect to a positive cone of R.
Then there exists a unique g̃(R)-homomorphism L(Λ) → L with
v+ 7→ v.

Plan of the proof for the case Λ ̸∈ rad(I).

Consider the left g̃-module L(Λ) generated by a single element
[1]Λ which satisfies the relations:

h[1]Λ = ⟨Λ, h⟩[1]Λ for h ∈ h̃

(eα)max{0,−Ĩ(Λ,α∨)}+1[1]Λ = 0 for α ∈ R



which is a diagnalizable and integrable left g̃-module depending

only on Λ.

Then the main task is to show L(Λ) ̸= {0}, which is equivalent

to sow the non-vanishing of the vector [1]Λ in L(Λ). It suffices

to show the non-vanishing of the highest weight part of L(Λ),

say A(Λ)[1]Λ. Actually, A(Λ) is the image of the universal en-

velopping algebra U(hrad(Λ)′Z) of (shrinked) diagonal part

hrad(Q+)′ := hrad(Q+) ⊕⊕γ∈rad(Q+)\{0} gγ

of the triagnular decomposition (18). Actually, the “shrinked”

algebra U(hrad(Λ)′Z) acts on L(Λ) also from the right, A(Λ) is its

quotient algebra by a both-sided ideal.

A(Λ) := U(hrad(Λ)′Z)/
(
U(hrad(Λ)′Z) ∩

∑
α∈R∩Q+

U(g̃(R))·(e−α)Ĩ(Λ,α∨)+1[1]Λ
)
.



3.5 The highest part A(Λ)

Theorem-added. The algebra A(Λ) acts on L(Λ) from the
right, where the action commutes with the left action of U(g̃(R)).

We give two proofs of non vanishing of the algebra A(Λ).

1. The first proof is to use a specialization of the module L(Λ)
to a module over g̃(RΛ) where the image of [1]Λ is non-trivial.

Assertion. Recall the integral basis Hδ(α∨) of the radical root
space gδ (2.6 Theorem ii)). The correspondence Hδ(α∨) 7→
⟨Λ, α∨⟩ eδ induces a surjective homomorphism from A(Λ) to the
group-ring K · rad(Λ)Z.

2. The second proof is to use the explicite description of the
defining ideal of A(Λ) determined by a use the datum Q+.
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Definition. We shall call a surjective algebra homomorphism:

A(Λ) → C a spector.

The previous result assert the existence of a spector. In fact,

using a spector, we obatain an irreducible integrable representa-

tion:

L(Λ) ⊗ C. ]

Therefore, our next main task is to determine the structure of

the algebra A(Λ).
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3.6 The block decomposition

Let ΓΛ be a simple root basis of R with respect to a positive
cone Q+ compatible with Λ (recall ?? and ??). For each vertex
ᾱ ∈ ΓΛ, let us introduce the z(rad(Λ)Z)-subalgebra of A(Λ):

B(rad(Λ)Z, Ĩ(Λ, ᾱ∨))

:= the z(rad(Λ)Z)-subalgebra of A(Λ) generated by H
(γ)
δ

for γ ∈ rad(Λ)Z and α + δ ∈ π−1(ᾱ).
(25)

The generators of the defining ideal Î(Λ) split into groups ac-
cording to the index α. So we have the following decomposition.

Assertion. 1. The algebra A(Λ) is isomorphic to the tensor
product

A(Λ) ≃ ⊗α∈ΓΛ
B(rad(Λ)Z, Ĩ(Λ, α∨)) (26)
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over the central algebra z(rad(Λ)Z). Here, the product structure

in the tensor expression is that for non-commutative algebras

where the generators in the different factor satisfy a commuta-

tion relation (??). That is:

(H(δ)
α∨ ⊗ 1)(1 ⊗ H

(γ)
β∨ ) − (1 ⊗ H

(γ)
β∨ )(H(δ)

α∨ ⊗ 1) = I(α∨, β∨)H(γ+δ)
δ

2. The tensor decomposition (26) does not depend on a choice

of the root basis ΓΛ and is unique up to an isomorphism.



Concluding remarks.

Starting from a (generalized) root system R, we have constructed
Lie algebras g̃(R) defined over R and their highest integrable rep-
resentations L(Λ) for dominant integral weights Λ of R.

These supply sufficient data to construct Lie groups over R:

G(R) := Gad(R) ∗ lim← G(Λ).

The next subject to be studied is the adjoint quotient morphism

g̃(R) −→ g̃(R)/Ad(G(R)) ≃ h̃/W̃ (R).

For certain good cases (elliptic and cuspidal), some partial re-
sults are obtained and the work is in progress. We hope that
the understanding of the adjoint quotient morphim should sup-
ply supply sufficient materials to understand the arrangement
{Hα,C}α∈R on h̃ whose understanding was one of the motivation
and the starting point of the present lectures.
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Thank you very much !

Arrangements of Hyperplanes

Hokkaido university, August 5, 2009
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