

The 2nd MSJ-SI

The Mathematical Society of Japan, Seasonal Institute

Arrangements of Hyperplanes

August 1 - 13, 2009

Conference Hall, Hokkaido University, Sapporo, Japan

From splines to the index theorem

Claudio Procesi: joint work with C. De Concini, M. Vergne

Sapporo August 9, 2009

Basic input

I want to explain the connection between four different parts of Mathematics.
(1) Hyperlane arrangements
(2) Splines and approximation Theory
(3) The arithmetic of partition functions
(9) Transversally elliptic operators.

Basic input

The common ground of these four fields, is

a list $X:=\left(a_{1}, \ldots, a_{m}\right)$ of real or integer vectors.
(1) They are the linear equations of the hyperplanes, in the theory of arrangements.
(2) In approximation Theory they build the box spline.
(3) In arithmetic they are integral vectors and we study the partition function they generate.
(3) Finally in the theory of elliptic operators the vectors are integral and appear as characters of a torus.

Toric arrangements

A list of integral vectors in \mathbb{Z}^{s} gives rise to a periodic arrangement or a toric arrangement.
The arrangement of subgroups of a torus $\left(\mathbb{C}^{*}\right)^{s}$ of equations $x^{\chi}=1$ for $\chi \in X$.

Toric arrangements

In coordinates $\chi=\left(m_{1}, \ldots, m_{s}\right)$ gives

$$
\prod_{i} x_{i}^{m_{i}}=1, x_{i}=e^{2 \pi i \theta_{i}} \Longrightarrow \sum_{i} m_{i} \theta_{i}=k \in \mathbb{Z}
$$

So a list $\chi_{j}=\left(m_{j, 1}, \ldots, m_{j, s}\right) \in \mathbb{Z}^{s}$ gives rise to the periodic arrangement generated by the hyperplanes

$$
\sum_{i} m_{j, i} \theta_{i}=k \in \mathbb{Z}
$$

Some function spaces

In all these Theories appear certain remarkable spaces of functions which are building blocks of the Theory.

They are all described through equations associated to cocircuits.

I will explain more these equations, let me recall that a cocircuit Y in X is an idea from matroids. Assume X spans the ambient space.

A cocircuit in X is:

a sublist Y minimal with the property that, when we remove Y from X, the vectors in the remaing list $X \backslash Y$ do not span the ambient space.

In other words. Assume X spans the ambient space.

A cocircuit in X is:

a sublist $Y:=X \backslash \mathbb{H}$, where \mathbb{H} is a hyperplane generated by a sublist of X.

TWO SPACES OF FUNCTIONS $D(X), D M(X)$.

The space $D(X)$

if a space of polynomials. For a vector v denote by D_{v} the usual directional derivative
For a list Y of vectors denote by $D_{Y}:=\prod_{a \in Y} D_{a}$.

$$
D(X):=\left\{p \mid D_{Y} p=0, Y \text { runs over all cocircuits }\right\} .
$$

THE SPACE $D(X)$.

Remark

a function p or even a distribution p satisfying
$D_{Y} p=0, Y$ all cocircuits is necessarily a polynomial.

THE SPACE $D M(X)$.

The space $D M(X)$

if defined when X is a list of integral vectors. It is a space of integer values functions on \mathbb{Z}^{s}.
Denote by

$$
\nabla_{a} f(x):=f(x)-f(x-a)
$$

the usual difference operator
For a list Y of vectors denote by $\nabla_{Y}:=\prod_{a \in Y} \nabla_{a}$.
$D M(X):=\left\{p \mid \nabla_{Y} p=0, Y\right.$ runs over all cocircuits $\}$.

Why these spaces

- $D(X)$ appears in approximation Theory and the Theory of splines
- $D M(X)$ in the Theory of the partition functions.

Essentially you ask

They both appear in equivariant cohomology and index Theory.
In how many ways can you write a vector v as a sum $\sum_{a \in X} t_{a} a$ with t_{a} positive?

Why these spaces

You make sense of the previous question as follows:
in how many ways
can you write a vector v as a sum $\sum_{a \in X} t_{a} a$ with t_{a} positive? Means $(m=|X|)$.
(1) In approximation theory: the volume $T_{X}(v)$ of the polytope $\Pi_{X}(v)$ formed of the $\left(t_{a}\right) \in\left(\mathbb{R}^{+}\right)^{m}$ with $\sum_{a \in X} t_{a} a=v$.
(2) In arithmetic: the number $P_{X}(v)$ of solutions $\left(t_{a}\right) \in(\mathbb{N})^{m}$ with $\sum_{a \in X} t_{a} a=v$ (i.e. in $\Pi_{X}(v) \cap \mathbb{Z}^{m}$).

In order for these numbers to be finite you need a

positivity condition:

there is a linear form which is positive on all the vectors in X.

Two basic Theorems of Dahmen-Micchelli

The two spaces $D(X), D M(X)$ are made of functions that describe in a piecewise way the previous functions $T_{X}(v), P_{X}(v)$.

We have several Theorems describing the spaces $D(X)$ and $D M(X)$ mostly due to Dahmen-Micchelli.

FIRST THEOREM OF DAHMEN-MICCHELLI

Dimension

The dimension of $D(X)$ is the number of bases one can extract from X.

Let $\mathcal{B}(X)$ denote the set of all bases extracted from X

$$
\operatorname{dim} D(X)=|\mathcal{B}(X)|
$$

SECOND THEOREM OF DAHMEN-MICCHELLI

Weighted dimension

The dimension of $D M(X)$ is

$$
\operatorname{dim} D M(X):=\sum_{\underline{b} \in \mathcal{B}(X)}|\operatorname{det}(\underline{b})| .
$$

This formula has a strict connection with an important polytope that we call the box $B(X)$.

THE BOX

An important object is the compact polytope:

THE BOX B(X)

The Box $B(X)$

is the compact convex polytope called zonotope

$$
B(X):=\left\{\sum_{i=1}^{m} t_{i} a_{i}\right\}, 0 \leq t_{i} \leq 1, \forall i .
$$

It is the Minkowsky sum of the segments $[0, a], a \in X$.

The box $B(X)$ has a nice combinatorial structure, and can be paved by a set of parallelepipeds indexed by: all the bases which one can extract from X !

The box $B(X)$ has a nice combinatorial structure, and can be paved by a set of parallelepipeds indexed by: all the bases which one can extract from X !

Example

In the next example

$$
X=\left|\begin{array}{cccccc}
1 & 0 & 1 & -1 & 2 & 1 \\
0 & 1 & 1 & 1 & 1 & 2
\end{array}\right|
$$

we have 15 bases and 15 parallelograms.

EXAMPLE paving the box

$$
X=\left|\begin{array}{cccccc}
1 & 0 & 1 & -1 & 2 & 1 \\
0 & 1 & 1 & 1 & 1 & 2
\end{array}\right|
$$

Step-wise paving of the box

$$
=\left|\begin{array}{cccccc}
1 & 0 & 1 & -1 & 2 & 1 \\
0 & 1 & 1 & 1 & 1 & 2
\end{array}\right|
$$

START WITH

$$
X=\left|\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right|
$$

Step-wise paving of the box

$$
X=\left|\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 1
\end{array}\right|
$$

Step-wise paving of the box

$$
X=\left|\begin{array}{cccc}
1 & 0 & 1 & -1 \\
0 & 1 & 1 & 1
\end{array}\right|
$$

Step-wise paving of the box

$$
X=\left|\begin{array}{ccccc}
1 & 0 & 1 & -1 & 2 \\
0 & 1 & 1 & 1 & 1
\end{array}\right|
$$

Step-wise paving of the box

Root systems.

X a root system

$$
\rho=1 / 2 \sum_{a \in X} a
$$

The zonotope associated to a root system is
up to translation by ρ the convex hull of the Weyl group orbit of ρ.

Two zonotopes.

Figure: The zonotope associated to the root system A_{3}.

Two zonotopes.

Figure: The zonotope associated to the root system B_{3}.

Duality

The zonotope $B(X)$ is combinatorially a picture dual to the hyperplane arrangement associated to X as system of linear equations.

To a face F of $B(X)$ associate the set C_{F} of linear functions which take their maximum in $B(X)$ on F. You get an order reversing bijection with the facets of the arrangement.

SECOND THEOREM OF DAHMEN-MICCHELLI

Weighted dimension

The dimension of $D M(X)$ (as free \mathbb{Z} module) is the Volume $\delta(X)$ of the box $B(X)$! we have:

$$
\delta(X):=\sum_{\underline{b} \in \mathcal{B}(X)}|\operatorname{det}(\underline{b})| .
$$

This formula has a strict connection with the paving of the box.

The initial conditions

(1) The fact is that the difference equations are recursions and
(2) a function in $D M(X)$ is determined by the values it takes on a gives special set of $\delta(X)$ points.
(3) This is obtained by taking a sufficiently generic vector v and taking the set of points in which $v-B(X)$, intersects the lattice \mathbb{Z}^{s} !

Example

Let us take

$$
X=\left|\begin{array}{cccc}
0 & 1 & 1 & -1 \\
1 & 0 & 1 & 1
\end{array}\right|
$$

See that $\delta(X)=1+1+1+1+1+2=7$ is the number of points in which the box $B(X)$, shifted generically a little, intersects the lattice!

In this example there are 4 cocircuits, $D M(X)$ is 7 dimensional and can be identified to the \mathbb{Z} valued functions on the 7 points of the picture.

The first reason to study $D M(X)$ is that the partition function associated to X is described explicitly through elements of $D M(X)$. There is a strong connection between partition functions and $D M(X)$.
The second reason is the connection with the index theorem

A THIRD SPACE

Recall the Partition function associated to a list $X=\left(a_{1}, a_{2}, \ldots, a_{m}\right)$ of integral vectors.
Assume first that there is a linear form ϕ so that $\langle\phi \mid a\rangle>0, \forall a \in X$. Then we have a \mathbb{Z} valued function $P_{X}(b)$ on \mathbb{Z}^{s} defined as:

$$
P_{X}(b):=\#\left\{t_{1}, \ldots, t_{m}\right\} \in \mathbb{N}^{m} \mid \sum_{i=1}^{m} t_{i} a_{i}=b
$$

$P_{X}(b)$ is best expressed via its generating series

$$
\sum_{b \in \mathbb{Z}^{s}} P_{X}(b) e^{b}=\prod_{a \in X} \frac{1}{1-e^{a}}
$$

For a general X consider a linear function ϕ which is non-zero on each element of X.

- then X is divided into two parts A, B where ϕ is positive, respectively negative.
- We may thus consider the partition function $P_{A,-B}$,
- it depends only on the chamber of the hyperplane arrangement defined by X in the dual space, in which ϕ lies.

The space $\tilde{\mathcal{F}}_{X}$

Integer valued functions on \mathbb{Z}^{s} are a module (using translation) over the group algebra $\mathbb{Z}\left[\mathbb{Z}^{s}\right]$.

We can thus consider

the $\mathbb{Z}\left[\mathbb{Z}^{s}\right]$ module $\tilde{\mathcal{F}}_{X}$ of functions on \mathbb{Z}^{s} generated by all the partition functions $P_{A,-B}$ for all the chambers.

The role of $\tilde{\mathcal{F}}_{X}$

- The space $\tilde{\mathcal{F}}_{X}$ can be completely described
- it is built naturally from the space $D M(X)$ and the spaces $D M(Y)$ from sublists of X.
- It describes certain coefficients in equivariant K-theory and in the index Theorem for transversally elliptic operators.
- It can be defined by difference equations.

The Atiyah-Singer index theorem

> In 1968 appears the fundamental work of Atiyah and Singer
> on the index theorem of elliptic operators, a theorem formulated in successive steps of generality.
> This theorem is the crowning point of a long sequence of ideas from Riemann, De Rham, Hodge, Hirzebruch on cohomology on manifolds

What is an index?

Recall that the index $i(A)$ of a linear operator, when defined is

$$
i(A):=\operatorname{dim}(\operatorname{ker} A)-\operatorname{dim}\left(\operatorname{ker} A^{*}\right),
$$

where $\operatorname{ker}(A)$ is the space of solutions of the homogeneous equation $A u=0$. A^{*} denotes the adjoint.

What is an index?

Recall that the index $i(A)$ of a linear operator, when defined is

$$
i(A):=\operatorname{dim}(\operatorname{ker} A)-\operatorname{dim}\left(\operatorname{ker} A^{*}\right)
$$

where $\operatorname{ker}(A)$ is the space of solutions of the homogeneous equation $A u=0$. A^{*} denotes the adjoint.

- The linear operators consider by Atiyah and Singer are differential (or rather pseudodifferential) operators on manifolds.

What is an index?

Recall that the index $i(A)$ of a linear operator, when defined is

$$
i(A):=\operatorname{dim}(\operatorname{ker} A)-\operatorname{dim}\left(\operatorname{ker} A^{*}\right),
$$

where $\operatorname{ker}(A)$ is the space of solutions of the homogeneous equation $A u=0$. A^{*} denotes the adjoint.

- The linear operators consider by Atiyah and Singer are differential (or rather pseudodifferential) operators on manifolds.
- Precisely they operate not simply on functions but as usual in global geometry on sections of vector bundles.

The condition of being elliptic

(like the Laplace operator) is needed to insure that the index is well defined and:

What is the index theorem?
the index theorem produces a formula for the index through cohomological data associated to the operator, the manifold and the bundles involved.
(Chern character and Todd class).

The need for K-theory

An essential step in the index theory is given by the construction of a generalized cohomology theory called K - theory.

Then the index theorem passes through several steps:

The need for K-theory

An essential step in the index theory is given by the construction of a generalized cohomology theory called K - theory.

Then the index theorem passes through several steps:

- to an operator one associates the symbol, which is a (matrix valued) function on the cotangent bundle.

The need for K-theory

An essential step in the index theory is given by the construction of a generalized cohomology theory called K - theory.

Then the index theorem passes through several steps:

- to an operator one associates the symbol, which is a (matrix valued) function on the cotangent bundle.
- to the symbol an element of a suitable group of K - theory, the index can be computed this way.

The need for K-theory

An essential step in the index theory is given by the construction of a generalized cohomology theory called K - theory.

Then the index theorem passes through several steps:

- to an operator one associates the symbol, which is a (matrix valued) function on the cotangent bundle.
- to the symbol an element of a suitable group of K - theory, the index can be computed this way.
- Alternatively from K - theory one passes to cohomology.

The need for K-theory

An essential step in the index theory is given by the construction of a generalized cohomology theory called K - theory.

Then the index theorem passes through several steps:

- to an operator one associates the symbol, which is a (matrix valued) function on the cotangent bundle.
- to the symbol an element of a suitable group of K - theory, the index can be computed this way.
- Alternatively from K - theory one passes to cohomology.
- The final formula is proved by showing enough properties of all these steps which reduce the formula to some basic cases.

A deep generalization

One general and useful setting is for operators on a manifold M which:

> (1) satisfy a symmetry with respect to a compact Lie group G (2) are elliptic in directions transverse to the G-orbits.

In this case
The values of the index are generalized functions on G

A deep generalization

> One general and useful setting is for operators on a manifold M which:
(1) satisfy a symmetry with respect to a compact Lie group G

A deep generalization

One general and useful setting is for operators on a manifold M which:
(1) satisfy a symmetry with respect to a compact Lie group G
(2) are elliptic in directions transverse to the G-orbits.

In this case:
The values of the index are generalized functions on G.

The appearance of distributions

- In this case the kernel of A or of A^{*} is no more finite dimensional, but it is of trace class as representation.
- $\rho: G \rightarrow U(\mathbb{H})$ from the group of symmetries G to unitary operators on a Hilbert space.

This means that

we can integrate the C^{∞} functions of G to operators $T_{f}:=\int_{G} f(g) \rho(g)$ which have a trace and
$f \mapsto \operatorname{Tr}\left(T_{f}\right)$ is a distribution.

The analytic index

The analytic index of the operator A
is the distribution on G obtained as difference of the trace on the spaces of solutions of A and its adjoint A^{*} (in an appropriate Sobolev space).

The analytic index

The analytic index of the operator A
is the distribution on G obtained as difference of the trace on the spaces of solutions of A and its adjoint A^{*} (in an appropriate Sobolev space).

This is equivalently described by Fourier coefficients, which are an integral valued function on the set of irreducible representations, the multiplicity.

An open question was

In his Lecture Notes describing joint work with I.M. Singer,
\square
Springer L.N.M., n. 401, 1974.
Atiyah explains how to reduce general computations to the case in which

He then computes explicitly in several cases and ends his introduction saying

An open question was

In his Lecture Notes describing joint work with I.M. Singer,
\square
Springer L.N.M., n. 401, 1974.
Atiyah explains how to reduce general computations to the case in which

- G is a torus,

\square
He then computes explicitly in several cases and ends his introduction saying

An open question was

In his Lecture Notes describing joint work with I.M. Singer,
\square
Springer L.N.M., n. 401, 1974.
Atiyah explains how to reduce general computations to the case in which

- G is a torus,
- the manifold M is a complex linear representation

$$
M_{X}=\oplus_{a \in X} L_{a}
$$

He then computes explicitly in several cases and ends his introduction saying

An open question was

In his Lecture Notes describing joint work with I.M. Singer,

Entptic operators and compact groups,

Springer L.N.M., n. 401, 1974.
Atiyah explains how to reduce general computations to the case in which

- G is a torus,
- the manifold M is a complex linear representation

$$
M_{X}=\oplus_{a \in X} L_{a},
$$

- $X \subset \hat{G}$ is a finite list of characters and L_{a} the one dimensional complex line where G acts by the character $a \in X$.

He then computes explicitly in several cases and ends his introduction saying

An open question

" ... for a circle (with any action) the results are also quite explicit. However for the general case we give only a reduction process and one might hope for something explicit. This probably requires the development of an appropriate algebraic machinery, involving cohomology but going beyond it."

Solution to this open question

Reference

Vector partition functions and index of transversally elliptic operators
Authors: Corrado De Concini, Claudio C. Procesi, Michele Vergne arXiv:0808.2545

This algebraic machinery turns out to be a spinoff of the theory of splines and partition functions, and provides a complete solution to this question.

The main topological ingredient of the theory is

the equivariant K-theory group
$K_{G}^{0}\left(T_{G}^{*} M\right)$ which is defined in a topological fashion.

Where:

$T^{*} M$ is the cotangent bundle.
We denote by $T_{G}^{*} M$ the closed subset of $T^{*} M$, union of the conormals to the G orbits.

This index depends only of the class defined by σ in $K_{G}^{0}\left(T_{G}^{*} M\right)$, so that in the end:

Combinatorics of Fourier coefficients

the index defines a $R(G)$ module homomorphism from $K_{G}^{0}\left(T_{G}^{*} M\right)$ to virtual trace class representations of G.

The main goal
Describe explicitly the map induced by the index, from $K_{G}^{0}\left(T_{G}^{*} M\right)$ to virtual trace class representations of G.

Combinatorics of Fourier coefficients

This is described combinatorially, if we identify the character group of G with the free abelian group \mathbb{Z}^{s} we have as values of the index a space of integer valued functions on \mathbb{Z}^{s}.

The result

- We identify the space of functions image of the index for $M=M_{X}$.
- We prove that the index is an isomorphism between $K_{G}^{0}\left(T_{G}^{*} M_{X}\right)$ and its image in the functions.

The MAIN THEOREM is that
$K_{G}^{1}\left(T_{G}^{*} M_{X}\right)=0$, and the index induces an isomorphism between $K_{G}^{0}\left(T_{G}^{*} M_{X}\right)$ and $\tilde{\mathcal{F}}_{X}$.
Moreover there is a very precise description of the group $\tilde{\mathcal{F}}_{X}$. SEE the last part of this presentation.

An example

Example (of $T_{G}^{*} M$)

$M=\mathbb{R}^{2}, G=S^{1}$ acting by rotations on the plane \mathbb{R}^{2}, the orbits are the circles centered at the origin, we identify $T^{*} M=\mathbb{R}^{4}$ with pairs of vectors.
A pair of vectors $(a, b) \in \mathbb{R}^{2} \times \mathbb{R}^{2}$ is in $T_{G}^{*} M$ if either $a=0$ its orbit reduces to 0 and b arbitrary or $a \neq 0$ its orbit is a circle and b is orthogonal to the orbit if it is proportional to a.

An example

We write generalized functions by their generating series
$\sum_{n \in \mathbb{Z}} a_{n} t^{n}$.

Example (of values of the index)

Consider the case where $G=S^{1}$ acts by homotheties on $M_{X}=\mathbb{C}^{k+1}$.
We denote by t the basic character of $S^{1}:=\{t| | t \mid=1\}$, so that $R(G)=\mathbb{Z}\left[t, t^{-1}\right]$ and $X=[t, t, \ldots, t], k+1$ times.

First Atiyah-Singer constructed a "pushed" $\bar{\partial}$ operator on M_{X}, with index the trace of the representation of G in the symmetric algebra $S\left(M_{X}\right)$.
We get the generalized function

$$
\Theta_{X}(t):=\sum_{n=0}^{\infty}\binom{n+k}{k} t^{n}
$$

An example

Notice that

$$
\binom{n+k}{k}=\frac{(n+k)(n+k-1) \ldots(n+1)}{k!}, n \geq 0
$$

is the partition function for $X=\underbrace{\{1, \ldots, 1\}}_{k+1}$.
In this case we only have two chambers and the other partition function

$$
\binom{-n+k}{k}, n \leq 0
$$

for $X=\underbrace{\{-1, \ldots,-1\}}_{k+1}$.

An example

Remark

$n \mapsto\binom{n+k}{k}$ extends to a polynomial function on \mathbb{Z}.
For any n positive or negative, the function $n \mapsto\binom{n+k}{k}$ represents the dimension of a virtual space, the alternate sum of the cohomology spaces of the sheaf $\mathcal{O}(n)$ on k - dimensional projective space.

An example

In particular, the tangential Cauchy-Riemann operator

on the unit sphere $S_{2 k+1}$ of \mathbb{C}^{k+1} is a transversally elliptic operator with index

$$
\theta_{k}(t):=\sum_{n=-\infty}^{\infty}\binom{n+k}{k} t^{n}
$$

a generalized function on G supported at $t=1$.

An example

Theorem

The index map is an isomorphism from $K_{G}^{0}\left(T_{G}^{*} M_{X}\right)$ to the space $\tilde{\mathcal{F}}(X)$ of generalized functions on G generated by Θ_{X} and θ_{X} under multiplication by elements of $R(G)=\mathbb{Z}\left[t, t^{-1}\right]$.

In fact the $R(G)$ module generated by Θ_{X} is free over $R(G)$.
The $R(G)$ module generated by θ_{x} is the torsion submodule.
\qquad

An example

Theorem

The index map is an isomorphism from $K_{G}^{0}\left(T_{G}^{*} M_{X}\right)$ to the space $\tilde{\mathcal{F}}(X)$ of generalized functions on G generated by Θ_{X} and θ_{X} under multiplication by elements of $R(G)=\mathbb{Z}\left[t, t^{-1}\right]$.

In fact the $R(G)$ module generated by Θ_{X} is free over $R(G)$.
The $R(G)$ module generated by θ_{x} is the torsion submodule.

- This submodule is the module of polynomial functions on \mathbb{Z} of degree at most k so it is a free \mathbb{Z}-module of rank $k+1$.

An example

Theorem

The index map is an isomorphism from $K_{G}^{0}\left(T_{G}^{*} M_{X}\right)$ to the space $\tilde{\mathcal{F}}(X)$ of generalized functions on G generated by Θ_{X} and θ_{X} under multiplication by elements of $R(G)=\mathbb{Z}\left[t, t^{-1}\right]$.

In fact the $R(G)$ module generated by Θ_{X} is free over $R(G)$.
The $R(G)$ module generated by θx is the torsion submodule.

- This submodule is the module of polynomial functions on \mathbb{Z} of degree at most k so it is a free \mathbb{Z}-module of rank $k+1$.
- It corresponds to indices of operators on $\mathbb{C}^{k+1}-\{0\}$, the set where S^{1} acts freely

An example

Theorem

The index map is an isomorphism from $K_{G}^{0}\left(T_{G}^{*} M_{X}\right)$ to the space $\tilde{\mathcal{F}}(X)$ of generalized functions on G generated by Θ_{X} and θ_{X} under multiplication by elements of $R(G)=\mathbb{Z}\left[t, t^{-1}\right]$.

In fact the $R(G)$ module generated by Θ_{X} is free over $R(G)$.
The $R(G)$ module generated by θ_{x} is the torsion submodule.

- This submodule is the module of polynomial functions on \mathbb{Z} of degree at most k so it is a free \mathbb{Z}-module of rank $k+1$.
- It corresponds to indices of operators on $\mathbb{C}^{k+1}-\{0\}$, the set where S^{1} acts freely
- is the space of solutions of the difference equation $\nabla^{k} f=0$ where we define the operator ∇ by $(\nabla f)(n)=f(n)-f(n-1)$.

THE SPLINES

SPLINES $X:=\left\{a_{1}, \ldots, a_{m}\right\}, a_{i} \in \mathbb{R}^{s}$

Given a list $X:=\left\{a_{1}, \ldots, a_{m}\right\}$, of vectors $a_{i} \in \mathbb{R}^{s}$, the

multivariate spline

is the function $T_{X}(x)$ characterized by the formula:

$$
\int_{\mathbb{R}^{n}} f(x) T_{X}(x) d x=\int_{\mathbb{R}_{+}^{m}} f\left(\sum_{i=1}^{m} t_{i} a_{i}\right) d t,
$$

Where $f(x)$ is any continuous function with compact support
It represents the volume of a suitable variable polytope T_{x} is the convolution of the tempered distributions T_{a} corresponding to the half lines generated by the elements $a \in X$

SPLINES $X:=\left\{a_{1}, \ldots, a_{m}\right\}, a_{i} \in \mathbb{R}^{s}$

Given a list $X:=\left\{a_{1}, \ldots, a_{m}\right\}$, of vectors $a_{i} \in \mathbb{R}^{s}$, the

multivariate spline

is the function $T_{X}(x)$ characterized by the formula:

$$
\int_{\mathbb{R}^{n}} f(x) T_{X}(x) d x=\int_{\mathbb{R}_{+}^{m}} f\left(\sum_{i=1}^{m} t_{i} a_{i}\right) d t
$$

where $f(x)$ is any continuous function with compact support.
It represents the volume of a suitable variable polytope.
T_{X} is the convolution of the tempered distributions T_{a} corresponding to the half lines generated by the elements $a \in X$.

BOX SPLINES

While the function $T_{X}(x)$ is the basic object, the more interesting object for numerical analysis is the

box spline

that is the function $B_{X}(x)$ characterized by the formula:

$$
\int_{\mathbb{R}^{n}} f(x) B_{X}(x) d x=\int_{[0,1]^{m}} f\left(\sum_{i=1}^{m} t_{i} a_{i}\right) d t,
$$

where $f(x)$ is any continuous function.
B_{X} is the convolution of the tempered distributions B_{a} corresponding to thesegments $[0, a]$ with $a \in X$.

two box splines of class and

$$
\begin{array}{ll}
X=\left|\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 1
\end{array}\right| \text { Hat function } & X=\left|\begin{array}{cccc}
1 & 0 & 1 & -1 \\
0 & 1 & 1 & 1
\end{array}\right| \\
\text { or Courant element } & \text { Zwart-Powell element }
\end{array}
$$

BASIC REFERENCE BOOKS

The book:

C. De Boor, K. Höllig, S. Riemenschneider,

Box splines

Applied Mathematical Sciences 98 (1993).

Forthcoming book

Topics in hyperplane arrangements, polytopes and box-splines

De Concini C., Procesi C.
http://www.mat.uniroma1.it/~procesi/dida.html

The box-spline for type B_{2}

6 reasons WHY the
 \square ?

recursive definition

$$
\int_{\mathbb{R}^{n}} B_{X}(x) d x=1
$$

in the case of integral vectors, we have
THE CARDINAL SPLINE SPACE SK
The space \mathcal{S}_{X} of linear combinations of translates

$a(\lambda)$ is any function on Λ a mesh function

$$
\int_{\mathbb{R}^{n}} B_{X}(x) d x=1
$$

recursive definition

$$
B_{[X, v]}(x)=\int_{0}^{1} B_{X}(x-t v) d t
$$

in the case of integral vectors, we have
THE CARDINAL SPLINE SPACE S_{x}
The space \mathcal{S}_{X} of linear combinations of translates

recursive definition

$$
B_{[X, v]}(x)=\int_{0}^{1} B_{X}(x-t v) d t
$$

in the case of integral vectors, we have

THE CARDINAL SPLINE SPACE \mathcal{S}_{X}

The space \mathcal{S}_{X} of linear combinations of translates

$$
\mathcal{S}_{X}:=\left\{\sum_{\lambda \in \Lambda} B_{X}(x-\lambda) a(\lambda)\right\}
$$

$a(\lambda)$ is any function on Λ a mesh function.

A polynomial p is in the cardinal space \mathcal{S}_{X}
if and only if it belongs to the space

$$
D(X)=\left\{p \mid D_{Y} p=0, Y \quad \text { a cocircuit }\right\} \quad D_{Y}=\prod_{a \in Y} D_{a}
$$

D_{a} is the usual directional derivative

PARTITION OF UNITY X integral vectors

The translates $B_{X}(x-\lambda)$, λ runs over the integral vectors form a partition of 1 .

EVEN MORE

The convolution $\sum_{\lambda \in \Lambda} B_{X}(x-\lambda) p(\lambda)$, as p runs over the remarkable space of polynomials $D(X)$ is again a polynomial in $D(X)$.

The box-spline B_{X} is

$$
B_{X}(x)=\frac{1}{2^{|X|-s}} \sum_{S \subset X} B_{X}\left(2 x-a_{S}\right) .
$$

TRIVIAL EXAMPLE

$X=\{1,1\}$ we have for the box spline

Now let us add to it its translates!

APPROXIMATION POWER

THE STRANG-FIX CONDITIONS

The box spline, when the a_{i} are integral vectors, can be effectively used in the finite element method to approximate functions through function in the

Cardinal spline space \mathcal{S}_{X}

$$
\mathcal{S}_{X}:=\left\{\sum_{i \in \mathbb{Z}^{s}} B_{X}(x-i) f(i), f: \mathbb{Z}^{s} \rightarrow \mathbb{R}\right\}
$$

and its RESCALED functions.

This means that for every positive integer n we want to find weights $c_{\underline{i}, n}$ and approximate f by $f(x) \mapsto \sum_{\underline{i} \in \mathbb{Z}^{s}} B_{X}(n x-\underline{i}) c_{\underline{i}, n}$ and determine a constant $k \in \mathbb{N}$ so that (on some bounded region):

$$
\left|f(x)-\sum_{\underline{i} \in \mathbb{Z}^{s}} B_{X}(n x-\underline{i}) c_{\underline{i}, n}\right| \leq C n^{-k}
$$

The maximum k is the

approximation power of B_{X}.

The Strang-Fix conditions is a general statement:
The approximation power of a function M is the maximum r such that the space of all polynomials of degree $\leq r$ is contained in the cardinal space \mathcal{S}_{M}.

The cocircuits

We can thus apply the property of the cardinal spline space is that it contains many polynomials.

Theorem

A polynomial p belongs to \mathcal{S}_{X} if and only if it lies in $D(X)$.

THE THEORY OF DHAMEN-MICCHELLI

From the definitions it follows that $D(X)$ contains all polynomials of degree $<m(X)$ where $m(X)$ is the minimum number of elements in a cocircuit.

Strang-Fix conditions

The power of approximation of B_{X} is $m(X)$.

Consider the following algorithm applied to a function g :

$$
g_{h}:=\sum_{\underline{i} \in \Lambda} F(x / h-\underline{i}) g(h \underline{i}), h \rightarrow 0
$$

super-functions

There are functions F in the cardinal spline space such that this transformation is the identity on polynomials in $D(X)$, these are the super-functions.

For such functions the previous algorithm satisfies the requirements of the Strang-Fix approximation

Theorem

We have, under the explicit algorithm previously constructed that, for any domain G :

$$
\left\|f_{h}-f\right\|_{L^{\infty}(G)}=O\left(h^{m(X)}\right) .
$$

For every multi-index $\alpha \in \mathbb{N}^{s}$ with $|\alpha| \leq m(X)-1$, we have:

$$
\left\|\partial^{\alpha} f_{h}-\partial^{\alpha} f\right\|_{L^{\infty}(G)}=\left\|\partial^{\alpha}\left(f_{h}-f\right)\right\|_{L^{\infty}(G)}=O\left(h^{m(X)-|\alpha|}\right) .
$$

Figure: The superfunction associated to $1,1,1,1$.

Figure: The superfunction associated to 1^{7}.

PARTITION FUNCTIONS

THE DISCRETE CASE

THE PARTITION FUNCTION

Let $A:=\left\{a_{1}, \ldots, a_{m}\right\}, b$ be a list of vectors with integer coordinates.
It is natural to think of an expression like:
$b=t_{1} a_{1}+\cdots+t_{m} a_{m}$ with t_{i} not negative integers as a:

partition of b with the vectors a_{i},

in $t_{1}+t_{2}+\cdots+t_{m}$ parts, hence the name partition function for the number

$$
P_{X}(b)=\#\left\{t_{1}, \ldots, t_{m} \in \mathbb{N} \mid \sum_{i=1}^{m} t_{i} a_{i}=b\right\}
$$

thought of as a function of the vector b.

SIMPLE EXAMPLE

$$
m=2, n=1, A=\{2,3\}
$$

Parts are 2 and 3

In how many ways can you write a number b as:

$$
b=2 x+3 y, \quad x, y \in \mathbb{N} ?
$$

ANSWER (Quasi polynomial!)

It depends on the class of n modulo 6 .

$$
\begin{array}{ll}
n \cong 0 & \frac{n}{6}+1 \\
n \cong 1 & \frac{n}{6}-\frac{1}{6} \\
n \cong 2 & \frac{n}{6}+\frac{2}{3} \\
n \cong 3 & \frac{n}{6}+\frac{1}{2} \\
n \cong 4 & \frac{n}{6}+\frac{1}{3} \\
n \cong 5 & \frac{n}{6}+\frac{1}{6}
\end{array}
$$

THE DISCRETE CASE

multivariate spline and partition function

> (1) The partition function is the natural discrete analogue of the multivariate spline. They depend both on a list of vectors D The multivariate snline describes the volume of a variahle polytope.

THE DISCRETE CASE

multivariate spline and partition function

(1) The partition function is the natural discrete analogue of the multivariate spline. They depend both on a list of vectors.

THE DISCRETE CASE

multivariate spline and partition function

(1) The partition function is the natural discrete analogue of the multivariate spline. They depend both on a list of vectors.
(2) The multivariate spline describes the volume of a variable polytope.

THE DISCRETE CASE

multivariate spline and partition function

(1) The partition function is the natural discrete analogue of the multivariate spline. They depend both on a list of vectors.
(2) The multivariate spline describes the volume of a variable polytope.
(3) The partition function describes the number of integral points in a variable polytope.

THE DISCRETE CASE

In general the cone generated by A decomposes into regions called

Big cells

$P_{X}(b)$ is a quasi polynomial on each big cell and $T_{X}(b)$ is a polynomial on each big cell.
The quasi polynomials describing $P_{X}(b)$ belongs to the remarkable space $D M(X)$ introduced by Dahmen-Micchelli.

Some intuitive pictures

We want to decompose the cone $C(A)$ into big cells and define its singular and regular points.

We do everything on a transversal section, where the cone looks like a bounded convex polytope and then project.

Some intuitive pictures

We want to decompose the cone $C(A)$ into big cells and define its singular and regular points.

We do everything on a transversal section, where the cone looks like a bounded convex polytope and then project.

Example

Let us start with some pictures where A is the list of positive roots for type A_{3}.

$$
\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{1}+\alpha_{2}, \alpha_{2}+\alpha_{3}, \alpha_{1}+\alpha_{2}+\alpha_{3}
$$

EXAMPLE Type A_{3} in section (big cells):

We have 7 big cells.

In fact take a vector v in the big cell \mathfrak{c} so that $v-B(X) \cap C(X)=\{0\}$ then the partition function on \mathfrak{c} coincides with the element of $D M(X)$ which is 0 on $[v-B(X) \cap C(X)] \backslash\{0\}$ and 1 at 0 .

INDEX THEORY

THE VALUES OF THE INDEX

THE SPACE $D M(X)$

IS THE KEY TO UNDERSTAND THE INDEX

Recall The MAIN THEOREM

Recall

the $\mathbb{Z}\left[\mathbb{Z}^{s}\right]$ module $\tilde{\mathcal{F}}_{X}$ of functions on \mathbb{Z}^{s} generated by all the partition functions $P_{A,-B}$ for all the chambers.

Theorem

the index induces an isomorphism between $K_{G}^{0}\left(T_{G}^{*} M_{X}\right)$ and $\tilde{\mathcal{F}}_{X}$.

Moreover there is a very precise description of the group $\tilde{\mathcal{F}}_{X}$.

The values of the index

The main result is about the open set M_{X}^{f} of M_{X} where G acts with finite stabilizers.

Theorem

The index map induces an isomorphism between $K_{G}^{0}\left(T_{G}^{*} M_{X}^{f}\right)$ and the space $D M(X)$.

For the general case we need some associated spaces of functions, generalizing $D M(X)$.

The spaces $\tilde{\mathcal{F}}_{i}(X)$ associated to the orbit types in M_{X}.

Any linear subspace \underline{r} generated by vectors in X is called a rational subspace

An auxiliary space

$\mathcal{F}(X):=\left\{f \mid \nabla_{X \backslash \underline{r}} f\right.$ is supported on \underline{r} for every rational subspace $\left.\underline{r}\right\}$.
Clearly $D M(X)$ is contained in $\mathcal{F}(X)$.

One can show that $\tilde{\mathcal{F}}(X)$ is the space of functions generated by $\mathcal{F}(X)$ under translations by integral vectors.
Define the spaces

$$
\mathcal{F}_{i}(X):=\cap_{\underline{t} \in S_{X}^{(i-1)}} \operatorname{ker} \nabla_{X \backslash \underline{t}} \cap \mathcal{F}(X) .
$$

We denote by $\tilde{\mathcal{F}}_{i}(X)$ the space of functions generated by $\mathcal{F}_{i}(X)$ under translations by integral vectors.

Set $M_{\geq i}$ as the open set of points in M_{X} with the property that the orbit has dimension $\geq i$.

Theorem

For each $s \geq i \geq 0$, the index multiplicity map ind ${ }_{m}$ gives an isomorphism between $K_{G}^{0}\left(T_{G}^{*} M_{\geq i}\right)$ and the space $\tilde{\mathcal{F}}_{i}(X)$.

We have a decomposition

$$
\mathcal{F}(X)=D M(X) \oplus\left(\oplus_{\underline{r} \in S_{X \mid \underline{r} \neq V}} \mathcal{P}_{X \backslash \underline{r}}^{F_{\underline{r}}} * D M(X \cap \underline{r})\right)
$$

S_{X} is the set of rational subspaces.
Finally one has very explicit descriptions of $D M(X)$.
From these one describes completely the spaces
$\tilde{\mathcal{F}}_{i}(X)$ and hence the values of the index.

Beautiful Hokkaido

Beautiful Hokkaido

T

Beautiful Hokkaido

T

Beautiful Hokkaido

Beautiful Hokkaido

TH

Beautiful Hokkaido

TH

Beautiful Hokkaido

THE

Beautiful Hokkaido

THE
 E

Beautiful Hokkaido

THE

E

Beautiful Hokkaido

THE

E

Beautiful Hokkaido

THE

EN

Beautiful Hokkaido

THE

EN

Beautiful Hokkaido

THE

EN

Beautiful Hokkaido

THE

END

Beautiful Hokkaido

THE

END

Beautiful Hokkaido

Beautiful Hokkaido

