▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Webs and Arrangements

Jorge Vitório Pereira

IMPA Rio de Janeiro BRASIL

Sapporo - August 12, 2097

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Outline

- 2 Web Geometry
- Webs associated to arrangements
- From webs to arrangements

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ の < @

Unachieved goal

Study the first resonance variety $R^1(A)$.

<日 > < 同 > < 目 > < 目 > < 目 > < 目 > < 0 < 0</p>

Unachieved goal

Study the first resonance variety $R^1(A)$.

Notation

 $A = \{H_1, \dots, H_m\}$ arrangement in $\mathbb{P}^n = \mathbb{P}(V)$ $M = \mathbb{P}^n \setminus A$ $R^1(A)$ = maximal isotropic subspaces of $H^1(A, \mathbb{C})$ of dimension at least two.

Unachieved goal

Study the first resonance variety $R^1(A)$.

Notation

 $A = \{H_1, \ldots, H_m\}$ arrangement in $\mathbb{P}^n = \mathbb{P}(V)$ $M = \mathbb{P}^n \setminus A$ $R^1(A) =$ maximal isotropic subspaces of $H^1(A, \mathbb{C})$ of dimension at least two.

Irreducible components are well understood

The irreducible components of $R^1(A)$ of dimension *d* are in one to one correspondence with the pencil of hypersurfaces having irreducible generic member and *d* + 1 completely decomposable fibers with support contained in |A|.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ の < @

Question

How the irreducible components sit inside $H^1(M, \mathbb{C})$? How many are there ? What about the dimensions ? And relative position ?

Question

How the irreducible components sit inside $H^1(M, \mathbb{C})$? How many are there ? What about the dimensions ? And relative position ?

Proposal

Look at all the pencils at the same time.

(ロ) (同) (三) (三) (三) (○) (○)

Question

How the irreducible components sit inside $H^1(M, \mathbb{C})$? How many are there ? What about the dimensions ? And relative position ?

Proposal

Look at all the pencils at the same time. How ?

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

Question

How the irreducible components sit inside $H^1(M, \mathbb{C})$? How many are there ? What about the dimensions ? And relative position ?

Proposal

Look at all the pencils at the same time. How ? Through web geometry.

Question

How the irreducible components sit inside $H^1(M, \mathbb{C})$? How many are there ? What about the dimensions ? And relative position ?

Proposal

Look at all the pencils at the same time. How ? Through web geometry.

Outline

Webs associated to arrangements

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@

Motivation	Web Geometry	Webs associated to arrangements	From webs to arrangements
Webs			

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Web geometry is the study of finite families of foliations.

_					
<u>в</u> л	\mathbf{a}	11/	21	•	•
191		1 7	a١		

Webs

Web geometry is the study of finite families of foliations. Germs of smooth holomorphic foliations. During most of the talk we will be interested only on codimension one foliations.

_					
<u>в</u> л	\mathbf{a}	11/	21	•	•
191		1 7	a١		

Webs

Web geometry is the study of finite families of foliations. Germs of smooth holomorphic foliations. During most of the talk we will be interested only on codimension one foliations.

Webs

Web geometry is the study of finite families of foliations. Germs of smooth holomorphic foliations. During most of the talk we will be interested only on codimension one foliations.

Definition

Let $\mathcal{W} = \mathcal{F}_1 \boxtimes \cdots \boxtimes \mathcal{F}_k$ be a *k*-web on $(\mathbb{C}^n, 0)$.

Webs

Web geometry is the study of finite families of foliations. Germs of smooth holomorphic foliations. During most of the talk we will be interested only on codimension one foliations.

Definition

Let $\mathcal{W} = \mathcal{F}_1 \boxtimes \cdots \boxtimes \mathcal{F}_k$ be a *k*-web on $(\mathbb{C}^n, 0)$. \mathcal{W} is smooth \iff codim $\cap_{i \in I} T_0 \mathcal{F}_i = \min\{|I|, n\}$

Webs

Web geometry is the study of finite families of foliations. Germs of smooth holomorphic foliations. During most of the talk we will be interested only on codimension one foliations.

Definition

Let $\mathcal{W} = \mathcal{F}_1 \boxtimes \cdots \boxtimes \mathcal{F}_k$ be a *k*-web on $(\mathbb{C}^n, 0)$. \mathcal{W} is smooth \iff codim $\cap_{i \in I} T_0 \mathcal{F}_i = \min\{|I|, n\}$ \mathcal{W} is quasi-smooth $\iff T_0 \mathcal{F}_i \neq T_0 \mathcal{F}_j$ when $i \neq j$

Webs

Web geometry is the study of finite families of foliations. Germs of smooth holomorphic foliations. During most of the talk we will be interested only on codimension one foliations.

Definition

Let $\mathcal{W} = \mathcal{F}_1 \boxtimes \cdots \boxtimes \mathcal{F}_k$ be a *k*-web on $(\mathbb{C}^n, 0)$. \mathcal{W} is smooth \iff codim $\cap_{i \in I} T_0 \mathcal{F}_i = \min\{|I|, n\}$ \mathcal{W} is quasi-smooth $\iff T_0 \mathcal{F}_i \neq T_0 \mathcal{F}_j$ when $i \neq j$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Abelian relations

$\mathcal{W} = \mathcal{F}_1 \boxtimes \cdots \boxtimes \mathcal{F}_k \qquad \mathcal{F}_i = \{\omega_i = \mathbf{0}\}$

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

Abelian relations

$$\mathcal{W} = \mathcal{F}_1 \boxtimes \cdots \boxtimes \mathcal{F}_k \qquad \mathcal{F}_i = \{\omega_i = \mathbf{0}\}$$

Space of Abelian Relations

$$\mathcal{A}(\mathcal{W}) = \left\{ \left(\eta_1, \ldots, \eta_k \right) \in (\Omega^1)^k \, \middle| \, d\eta_i = \eta_i \wedge \omega_i = \sum_{i=1}^k \eta_i = 0 \right\}.$$

Abelian relations

$$\mathcal{W} = \mathcal{F}_1 \boxtimes \cdots \boxtimes \mathcal{F}_k \qquad \mathcal{F}_i = \{\omega_i = \mathbf{0}\}$$

Space of Abelian Relations

$$\mathcal{A}(\mathcal{W}) = \left\{ \left(\eta_1, \ldots, \eta_k\right) \in (\Omega^1)^k \ \middle| \ d\eta_i = \eta_i \wedge \omega_i = \sum_{i=1}^k \eta_i = \mathbf{0} \right\}.$$

Functional equations

If $u_i : (\mathbb{C}^n, 0) \to (\mathbb{C}, 0)$ are local submersions defining \mathcal{F}_i then

(ロ) (型) (主) (主) (三) の(で)

Abelian relations

$$\mathcal{W} = \mathcal{F}_1 \boxtimes \cdots \boxtimes \mathcal{F}_k \qquad \mathcal{F}_i = \{\omega_i = \mathbf{0}\}$$

Space of Abelian Relations

$$\mathcal{A}(\mathcal{W}) = \left\{ \left(\eta_1, \ldots, \eta_k\right) \in (\Omega^1)^k \, \middle| \, d\eta_i = \eta_i \wedge \omega_i = \sum_{i=1}^k \eta_i = \mathbf{0} \right\}.$$

Functional equations

If $u_i : (\mathbb{C}^n, 0) \to (\mathbb{C}, 0)$ are local submersions defining \mathcal{F}_i then

$$\int \sum_{i=1}^{k} \eta_i \quad \Longrightarrow \quad \sum_{i=1}^{k} g_i(u_i) = 0$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三■ - のへぐ

Bounds for the rank

Theorem (Bol (n=2) Chern ($n\geq 3$))

If \mathcal{W} is a smooth k-web on $(\mathbb{C}^n, 0)$ then

dim
$$\mathcal{A}(\mathcal{W}) = \operatorname{rank}(\mathcal{W}) \le \pi(n, k) = \sum_{j=1}^{\infty} \max(0, k - j(n-1) - 1).$$

Bounds for the rank

Theorem (Bol (n = 2) Chern ($n \ge 3$))

If \mathcal{W} is a smooth k-web on $(\mathbb{C}^n, 0)$ then

dim
$$\mathcal{A}(\mathcal{W}) = \operatorname{rank}(\mathcal{W}) \le \pi(n, k) = \sum_{j=1}^{\infty} \max(0, k - j(n-1) - 1).$$

Idea of the proof

$$\begin{aligned} \mathbf{F}^{\bullet}\mathcal{A}(\mathcal{W}) : \quad \mathbf{F}^{j}\mathcal{A}(\mathcal{W}) &= \ker \left\{ \mathcal{A}(\mathcal{W}) \longrightarrow \left(\frac{\Omega^{1}(\mathbb{C}^{n}, \mathbf{0})}{\mathfrak{m}^{j} \cdot \Omega^{1}(\mathbb{C}^{n}, \mathbf{0})} \right)^{k} \right\} \\ \dim \frac{F^{j}\mathcal{A}(\mathcal{W})}{F^{j+1}\mathcal{A}(\mathcal{W})} &\leq k - \dim \left(\mathbb{C} \cdot \ell_{1}^{j+1} + \dots + \mathbb{C} \cdot \ell_{k}^{j+1} \\ &\leq \max(\mathbf{0}, k - (j+1)(n-1) + 1) \right) \end{aligned}$$

where ℓ_i is a linear form defining $T_0 \mathcal{F}_i$.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三■ - のへぐ

Bounds for the rank

Theorem (Bol (n=2) Chern ($n\geq 3$))

If \mathcal{W} is a smooth k-web on $(\mathbb{C}^n, 0)$ then

dim
$$\mathcal{A}(\mathcal{W}) = \operatorname{rank}(\mathcal{W}) \le \pi(n, k) = \sum_{j=1}^{\infty} \max(0, k - j(n-1) - 1).$$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Bounds for the rank

Theorem (Bol (n=2) Chern ($n\geq3$))

If \mathcal{W} is a smooth k-web on $(\mathbb{C}^n, 0)$ then

dim
$$\mathcal{A}(\mathcal{W}) = \operatorname{rank}(\mathcal{W}) \le \pi(n, k) = \sum_{j=1}^{\infty} \max(0, k - j(n-1) - 1).$$

Remarks

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

Bounds for the rank

Theorem (Bol (n = 2) Chern ($n \ge 3$))

If \mathcal{W} is a smooth k-web on $(\mathbb{C}^n, 0)$ then

dim
$$\mathcal{A}(\mathcal{W}) = \operatorname{rank}(\mathcal{W}) \le \pi(n, k) = \sum_{j=1}^{\infty} \max(0, k - j(n-1) - 1).$$

Remarks

 π(n, k) is Castelnuovo's bound for the genus of irreducible non-degenerate degree k curves in Pⁿ.

Bounds for the rank

Theorem (Bol (n= 2) Chern ($n\geq$ 3))

If \mathcal{W} is a smooth k-web on $(\mathbb{C}^n, 0)$ then

dim
$$\mathcal{A}(\mathcal{W}) = \operatorname{rank}(\mathcal{W}) \le \pi(n, k) = \sum_{j=1}^{\infty} \max(0, k - j(n-1) - 1).$$

Remarks

- π(n, k) is Castelnuovo's bound for the genus of irreducible non-degenerate degree k curves in Pⁿ.
- the proof shows how to bound the rank of quasi-smooth webs. One has to know the dimension of the space generated by powers of linear forms determining $T_0 \mathcal{F}_i$.

▲□▶▲□▶▲□▶▲□▶ □ のQで

Bounds for the rank

Theorem (Bol (n=2) Chern ($n\geq 3$))

If \mathcal{W} is a smooth k-web on $(\mathbb{C}^n, 0)$ then

dim
$$\mathcal{A}(\mathcal{W}) = \operatorname{rank}(\mathcal{W}) \le \pi(n, k) = \sum_{j=1}^{\infty} \max(0, k - j(n-1) - 1).$$

Questions

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQで

Bounds for the rank

Theorem (Bol (n = 2) Chern ($n \ge 3$))

If \mathcal{W} is a smooth k-web on $(\mathbb{C}^n, 0)$ then

dim
$$\mathcal{A}(\mathcal{W}) = \operatorname{rank}(\mathcal{W}) \le \pi(n, k) = \sum_{j=1}^{\infty} \max(0, k - j(n-1) - 1).$$

Questions

Is the bound sharp ?

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQで

Bounds for the rank

Theorem (Bol (n = 2) Chern ($n \ge 3$))

If \mathcal{W} is a smooth k-web on $(\mathbb{C}^n, 0)$ then

dim
$$\mathcal{A}(\mathcal{W}) = \operatorname{rank}(\mathcal{W}) \le \pi(n, k) = \sum_{j=1}^{\infty} \max(0, k - j(n-1) - 1).$$

Questions

- Is the bound sharp ?
- Is there a characterization of webs of maximal rank ?

<日 > < 同 > < 目 > < 目 > < 目 > < 目 > < 0 < 0</p>

Algebraic Webs

 $C \subset \mathbb{P}^n$ reduced curve. $H_0 \in \check{\mathbb{P}}^n$ transverse to C. $H_0 \cap C = p_1 + \cdots + p_k$.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Algebraic Webs

$$C \subset \mathbb{P}^n$$
 reduced curve. $H_0 \in \check{\mathbb{P}}^n$ transverse to C .
 $H_0 \cap C = p_1 + \dots + p_k$.
 $p_i : (\check{\mathbb{P}}^n, H_0) \to C \implies H \cap C = p_1(H) + \dots + p_k(H)$.

Algebraic Webs

$$C \subset \mathbb{P}^n$$
 reduced curve. $H_0 \in \check{\mathbb{P}}^n$ transverse to C .
 $H_0 \cap C = p_1 + \cdots + p_k$.

$$p_i: (\check{\mathbb{P}}^n, H_0) \to C \implies H \cap C = p_1(H) + \cdots + p_k(H).$$

These functions define the *k*-web $W_C = W_C(H_0)$.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Algebraic Webs

$$C \subset \mathbb{P}^n$$
 reduced curve. $H_0 \in \check{\mathbb{P}}^n$ transverse to C .
 $H_0 \cap C = p_1 + \cdots + p_k$.

$$p_i: (\check{\mathbb{P}}^n, H_0) \to C \implies H \cap C = p_1(H) + \cdots + p_k(H).$$

These functions define the *k*-web $W_C = W_C(H_0)$.

Theorem (Abel's Addition Theorem)

$$(p_1 \oplus \cdots \oplus p_k)^* \mathrm{H}^0(\mathcal{C}, \omega_{\mathcal{C}}) \hookrightarrow \mathcal{A}(\mathcal{W}_{\mathcal{C}}).$$

In particular, $\operatorname{rank}(\mathcal{W}_{C}) \geq h^{0}(C, \omega_{C})$.

(ロ) (同) (三) (三) (三) (○) (○)

Algebraization results

Theorem (Lie)

If W is a quasi-smooth (= smooth in dimension two) 4-web on the plane with one abelian relation then W is algebraizable.
Algebraization results

Theorem (Lie)

If \mathcal{W} is a quasi-smooth (= smooth in dimension two) 4-web on the plane with one abelian relation then \mathcal{W} is algebraizable.

A **double translation surface** $S \subset \mathbb{R}^3$ that admits two independent parametrizations of the form $(x, y) \mapsto f(x) + g(y)$. S carries a natural 4-web \mathcal{W} . The leaves tangents of \mathcal{W} cuts the hyperplane at infinity at 4 germs of curves. Lie's Theorem says that these 4 curves are contained in a degree 4 algebraic curve. Latter generalized by Wirtinger to arbitrary translation manifolds.

◆□▶ ◆□▶ ★ □▶ ★ □▶ → □ → の Q (~

Algebraization results II

Theorem (Bol(n=3), Chern-Griffiths(hypothesis), Trépreau)

Let $n \ge 3$ and $k \ge 2n$. If W is a **smooth** k-web on $(\mathbb{C}^n, 0)$ of maximal rank then W is algebraizable.

Algebraization results II

Theorem (Bol(n=3), Chern-Griffiths(hypothesis), Trépreau)

Let $n \ge 3$ and $k \ge 2n$. If W is a **smooth** k-web on $(\mathbb{C}^n, 0)$ of maximal rank then W is algebraizable.

Remarks

Algebraization results II

Theorem (Bol(n=3), Chern-Griffiths(hypothesis), Trépreau)

Let $n \ge 3$ and $k \ge 2n$. If W is a **smooth** k-web on $(\mathbb{C}^n, 0)$ of maximal rank then W is algebraizable.

Remarks

• Also true for $k \le n + 1$ (trivial).

Algebraization results II

Theorem (Bol(n=3), Chern-Griffiths(hypothesis), Trépreau)

Let $n \ge 3$ and $k \ge 2n$. If W is a **smooth** k-web on $(\mathbb{C}^n, 0)$ of maximal rank then W is algebraizable.

Remarks

- Also true for $k \le n + 1$ (trivial).
- False for $n + 2 \le k \le 2n 1$ due to trivial reasons.

Algebraization results II

Theorem (Bol(n=3), Chern-Griffiths(hypothesis), Trépreau)

Let $n \ge 3$ and $k \ge 2n$. If W is a **smooth** k-web on $(\mathbb{C}^n, 0)$ of maximal rank then W is algebraizable.

Remarks

- Also true for $k \le n + 1$ (trivial).
- False for $n + 2 \le k \le 2n 1$ due to trivial reasons.

Questions

Algebraization results II

Theorem (Bol(n=3), Chern-Griffiths(hypothesis), Trépreau)

Let $n \ge 3$ and $k \ge 2n$. If W is a **smooth** k-web on $(\mathbb{C}^n, 0)$ of maximal rank then W is algebraizable.

Remarks

- Also true for $k \le n + 1$ (trivial).
- False for $n + 2 \le k \le 2n 1$ due to trivial reasons.

Questions

• What happens when n = 2 and $k \ge 5$?

Algebraization results II

Theorem (Bol(n=3), Chern-Griffiths(hypothesis), Trépreau)

Let $n \ge 3$ and $k \ge 2n$. If W is a **smooth** k-web on $(\mathbb{C}^n, 0)$ of maximal rank then W is algebraizable.

Remarks

- Also true for $k \le n + 1$ (trivial).
- False for $n + 2 \le k \le 2n 1$ due to trivial reasons.

Questions

- What happens when n = 2 and $k \ge 5$?
- When n ≥ 3 and k ≥ 2n, are quasi-smooth k-webs of maximal rank algebraizable ?

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Exceptional Webs

Bol's 5-web

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

Exceptional Webs

Bol's 5-web

5 l.i. abelian relations of log type

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Exceptional Webs

Bol's 5-web

5 l.i. abelian relations of log type Extra abelian relation :

▲□▶▲□▶▲□▶▲□▶ □ のQで

Exceptional Webs

Bol's 5-web

5 l.i. abelian relations of log type Extra abelian relation : Abel's functional equation for the dilog

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

Exceptional Webs

Bol's 5-web

5 l.i. abelian relations of log type Extra abelian relation : Abel's functional equation for the dilog Discovered by Bol in the 1930's.

Bol's 5-web

5 l.i. abelian relations of log type Extra abelian relation : Abel's functional equation for the dilog Discovered by Bol in the 1930's. Only example until 2000.

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

Bol's 5-web

5 l.i. abelian relations of log type Extra abelian relation : Abel's functional equation for the dilog Discovered by Bol in the 1930's. Only example until 2000.

Spence-Kummer's 9-web

Related to Spence-Kummer's functional equation for the trilog.

Bol's 5-web

5 l.i. abelian relations of log type Extra abelian relation : Abel's functional equation for the dilog Discovered by Bol in the 1930's. Only example until 2000.

Spence-Kummer's 9-web

Related to Spence-Kummer's functional equation for the trilog. Conjectured by Hénaut.

Bol's 5-web

5 l.i. abelian relations of log type Extra abelian relation : Abel's functional equation for the dilog Discovered by Bol in the 1930's. Only example until 2000.

Spence-Kummer's 9-web

Related to Spence-Kummer's functional equation for the trilog. Conjectured by Hénaut. Proved independently by Pirio and Robert.

Outline

◆□ > ◆□ > ◆ □ > ● □ > ◆ □ > ● □ >

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ の < @

Bol's 5-web revisited

Call it $\mathcal{A}_{0,5}$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ の < @

Bol's 5-web revisited

Call it $A_{0,5}$ $R^1(A_{0,5})$ has 5 irred. components

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Bol's 5-web revisited

Call it $A_{0,5}$ $R^1(A_{0,5})$ has 5 irred. components 4 pencils of lines

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Bol's 5-web revisited

Call it $A_{0,5}$

- $R^1(\mathcal{A}_{0,5})$ has 5 irred. components
- 4 pencils of lines
- 1 pencil of conics

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Bol's 5-web revisited

Call it $A_{0,5}$ $R^1(A_{0,5})$ has 5 irred. components

4 pencils of lines

1 pencil of conics

Each with dimension two

◆□▶ ◆□▶ ★ □▶ ★ □▶ → □ → の Q (~

Bol's 5-web revisited

Call it $\mathcal{A}_{0,5}$

- $R^1(\mathcal{A}_{0,5})$ has 5 irred. components
- 4 pencils of lines
- 1 pencil of conics
- Each with dimension two
- The associated web is Bol's 5-web

- Call it $A_{0,5}$ $B^{1}(A_{0,5})$ has 5 irred com
- $R^1(\mathcal{A}_{0,5})$ has 5 irred. components
- 4 pencils of lines
- 1 pencil of conics
- Each with dimension two
- The associated web is Bol's 5-web

Σ

Bol's 5-web has maximal rank

$$\bigoplus_{\Sigma \subset \mathcal{R}^{1}(\mathcal{A})} H^{1}(C_{\Sigma}) \longrightarrow H^{1}(M_{0,5})$$
$$(\eta_{\Sigma}) \longmapsto \sum f_{\Sigma}^{*} \eta_{\Sigma}$$

▲口 > ▲圖 > ▲目 > ▲目 > ▲目 > ● ④ < ⊙

- Call it $A_{0,5}$
- $R^1(\mathcal{A}_{0,5})$ has 5 irred. components
- 4 pencils of lines
- 1 pencil of conics
- Each with dimension two
- The associated web is Bol's 5-web

Bol's 5-web has maximal rank

Σ

$$\bigoplus_{\subset \mathcal{R}^1(\mathcal{A})} H^1(C_{\Sigma}) \longrightarrow H^1(M_{0,5}) \to 0$$

- Call it $A_{0,5}$ $R^1(A_{0,5})$ has 5 irred. components 4 pencils of lines 1 pencil of conics Each with dimension two
 - The associated web is Bol's 5-web

Bol's 5-web has maximal rank

$$0 \to \textit{AR}^1_{\textit{log}}(\mathcal{A}_{0,5}) \longrightarrow \bigoplus_{\Sigma \subset \mathcal{R}^1(\mathcal{A})} \textit{H}^1(\textit{C}_{\Sigma}) \longrightarrow \textit{H}^1(\textit{M}_{0,5}) \to 0$$

 $\dim AR^1_{log}(\mathcal{A}_{0,5})=5$

- Call it $A_{0,5}$ $R^1(A_{0,5})$ has 5 irred. components 4 pencils of lines 1 pencil of conics
 - Each with dimension two
- The associated web is Bol's 5-web

900

イロト イ得ト イヨト イヨト

Bol's 5-web revisited

Call it $A_{0,5}$ $R^1(A_{0,5})$ has 5 irred. components 4 pencils of lines 1 pencil of conics Each with dimension two The associated web is Bol's 5-web

Bol's 5-web has maximal rank

$$\begin{split} \dim AR^2_{log}(\mathcal{A}_{0,5}) &= 1\\ \dim AR^1_{log}(\mathcal{A}_{0,5}) &= 5\\ \dim \mathcal{A}(\mathcal{A}_{0,5}) &= 6 \end{split}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Natural web on $M_{0,n+3}$

Let $\mathcal{A}_{0,n+3}$ be the arrangement defined by

$$\prod_{i=1}^n x_i \prod_{i=1}^n (x_i - 1) \prod_{i < j} (x_i - x_j)$$

▲□▶▲□▶▲□▶▲□▶ □ のQで

Natural web on $M_{0,n+3}$

Let $\mathcal{A}_{0,n+3}$ be the arrangement defined by

$$\prod_{i=1}^n x_i \prod_{i=1}^n (x_i - 1) \prod_{i < j} (x_i - x_j)$$

Theorem (P.)

For every $n \ge 2$ the equality

$$\operatorname{rank}(\mathcal{W}(\mathcal{A}_{0,n+3})) = 3\binom{n+3}{4} - \binom{n+2}{3} - \binom{n+1}{2} - n.$$

holds true.

<日 > < 同 > < 目 > < 目 > < 目 > < 目 > < 0 < 0</p>

Natural web on $M_{0,n+3}$

Let $\mathcal{A}_{0,n+3}$ be the arrangement defined by

$$\prod_{i=1}^n x_i \prod_{i=1}^n (x_i - 1) \prod_{i < j} (x_i - x_j)$$

Theorem (P.)

For every $n \ge 2$ the equality

$$\operatorname{rank}(\mathcal{W}(\mathcal{A}_{0,n+3})) = 3\binom{n+3}{4} - \binom{n+2}{3} - \binom{n+1}{2} - n.$$

holds true.

Examples of quasi-smooth webs with k > 2n, maximal rank and non-algebraizable.

Spence-Kummer's 9-web revisited

Spence-Kummer's 9-web revisited

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Spence-Kummer's 9-web revisited

Call it A_{SK} $R^1(A_{SK})$ has 9 irred. components
▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Spence-Kummer's 9-web revisited

Call it A_{SK} $R^1(A_{SK})$ has 9 irred. components 6 pencils of lines

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三■ - のへぐ

Spence-Kummer's 9-web revisited

Call it A_{SK} $R^1(A_{SK})$ has 9 irred. components 6 pencils of lines 3 pencil of conics

(ロ) (同) (三) (三) (三) (三) (○) (○)

Spence-Kummer's 9-web revisited

Call it A_{SK} $R^1(A_{SK})$ has 9 irred. components 6 pencils of lines 3 pencil of conics All of them have dimension two

(ロ) (同) (三) (三) (三) (三) (○) (○)

Spence-Kummer's 9-web revisited

Call it A_{SK} $R^1(A_{SK})$ has 9 irred. components 6 pencils of lines 3 pencil of conics All of them have dimension two $W(A_{SK})$ = Spence-Kummer's 9-web

Spence-Kummer's 9-web revisited

Call it \mathcal{A}_{SK} $R^1(\mathcal{A}_{SK})$ has 9 irred. components 6 pencils of lines 3 pencil of conics All of them have dimension two $\mathcal{W}(\mathcal{A}_{SK})$ = Spence-Kummer's 9-web

$\mathcal{W}(\mathcal{A}_{SK})$ has maximal rank (Pirio - Robert)

 $\dim AR^1_{log}(\mathcal{A}_{SK}) = 12$

Call it \mathcal{A}_{SK} $R^1(\mathcal{A}_{SK})$ has 9 irred. components 6 pencils of lines 3 pencil of conics All of them have dimension two $\mathcal{W}(\mathcal{A}_{SK})$ = Spence-Kummer's 9-web

$\mathcal{W}(\mathcal{A}_{SK})$ has maximal rank (Pirio - Robert)

 $\dim AR^1_{log}(\mathcal{A}_{SK}) = 12$ $\dim AR^2_{log}(\mathcal{A}_{SK}) = 9$

・ロト・西ト・ヨト ・日・ うろの

Call it A_{SK} $R^1(A_{SK})$ has 9 irred. components 6 pencils of lines 3 pencil of conics All of them have dimension two $W(A_{SK})$ = Spence-Kummer's 9-web

$\mathcal{W}(\mathcal{A}_{SK})$ has maximal rank (Pirio - Robert)

 $\dim AR^{1}_{log}(\mathcal{A}_{SK}) = 12$ $\dim AR^{2}_{log}(\mathcal{A}_{SK}) = 9$ $\dim AR^{3}_{log}(\mathcal{A}_{SK}) = 2$

・ロト・西ト・ヨト ・日・ うろの

Call it \mathcal{A}_{SK} $R^1(\mathcal{A}_{SK})$ has 9 irred. components 6 pencils of lines 3 pencil of conics All of them have dimension two $\mathcal{W}(\mathcal{A}_{SK})$ = Spence-Kummer's 9-web

$W(A_{SK})$ has maximal rank (Pirio - Robert)

$$\begin{split} &\dim AR^{1}_{log}(\mathcal{A}_{SK}) = 12 \\ &\dim AR^{2}_{log}(\mathcal{A}_{SK}) = 9 \\ &\dim AR^{3}_{log}(\mathcal{A}_{SK}) = 2 \text{ no very well understood} \end{split}$$

・ロト・西ト・ヨト ・日・ うろの

Spence-Kummer's 9-web revisited

Call it \mathcal{A}_{SK} $R^1(\mathcal{A}_{SK})$ has 9 irred. components 6 pencils of lines 3 pencil of conics All of them have dimension two $\mathcal{W}(\mathcal{A}_{SK})$ = Spence-Kummer's 9-web

$W(A_{SK})$ has maximal rank (Pirio - Robert)

$$\begin{split} &\dim AR^1_{log}(\mathcal{A}_{SK}) = 12 \\ &\dim AR^2_{log}(\mathcal{A}_{SK}) = 9 \\ &\dim AR^3_{log}(\mathcal{A}_{SK}) = 2 \text{ no very well understood} \\ &\dim \text{Rational abelian relations} = 4 \end{split}$$

Call it A_{SK} $R^1(A_{SK})$ has 9 irred. components 6 pencils of lines 3 pencil of conics All of them have dimension two $W(A_{SK})$ = Spence-Kummer's 9-web

$\mathcal{W}(\mathcal{A}_{SK})$ has maximal rank (Pirio - Robert)

$$\begin{split} &\dim AR^1_{log}(\mathcal{A}_{SK}) = 12 \\ &\dim AR^2_{log}(\mathcal{A}_{SK}) = 9 \\ &\dim AR^3_{log}(\mathcal{A}_{SK}) = 2 \text{ no very well understood} \\ &\dim \text{Rational abelian relations} = 4 \\ &\text{There is one missing.} \end{split}$$

Call it \mathcal{A}_{SK} $R^1(\mathcal{A}_{SK})$ has 9 irred. components 6 pencils of lines 3 pencil of conics All of them have dimension two $\mathcal{W}(\mathcal{A}_{SK})$ = Spence-Kummer's 9-web

$\mathcal{W}(\mathcal{A}_{SK})$ has maximal rank (Pirio - Robert)

$$\begin{split} &\dim AR^1_{log}(\mathcal{A}_{SK}) = 12 \\ &\dim AR^2_{log}(\mathcal{A}_{SK}) = 9 \\ &\dim AR^3_{log}(\mathcal{A}_{SK}) = 2 \text{ no very well understood} \\ &\dim \text{Rational abelian relations} = 4 \\ &\text{There is one missing. Intersection of characteristic varieties.} \end{split}$$

One parameter family of 8-webs

▲□▶▲圖▶▲≣▶▲≣▶ ▲■ のへ⊙

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

One parameter family of 8-webs

One parameter family of 8-webs

Call it $\mathcal{A}_{\mathcal{P}}(a)$, $a \in \mathbb{C} \setminus \{0, 1\}$ $R^{1}(\mathcal{A}_{\mathcal{P}}(a))$ has 8 irred. components

One parameter family of 8-webs

Call it $\mathcal{A}_{\mathcal{P}}(a)$, $a \in \mathbb{C} \setminus \{0, 1\}$ $R^{1}(\mathcal{A}_{\mathcal{P}}(a))$ has 8 irred. components 5 pencils of lines

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

One parameter family of 8-webs

Call it $\mathcal{A}_{\mathcal{P}}(a)$, $a \in \mathbb{C} \setminus \{0, 1\}$ $R^{1}(\mathcal{A}_{\mathcal{P}}(a))$ has 8 irred. components 5 pencils of lines 3 pencil of conics

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

One parameter family of 8-webs

Call it $\mathcal{A}_{\mathcal{P}}(a)$, $a \in \mathbb{C} \setminus \{0, 1\}$ $R^{1}(\mathcal{A}_{\mathcal{P}}(a))$ has 8 irred. components 5 pencils of lines 3 pencil of conics Two have dimension three All the others have dimension two

One parameter family of 8-webs

Call it $\mathcal{A}_{\mathcal{P}}(a)$, $a \in \mathbb{C} \setminus \{0, 1\}$ $R^{1}(\mathcal{A}_{\mathcal{P}}(a))$ has 8 irred. components 5 pencils of lines 3 pencil of conics Two have dimension three All the others have dimension two $\mathcal{W}(\mathcal{A}_{\mathcal{P}}(a))$ was studied by Pirio

One parameter family of 8-webs

Call it $\mathcal{A}_{\mathcal{P}}(a)$, $a \in \mathbb{C} \setminus \{0, 1\}$ $R^{1}(\mathcal{A}_{\mathcal{P}}(a))$ has 8 irred. components 5 pencils of lines 3 pencil of conics Two have dimension three All the others have dimension two $\mathcal{W}(\mathcal{A}_{\mathcal{P}}(a))$ was studied by Pirio

$\mathcal{W}(\mathcal{A}_{\mathcal{P}}(a))$ has maximal rank (Pirio)

 $\dim AR^1_{log}(\mathcal{A}_P(a)) = 11$

One parameter family of 8-webs

Call it $\mathcal{A}_{\mathcal{P}}(a)$, $a \in \mathbb{C} \setminus \{0, 1\}$ $R^{1}(\mathcal{A}_{\mathcal{P}}(a))$ has 8 irred. components 5 pencils of lines 3 pencil of conics Two have dimension three All the others have dimension two $\mathcal{W}(\mathcal{A}_{\mathcal{P}}(a))$ was studied by Pirio

$\mathcal{W}(\mathcal{A}_{\mathcal{P}}(a))$ has maximal rank (Pirio)

 $\dim AR^{1}_{log}(\mathcal{A}_{P}(a)) = 11$ $\dim AR^{2}_{log}(\mathcal{A}_{P}(a)) = 5$

One parameter family of 8-webs

Call it $\mathcal{A}_{\mathcal{P}}(a)$, $a \in \mathbb{C} \setminus \{0, 1\}$ $R^{1}(\mathcal{A}_{\mathcal{P}}(a))$ has 8 irred. components 5 pencils of lines 3 pencil of conics Two have dimension three All the others have dimension two $\mathcal{W}(\mathcal{A}_{\mathcal{P}}(a))$ was studied by Pirio

$\mathcal{W}(\mathcal{A}_{\mathcal{P}}(a))$ has maximal rank (Pirio)

 $\dim AR^{1}_{log}(\mathcal{A}_{P}(a)) = 11 \\ \dim AR^{2}_{log}(\mathcal{A}_{P}(a)) = 5 \\ \dim \text{Rational abelian relations} = 4$

One parameter family of 8-webs

Call it $\mathcal{A}_{\mathcal{P}}(a)$, $a \in \mathbb{C} \setminus \{0, 1\}$ $R^{1}(\mathcal{A}_{\mathcal{P}}(a))$ has 8 irred. components 5 pencils of lines 3 pencil of conics Two have dimension three All the others have dimension two $\mathcal{W}(\mathcal{A}_{\mathcal{P}}(a))$ was studied by Pirio

$\mathcal{W}(\mathcal{A}_{\mathcal{P}}(a))$ has maximal rank (Pirio)

$$\begin{split} &\dim AR^1_{log}(\mathcal{A}_{P}(a)) = 11 \\ &\dim AR^2_{log}(\mathcal{A}_{P}(a)) = 5 \\ &\dim \text{Rational abelian relations} = 4 \\ &\text{There is one missing.} \end{split}$$

One parameter family of 8-webs

Call it $\mathcal{A}_{\mathcal{P}}(a)$, $a \in \mathbb{C} \setminus \{0, 1\}$ $R^{1}(\mathcal{A}_{\mathcal{P}}(a))$ has 8 irred. components 5 pencils of lines 3 pencil of conics Two have dimension three All the others have dimension two $\mathcal{W}(\mathcal{A}_{\mathcal{P}}(a))$ was studied by Pirio

$\mathcal{W}(\mathcal{A}_{\mathcal{P}}(a))$ has maximal rank (Pirio)

$$\begin{split} &\dim AR^1_{log}(\mathcal{A}_P(a)) = 11 \\ &\dim AR^2_{log}(\mathcal{A}_P(a)) = 5 \\ &\dim \text{Rational abelian relations} = 4 \\ &\text{There is one missing. Mixed iterated integrals.} \end{split}$$

Outline

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

Completely Decomposable Quasi-Linear Webs

The classification of exceptional planar webs is wide open.

Completely Decomposable Quasi-Linear Webs

The classification of exceptional planar webs is wide open. It is natural to restrict the attention to particular classes of webs.

Completely Decomposable Quasi-Linear Webs

The classification of exceptional planar webs is wide open. It is natural to restrict the attention to particular classes of webs. Suppose W is the superposition of k pencil of lines and one non-linear foliation (**CDQL**).

(日) (日) (日) (日) (日) (日) (日) (日)

Completely Decomposable Quasi-Linear Webs

The classification of exceptional planar webs is wide open. It is natural to restrict the attention to particular classes of webs. Suppose W is the superposition of k pencil of lines and one non-linear foliation (**CDQL**).

Then W is exceptional if and only if $k \ge 4$ and W has maximal rank.

(日) (日) (日) (日) (日) (日) (日) (日)

Completely Decomposable Quasi-Linear Webs

The classification of exceptional planar webs is wide open. It is natural to restrict the attention to particular classes of webs. Suppose W is the superposition of k pencil of lines and one non-linear foliation (**CDQL**). Then W is exceptional if and only if $k \ge 4$ and W has maximal rank.

Theorem (P., Pirio)

Up to projective automorphisms, there are exactly four infinite families and thirteen sporadic exceptional CDQL webs on \mathbb{P}^2 .

Completely Decomposable Quasi-Linear Webs

The classification of exceptional planar webs is wide open. It is natural to restrict the attention to particular classes of webs. Suppose W is the superposition of k pencil of lines and one non-linear foliation (**CDQL**). Then W is exceptional if and only if $k \ge 4$ and W has maximal rank.

Theorem (P., Pirio)

Up to projective automorphisms, there are exactly four infinite families and thirteen sporadic exceptional CDQL webs on \mathbb{P}^2 .

At some point, I needed to know the number of completely decomposible fibers in a pencil.

Completely Decomposable Quasi-Linear Webs

The classification of exceptional planar webs is wide open. It is natural to restrict the attention to particular classes of webs. Suppose W is the superposition of k pencil of lines and one non-linear foliation (**CDQL**). Then W is exceptional if and only if $k \ge 4$ and W has maximal rank.

Theorem (P., Pirio)

Up to projective automorphisms, there are exactly four infinite families and thirteen sporadic exceptional CDQL webs on \mathbb{P}^2 .

At some point, I needed to know the number of completely decomposible fibers in a pencil. \implies Google told me about Falk-Yuzvinsky's work on multi-nets.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Select Examples

$$\mathcal{A}_{l}^{k} = \left[(dx^{k} - dy^{k}) \right] \boxtimes \left[d(xy) \right]$$
 where $k \geq 4$;

;

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Select Examples

$$\begin{array}{ll} \mathcal{A}_{l}^{k} = & \left[(dx^{k} - dy^{k}) \right] \boxtimes \left[d(xy) \right] \text{where } k \geq 4 \, ; \\ \mathcal{A}_{ll}^{k} = & \left[(dx^{k} - dy^{k}) \left(xdy - ydx \right) \right] \boxtimes \left[d(xy) \right] \text{where } k \geq 3 \end{array}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Select Examples

$$\begin{array}{ll} \mathcal{A}_{l}^{k} = & \left[(dx^{k} - dy^{k}) \right] \boxtimes \left[d(xy) \right] \text{where } k \geq 4 \, ; \\ \mathcal{A}_{ll}^{k} = & \left[(dx^{k} - dy^{k}) \left(xdy - ydx \right) \right] \boxtimes \left[d(xy) \right] \text{where } k \geq 3 \, ; \\ \mathcal{A}_{lll}^{k} = & \left[(dx^{k} - dy^{k}) \, dx \, dy \right] \boxtimes \left[d(xy) \right] \text{where } k \geq 2 \, ; \end{array}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Select Examples

$$\begin{array}{ll} \mathcal{A}_{l}^{k} = & \left[(dx^{k} - dy^{k}) \right] \boxtimes \left[d(xy) \right] \text{where } k \geq 4 \, ; \\ \mathcal{A}_{ll}^{k} = & \left[(dx^{k} - dy^{k}) \left(xdy - ydx \right) \right] \boxtimes \left[d(xy) \right] \text{where } k \geq 3 \, ; \\ \mathcal{A}_{lll}^{k} = & \left[(dx^{k} - dy^{k}) dx \, dy \right] \boxtimes \left[d(xy) \right] \text{where } k \geq 2 \, ; \\ \mathcal{A}_{lV}^{k} = & \left[(dx^{k} - dy^{k}) dx \, dy \left(xdy - ydx \right) \right] \boxtimes \left[d(xy) \right] \text{where } k \geq 1 \, . \end{array}$$

Select Examples

The infinity families

$$\begin{array}{ll} \mathcal{A}_{l}^{k} = & \left[(dx^{k} - dy^{k}) \right] \boxtimes \left[d(xy) \right] \text{where } k \geq 4 \, ; \\ \mathcal{A}_{ll}^{k} = & \left[(dx^{k} - dy^{k}) \left(xdy - ydx \right) \right] \boxtimes \left[d(xy) \right] \text{where } k \geq 3 \, ; \\ \mathcal{A}_{lll}^{k} = & \left[(dx^{k} - dy^{k}) dx \, dy \right] \boxtimes \left[d(xy) \right] \text{where } k \geq 2 \, ; \\ \mathcal{A}_{lV}^{k} = & \left[(dx^{k} - dy^{k}) dx \, dy \left(xdy - ydx \right) \right] \boxtimes \left[d(xy) \right] \text{where } k \geq 1 \, . \end{array}$$

\mathcal{H}_5 and \mathcal{H}_{10}

$$\mathcal{H}_5 = \left[(dx^3 + dy^3) d(\frac{x}{y}) \right] \boxtimes \left[d(\frac{x^3 + y^3 + 1}{xy}) \right];$$

▲□▶▲圖▶▲≣▶▲≣▶ ▲■ のへ⊙
Select Examples

The infinity families

$$\begin{array}{l} \mathcal{A}_{l}^{k} = \left[(dx^{k} - dy^{k}) \right] \boxtimes \left[d(xy) \right] \text{where } k \geq 4 \, ; \\ \mathcal{A}_{ll}^{k} = \left[(dx^{k} - dy^{k}) \left(xdy - ydx \right) \right] \boxtimes \left[d(xy) \right] \text{where } k \geq 3 \, ; \\ \mathcal{A}_{lll}^{k} = \left[(dx^{k} - dy^{k}) \, dx \, dy \right] \boxtimes \left[d(xy) \right] \text{where } k \geq 2 \, ; \\ \mathcal{A}_{lV}^{k} = \left[(dx^{k} - dy^{k}) \, dx \, dy \left(xdy - ydx \right) \right] \boxtimes \left[d(xy) \right] \text{where } k \geq 1 \, . \end{array}$$

\mathcal{H}_5 and \mathcal{H}_{10}

$$\begin{aligned} \mathcal{H}_5 \ &= \left[(dx^3 + dy^3) \, d\left(\frac{x}{y}\right) \right] \boxtimes \left[d\left(\frac{x^3 + y^3 + 1}{xy}\right) \right]; \\ \mathcal{H}_{10} &= \left[(dx^3 + dy^3) \Big(\prod_{i=0}^2 d\left(\frac{y - \xi_3^i}{x}\right) \Big) \Big(\prod_{i=0}^2 d\left(\frac{x - \xi_3^i}{y}\right) \Big) \right] \boxtimes \left[d\left(\frac{x^3 + y^3 + 1}{xy}\right) \right] \end{aligned}$$

Pictures

Classification on tori (compact)

Theorem (P., Pirio)

Up to isogenies, there are exactly three sporadic exceptional CDQL k-webs (one for each $k \in \{5, 6, 7\}$) and one continuous family of exceptional CDQL 5-webs on complex tori.

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQで

Classification on tori (compact)

Theorem (P.,Pirio)

Up to isogenies, there are exactly three sporadic exceptional CDQL k-webs (one for each $k \in \{5, 6, 7\}$) and one continuous family of exceptional CDQL 5-webs on complex tori.

Theorem

If T is a two-dimension complex tori and $f : T \rightarrow \mathbb{P}^1$ a meromorphic map then the number of linear fibers of f, when finite, is at most six. Moreover, the bound is sharp.

Classification on tori (compact)

Theorem (P., Pirio)

Up to isogenies, there are exactly three sporadic exceptional CDQL k-webs (one for each $k \in \{5, 6, 7\}$) and one continuous family of exceptional CDQL 5-webs on complex tori.

Theorem

If T is a two-dimension complex tori and $f : T \rightarrow \mathbb{P}^1$ a meromorphic map then the number of linear fibers of f, when finite, is at most six. Moreover, the bound is sharp.

Remark

Although linear fibers are rigid the bound is worst than for the projective plane (4 after Stipins-Yuzvinsky result).

(日) (日) (日) (日) (日) (日) (日) (日)

The list

Infinity family

The elements of the continuous family are

$$\mathcal{E}_{\tau} = \left[dx \, dy \, (dx^2 - dy^2) \right] \boxtimes \left[d \left(\frac{\vartheta_1(x, \tau) \vartheta_1(y, \tau)}{\vartheta_4(x, \tau) \vartheta_4(y, \tau)} \right)^2 \right]$$

on E_{τ}^2 , $E_{\tau} = \mathbb{C}/(\mathbb{Z} \oplus \mathbb{Z}\tau)$. The functions ϑ_i are the Jacobi theta functions. (Pirio - Trépreau)

Infinity family

The elements of the continuous family are

$$\mathcal{E}_{\tau} = \left[dx \, dy \, (dx^2 - dy^2) \right] \boxtimes \left[d \left(\frac{\vartheta_1(x, \tau) \vartheta_1(y, \tau)}{\vartheta_4(x, \tau) \vartheta_4(y, \tau)} \right)^2 \right]$$

on E_{τ}^2 , $E_{\tau} = \mathbb{C}/(\mathbb{Z} \oplus \mathbb{Z}\tau)$. The functions ϑ_i are the Jacobi theta functions. (Pirio - Trépreau)

Sporadic exceptional CDQL webs

Infinity family

The elements of the continuous family are

$$\mathcal{E}_{\tau} = \left[dx \, dy \, (dx^2 - dy^2) \right] \boxtimes \left[d \left(\frac{\vartheta_1(x, \tau) \vartheta_1(y, \tau)}{\vartheta_4(x, \tau) \vartheta_4(y, \tau)} \right)^2 \right]$$

on E_{τ}^2 , $E_{\tau} = \mathbb{C}/(\mathbb{Z} \oplus \mathbb{Z}\tau)$. The functions ϑ_i are the Jacobi theta functions. (Pirio - Trépreau)

Sporadic exceptional CDQL webs

•
$$\mathcal{E}_7 = [dx^2 + dy^2] \boxtimes \mathcal{E}_{1+i}$$
 on E_{1+i}^2

Infinity family

The elements of the continuous family are

$$\mathcal{E}_{\tau} = \left[dx \, dy \, (dx^2 - dy^2) \right] \boxtimes \left[d \left(\frac{\vartheta_1(x, \tau) \vartheta_1(y, \tau)}{\vartheta_4(x, \tau) \vartheta_4(y, \tau)} \right)^2 \right]$$

on E_{τ}^2 , $E_{\tau} = \mathbb{C}/(\mathbb{Z} \oplus \mathbb{Z}\tau)$. The functions ϑ_i are the Jacobi theta functions. (Pirio - Trépreau)

Sporadic exceptional CDQL webs

- $\mathcal{E}_7 = [dx^2 + dy^2] \boxtimes \mathcal{E}_{1+i}$ on E_{1+i}^2
- \mathcal{E}_5 is the 5-web on $E_{\xi_3}^2$

 $\left[dx\,dy\,(dx-dy)\,(dx+\xi_3^2\,dy)\right]\boxtimes\left[d\left(\tfrac{\vartheta_1(x)\vartheta_1(y)\vartheta_1(x-y)\vartheta_1(x+\xi_3^2\,y)}{\vartheta_2(x)\vartheta_3(y)\vartheta_4(x-y,\xi_3)\vartheta_3(x+\xi_3^2\,y)}\right)\right].$

Infinity family

The elements of the continuous family are

$$\mathcal{E}_{\tau} = \left[dx \, dy \, (dx^2 - dy^2) \right] \boxtimes \left[d \left(\frac{\vartheta_1(x, \tau) \vartheta_1(y, \tau)}{\vartheta_4(x, \tau) \vartheta_4(y, \tau)} \right)^2 \right]$$

on E_{τ}^2 , $E_{\tau} = \mathbb{C}/(\mathbb{Z} \oplus \mathbb{Z}\tau)$. The functions ϑ_i are the Jacobi theta functions. (Pirio - Trépreau)

Sporadic exceptional CDQL webs

• $\mathcal{E}_7 = \left[dx^2 + dy^2 \right] \boxtimes \mathcal{E}_{1+i}$ on E_{1+i}^2

•
$$\mathcal{E}_5$$
 is the 5-web on $E_{\xi_3}^2$
 $\left[dx \, dy \, (dx - dy) \, (dx + \xi_3^2 \, dy)\right] \boxtimes \left[d\left(\frac{\vartheta_1(x)\vartheta_1(y)\vartheta_1(x-y)\vartheta_1(x+\xi_3^2 y)}{\vartheta_2(x)\vartheta_3(y)\vartheta_4(x-y,\xi_3)\vartheta_3(x+\xi_3^2 y)}\right)\right].$
• $\mathcal{E}_6 = \left[dx \, dy \, (dx^3 + dy^3)\right] \boxtimes \left[\wp(x,\xi_3)^{-1} dx + \wp(y,\xi_3)^{-1} dy\right]$ on $E_{\xi_3}^2$