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Unachieved goal

Study the first resonance variety R1(A).

Notation

A = {H1, . . . , Hm} arrangement in Pn = P(V )
M = Pn \ A
R1(A) = maximal isotropic subspaces of H1(A, C) of dimension at
least two.

Irreducible components are well understood

The irreducible components of R1(A) of dimension d are in one to
one correspondence with the pencil of hypersurfaces having
irreducible generic member and d + 1 completely decomposable
fibers with support contained in |A|.
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Definition
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Abelian relations

W = F1 ⊠ · · · ⊠ Fk Fi = {ωi = 0}

Space of Abelian Relations

A(W) =
{

(

η1, . . . , ηk
)

∈ (Ω1)k
∣

∣

∣
dηi = ηi ∧ ωi =

k
∑

i=1

ηi = 0
}

.
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Abelian relations

W = F1 ⊠ · · · ⊠ Fk Fi = {ωi = 0}

Space of Abelian Relations

A(W) =
{

(

η1, . . . , ηk
)

∈ (Ω1)k
∣

∣

∣
dηi = ηi ∧ ωi =

k
∑

i=1

ηi = 0
}

.

Functional equations

If ui : (Cn, 0) → (C, 0) are local submersions defining Fi then

∫ k
∑

i=1

ηi =⇒

k
∑

i=1

gi(ui) = 0
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Bounds for the rank

Theorem (Bol ( n = 2) Chern ( n ≥ 3) )

If W is a smooth k-web on (Cn, 0) then

dimA(W) = rank(W) ≤ π(n, k) =

∞
∑

j=1

max(0, k − j(n − 1) − 1) .
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Bounds for the rank

Theorem (Bol ( n = 2) Chern ( n ≥ 3) )

If W is a smooth k-web on (Cn, 0) then

dimA(W) = rank(W) ≤ π(n, k) =

∞
∑

j=1

max(0, k − j(n − 1) − 1) .

Idea of the proof

F•A(W) : F jA(W) = ker

{

A(W) −→

(

Ω1(Cn, 0)

m
j · Ω1(Cn, 0)

)k
}

.

dim
F jA(W)

F j+1A(W)
≤ k − dim

(

C · ℓj+1
1 + · · · + C · ℓj+1

k

)

≤ max(0, k − (j + 1)(n − 1) + 1)

where ℓi is a linear form defining T0Fi .
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Theorem (Bol ( n = 2) Chern ( n ≥ 3) )

If W is a smooth k-web on (Cn, 0) then

dimA(W) = rank(W) ≤ π(n, k) =

∞
∑

j=1

max(0, k − j(n − 1) − 1) .

Remarks

π(n, k) is Castelnuovo’s bound for the genus of irreducible
non-degenerate degree k curves in Pn.



logo

Motivation Web Geometry Webs associated to arrangements From webs to arrangements

Bounds for the rank

Theorem (Bol ( n = 2) Chern ( n ≥ 3) )

If W is a smooth k-web on (Cn, 0) then

dimA(W) = rank(W) ≤ π(n, k) =

∞
∑

j=1

max(0, k − j(n − 1) − 1) .

Remarks

π(n, k) is Castelnuovo’s bound for the genus of irreducible
non-degenerate degree k curves in Pn.

the proof shows how to bound the rank of quasi-smooth webs.
One has to know the dimension of the space generated by
powers of linear forms determining T0Fi .
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Bounds for the rank

Theorem (Bol ( n = 2) Chern ( n ≥ 3) )

If W is a smooth k-web on (Cn, 0) then

dimA(W) = rank(W) ≤ π(n, k) =

∞
∑

j=1

max(0, k − j(n − 1) − 1) .

Questions

Is the bound sharp ?

Is there a characterization of webs of maximal rank ?
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Algebraic Webs

C ⊂ P
n reduced curve. H0 ∈ P̌

n transverse to C.
H0 ∩ C = p1 + · · · + pk .
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Algebraic Webs

C ⊂ P
n reduced curve. H0 ∈ P̌

n transverse to C.
H0 ∩ C = p1 + · · · + pk .

pi : (P̌n, H0) → C =⇒ H ∩ C = p1(H) + · · · + pk (H).

These functions define the k -web WC = WC(H0).

Theorem (Abel’s Addition Theorem)

(p1 ⊕ · · · ⊕ pk )∗H0(C, ωC) →֒ A(WC).

In particular, rank(WC) ≥ h0(C, ωC).
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Algebraization results

Theorem (Lie)

If W is a quasi-smooth ( = smooth in dimension two ) 4-web on the
plane with one abelian relation then W is algebraizable.
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Algebraization results

Theorem (Lie)

If W is a quasi-smooth ( = smooth in dimension two ) 4-web on the
plane with one abelian relation then W is algebraizable.

A double translation surface S ⊂ R3

that admits two independent
parametrizations of the form
(x , y) 7→ f (x) + g(y). S carries a natural
4-web W . The leaves tangents of W
cuts the hyperplane at infinity at 4 germs
of curves. Lie’s Theorem says that these
4 curves are contained in a degree 4
algebraic curve. Latter generalized by
Wirtinger to arbitrary translation
manifolds.
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Algebraization results II

Theorem (Bol(n=3), Chern-Griffiths( hypothesis ), Tr épreau)

Let n ≥ 3 and k ≥ 2n. If W is a smooth k-web on (Cn, 0) of maximal
rank then W is algebraizable.
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False for n + 2 ≤ k ≤ 2n − 1 due to trivial reasons.
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Algebraization results II

Theorem (Bol(n=3), Chern-Griffiths( hypothesis ), Tr épreau)

Let n ≥ 3 and k ≥ 2n. If W is a smooth k-web on (Cn, 0) of maximal
rank then W is algebraizable.

Remarks

Also true for k ≤ n + 1 ( trivial ).

False for n + 2 ≤ k ≤ 2n − 1 due to trivial reasons.

Questions

What happens when n = 2 and k ≥ 5 ?
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Algebraization results II

Theorem (Bol(n=3), Chern-Griffiths( hypothesis ), Tr épreau)

Let n ≥ 3 and k ≥ 2n. If W is a smooth k-web on (Cn, 0) of maximal
rank then W is algebraizable.

Remarks

Also true for k ≤ n + 1 ( trivial ).

False for n + 2 ≤ k ≤ 2n − 1 due to trivial reasons.

Questions

What happens when n = 2 and k ≥ 5 ?

When n ≥ 3 and k ≥ 2n, are quasi-smooth k -webs of maximal
rank algebraizable ?



logo

Motivation Web Geometry Webs associated to arrangements From webs to arrangements

Exceptional Webs

Bol’s 5-web



logo

Motivation Web Geometry Webs associated to arrangements From webs to arrangements

Exceptional Webs

Bol’s 5-web

5 l.i. abelian relations of log type



logo

Motivation Web Geometry Webs associated to arrangements From webs to arrangements

Exceptional Webs

Bol’s 5-web

5 l.i. abelian relations of log type
Extra abelian relation :



logo

Motivation Web Geometry Webs associated to arrangements From webs to arrangements

Exceptional Webs

Bol’s 5-web

5 l.i. abelian relations of log type
Extra abelian relation : Abel’s
functional equation for the dilog



logo

Motivation Web Geometry Webs associated to arrangements From webs to arrangements

Exceptional Webs

Bol’s 5-web

5 l.i. abelian relations of log type
Extra abelian relation : Abel’s
functional equation for the dilog
Discovered by Bol in the 1930’s.



logo

Motivation Web Geometry Webs associated to arrangements From webs to arrangements

Exceptional Webs

Bol’s 5-web

5 l.i. abelian relations of log type
Extra abelian relation : Abel’s
functional equation for the dilog
Discovered by Bol in the 1930’s.
Only example until 2000.



logo

Motivation Web Geometry Webs associated to arrangements From webs to arrangements

Exceptional Webs

Bol’s 5-web

5 l.i. abelian relations of log type
Extra abelian relation : Abel’s
functional equation for the dilog
Discovered by Bol in the 1930’s.
Only example until 2000.

Spence-Kummer’s 9-web

Related to Spence-Kummer’s functional equation for the trilog.
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5 l.i. abelian relations of log type
Extra abelian relation : Abel’s
functional equation for the dilog
Discovered by Bol in the 1930’s.
Only example until 2000.

Spence-Kummer’s 9-web

Related to Spence-Kummer’s functional equation for the trilog.
Conjectured by Hénaut.
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Exceptional Webs

Bol’s 5-web

5 l.i. abelian relations of log type
Extra abelian relation : Abel’s
functional equation for the dilog
Discovered by Bol in the 1930’s.
Only example until 2000.

Spence-Kummer’s 9-web

Related to Spence-Kummer’s functional equation for the trilog.
Conjectured by Hénaut. Proved independently by Pirio and Robert.
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Bol’s 5-web revisited

Call it A0,5

R1(A0,5) has 5 irred. components
4 pencils of lines
1 pencil of conics
Each with dimension two
The associated web is Bol’s 5-web

Bol’s 5-web has maximal rank

⊕

Σ⊂R1(A)

H1(CΣ) −→ H1(M0,5)

(ηΣ) 7−→
∑

Σ

f ∗ΣηΣ
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Bol’s 5-web revisited

Call it A0,5

R1(A0,5) has 5 irred. components
4 pencils of lines
1 pencil of conics
Each with dimension two
The associated web is Bol’s 5-web

Bol’s 5-web has maximal rank
⊕

Σ⊂R1(A)

H1(CΣ) −→ H1(M0,5) → 0
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Bol’s 5-web revisited

Call it A0,5

R1(A0,5) has 5 irred. components
4 pencils of lines
1 pencil of conics
Each with dimension two
The associated web is Bol’s 5-web

Bol’s 5-web has maximal rank

0 → AR1
log(A0,5) −→

⊕

Σ⊂R1(A)

H1(CΣ) −→ H1(M0,5) → 0

dim AR1
log(A0,5) = 5
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Bol’s 5-web revisited

Call it A0,5

R1(A0,5) has 5 irred. components
4 pencils of lines
1 pencil of conics
Each with dimension two
The associated web is Bol’s 5-web

Bol’s 5-web has maximal rank

N2(M0,5)

��

0 // AR2
log(A0,5) // ⊕

I H1(CΣ)⊗2 //

77
p

p
p

p
p

p
p

p
p

p
p

H1(M0,5)
⊗2

��
H2(M0,5)
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Bol’s 5-web revisited

Call it A0,5

R1(A0,5) has 5 irred. components
4 pencils of lines
1 pencil of conics
Each with dimension two
The associated web is Bol’s 5-web

Bol’s 5-web has maximal rank

dim AR2
log(A0,5) = 1

dim AR1
log(A0,5) = 5

dimA(A0,5) = 6
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Natural web on M0,n+3

Let A0,n+3 be the arrangement defined by

n
∏

i=1

xi

n
∏

i=1

(xi − 1)
∏

i<j

(xi − xj)
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Natural web on M0,n+3

Let A0,n+3 be the arrangement defined by

n
∏

i=1

xi

n
∏

i=1

(xi − 1)
∏

i<j

(xi − xj)

Theorem (P.)

For every n ≥ 2 the equality

rank(W(A0,n+3)) = 3
(

n + 3
4

)

−

(

n + 2
3

)

−

(

n + 1
2

)

− n .

holds true.
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Natural web on M0,n+3

Let A0,n+3 be the arrangement defined by

n
∏

i=1

xi

n
∏

i=1

(xi − 1)
∏

i<j

(xi − xj)

Theorem (P.)

For every n ≥ 2 the equality

rank(W(A0,n+3)) = 3
(

n + 3
4

)

−

(

n + 2
3

)

−

(

n + 1
2

)

− n .

holds true.

Examples of quasi-smooth webs with k > 2n, maximal rank and
non-algebraizable.
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Call it ASK

R1(ASK ) has 9 irred. components
6 pencils of lines
3 pencil of conics
All of them have dimension two
W(ASK ) = Spence-Kummer’s 9-web

W(ASK ) has maximal rank (Pirio - Robert)

dim AR1
log(ASK ) = 12

dim AR2
log(ASK ) = 9
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Spence-Kummer’s 9-web revisited

Call it ASK

R1(ASK ) has 9 irred. components
6 pencils of lines
3 pencil of conics
All of them have dimension two
W(ASK ) = Spence-Kummer’s 9-web

W(ASK ) has maximal rank (Pirio - Robert)

dim AR1
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Spence-Kummer’s 9-web revisited

Call it ASK

R1(ASK ) has 9 irred. components
6 pencils of lines
3 pencil of conics
All of them have dimension two
W(ASK ) = Spence-Kummer’s 9-web

W(ASK ) has maximal rank (Pirio - Robert)

dim AR1
log(ASK ) = 12

dim AR2
log(ASK ) = 9

dim AR3
log(ASK ) = 2 no very well understood

dim Rational abelian relations = 4
There is one missing. Intersection of characteristic varieties.
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One parameter family of 8-webs

Call it AP(a), a ∈ C \ {0, 1}
R1(AP(a)) has 8 irred. components
5 pencils of lines
3 pencil of conics
Two have dimension three
All the others have dimension two
W(AP(a)) was studied by Pirio

W(AP(a)) has maximal rank (Pirio)

dim AR1
log(AP(a)) = 11

dim AR2
log(AP(a)) = 5

dim Rational abelian relations = 4
There is one missing. Mixed iterated integrals.
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Theorem (P., Pirio)

Up to projective automorphisms, there are exactly four infinite families
and thirteen sporadic exceptional CDQL webs on P2.



logo

Motivation Web Geometry Webs associated to arrangements From webs to arrangements

Completely Decomposable Quasi-Linear Webs

The classification of exceptional planar webs is wide open.
It is natural to restrict the attention to particular classes of webs.
Suppose W is the superposition of k pencil of lines and one
non-linear foliation (CDQL).
Then W is exceptional if and only if k ≥ 4 and W has maximal rank.

Theorem (P., Pirio)

Up to projective automorphisms, there are exactly four infinite families
and thirteen sporadic exceptional CDQL webs on P2.

At some point, I needed to know the number of completely
decomposible fibers in a pencil.
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Completely Decomposable Quasi-Linear Webs

The classification of exceptional planar webs is wide open.
It is natural to restrict the attention to particular classes of webs.
Suppose W is the superposition of k pencil of lines and one
non-linear foliation (CDQL).
Then W is exceptional if and only if k ≥ 4 and W has maximal rank.

Theorem (P., Pirio)

Up to projective automorphisms, there are exactly four infinite families
and thirteen sporadic exceptional CDQL webs on P2.

At some point, I needed to know the number of completely
decomposible fibers in a pencil. =⇒ Google told me about
Falk-Yuzvinsky’s work on multi-nets.
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where k ≥ 4 ;
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H5 and H10

H5 =
[
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x
y
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]

⊠
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xy
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where k ≥ 2 ;

Ak
IV =

[
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]
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[

d(xy)
]

where k ≥ 1.

H5 and H10

H5 =
[

(dx3 + dy3) d
(

x
y

)

]

⊠

[

d
( x3+y3+1

xy

)

]

;

H10 =
[

(dx3 + dy3)
(

∏2
i=0 d

( y−ξi
3

x

)

)(

∏2
i=0 d

( x−ξi
3

y

)

)]

⊠

[

d
( x3+y3+1

xy

)

]

.
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Classification on tori (compact)

Theorem (P.,Pirio)

Up to isogenies, there are exactly three sporadic exceptional CDQL
k-webs (one for each k ∈ {5, 6, 7}) and one continuous family of
exceptional CDQL 5-webs on complex tori.
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Theorem (P.,Pirio)

Up to isogenies, there are exactly three sporadic exceptional CDQL
k-webs (one for each k ∈ {5, 6, 7}) and one continuous family of
exceptional CDQL 5-webs on complex tori.

Theorem

If T is a two-dimension complex tori and f : T 99K P
1 a meromorphic

map then the number of linear fibers of f , when finite, is at most six.
Moreover, the bound is sharp.
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Classification on tori (compact)

Theorem (P.,Pirio)

Up to isogenies, there are exactly three sporadic exceptional CDQL
k-webs (one for each k ∈ {5, 6, 7}) and one continuous family of
exceptional CDQL 5-webs on complex tori.

Theorem

If T is a two-dimension complex tori and f : T 99K P
1 a meromorphic

map then the number of linear fibers of f , when finite, is at most six.
Moreover, the bound is sharp.

Remark

Although linear fibers are rigid the bound is worst than for the
projective plane (4 after Stipins-Yuzvinsky result).
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The list

Infinity family

The elements of the continuous family are

Eτ =
[

dx dy (dx2 − dy2)
]

⊠

[

d
(

ϑ1(x , τ)ϑ1(y , τ)

ϑ4(x , τ)ϑ4(y , τ)

)2
]

.

on E2
τ , Eτ = C/(Z ⊕ Zτ). The functions ϑi are the Jacobi theta

functions. ( Pirio - Trépreau )
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(
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]
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Sporadic exceptional CDQL webs
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[

dx2 + dy2
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⊠ E1+i on E2
1+i
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The list

Infinity family

The elements of the continuous family are

Eτ =
[

dx dy (dx2 − dy2)
]

⊠

[

d
(

ϑ1(x , τ)ϑ1(y , τ)

ϑ4(x , τ)ϑ4(y , τ)

)2
]

.

on E2
τ , Eτ = C/(Z ⊕ Zτ). The functions ϑi are the Jacobi theta

functions. ( Pirio - Trépreau )

Sporadic exceptional CDQL webs

E7 =
[

dx2 + dy2
]

⊠ E1+i on E2
1+i

E5 is the 5-web on E2
ξ3

[

dx dy (dx − dy) (dx + ξ2
3 dy)

]

⊠

[

d
(

ϑ1(x)ϑ1(y)ϑ1(x−y)ϑ1(x+ξ2
3 y)

ϑ2(x)ϑ3(y)ϑ4(x−y,ξ3)ϑ3(x+ξ2
3 y)

)]

.
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The elements of the continuous family are

Eτ =
[

dx dy (dx2 − dy2)
]

⊠

[

d
(

ϑ1(x , τ)ϑ1(y , τ)

ϑ4(x , τ)ϑ4(y , τ)

)2
]

.

on E2
τ , Eτ = C/(Z ⊕ Zτ). The functions ϑi are the Jacobi theta

functions. ( Pirio - Trépreau )

Sporadic exceptional CDQL webs

E7 =
[

dx2 + dy2
]

⊠ E1+i on E2
1+i

E5 is the 5-web on E2
ξ3

[

dx dy (dx − dy) (dx + ξ2
3 dy)

]

⊠

[

d
(

ϑ1(x)ϑ1(y)ϑ1(x−y)ϑ1(x+ξ2
3 y)

ϑ2(x)ϑ3(y)ϑ4(x−y,ξ3)ϑ3(x+ξ2
3 y)

)]

.

E6 =
[

dx dy (dx3 + dy3)
]

⊠

[

℘(x , ξ3)
−1dx + ℘(y , ξ3)

−1dy
]

on E2
ξ3
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