Webs and Arrangements

Jorge Vitório Pereira

IMPA
Rio de Janeiro BRASIL
Sapporo - August 12, 2097

Outline

(2) Web Geometry
(3) Webs associated to arrangements

4 From webs to arrangements

Unachieved goal

Study the first resonance variety $R^{1}(A)$.

Unachieved goal

Study the first resonance variety $R^{1}(A)$.

Notation

$A=\left\{H_{1}, \ldots, H_{m}\right\}$ arrangement in $\mathbb{P}^{n}=\mathbb{P}(V)$
$M=\mathbb{P}^{n} \backslash A$
$R^{1}(A)=$ maximal isotropic subspaces of $H^{1}(A, \mathbb{C})$ of dimension at least two.

Unachieved goal

Study the first resonance variety $R^{1}(A)$.

Notation

$A=\left\{H_{1}, \ldots, H_{m}\right\}$ arrangement in $\mathbb{P}^{n}=\mathbb{P}(V)$
$M=\mathbb{P}^{n} \backslash A$
$R^{1}(A)=$ maximal isotropic subspaces of $H^{1}(A, \mathbb{C})$ of dimension at least two.

Irreducible components are well understood

The irreducible components of $R^{1}(A)$ of dimension d are in one to one correspondence with the pencil of hypersurfaces having irreducible generic member and $d+1$ completely decomposable fibers with support contained in $|A|$.

Question

How the irreducible components sit inside $H^{1}(M, \mathbb{C})$? How many are there ? What about the dimensions ? And relative position ?

Question

How the irreducible components sit inside $H^{1}(M, \mathbb{C})$? How many are there? What about the dimensions ? And relative position?

Proposal

Look at all the pencils at the same time.

Question

How the irreducible components sit inside $H^{1}(M, \mathbb{C})$? How many are there? What about the dimensions ? And relative position?

Proposal

Look at all the pencils at the same time.
How?

Question

How the irreducible components sit inside $H^{1}(M, \mathbb{C})$? How many are there? What about the dimensions ? And relative position?

Proposal

Look at all the pencils at the same time.
How? Through web geometry.

Question

How the irreducible components sit inside $H^{1}(M, \mathbb{C})$? How many are there? What about the dimensions ? And relative position?

Proposal

Look at all the pencils at the same time.
How? Through web geometry.

Outline

(1) Motivation

(2) Web Geometry
(3) Webs associated to arrangements

4 From webs to arrangements

Webs

Web geometry is the study of finite families of foliations.

Webs

Web geometry is the study of finite families of foliations. Germs of smooth holomorphic foliations. During most of the talk we will be interested only on codimension one foliations.

Webs

Web geometry is the study of finite families of foliations. Germs of smooth holomorphic foliations. During most of the talk we will be interested only on codimension one foliations.

Webs

Web geometry is the study of finite families of foliations. Germs of smooth holomorphic foliations. During most of the talk we will be interested only on codimension one foliations.

Definition

Let $\mathcal{W}=\mathcal{F}_{1} \boxtimes \cdots \boxtimes \mathcal{F}_{k}$ be a k-web on $\left(\mathbb{C}^{n}, 0\right)$.

Webs

Web geometry is the study of finite families of foliations.
Germs of smooth holomorphic foliations. During most of the talk we will be interested only on codimension one foliations.

Definition

Let $\mathcal{W}=\mathcal{F}_{1} \boxtimes \cdots \boxtimes \mathcal{F}_{k}$ be a k-web on $\left(\mathbb{C}^{n}, 0\right)$. \mathcal{W} is smooth $\Longleftrightarrow \operatorname{codim} \cap_{i \in I} T_{0} \mathcal{F}_{i}=\min \{| | \mid, n\}$

Webs

Web geometry is the study of finite families of foliations. Germs of smooth holomorphic foliations. During most of the talk we will be interested only on codimension one foliations.

Definition

Let $\mathcal{W}=\mathcal{F}_{1} \boxtimes \cdots \boxtimes \mathcal{F}_{k}$ be a k-web on $\left(\mathbb{C}^{n}, 0\right)$. \mathcal{W} is smooth $\Longleftrightarrow \operatorname{codim} \cap_{i \in I} T_{0} \mathcal{F}_{i}=\min \{| | \mid, n\}$
\mathcal{W} is quasi-smooth $\Longleftrightarrow T_{0} \mathcal{F}_{i} \neq T_{0} \mathcal{F}_{j}$ when $i \neq j$

Webs

Web geometry is the study of finite families of foliations. Germs of smooth holomorphic foliations. During most of the talk we will be interested only on codimension one foliations.

Definition

Let $\mathcal{W}=\mathcal{F}_{1} \boxtimes \cdots \boxtimes \mathcal{F}_{k}$ be a k-web on $\left(\mathbb{C}^{n}, 0\right)$. \mathcal{W} is smooth $\Longleftrightarrow \operatorname{codim} \cap_{i \in I} T_{0} \mathcal{F}_{i}=\min \{| | \mid, n\}$
\mathcal{W} is quasi-smooth $\Longleftrightarrow T_{0} \mathcal{F}_{i} \neq T_{0} \mathcal{F}_{j}$ when $i \neq j$

Abelian relations

$$
\mathcal{W}=\mathcal{F}_{1} \boxtimes \cdots \boxtimes \mathcal{F}_{k} \quad \mathcal{F}_{i}=\left\{\omega_{i}=0\right\}
$$

Abelian relations

$$
\mathcal{W}=\mathcal{F}_{1} \boxtimes \cdots \boxtimes \mathcal{F}_{k} \quad \mathcal{F}_{i}=\left\{\omega_{i}=0\right\}
$$

Space of Abelian Relations

$\mathcal{A}(\mathcal{W})=\left\{\left(\eta_{1}, \ldots, \eta_{k}\right) \in\left(\Omega^{1}\right)^{k} \mid d \eta_{i}=\eta_{i} \wedge \omega_{i}=\sum_{i=1}^{k} \eta_{i}=0\right\}$.

Abelian relations

$$
\mathcal{W}=\mathcal{F}_{1} \boxtimes \cdots \boxtimes \mathcal{F}_{k} \quad \mathcal{F}_{i}=\left\{\omega_{i}=0\right\}
$$

Space of Abelian Relations

$\mathcal{A}(\mathcal{W})=\left\{\left(\eta_{1}, \ldots, \eta_{k}\right) \in\left(\Omega^{1}\right)^{k} \mid d \eta_{i}=\eta_{i} \wedge \omega_{i}=\sum_{i=1}^{k} \eta_{i}=0\right\}$.

Functional equations

If $u_{i}:\left(\mathbb{C}^{n}, 0\right) \rightarrow(\mathbb{C}, 0)$ are local submersions defining \mathcal{F}_{i} then

Abelian relations

$$
\mathcal{W}=\mathcal{F}_{1} \boxtimes \cdots \boxtimes \mathcal{F}_{k} \quad \mathcal{F}_{i}=\left\{\omega_{i}=0\right\}
$$

Space of Abelian Relations

$\mathcal{A}(\mathcal{W})=\left\{\left(\eta_{1}, \ldots, \eta_{k}\right) \in\left(\Omega^{1}\right)^{k} \mid d \eta_{i}=\eta_{i} \wedge \omega_{i}=\sum_{i=1}^{k} \eta_{i}=0\right\}$.

Functional equations

If $u_{i}:\left(\mathbb{C}^{n}, 0\right) \rightarrow(\mathbb{C}, 0)$ are local submersions defining \mathcal{F}_{i} then

$$
\int \sum_{i=1}^{k} \eta_{i} \Longrightarrow \sum_{i=1}^{k} g_{i}\left(u_{i}\right)=0
$$

Bounds for the rank

Theorem (Bol $(n=2)$ Chern $(n \geq 3)$)

If \mathcal{W} is a smooth k-web on $\left(\mathbb{C}^{n}, 0\right)$ then

$$
\operatorname{dim} \mathcal{A}(\mathcal{W})=\operatorname{rank}(\mathcal{W}) \leq \pi(n, k)=\sum_{j=1}^{\infty} \max (0, k-j(n-1)-1)
$$

Bounds for the rank

Theorem (Bol $(n=2)$ Chern $(n \geq 3)$)

If \mathcal{W} is a smooth k-web on $\left(\mathbb{C}^{n}, 0\right)$ then

$$
\operatorname{dim} \mathcal{A}(\mathcal{W})=\operatorname{rank}(\mathcal{W}) \leq \pi(n, k)=\sum_{j=1}^{\infty} \max (0, k-j(n-1)-1)
$$

Idea of the proof

$$
\begin{aligned}
& F^{\bullet} \mathcal{A}(\mathcal{W}): \quad F^{j} \mathcal{A}(\mathcal{W})=\operatorname{ker}\left\{\mathcal{A}(\mathcal{W}) \longrightarrow\left(\frac{\Omega^{1}\left(\mathbb{C}^{n}, 0\right)}{\mathfrak{m}^{j} \cdot \Omega^{1}\left(\mathbb{C}^{n}, 0\right)}\right)^{k}\right\} . \\
& \operatorname{dim} \frac{F^{j} \mathcal{A}(\mathcal{W})}{F^{j+1} \mathcal{A}(\mathcal{W})}
\end{aligned}
$$

where ℓ_{i} is a linear form defining $T_{0} \mathcal{F}_{i}$.

Bounds for the rank

Theorem (Bol $(n=2)$ Chern $(n \geq 3)$)

If \mathcal{W} is a smooth k-web on $\left(\mathbb{C}^{n}, 0\right)$ then

$$
\operatorname{dim} \mathcal{A}(\mathcal{W})=\operatorname{rank}(\mathcal{W}) \leq \pi(n, k)=\sum_{j=1}^{\infty} \max (0, k-j(n-1)-1)
$$

Bounds for the rank

Theorem (Bol $(n=2)$ Chern $(n \geq 3)$)

If \mathcal{W} is a smooth k-web on $\left(\mathbb{C}^{n}, 0\right)$ then

$$
\operatorname{dim} \mathcal{A}(\mathcal{W})=\operatorname{rank}(\mathcal{W}) \leq \pi(n, k)=\sum_{j=1}^{\infty} \max (0, k-j(n-1)-1)
$$

Remarks

Bounds for the rank

Theorem (Bol $(n=2)$ Chern $(n \geq 3)$)

If \mathcal{W} is a smooth k-web on $\left(\mathbb{C}^{n}, 0\right)$ then

$$
\operatorname{dim} \mathcal{A}(\mathcal{W})=\operatorname{rank}(\mathcal{W}) \leq \pi(n, k)=\sum_{j=1}^{\infty} \max (0, k-j(n-1)-1)
$$

Remarks

- $\pi(n, k)$ is Castelnuovo's bound for the genus of irreducible non-degenerate degree k curves in \mathbb{P}^{n}.

Bounds for the rank

Theorem (Bol $(n=2)$ Chern $(n \geq 3)$)

If \mathcal{W} is a smooth k-web on $\left(\mathbb{C}^{n}, 0\right)$ then

$$
\operatorname{dim} \mathcal{A}(\mathcal{W})=\operatorname{rank}(\mathcal{W}) \leq \pi(n, k)=\sum_{j=1}^{\infty} \max (0, k-j(n-1)-1)
$$

Remarks

- $\pi(n, k)$ is Castelnuovo's bound for the genus of irreducible non-degenerate degree k curves in \mathbb{P}^{n}.
- the proof shows how to bound the rank of quasi-smooth webs. One has to know the dimension of the space generated by powers of linear forms determining $T_{0} \mathcal{F}_{i}$.

Bounds for the rank

Theorem (Bol $(n=2)$ Chern $(n \geq 3)$)

If \mathcal{W} is a smooth k-web on $\left(\mathbb{C}^{n}, 0\right)$ then

$$
\operatorname{dim} \mathcal{A}(\mathcal{W})=\operatorname{rank}(\mathcal{W}) \leq \pi(n, k)=\sum_{j=1}^{\infty} \max (0, k-j(n-1)-1)
$$

Questions

Bounds for the rank

Theorem (Bol $(n=2)$ Chern $(n \geq 3)$)

If \mathcal{W} is a smooth k-web on $\left(\mathbb{C}^{n}, 0\right)$ then

$$
\operatorname{dim} \mathcal{A}(\mathcal{W})=\operatorname{rank}(\mathcal{W}) \leq \pi(n, k)=\sum_{j=1}^{\infty} \max (0, k-j(n-1)-1)
$$

Questions

- Is the bound sharp ?

Bounds for the rank

Theorem (Bol $(n=2)$ Chern $(n \geq 3)$)

If \mathcal{W} is a smooth k-web on $\left(\mathbb{C}^{n}, 0\right)$ then

$$
\operatorname{dim} \mathcal{A}(\mathcal{W})=\operatorname{rank}(\mathcal{W}) \leq \pi(n, k)=\sum_{j=1}^{\infty} \max (0, k-j(n-1)-1)
$$

Questions

- Is the bound sharp?
- Is there a characterization of webs of maximal rank ?

Algebraic Webs

$C \subset \mathbb{P}^{n}$ reduced curve. $H_{0} \in \check{\mathbb{P}}^{n}$ transverse to C. $H_{0} \cap C=p_{1}+\cdots+p_{k}$.

Algebraic Webs

$C \subset \mathbb{P}^{n}$ reduced curve. $H_{0} \in \stackrel{\mathbb{P}}{ }^{n}$ transverse to C. $H_{0} \cap C=p_{1}+\cdots+p_{k}$.

$$
p_{i}:\left(\check{\mathbb{P}}^{n}, H_{0}\right) \rightarrow C \Longrightarrow H \cap C=p_{1}(H)+\cdots+p_{k}(H) .
$$

Algebraic Webs

$C \subset \mathbb{P}^{n}$ reduced curve. $H_{0} \in \stackrel{P}{P}^{n}$ transverse to C. $H_{0} \cap C=p_{1}+\cdots+p_{k}$.

$$
p_{i}:\left(\breve{\mathbb{P}}^{n}, H_{0}\right) \rightarrow C \Longrightarrow H \cap C=p_{1}(H)+\cdots+p_{k}(H) .
$$

These functions define the k-web $\mathcal{W}_{C}=\mathcal{W}_{C}\left(H_{0}\right)$.

Algebraic Webs

$C \subset \mathbb{P}^{n}$ reduced curve. $H_{0} \in \stackrel{P}{P}^{n}$ transverse to C. $H_{0} \cap C=p_{1}+\cdots+p_{k}$.

$$
p_{i}:\left(\breve{\mathbb{P}}^{n}, H_{0}\right) \rightarrow C \Longrightarrow H \cap C=p_{1}(H)+\cdots+p_{k}(H) .
$$

These functions define the k-web $\mathcal{W}_{C}=\mathcal{W}_{C}\left(H_{0}\right)$.

Theorem (Abel's Addition Theorem)

$$
\left(p_{1} \oplus \cdots \oplus p_{k}\right)^{*} H^{0}\left(C, \omega_{C}\right) \hookrightarrow \mathcal{A}\left(\mathcal{W}_{C}\right)
$$

In particular, $\operatorname{rank}\left(\mathcal{W}_{C}\right) \geq h^{0}\left(C, \omega_{C}\right)$.

Algebraization results

Theorem (Lie)

If \mathcal{W} is a quasi-smooth (= smooth in dimension two) 4-web on the plane with one abelian relation then \mathcal{W} is algebraizable.

Algebraization results

Theorem (Lie)

If \mathcal{W} is a quasi-smooth ($=$ smooth in dimension two) 4-web on the plane with one abelian relation then \mathcal{W} is algebraizable.

A double translation surface $S \subset \mathbb{R}^{3}$ that admits two independent parametrizations of the form $(x, y) \mapsto f(x)+g(y)$. S carries a natural 4-web \mathcal{W}. The leaves tangents of \mathcal{W} cuts the hyperplane at infinity at 4 germs of curves. Lie's Theorem says that these 4 curves are contained in a degree 4 algebraic curve. Latter generalized by Wirtinger to arbitrary translation manifolds.

Algebraization results II

Theorem (Bol(n=3), Chern-Griffiths(hypothesis), Trépreau)

Let $n \geq 3$ and $k \geq 2 n$. If \mathcal{W} is a smooth k-web on $\left(\mathbb{C}^{n}, 0\right)$ of maximal rank then \mathcal{W} is algebraizable.

Algebraization results II

Theorem (Bol(n=3), Chern-Griffiths(hypothesis), Trépreau)

Let $n \geq 3$ and $k \geq 2 n$. If \mathcal{W} is a smooth k-web on $\left(\mathbb{C}^{n}, 0\right)$ of maximal rank then \mathcal{W} is algebraizable.

Remarks

Algebraization results II

Theorem (Bol(n=3), Chern-Griffiths(hypothesis), Trépreau)

Let $n \geq 3$ and $k \geq 2 n$. If \mathcal{W} is a smooth k-web on $\left(\mathbb{C}^{n}, 0\right)$ of maximal rank then \mathcal{W} is algebraizable.

Remarks

- Also true for $k \leq n+1$ (trivial).

Algebraization results II

Theorem (Bol(n=3), Chern-Griffiths(hypothesis), Trépreau)

Let $n \geq 3$ and $k \geq 2 n$. If \mathcal{W} is a smooth k-web on $\left(\mathbb{C}^{n}, 0\right)$ of maximal rank then \mathcal{W} is algebraizable.

Remarks

- Also true for $k \leq n+1$ (trivial).
- False for $n+2 \leq k \leq 2 n-1$ due to trivial reasons.

Algebraization results II

Theorem (Bol(n=3), Chern-Griffiths(hypothesis), Trépreau)

Let $n \geq 3$ and $k \geq 2 n$. If \mathcal{W} is a smooth k-web on $\left(\mathbb{C}^{n}, 0\right)$ of maximal rank then \mathcal{W} is algebraizable.

Remarks

- Also true for $k \leq n+1$ (trivial).
- False for $n+2 \leq k \leq 2 n-1$ due to trivial reasons.

Questions

Algebraization results II

Theorem (Bol(n=3), Chern-Griffiths(hypothesis), Trépreau)

Let $n \geq 3$ and $k \geq 2 n$. If \mathcal{W} is a smooth k-web on $\left(\mathbb{C}^{n}, 0\right)$ of maximal rank then \mathcal{W} is algebraizable.

Remarks

- Also true for $k \leq n+1$ (trivial).
- False for $n+2 \leq k \leq 2 n-1$ due to trivial reasons.

Questions

- What happens when $n=2$ and $k \geq 5$?

Algebraization results II

Theorem (Bol(n=3), Chern-Griffiths(hypothesis), Trépreau)

Let $n \geq 3$ and $k \geq 2 n$. If \mathcal{W} is a smooth k-web on $\left(\mathbb{C}^{n}, 0\right)$ of maximal rank then \mathcal{W} is algebraizable.

Remarks

- Also true for $k \leq n+1$ (trivial).
- False for $n+2 \leq k \leq 2 n-1$ due to trivial reasons.

Questions

- What happens when $n=2$ and $k \geq 5$?
- When $n \geq 3$ and $k \geq 2 n$, are quasi-smooth k-webs of maximal rank algebraizable ?

Exceptional Webs

Bol's 5-web

Exceptional Webs

Bol's 5-web

5 I.i. abelian relations of log type

Exceptional Webs

Bol's 5-web

5 I.i. abelian relations of log type

 Extra abelian relation :
Exceptional Webs

Bol's 5-web

5 I.i. abelian relations of log type Extra abelian relation : Abel's functional equation for the dilog

Exceptional Webs

Bol's 5-web

5 I.i. abelian relations of log type Extra abelian relation : Abel's functional equation for the dilog Discovered by Bol in the 1930's.

Exceptional Webs

Bol's 5-web

5 I.i. abelian relations of log type Extra abelian relation : Abel's functional equation for the dilog Discovered by Bol in the 1930's. Only example until 2000.

Exceptional Webs

Bol's 5-web

5 l.i. abelian relations of log type Extra abelian relation : Abel's functional equation for the dilog Discovered by Bol in the 1930's. Only example until 2000.

Spence-Kummer's 9-web

Related to Spence-Kummer's functional equation for the trilog.

Exceptional Webs

Bol's 5-web

5 l.i. abelian relations of log type Extra abelian relation : Abel's functional equation for the dilog Discovered by Bol in the 1930's. Only example until 2000.

Spence-Kummer's 9-web

Related to Spence-Kummer's functional equation for the trilog. Conjectured by Hénaut.

Exceptional Webs

Bol's 5-web

5 I.i. abelian relations of log type Extra abelian relation : Abel's functional equation for the dilog Discovered by Bol in the 1930's. Only example until 2000.

Spence-Kummer's 9-web

Related to Spence-Kummer's functional equation for the trilog. Conjectured by Hénaut. Proved independently by Pirio and Robert.

Outline

(2) Web Geometry
(3) Webs associated to arrangements
4. From webs to arrangements

Bol's 5-web revisited

Bol's 5-web revisited

Call it $\mathcal{A}_{0,5}$

Bol's 5-web revisited

Call it $\mathcal{A}_{0,5}$
$R^{1}\left(\mathcal{A}_{0,5}\right)$ has 5 irred. components

Bol's 5-web revisited

Call it $\mathcal{A}_{0,5}$
$R^{1}\left(\mathcal{A}_{0,5}\right)$ has 5 irred. components
4 pencils of lines

Bol's 5-web revisited

Call it $\mathcal{A}_{0,5}$
$R^{1}\left(\mathcal{A}_{0,5}\right)$ has 5 irred. components
4 pencils of lines
1 pencil of conics

Bol's 5-web revisited

Call it $\mathcal{A}_{0,5}$
$R^{1}\left(\mathcal{A}_{0,5}\right)$ has 5 irred. components
4 pencils of lines
1 pencil of conics
Each with dimension two

Bol's 5-web revisited

Call it $\mathcal{A}_{0,5}$
$R^{1}\left(\mathcal{A}_{0,5}\right)$ has 5 irred. components
4 pencils of lines
1 pencil of conics
Each with dimension two
The associated web is Bol's 5-web

Bol's 5-web revisited

Call it $\mathcal{A}_{0,5}$
$R^{1}\left(\mathcal{A}_{0,5}\right)$ has 5 irred. components
4 pencils of lines
1 pencil of conics
Each with dimension two
The associated web is Bol's 5 -web

Bol's 5-web has maximal rank

$$
\begin{aligned}
\bigoplus_{\Sigma \subset \mathcal{R}^{1}(\mathcal{A})} H^{1}\left(C_{\Sigma}\right) & \longrightarrow H^{1}\left(M_{0,5}\right) \\
\left(\eta_{\Sigma}\right) & \longmapsto \sum_{\Sigma} f_{\Sigma}^{*} \eta_{\Sigma}
\end{aligned}
$$

Bol's 5-web revisited

Call it $\mathcal{A}_{0,5}$
$R^{1}\left(\mathcal{A}_{0,5}\right)$ has 5 irred. components
4 pencils of lines
1 pencil of conics
Each with dimension two
The associated web is Bol's 5 -web

Bol's 5-web has maximal rank

$$
\bigoplus_{\Sigma \subset \mathcal{R}^{1}(\mathcal{A})} H^{1}\left(C_{\Sigma}\right) \longrightarrow H^{1}\left(M_{0,5}\right) \rightarrow 0
$$

Bol's 5-web revisited

Call it $\mathcal{A}_{0,5}$
$R^{1}\left(\mathcal{A}_{0,5}\right)$ has 5 irred. components
4 pencils of lines
1 pencil of conics
Each with dimension two
The associated web is Bol's 5 -web

Bol's 5-web has maximal rank

$$
0 \rightarrow A R_{\log }^{1}\left(\mathcal{A}_{0,5}\right) \longrightarrow \bigoplus_{\Sigma \subset \mathcal{R}^{1}(\mathcal{A})} H^{1}\left(C_{\Sigma}\right) \longrightarrow H^{1}\left(M_{0,5}\right) \rightarrow 0
$$

$\operatorname{dim} A R_{\text {log }}^{1}\left(\mathcal{A}_{0,5}\right)=5$

Bol's 5-web revisited

Call it $\mathcal{A}_{0,5}$
$R^{1}\left(\mathcal{A}_{0,5}\right)$ has 5 irred. components
4 pencils of lines
1 pencil of conics
Each with dimension two
The associated web is Bol's 5-web

Bol's 5-web has maximal rank

Bol's 5-web revisited

Call it $\mathcal{A}_{0,5}$
$R^{1}\left(\mathcal{A}_{0,5}\right)$ has 5 irred. components
4 pencils of lines
1 pencil of conics
Each with dimension two
The associated web is Bol's 5-web

Bol's 5-web has maximal rank

$$
\begin{gathered}
\operatorname{dim} A R_{\log }^{2}\left(\mathcal{A}_{0,5}\right)=1 \\
\operatorname{dim} A R_{\log }^{1}\left(\mathcal{A}_{0,5}\right)=5 \\
\operatorname{dim} \mathcal{A}\left(\mathcal{A}_{0,5}\right)=6
\end{gathered}
$$

Natural web on $M_{0, n+3}$

Let $\mathcal{A}_{0, n+3}$ be the arrangement defined by

$$
\prod_{i=1}^{n} x_{i} \prod_{i=1}^{n}\left(x_{i}-1\right) \prod_{i<j}\left(x_{i}-x_{j}\right)
$$

Natural web on $M_{0, n+3}$

Let $\mathcal{A}_{0, n+3}$ be the arrangement defined by

$$
\prod_{i=1}^{n} x_{i} \prod_{i=1}^{n}\left(x_{i}-1\right) \prod_{i<j}\left(x_{i}-x_{j}\right)
$$

Theorem (P.)

For every $n \geq 2$ the equality

$$
\operatorname{rank}\left(\mathcal{W}\left(\mathcal{A}_{0, n+3}\right)\right)=3\binom{n+3}{4}-\binom{n+2}{3}-\binom{n+1}{2}-n .
$$

holds true.

Natural web on $M_{0, n+3}$

Let $\mathcal{A}_{0, n+3}$ be the arrangement defined by

$$
\prod_{i=1}^{n} x_{i} \prod_{i=1}^{n}\left(x_{i}-1\right) \prod_{i<j}\left(x_{i}-x_{j}\right)
$$

Theorem (P.)

For every $n \geq 2$ the equality

$$
\operatorname{rank}\left(\mathcal{W}\left(\mathcal{A}_{0, n+3}\right)\right)=3\binom{n+3}{4}-\binom{n+2}{3}-\binom{n+1}{2}-n .
$$

holds true.
Examples of quasi-smooth webs with $k>2 n$, maximal rank and non-algebraizable.

Spence-Kummer's 9-web revisited

Spence-Kummer's 9-web revisited

Call it $\mathcal{A}_{S K}$

Spence-Kummer's 9-web revisited

Call it $\mathcal{A}_{S K}$
$R^{1}\left(\mathcal{A}_{S K}\right)$ has 9 irred. components

Spence-Kummer's 9-web revisited

Call it $\mathcal{A}_{S K}$
$R^{1}\left(\mathcal{A}_{S K}\right)$ has 9 irred. components
6 pencils of lines

Spence-Kummer's 9-web revisited

Call it $\mathcal{A}_{S K}$
$R^{1}\left(\mathcal{A}_{S K}\right)$ has 9 irred. components
6 pencils of lines
3 pencil of conics

Spence-Kummer's 9-web revisited

Call it $\mathcal{A}_{S K}$
$R^{1}\left(\mathcal{A}_{S K}\right)$ has 9 irred. components
6 pencils of lines
3 pencil of conics
All of them have dimension two

Spence-Kummer's 9-web revisited

Call it $\mathcal{A}_{S K}$
$R^{1}\left(\mathcal{A}_{S K}\right)$ has 9 irred. components
6 pencils of lines
3 pencil of conics
All of them have dimension two
$\mathcal{W}\left(\mathcal{A}_{S K}\right)=$ Spence-Kummer's 9 -web

Spence-Kummer's 9-web revisited

Call it $\mathcal{A}_{\text {SK }}$
$R^{1}\left(\mathcal{A}_{S K}\right)$ has 9 irred. components
6 pencils of lines
3 pencil of conics
All of them have dimension two
$\mathcal{W}\left(\mathcal{A}_{S K}\right)=$ Spence-Kummer's 9 -web

$\mathcal{W}\left(\mathcal{A}_{\text {SK }}\right)$ has maximal rank (Pirio - Robert)

$\operatorname{dim} A R_{l o g}^{1}\left(\mathcal{A}_{S K}\right)=12$

Spence-Kummer's 9-web revisited

Call it $\mathcal{A}_{\text {SK }}$
$R^{1}\left(\mathcal{A}_{S K}\right)$ has 9 irred. components
6 pencils of lines
3 pencil of conics
All of them have dimension two
$\mathcal{W}\left(\mathcal{A}_{S K}\right)=$ Spence-Kummer's 9 -web

$\mathcal{W}\left(\mathcal{A}_{\text {SK }}\right)$ has maximal rank (Pirio - Robert)

$\operatorname{dim} A R_{\text {log }}^{1}\left(\mathcal{A}_{S K}\right)=12$
$\operatorname{dim} A R_{\text {log }}^{2}\left(\mathcal{A}_{S K}\right)=9$

Spence-Kummer's 9-web revisited

Call it $\mathcal{A}_{\text {SK }}$
$R^{1}\left(\mathcal{A}_{S K}\right)$ has 9 irred. components
6 pencils of lines
3 pencil of conics
All of them have dimension two
$\mathcal{W}\left(\mathcal{A}_{S K}\right)=$ Spence-Kummer's 9 -web

$\mathcal{W}\left(\mathcal{A}_{\text {SK }}\right)$ has maximal rank (Pirio - Robert)

$\operatorname{dim} A R_{\text {log }}^{1}\left(\mathcal{A}_{S K}\right)=12$
$\operatorname{dim} A R_{\text {log }}^{2}\left(\mathcal{A}_{S K}\right)=9$
$\operatorname{dim} A R_{\text {log }}^{3}\left(\mathcal{A}_{S K}\right)=2$

Spence-Kummer's 9-web revisited

Call it $\mathcal{A}_{\text {SK }}$
$R^{1}\left(\mathcal{A}_{S K}\right)$ has 9 irred. components
6 pencils of lines
3 pencil of conics
All of them have dimension two
$\mathcal{W}\left(\mathcal{A}_{S K}\right)=$ Spence-Kummer's 9 -web

$\mathcal{W}\left(\mathcal{A}_{\text {SK }}\right)$ has maximal rank (Pirio - Robert)

$\operatorname{dim} A R_{\text {log }}^{1}\left(\mathcal{A}_{S K}\right)=12$
$\operatorname{dim} A R_{\text {log }}^{2}\left(\mathcal{A}_{S K}\right)=9$
$\operatorname{dim} A R_{\text {log }}^{3}\left(\mathcal{A}_{S K}\right)=2$ no very well understood

Spence-Kummer's 9-web revisited

Call it $\mathcal{A}_{S K}$
$R^{1}\left(\mathcal{A}_{S K}\right)$ has 9 irred. components
6 pencils of lines
3 pencil of conics
All of them have dimension two
$\mathcal{W}\left(\mathcal{A}_{S K}\right)=$ Spence-Kummer's 9 -web

$\mathcal{W}\left(\mathcal{A}_{\text {SK }}\right)$ has maximal rank (Pirio - Robert)

$\operatorname{dim} A R_{\log }^{1}\left(\mathcal{A}_{S K}\right)=12$
$\operatorname{dim} A R_{\text {log }}^{2}\left(\mathcal{A}_{S K}\right)=9$
$\operatorname{dim} A R_{\text {log }}^{3}\left(\mathcal{A}_{S K}\right)=2$ no very well understood dim Rational abelian relations $=4$

Spence-Kummer's 9-web revisited

Call it $\mathcal{A}_{S K}$
$R^{1}\left(\mathcal{A}_{S K}\right)$ has 9 irred. components
6 pencils of lines
3 pencil of conics
All of them have dimension two
$\mathcal{W}\left(\mathcal{A}_{S K}\right)=$ Spence-Kummer's 9 -web

$\mathcal{W}\left(\mathcal{A}_{\text {SK }}\right)$ has maximal rank (Pirio - Robert)

$\operatorname{dim} A R_{\log }^{1}\left(\mathcal{A}_{S K}\right)=12$
$\operatorname{dim} A R_{\text {log }}^{2}\left(\mathcal{A}_{S K}\right)=9$
$\operatorname{dim} A R_{\text {log }}^{3}\left(\mathcal{A}_{S K}\right)=2$ no very well understood
dim Rational abelian relations $=4$
There is one missing.

Spence-Kummer's 9-web revisited

Call it $\mathcal{A}_{S K}$
$R^{1}\left(\mathcal{A}_{S K}\right)$ has 9 irred. components
6 pencils of lines
3 pencil of conics
All of them have dimension two
$\mathcal{W}\left(\mathcal{A}_{S K}\right)=$ Spence-Kummer's 9 -web

$\mathcal{W}\left(\mathcal{A}_{\text {SK }}\right)$ has maximal rank (Pirio - Robert)

$\operatorname{dim} A R_{\text {log }}^{1}\left(\mathcal{A}_{S K}\right)=12$
$\operatorname{dim} A R_{\text {log }}^{2}\left(\mathcal{A}_{S K}\right)=9$
$\operatorname{dim} A R_{\text {log }}^{3}\left(\mathcal{A}_{S K}\right)=2$ no very well understood
dim Rational abelian relations $=4$
There is one missing. Intersection of characteristic varieties.

One parameter family of 8-webs

One parameter family of 8-webs

$$
\text { Call it } \mathcal{A}_{P}(a), a \in \mathbb{C} \backslash\{0,1\}
$$

One parameter family of 8 -webs

Call it $\mathcal{A}_{P}(a), a \in \mathbb{C} \backslash\{0,1\}$ $R^{1}\left(\mathcal{A}_{P}(a)\right)$ has 8 irred. components

One parameter family of 8 -webs

Call it $\mathcal{A}_{P}(a), a \in \mathbb{C} \backslash\{0,1\}$ $R^{1}\left(\mathcal{A}_{P}(a)\right)$ has 8 irred. components 5 pencils of lines

One parameter family of 8 -webs

Call it $\mathcal{A}_{P}(a), a \in \mathbb{C} \backslash\{0,1\}$ $R^{1}\left(\mathcal{A}_{P}(a)\right)$ has 8 irred. components 5 pencils of lines
3 pencil of conics

One parameter family of 8 -webs

Call it $\mathcal{A}_{P}(a), a \in \mathbb{C} \backslash\{0,1\}$
$R^{1}\left(\mathcal{A}_{P}(a)\right)$ has 8 irred. components
5 pencils of lines
3 pencil of conics
Two have dimension three
All the others have dimension two

One parameter family of 8 -webs

Call it $\mathcal{A}_{P}(a), a \in \mathbb{C} \backslash\{0,1\}$
$R^{1}\left(\mathcal{A}_{P}(a)\right)$ has 8 irred. components
5 pencils of lines
3 pencil of conics
Two have dimension three
All the others have dimension two
$\mathcal{W}\left(\mathcal{A}_{P}(a)\right)$ was studied by Pirio

One parameter family of 8-webs

Call it $\mathcal{A}_{P}(a), a \in \mathbb{C} \backslash\{0,1\}$ $R^{1}\left(\mathcal{A}_{P}(a)\right)$ has 8 irred. components 5 pencils of lines
3 pencil of conics
Two have dimension three
All the others have dimension two
$\mathcal{W}\left(\mathcal{A}_{P}(a)\right)$ was studied by Pirio

$\mathcal{W}\left(\mathcal{A}_{P}(a)\right)$ has maximal rank (Pirio)

$\operatorname{dim} A R_{\log }^{1}\left(\mathcal{A}_{P}(a)\right)=11$

One parameter family of 8-webs

Call it $\mathcal{A}_{P}(a), a \in \mathbb{C} \backslash\{0,1\}$ $R^{1}\left(\mathcal{A}_{P}(a)\right)$ has 8 irred. components 5 pencils of lines
3 pencil of conics
Two have dimension three
All the others have dimension two
$\mathcal{W}\left(\mathcal{A}_{P}(a)\right)$ was studied by Pirio

$\mathcal{W}\left(\mathcal{A}_{P}(a)\right)$ has maximal rank (Pirio)

$\operatorname{dim} A R_{\text {log }}^{1}\left(\mathcal{A}_{P}(a)\right)=11$ $\operatorname{dim} A R_{\text {log }}^{2}\left(\mathcal{A}_{P}(a)\right)=5$

One parameter family of 8-webs

Call it $\mathcal{A}_{P}(a), a \in \mathbb{C} \backslash\{0,1\}$ $R^{1}\left(\mathcal{A}_{P}(a)\right)$ has 8 irred. components 5 pencils of lines 3 pencil of conics
Two have dimension three
All the others have dimension two
$\mathcal{W}\left(\mathcal{A}_{P}(a)\right)$ was studied by Pirio

$\mathcal{W}\left(\mathcal{A}_{P}(a)\right)$ has maximal rank (Pirio)

$\operatorname{dim} A R_{\text {log }}^{1}\left(\mathcal{A}_{P}(a)\right)=11$
$\operatorname{dim} A R_{\text {log }}^{2}\left(\mathcal{A}_{P}(a)\right)=5$
dim Rational abelian relations $=4$

One parameter family of 8-webs

Call it $\mathcal{A}_{P}(a), a \in \mathbb{C} \backslash\{0,1\}$ $R^{1}\left(\mathcal{A}_{P}(a)\right)$ has 8 irred. components 5 pencils of lines
3 pencil of conics
Two have dimension three
All the others have dimension two
$\mathcal{W}\left(\mathcal{A}_{P}(a)\right)$ was studied by Pirio

$\mathcal{W}\left(\mathcal{A}_{P}(a)\right)$ has maximal rank (Pirio)

$\operatorname{dim} A R_{\text {log }}^{1}\left(\mathcal{A}_{P}(a)\right)=11$
$\operatorname{dim} A R_{\text {log }}^{2}\left(\mathcal{A}_{P}(a)\right)=5$
dim Rational abelian relations $=4$
There is one missing.

One parameter family of 8-webs

Call it $\mathcal{A}_{P}(a), a \in \mathbb{C} \backslash\{0,1\}$ $R^{1}\left(\mathcal{A}_{P}(a)\right)$ has 8 irred. components 5 pencils of lines
3 pencil of conics
Two have dimension three
All the others have dimension two
$\mathcal{W}\left(\mathcal{A}_{P}(a)\right)$ was studied by Pirio

$\mathcal{W}\left(\mathcal{A}_{P}(a)\right)$ has maximal rank (Pirio)

$\operatorname{dim} A R_{\text {log }}^{1}\left(\mathcal{A}_{P}(a)\right)=11$
$\operatorname{dim} A R_{\text {log }}^{2}\left(\mathcal{A}_{P}(a)\right)=5$
dim Rational abelian relations $=4$
There is one missing. Mixed iterated integrals.

Outline

(1) Motivation

(2) Web Geometry
(3) Webs associated to arrangements
(4) From webs to arrangements

Completely Decomposable Quasi-Linear Webs

The classification of exceptional planar webs is wide open.

Completely Decomposable Quasi-Linear Webs

The classification of exceptional planar webs is wide open. It is natural to restrict the attention to particular classes of webs.

Completely Decomposable Quasi-Linear Webs

The classification of exceptional planar webs is wide open. It is natural to restrict the attention to particular classes of webs. Suppose \mathcal{W} is the superposition of k pencil of lines and one non-linear foliation (CDQL).

Completely Decomposable Quasi-Linear Webs

The classification of exceptional planar webs is wide open. It is natural to restrict the attention to particular classes of webs. Suppose \mathcal{W} is the superposition of k pencil of lines and one non-linear foliation (CDQL).
Then \mathcal{W} is exceptional if and only if $k \geq 4$ and \mathcal{W} has maximal rank.

Completely Decomposable Quasi-Linear Webs

The classification of exceptional planar webs is wide open. It is natural to restrict the attention to particular classes of webs. Suppose \mathcal{W} is the superposition of k pencil of lines and one non-linear foliation (CDQL).
Then \mathcal{W} is exceptional if and only if $k \geq 4$ and \mathcal{W} has maximal rank.

Theorem (P., Pirio)

Up to projective automorphisms, there are exactly four infinite families and thirteen sporadic exceptional CDQL webs on \mathbb{P}^{2}.

Completely Decomposable Quasi-Linear Webs

The classification of exceptional planar webs is wide open. It is natural to restrict the attention to particular classes of webs. Suppose \mathcal{W} is the superposition of k pencil of lines and one non-linear foliation (CDQL).
Then \mathcal{W} is exceptional if and only if $k \geq 4$ and \mathcal{W} has maximal rank.

Theorem (P., Pirio)

Up to projective automorphisms, there are exactly four infinite families and thirteen sporadic exceptional CDQL webs on \mathbb{P}^{2}.

At some point, I needed to know the number of completely decomposible fibers in a pencil.

Completely Decomposable Quasi-Linear Webs

The classification of exceptional planar webs is wide open. It is natural to restrict the attention to particular classes of webs. Suppose \mathcal{W} is the superposition of k pencil of lines and one non-linear foliation (CDQL).
Then \mathcal{W} is exceptional if and only if $k \geq 4$ and \mathcal{W} has maximal rank.

Theorem (P., Pirio)

Up to projective automorphisms, there are exactly four infinite families and thirteen sporadic exceptional CDQL webs on \mathbb{P}^{2}.

At some point, I needed to know the number of completely decomposible fibers in a pencil. \Longrightarrow Google told me about Falk-Yuzvinsky's work on multi-nets.

Select Examples

The infinity families

$$
\mathcal{A}_{l}^{k}=\left[\left(d x^{k}-d y^{k}\right)\right] \boxtimes[d(x y)] \text { where } k \geq 4 ;
$$

Select Examples

The infinity families

$\mathcal{A}_{l}^{k}=\left[\left(d x^{k}-d y^{k}\right)\right] \boxtimes[d(x y)]$ where $k \geq 4$;
$\mathcal{A}_{\| l}^{k}=\left[\left(d x^{k}-d y^{k}\right)(x d y-y d x)\right] \boxtimes[d(x y)]$ where $k \geq 3$;

Select Examples

The infinity families

$\mathcal{A}_{l}^{k}=\left[\left(d x^{k}-d y^{k}\right)\right] \boxtimes[d(x y)]$ where $k \geq 4$;
$\mathcal{A}_{\| l}^{k}=\left[\left(d x^{k}-d y^{k}\right)(x d y-y d x)\right] \boxtimes[d(x y)]$ where $k \geq 3$;
$\mathcal{A}_{I I I}^{k}=\left[\left(d x^{k}-d y^{k}\right) d x d y\right] \boxtimes[d(x y)]$ where $k \geq 2$;

Select Examples

The infinity families

$\mathcal{A}_{l}^{k}=\left[\left(d x^{k}-d y^{k}\right)\right] \boxtimes[d(x y)]$ where $k \geq 4$;
$\mathcal{A}_{\| l}^{k}=\left[\left(d x^{k}-d y^{k}\right)(x d y-y d x)\right] \boxtimes[d(x y)]$ where $k \geq 3$;
$\mathcal{A}_{\text {III }}^{k}=\left[\left(d x^{k}-d y^{k}\right) d x d y\right] \boxtimes[d(x y)]$ where $k \geq 2$;
$\mathcal{A}_{I V}^{k}=\left[\left(d x^{k}-d y^{k}\right) d x d y(x d y-y d x)\right] \boxtimes[d(x y)]$ where $k \geq 1$.

Select Examples

The infinity families

$\mathcal{A}_{l}^{k}=\left[\left(d x^{k}-d y^{k}\right)\right] \boxtimes[d(x y)]$ where $k \geq 4$;
$\mathcal{A}_{\| l}^{k}=\left[\left(d x^{k}-d y^{k}\right)(x d y-y d x)\right] \boxtimes[d(x y)]$ where $k \geq 3$;
$\mathcal{A}_{\text {III }}^{k}=\left[\left(d x^{k}-d y^{k}\right) d x d y\right] \boxtimes[d(x y)]$ where $k \geq 2$;
$\mathcal{A}_{I V}^{k}=\left[\left(d x^{k}-d y^{k}\right) d x d y(x d y-y d x)\right] \boxtimes[d(x y)]$ where $k \geq 1$.

\mathcal{H}_{5} and \mathcal{H}_{10}

$$
\mathcal{H}_{5}=\left[\left(d x^{3}+d y^{3}\right) d\left(\frac{x}{y}\right)\right] \boxtimes\left[d\left(\frac{x^{3}+y^{3}+1}{x y}\right)\right] ;
$$

Select Examples

The infinity families

$\mathcal{A}_{l}^{k}=\left[\left(d x^{k}-d y^{k}\right)\right] \boxtimes[d(x y)]$ where $k \geq 4$;
$\mathcal{A}_{\| l}^{k}=\left[\left(d x^{k}-d y^{k}\right)(x d y-y d x)\right] \boxtimes[d(x y)]$ where $k \geq 3$;
$\mathcal{A}_{\text {III }}^{k}=\left[\left(d x^{k}-d y^{k}\right) d x d y\right] \boxtimes[d(x y)]$ where $k \geq 2$;
$\mathcal{A}_{I V}^{k}=\left[\left(d x^{k}-d y^{k}\right) d x d y(x d y-y d x)\right] \boxtimes[d(x y)]$ where $k \geq 1$.

\mathcal{H}_{5} and \mathcal{H}_{10}

$$
\begin{aligned}
& \mathcal{H}_{5}=\left[\left(d x^{3}+d y^{3}\right) d\left(\frac{x}{y}\right)\right] \boxtimes\left[d\left(\frac{x^{3}+y^{3}+1}{x y}\right)\right] ; \\
& \mathcal{H}_{10}=\left[\left(d x^{3}+d y^{3}\right)\left(\prod_{i=0}^{2} d\left(\frac{y-\xi_{3}^{i}}{x}\right)\right)\left(\prod_{i=0}^{2} d\left(\frac{x-\xi_{3}^{i}}{y}\right)\right)\right] \boxtimes\left[d\left(\frac{x^{3}+y^{3}+1}{x y}\right)\right]
\end{aligned}
$$

Pictures

Classification on tori (compact)

Theorem (P.,Pirio)

Up to isogenies, there are exactly three sporadic exceptional CDQL k-webs (one for each $k \in\{5,6,7\}$) and one continuous family of exceptional CDQL 5-webs on complex tori.

Classification on tori (compact)

Theorem (P.,Pirio)

Up to isogenies, there are exactly three sporadic exceptional CDQL k-webs (one for each $k \in\{5,6,7\}$) and one continuous family of exceptional CDQL 5-webs on complex tori.

Theorem

If T is a two-dimension complex tori and $f: T \rightarrow \mathbb{P}^{1}$ a meromorphic map then the number of linear fibers of f, when finite, is at most six. Moreover, the bound is sharp.

Classification on tori (compact)

Theorem (P.,Pirio)

Up to isogenies, there are exactly three sporadic exceptional CDQL k-webs (one for each $k \in\{5,6,7\}$) and one continuous family of exceptional CDQL 5-webs on complex tori.

Theorem

If T is a two-dimension complex tori and $f: T \rightarrow \mathbb{P}^{1}$ a meromorphic map then the number of linear fibers of f, when finite, is at most six. Moreover, the bound is sharp.

Remark

Although linear fibers are rigid the bound is worst than for the projective plane (4 after Stipins-Yuzvinsky result).

The list

Infinity family

The elements of the continuous family are

$$
\mathcal{E}_{\tau}=\left[d x d y\left(d x^{2}-d y^{2}\right)\right] \boxtimes\left[d\left(\frac{\vartheta_{1}(x, \tau) \vartheta_{1}(y, \tau)}{\vartheta_{4}(x, \tau) \vartheta_{4}(y, \tau)}\right)^{2}\right]
$$

on $E_{\tau}^{2}, E_{\tau}=\mathbb{C} /(\mathbb{Z} \oplus \mathbb{Z} \tau)$. The functions ϑ_{i} are the Jacobi theta functions. (Pirio - Trépreau)

The list

Infinity family

The elements of the continuous family are

$$
\mathcal{E}_{\tau}=\left[d x d y\left(d x^{2}-d y^{2}\right)\right] \boxtimes\left[d\left(\frac{\vartheta_{1}(x, \tau) \vartheta_{1}(y, \tau)}{\vartheta_{4}(x, \tau) \vartheta_{4}(y, \tau)}\right)^{2}\right]
$$

on $E_{\tau}^{2}, E_{\tau}=\mathbb{C} /(\mathbb{Z} \oplus \mathbb{Z} \tau)$. The functions ϑ_{i} are the Jacobi theta functions. (Pirio - Trépreau)

Sporadic exceptional CDQL webs

The list

Infinity family

The elements of the continuous family are

$$
\mathcal{E}_{\tau}=\left[d x d y\left(d x^{2}-d y^{2}\right)\right] \boxtimes\left[d\left(\frac{\vartheta_{1}(x, \tau) \vartheta_{1}(y, \tau)}{\vartheta_{4}(x, \tau) \vartheta_{4}(y, \tau)}\right)^{2}\right]
$$

on $E_{\tau}^{2}, E_{\tau}=\mathbb{C} /(\mathbb{Z} \oplus \mathbb{Z} \tau)$. The functions ϑ_{i} are the Jacobi theta functions. (Pirio - Trépreau)

Sporadic exceptional CDQL webs

- $\mathcal{E}_{7}=\left[d x^{2}+d y^{2}\right] \boxtimes \mathcal{E}_{1+i}$ on E_{1+i}^{2}

The list

Infinity family

The elements of the continuous family are

$$
\mathcal{E}_{\tau}=\left[d x d y\left(d x^{2}-d y^{2}\right)\right] \boxtimes\left[d\left(\frac{\vartheta_{1}(x, \tau) \vartheta_{1}(y, \tau)}{\vartheta_{4}(x, \tau) \vartheta_{4}(y, \tau)}\right)^{2}\right]
$$

on $E_{\tau}^{2}, E_{\tau}=\mathbb{C} /(\mathbb{Z} \oplus \mathbb{Z} \tau)$. The functions ϑ_{i} are the Jacobi theta functions. (Pirio - Trépreau)

Sporadic exceptional CDQL webs

- $\mathcal{E}_{7}=\left[d x^{2}+d y^{2}\right] \boxtimes \mathcal{E}_{1+i}$ on E_{1+i}^{2}
- \mathcal{E}_{5} is the 5 -web on $E_{\xi_{3}}^{2}$

$$
\left[d x d y(d x-d y)\left(d x+\xi_{3}^{2} d y\right)\right] \boxtimes\left[d\left(\frac{\vartheta_{1}(x) \vartheta_{1}(y) \vartheta_{1}(x-y) \vartheta_{1}\left(x+\xi_{3}^{2} y\right)}{\vartheta_{2}(x) \vartheta_{3}(y) \vartheta_{4}\left(x-y, \xi_{3}\right) \vartheta_{3}\left(x+\xi_{3}^{2} y\right)}\right)\right] .
$$

The list

Infinity family

The elements of the continuous family are

$$
\mathcal{E}_{\tau}=\left[d x d y\left(d x^{2}-d y^{2}\right)\right] \boxtimes\left[d\left(\frac{\vartheta_{1}(x, \tau) \vartheta_{1}(y, \tau)}{\vartheta_{4}(x, \tau) \vartheta_{4}(y, \tau)}\right)^{2}\right]
$$

on $E_{\tau}^{2}, E_{\tau}=\mathbb{C} /(\mathbb{Z} \oplus \mathbb{Z} \tau)$. The functions ϑ_{i} are the Jacobi theta functions. (Pirio - Trépreau)

Sporadic exceptional CDQL webs

- $\mathcal{E}_{7}=\left[d x^{2}+d y^{2}\right] \boxtimes \mathcal{E}_{1+i}$ on E_{1+i}^{2}
- \mathcal{E}_{5} is the 5 -web on $E_{\xi_{3}}^{2}$

$$
\left[d x d y(d x-d y)\left(d x+\xi_{3}^{2} d y\right)\right] \boxtimes\left[d\left(\frac{\vartheta_{1}(x) \vartheta_{1}(y) \vartheta_{1}(x-y) \vartheta_{1}\left(x+\xi_{3}^{2} y\right)}{\vartheta_{2}(x) \vartheta_{3}(y) \vartheta_{4}\left(x-y, \xi_{3}\right) \vartheta_{3}\left(x+\xi_{3}^{2} y\right)}\right)\right] .
$$

- $\mathcal{E}_{6}=\left[d x d y\left(d x^{3}+d y^{3}\right)\right] \boxtimes\left[\wp\left(x, \xi_{3}\right)^{-1} d x+\wp\left(y, \xi_{3}\right)^{-1} d y\right]$ on $E_{\xi_{3}}^{2}$

