Bruhat order and Hyperplane arrangements

SuHo Oh, Alexander Postnikov, Hwanchul Yoo

Massachusetts Insitute of Technology

August 10, 2009

Link Schubert varieties with Hyperplane arrangements

- Link Schubert varieties with Hyperplane arrangements
- Schubert varieties

Hyperplane arrangements

- Link Schubert varieties with Hyperplane arrangements
- Schubert varieties
- X_w , $w \in W$

- Hyperplane arrangements
- A_w , $w \in W$

- Link Schubert varieties with Hyperplane arrangements
- Schubert varieties
- X_w , $w \in W$
- Poincare Polynomial

- Hyperplane arrangements
- A_w , $w \in W$
- Distance Enumerator Polynomial

- Link Schubert varieties with Hyperplane arrangements
- Schubert varieties
- X_w , $w \in W$
- Poincare Polynomial
- Setting q = 1, # of elements in [id, w].

- Hyperplane arrangements
- \mathcal{A}_{w} , $w \in W$
- Distance Enumerator Polynomial
- Setting q = 1, # of regions in the arrangement.

- Link Schubert varieties with Hyperplane arrangements
- Schubert varieties
- X_w , $w \in W$
- Poincare Polynomial
- Setting q = 1, # of elements in [id, w].
 - Type A:

- Hyperplane arrangements
- $\mathcal{A}_{w}, w \in W$
- Distance Enumerator Polynomial
- Setting q = 1, # of regions in the arrangement.

- Link Schubert varieties with Hyperplane arrangements
- Schubert varieties
- X_w , $w \in W$
- Poincare Polynomial
- Setting q = 1, # of elements in [id, w].
 - Type A:
 - Two polynomials equal iff w avoids 3412, 4231.

- Hyperplane arrangements
- \mathcal{A}_{w} , $w \in W$
- Distance Enumerator Polynomial
- Setting q = 1, # of regions in the arrangement.

- Link Schubert varieties with Hyperplane arrangements
- Schubert varieties
- X_w , $w \in W$
- Poincare Polynomial
- Setting q = 1, # of elements in [id, w].

- Hyperplane arrangements
- \mathcal{A}_w , $w \in W$
- Distance Enumerator Polynomial
- Setting q = 1, # of regions in the arrangement.

- Type A :
 - Two polynomials equal iff w avoids 3412, 4231.
 - Nice way to compute Poincare polynomial

- Link Schubert varieties with Hyperplane arrangements
- Schubert varieties
- X_w , $w \in W$
- Poincare Polynomial
- Setting q = 1, # of elements in [id, w].

- Hyperplane arrangements
- \mathcal{A}_w , $w \in W$
- Distance Enumerator Polynomial
- Setting q = 1, # of regions in the arrangement.

- Type A :
 - Two polynomials equal iff w avoids 3412, 4231.
 - Nice way to compute Poincare polynomial
- A conjecture(?) for general W

$$\bullet \ X_w = \bar{BwB}/B$$

- $\bullet \ X_w = \bar{BwB}/B$
- $\bullet \ [\mathrm{id},w]:=\{u\in\mathcal{S}_n\mid u\leq w\}$

- $X_w = \bar{BwB}/B$
- $\bullet \ [\mathrm{id},w] := \{u \in S_n \mid u \leq w\}$
- Poincaré polynomial of X_w : Rank generating function for [id, w]

$$P_w(q) = \sum_{u \leq w} q^{\ell(u)}.$$

- $X_w = \bar{BwB}/B$
- $[id, w] := \{u \in S_n \mid u \le w\}$
- Poincaré polynomial of X_w : Rank generating function for [id, w]

$$P_w(q) = \sum_{u \leq w} q^{\ell(u)}.$$

• (Lakshmibai-Sandhya) X_w smooth iff w avoids 3412, 4231.

- $X_w = \bar{BwB}/B$
- $[id, w] := \{u \in S_n \mid u \le w\}$
- Poincaré polynomial of X_w : Rank generating function for [id, w]

$$P_w(q) = \sum_{u \leq w} q^{\ell(u)}.$$

- (Lakshmibai-Sandhya) X_w smooth iff w avoids 3412, 4231.
- (Carrell-Peterson) X_w smooth iff P_w palindromic.

- $X_w = \bar{BwB}/B$
- $[id, w] := \{u \in S_n \mid u \le w\}$
- Poincaré polynomial of X_w : Rank generating function for [id, w]

$$P_w(q) = \sum_{u \leq w} q^{\ell(u)}.$$

- (Lakshmibai-Sandhya) X_w smooth iff w avoids 3412, 4231.
- (Carrell-Peterson) X_w smooth iff P_w palindromic.
- (Gasharov) $P_w(q)$ factors as products of form $[a]_q$ where $[a]_q := (1-q^a)/(1-q) = 1+q+q^2+\cdots+q^{a-1}$

 X_w smooth $\leftrightarrow w$ avoids 3412, 4231 $\leftrightarrow P_w$ palindromic.

 $P_{1234} = 1$

•
$$P_{1234} = 1$$

$$P_{2143} = 1 + 2q + q^2$$

$$P_{1234} = 1$$

$$P_{2143} = 1 + 2q + q^2$$

$$P_{3412} = 1 + 3q + 5q^2 + 4q^3 + q^4$$

$$P_{1234} = 1$$

$$P_{2143} = 1 + 2q + q^2$$

$$P_{3412} = 1 + 3q + 5q^2 + 4q^3 + q^4$$

$$P_{4321} = 1 + 3q + 5q^2 + 6q^3 + 5q^4 + 3q^5 + q^6$$

• $A_w : x_i - x_i = 0$ for each $1 \le i < j \le n$, w(i) > w(j).

- $A_w : x_i x_j = 0$ for each $1 \le i < j \le n$, w(i) > w(j).
- (Hultman-Linusson-Shareshian-Sjöstrand) #Regions of $A_w = P_w(1)$ iff w avoids 4231, 35142, 42513, 351624.

- $A_w : x_i x_j = 0$ for each $1 \le i < j \le n, \ w(i) > w(j)$.
- (Hultman-Linusson-Shareshian-Sjöstrand) #Regions of $A_w = P_w(1)$ iff w avoids 4231, 35142, 42513, 351624.
- Lets define q-analog of R_w :

- $A_w : x_i x_j = 0$ for each $1 \le i < j \le n$, w(i) > w(j).
- (Hultman-Linusson-Shareshian-Sjöstrand) #Regions of $A_w = P_w(1)$ iff w avoids 4231, 35142, 42513, 351624.
- Lets define q-analog of R_w:
 - Regions r, r', d(r, r') := Minimal # hyperplanes crossed to go from r to r'.

- $A_w : x_i x_j = 0$ for each $1 \le i < j \le n, \ w(i) > w(j)$.
- (Hultman-Linusson-Shareshian-Sjöstrand) #Regions of $A_w = P_w(1)$ iff w avoids 4231, 35142, 42513, 351624.
- Lets define q-analog of R_w :
 - Regions r, r', d(r, r') := Minimal # hyperplanes crossed to go from r to r'.
 - r_0 : Region containing (1, ..., n).

- $A_w : x_i x_j = 0$ for each $1 \le i < j \le n$, w(i) > w(j).
- (Hultman-Linusson-Shareshian-Sjöstrand) #Regions of $A_w = P_w(1)$ iff w avoids 4231, 35142, 42513, 351624.
- Lets define q-analog of R_w :
 - Regions r, r', d(r, r') := Minimal # hyperplanes crossed to go from r to r'.
 - r_0 : Region containing $(1, \ldots, n)$.
 - Distance Enumerator Polynomial of r_0 :

$$R_{A_w}(q) := \sum_r q^{d(r,r_0)}.$$

- $A_w : x_i x_j = 0$ for each $1 \le i < j \le n$, w(i) > w(j).
- (Hultman-Linusson-Shareshian-Sjöstrand) #Regions of $A_w = P_w(1)$ iff w avoids 4231, 35142, 42513, 351624.
- Lets define q-analog of R_w :
 - Regions r, r', d(r, r') := Minimal # hyperplanes crossed to go from r to r'.
 - r_0 : Region containing $(1, \ldots, n)$.
 - Distance Enumerator Polynomial of r₀:

$$R_{A_w}(q) := \sum_r q^{d(r,r_0)}.$$

Let G be inversion graph of w. O be an acyclic orientation.
 des(O) := # edges oriented rightwards.

- $A_w : x_i x_j = 0$ for each $1 \le i < j \le n$, w(i) > w(j).
- (Hultman-Linusson-Shareshian-Sjöstrand) #Regions of $A_w = P_w(1)$ iff w avoids 4231, 35142, 42513, 351624.
- Lets define q-analog of R_w:
 - Regions r, r', d(r, r') := Minimal # hyperplanes crossed to go from r to r'.
 - r_0 : Region containing $(1, \ldots, n)$.
 - Distance Enumerator Polynomial of r_0 :

$$R_{\mathcal{A}_w}(q) := \sum_r q^{d(r,r_0)}.$$

- Let G be inversion graph of w. O be an acyclic orientation.
 des(O) := # edges oriented rightwards.
- Then R_{A_w} equals :

•
$$R_{A_{1234}} = 1$$

•
$$R_{A_{1234}} = 1$$

•
$$R_{A_{2143}} = 1 + 2q + q^2$$

•
$$R_{A_{1234}} = 1$$

•
$$R_{A_{2143}} = 1 + 2q + q^2$$

•
$$R_{A_{1234}} = 1$$

$$P_{\mathcal{A}_{4321}} = 1 + 3q + 5q^2 + 6q^3 + 5q^4 + 3q^5 + q^6$$

Very brief outline of the proof

Lemma (Björner-Edelman-Ziegler)

G on vertex set [n] has vertex v adjacent to m vertices such that

- Set of all neighbors of v form a clique in G
- All neighbors of v less than v, or
 - 2 All neighbors of v greater than v.

Then
$$R_G(q) = [m+1]_q R_{G \setminus \nu}(q)$$
.

Very brief outline of the proof

Lemma (Björner-Edelman-Ziegler)

G on vertex set [n] has vertex v adjacent to m vertices such that

- Set of all neighbors of v form a clique in G
- All neighbors of v less than v, or
 - 2 All neighbors of v greater than v.

Then
$$R_G(q) = [m+1]_q R_{G \setminus \nu}(q)$$
.

Find a nice ordering on inversion graph G such that :

Lemma (Björner-Edelman-Ziegler)

- Set of all neighbors of v form a clique in G
- All neighbors of v less than v, or
 - 2 All neighbors of v greater than v.

Then
$$R_G(q) = [m+1]_q R_{G \setminus \nu}(q)$$
.

- Find a nice ordering on inversion graph G such that :
 - Perfect elimination ordering : $\forall i$, $Nbr(v_i) \cap \{v_1, \dots, v_{i-1}\}$ form clique.

Lemma (Björner-Edelman-Ziegler)

- Set of all neighbors of v form a clique in G
- All neighbors of v less than v, or
 - 2 All neighbors of v greater than v.

Then
$$R_G(q) = [m+1]_q R_{G \setminus \nu}(q)$$
.

- Find a nice ordering on inversion graph G such that :
 - Perfect elimination ordering : $\forall i$, $Nbr(v_i) \cap \{v_1, \dots, v_{i-1}\}$ form clique.
 - $\forall i$, $Nbr(v_i) \cap \{v_1, \dots, v_{i-1}\}$ are all greater(or less) than v_i .

Lemma (Björner-Edelman-Ziegler)

- Set of all neighbors of v form a clique in G
- All neighbors of v less than v, or
 - 2 All neighbors of v greater than v.

Then
$$R_G(q) = [m+1]_q R_{G \setminus \nu}(q)$$
.

- Find a nice ordering on inversion graph G such that :
 - Perfect elimination ordering : $\forall i$, $Nbr(v_i) \cap \{v_1, \dots, v_{i-1}\}$ form clique.
 - $\forall i$, $Nbr(v_i) \cap \{v_1, \dots, v_{i-1}\}$ are all greater(or less) than v_i .
- So we have a recursive factorization of $R_w(q)$.

Lemma (Björner-Edelman-Ziegler)

- Set of all neighbors of v form a clique in G
- All neighbors of v less than v, or
 - 2 All neighbors of v greater than v.

Then
$$R_G(q) = [m+1]_q R_{G \setminus \nu}(q)$$
.

- Find a nice ordering on inversion graph G such that :
 - Perfect elimination ordering : $\forall i$, $Nbr(v_i) \cap \{v_1, \dots, v_{i-1}\}$ form clique.
 - $\forall i$, $Nbr(v_i) \cap \{v_1, \dots, v_{i-1}\}$ are all greater(or less) than v_i .
- So we have a recursive factorization of $R_w(q)$.
- The recurrence is same as Gasharov's for $P_w(q)$.

•
$$X_w$$
, $w \in S_n$

• X_w , $w \in W$, for other types

- X_w , $w \in S_n$
- $A_w : x_i x_j = 0$ for each $1 \le i < j \le n$, w(i) > w(j).

- X_w , $w \in W$, for other types
- $\mathcal{A}_{\mathbf{w}}$: $\alpha(\mathbf{x}) = \mathbf{0}$ s.t. $\alpha > \mathbf{0}$, $\mathbf{w}(\alpha) < \mathbf{0}$

- X_w , $w \in S_n$
- $A_w : x_i x_j = 0$ for each $1 \le i < j \le n$, w(i) > w(j).
- Theorem : $P_w(q) = R_w(q)$ iff X_w smooth

- X_w , $w \in W$, for other types
- \mathcal{A}_{w} : $\alpha(x) = 0$ s.t. $\alpha > 0$, $w(\alpha) < 0$
- Conjecture : $P_w(q) = R_w(q)$ iff X_w rationally smooth

- X_w , $w \in S_n$
- $A_w : x_i x_j = 0$ for each $1 \le i < j \le n, \ w(i) > w(j)$.
- Theorem : $P_w(q) = R_w(q)$ iff X_w smooth
- w avoiding 3412, 4231

- X_w , $w \in W$, for other types
- \mathcal{A}_{w} : $\alpha(x) = 0$ s.t. $\alpha > 0$, $w(\alpha) < 0$
- Conjecture : $P_w(q) = R_w(q)$ iff X_w rationally smooth
- w avoiding some patterns

From (Billey) Pattern avoidance and rational smoothness of Schubert varieties:

• X_w rat.smooth iff $P_w(q)$ factors as $[e_i]_q$'s.

From (Billey) Pattern avoidance and rational smoothness of Schubert varieties:

- X_w rat.smooth iff $P_w(q)$ factors as $[e_i]_q$'s.
- Type B : X_w rat.smooth iff w avoids

From (Billey) Pattern avoidance and rational smoothness of Schubert varieties:

• X_w rat.smooth iff $P_w(q)$ factors as $[e_i]_q$'s.

```
123
       123
              12\bar{3}
                      132
                             213
                                     \bar{2}1\bar{3}
                                           213
231
       312
              321
                     321
                             321
                                    321
                                            321
      2431
             3412 3412 3412 3412 3412
```

• Type B : X_w rat.smooth iff w avoids

```
4132 4132 4231 4231 4231
```

From (Billey) Pattern avoidance and rational smoothness of Schubert varieties:

• X_w rat.smooth iff $P_w(q)$ factors as $[e_i]_q$'s.

```
123
      123
              123
                    132
                           213
                                  \bar{2}1\bar{3}
                                         213
231
      312
             321
                    321
                           321
                                  321
                                         321
            3412 3412 3412 3412 3412
     2431
```

4132 4132 4231 4231 4231

- Type B : X_w rat.smooth iff w avoids
- Type D: X_w rat.smooth iff w avoids

From (Billey) Pattern avoidance and rational smoothness of Schubert varieties:

• X_w rat.smooth iff $P_w(q)$ factors as $[e_i]_q$'s.

123 123 123 132 213 $\bar{2}1\bar{3}$ 213 231 312 321 321 321 321 321 3412 3412 3412 3412 3412 2431

4132 4132 4231 4231 4231

• Type B : X_w rat.smooth iff w avoids

$12\bar{3}$	$\bar{1}2\bar{3}$	$\bar{1}\bar{3}\bar{2}$	$1\bar{3}\bar{2}$	$\bar{2}\bar{1}\bar{3}$	$\bar{3}\bar{2}\bar{1}$	
$\bar{1}4\bar{3}2$	$\bar{2}1\bar{3}\bar{4}$	$2\bar{1}\bar{3}\bar{4}$	$21\bar{3}\bar{4}$	$\bar{2}\bar{3}1\bar{4}$	$2\bar{3}1\bar{4}$	
$2\bar{4}31$	$\bar{2}\bar{4}3\bar{1}$	$\bar{2}4\bar{3}\bar{1}$	$24\bar{3}\bar{1}$	$2\bar{4}3\bar{1}$	$\bar{2}4\bar{3}1$	
$\bar{2}\bar{4}31$	$3\bar{1}\bar{2}\bar{4}$	$31\bar{2}\bar{4}$	$3\bar{2}1\bar{4}$	$3\bar{2}\bar{4}1$	$\bar{3}\bar{4}1\bar{2}$	
$3\bar{4}\bar{1}\bar{2}$	$\bar{3}412$	$34\bar{1}2$	$\bar{3}4\bar{1}2$	3412	$\bar{3}\bar{4}\bar{1}\bar{2}$	
$3\bar{4}1\bar{2}$	$\bar{3}\bar{4}\bar{2}1$	$34\bar{2}\bar{1}$	$\bar{3}4\bar{2}1$	$3\bar{4}\bar{2}1$	$\bar{4}\bar{1}\bar{3}2$	
$413\bar{2}$	$\bar{4}\bar{1}3\bar{2}$	$4\bar{1}3\bar{2}$	$\bar{4}13\bar{2}$	$4\bar{1}\bar{3}2$	$\bar{4}1\bar{3}2$	$4\bar{2}1\bar{3}$
$4\bar{2}\bar{3}\bar{1}$	$\bar{4}\bar{2}\bar{3}1$	$\bar{4}231$	$423\bar{1}$	$\bar{4}23\bar{1}$	4231	$4\bar{2}\bar{3}1$
4312	4312	4312	$4\bar{3}1\bar{2}$	4321		

• Type D : X_w rat.smooth iff w avoids

From (Billey) Pattern avoidance and rational smoothness of Schubert varieties:

• X_w rat.smooth iff $P_w(q)$ factors as $[e_i]_q$'s.

4132 4132 4231

• Type B : X_w rat.smooth iff w avoids

```
132
                                             132
                                                           213
                                                                          \bar{3}\bar{2}\bar{1}
\bar{1}4\bar{3}2
              \bar{2}1\bar{3}\bar{4}
                             2134
                                           2134
                                                          2314
                                                                        2\bar{3}1\bar{4}
2431
              2431
                            2431
                                           2431
                                                          2431
                                                                        2431
2431
              3124
                             31\bar{2}\bar{4}
                                           3\bar{2}1\bar{4}
                                                          3241
                                                                        \bar{3}\bar{4}1\bar{2}
3412
              3412
                            3412
                                           3412
                                                          3412
                                                                        3412
3412
              3421
                            3421
                                           \bar{3}4\bar{2}1
                                                          3\bar{4}\bar{2}1
                                                                        \bar{4}\bar{1}\bar{3}2
4132
              4132
                            4132
                                           \bar{4}13\bar{2}
                                                          4132
                                                                        \bar{4}1\bar{3}2
                                                                                       4213
4231
              4231
                             \bar{4}231
                                           4231
                                                          \bar{4}23\bar{1}
                                                                        4231
                                                                                       4231
4312
              4312
                             4312
                                           4312
                                                          4321
```

- Type D : X_w rat.smooth iff w avoids
- Almost done for B,D.

• Conjecture : For $w \in S_n$, $R_w(q)$ factorizes into $[a]_q$'s iff w is smooth.

- Conjecture : For $w \in S_n$, $R_w(q)$ factorizes into $[a]_q$'s iff w is smooth.
- When w smooth, a's equal the roots of χ_G .

- Conjecture : For $w \in S_n$, $R_w(q)$ factorizes into $[a]_q$'s iff w is smooth.
- When w smooth, a's equal the roots of χ_G .
- G chordal implies A_G is free.

- Conjecture : For $w \in S_n$, $R_w(q)$ factorizes into $[a]_q$'s iff w is smooth.
- When w smooth, a's equal the roots of χ_G .
- G chordal implies A_G is free.
- G_{4231} is chordal, but $R_{4231}(q) = 1 + 4q + 4q^2 + 4q^3 + 4q^4 + q^5$.

- Conjecture : For $w \in S_n$, $R_w(q)$ factorizes into $[a]_q$'s iff w is smooth.
- When w smooth, a's equal the roots of χ_G .
- G chordal implies A_G is free.
- G_{4231} is chordal, but $R_{4231}(q) = 1 + 4q + 4q^2 + 4q^3 + 4q^4 + q^5$.
- For type D, also allow $(1 + q + \cdots + q^{k-1} + 2q^k + q^{k+1} + \cdots + q^{2k})$.

- Conjecture : For $w \in S_n$, $R_w(q)$ factorizes into $[a]_q$'s iff w is smooth.
- When w smooth, a's equal the roots of χ_G .
- G chordal implies A_G is free.
- G_{4231} is chordal, but $R_{4231}(q) = 1 + 4q + 4q^2 + 4q^3 + 4q^4 + q^5$.
- For type D, also allow $(1 + q + \cdots + q^{k-1} + 2q^k + q^{k+1} + \cdots + q^{2k})$.
- There may be more linking Schubert variety or Kazhdan-Lustzig Polynomials to inversion Hyperplane arrangements!

Records : Left-to-right maxima

- Records : Left-to-right maxima
- $i = 1, ..., n, r \le i < r'$ closest records.

$$e_i := \#\{j \mid r \leq j < i, \ w(j) > w(i)\} + \#\{k \mid r' \leq k \leq n, \ w(k) < w(i)\}.$$

- Records : Left-to-right maxima
- $i = 1, ..., n, r \le i < r'$ closest records.

$$e_i := \#\{j \mid r \leq j < i, \ w(j) > w(i)\} + \#\{k \mid r' \leq k \leq n, \ w(k) < w(i)\}.$$

Theorem

 $w \in S_n$ smooth. e_1, \ldots, e_n as above. Then

$$P_w(q) = R_w(q) = [e_1 + 1]_q [e_2 + 1]_q \cdots [e_n + 1]_q$$
.

- Records : Left-to-right maxima
- $i = 1, \ldots, n, r \le i < r'$ closest records.

$$e_i := \#\{j \mid r \leq j < i, \ w(j) > w(i)\} + \#\{k \mid r' \leq k \leq n, \ w(k) < w(i)\}.$$

Theorem

 $w \in S_n$ smooth. e_1, \ldots, e_n as above. Then

$$P_w(q) = R_w(q) = [e_1 + 1]_q [e_2 + 1]_q \cdots [e_n + 1]_q$$
.

• w = 5164732

- Records : Left-to-right maxima
- $i = 1, ..., n, r \le i < r'$ closest records.

$$e_i := \#\{j \mid r \leq j < i, \ w(j) > w(i)\} + \#\{k \mid r' \leq k \leq n, \ w(k) < w(i)\}.$$

Theorem

 $w \in S_n$ smooth. e_1, \ldots, e_n as above. Then

$$P_w(q) = R_w(q) = [e_1 + 1]_q [e_2 + 1]_q \cdots [e_n + 1]_q$$
.

• $w = \hat{5}1\hat{6}4\hat{7}32$

- Records : Left-to-right maxima
- $i = 1, ..., n, r \le i < r'$ closest records.

$$e_i := \#\{j \mid r \leq j < i, \ w(j) > w(i)\} + \#\{k \mid r' \leq k \leq n, \ w(k) < w(i)\}.$$

Theorem

 $w \in S_n$ smooth. e_1, \ldots, e_n as above. Then

$$P_w(q) = R_w(q) = [e_1 + 1]_q [e_2 + 1]_q \cdots [e_n + 1]_q.$$

- $w = \hat{5} \, 1 \, \hat{6} \, 4 \, \hat{7} \, 3 \, 2$
- $(e_1,\ldots,e_7)=(0+3,\ 1+0,\ 0+2,\ 1+2,\ 0+0,\ 1+0,\ 2+0).$

- Records : Left-to-right maxima
- $i = 1, ..., n, r \le i < r'$ closest records.

$$e_i := \#\{j \mid r \leq j < i, \ w(j) > w(i)\} + \#\{k \mid r' \leq k \leq n, \ w(k) < w(i)\}.$$

Theorem

 $w \in S_n$ smooth. e_1, \ldots, e_n as above. Then

$$P_w(q) = R_w(q) = [e_1 + 1]_q [e_2 + 1]_q \cdots [e_n + 1]_q.$$

- $w = \hat{5} \, 1 \, \hat{6} \, 4 \, \hat{7} \, 32$
- \bullet $(e_1,\ldots,e_7)=(0+3,\ 1+0,\ 0+2,\ 1+2,\ 0+0,\ 1+0,\ 2+0).$
- $P_w(q) = R_w(q) = [4]_q [2]_q [3]_q [4]_q [1]_q [2]_q [3]_q$.

