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Natural questions

What are toric arrangements?

Why are they interesting objects?

What is it known about them?
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An example

Let be V = C2 with coordinates (z1, z2),
T = (C∗)2 with coordinates (t1, t2), and

X = {2z∗1 , 2z∗2 , z
∗
1 + z∗2 , z

∗
1 − z∗2} ⊂ V ∗.

We associate to X 3 arrangements:

1 a central h.a. H = {Hχ}χ∈X in V ,
defined by the equations χ(v) = 0 (e.g. 2z1 = 0)

2 a periodic affine h.a. A = {Hχ,m}χ∈X ,m∈Z in V ,
defined by the equations χ(v) = m (e.g. 2z1 = 7)

3 a toric arrangement T = {Uχ}χ∈X in T ,
defined by the equations: t2

1 = 1, t2
2 = 1, t1t2 = 1, t1t

−1
2 = 1.

How does T arise, and how is it related with A?
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Affine and toric arrangements

Let Λ be the Z−span of X . We have a natural map

exp : V → V /Λ ' T

(topologically exp : C2 → C2/Z2 ' (C∗)2)

z 7→ t
.

= e2πiz .

exp maps {Hχ,m}m∈Z onto Uχ, and the complement of A onto the
complement of T (covering with fiber Λ).

Switching from A to T we loose linearity, but we earn finiteness!
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Hyperplane and toric arrangements

A hyperplane arrangement in a vector space V is a family of hyperplanes
H = {Hχ}χ∈X , where X ⊂ Hom(V ,C) and Hχ

.
= {v ∈ V |χ(v) = 0}.

A toric (toral) arrangement in a torus T is a family of hypersurfaces
T = {Uχ}χ∈X , where X ⊂ Hom(T ,C∗) and Uχ

.
= {t ∈ T |χ(t) = 1}.

(Lehrer and others in the ’90s; De Concini and Procesi, 2005).

With H is associated the poset L(X ) of the intersections of the {Hχ}χ∈X .
With T is associated the poset C(X ) of the components: connected
components of the intersections of the {Uχ}χ∈X .
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Hyperplane versus toric arrangements

If in the previous example we replace 2z∗1 by z∗1 or 5z∗1 , we get the same
H, but different T . So H depends only on the linear algebra of X ,
whereas T also depends on its arithmetics. In fact

H is more related with splines, T with partition functions;

H with differential equations, T with difference equations;

H with volume of polytopes, T with integral points in polytopes;

(see De Concini and Procesi’s forthcoming book
”Topics in Hyperplane Arrangements, Polytopes, and Box Splines”).

Partition function: counts in how many ways a vector of a lattice Λ can be
written as a (repeated) sum of given elements.
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Toric arrangements and partition functions

One-dimensional problem: to count in how many ways an integer m
can be written as a sum of given positive integers mi . This amounts to
compute the coefficient of xm in the generating function

∏
i

( ∞∑
k=0

xk mi

)
=
∏
i

1

1− xmi

i.e. to compute the residue at 0 of the function
∏

i
x−m−1

1−xmi

which is the opposite of the sum of the residues at the other poles,
that are the d−th roots of 1, where d = GCD{mi}.

In the general problem:

mi are replaced with vectors αi in a n−dimensional lattice;

the generating function has n variables, and its poles are the points of
a toric arrangement.
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2. General results
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Tutte polynomial for H

We recall that the Tutte polynomial associated to a list of vectors X is

T (x , y)
.

=
∑
A⊆X

(x − 1)r(X )−r(A)(y − 1)|A|−r(A).

This is an important invariant of the matroid...
In particular it specializes to the characteristic polynomial of L(X ):

(−1)nT (1− q, 0) = χ(q).

This reflects the fact that L(X ) only depends on the matroid defined by X .
The same is not true for C(X ): we need to add to the matroid some
”arithmetic data”.
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Analogous of Tutte polynomial for T
Let be X ⊂ Zn. For every A ⊆ X let us define

m(A)
.

= [Zn ∩ 〈A〉Q : 〈A〉Z] .

We can then define a polynomial T̃ (x , y) depending only on the matroid
and on the multiplicity function m:

T̃ (x , y)
.

=
∑
A⊆X

m(A)(x − 1)r(X )−r(A)(y − 1)|A|−r(A).

This seems to be the right analogous of the Tutte polynomial; in particular
T̃ (1, 1) equals the volume of the zonotope associated to X , and

Theorem (M.)

(−1)nT̃ (1− q, 0) = χ(q)

where χ(q) is the characteristic polynomial of C(X ).
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Two theorems and their analogues

Two famous results for H are:

1 Cohomology of the complement (Orlik and Solomon)

2 Wonderful models (De Concini and Procesi)

There are some analogues for T are:

1 Cohomology of the complement (Looijenga; De Concini and Procesi)

2 Wonderful models (M.)

In both cases, results are in terms of the poset C(X ).
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Cohomology and wonderful model for T

For every C ∈ C(X ), let us define XC
.

= {χ ∈ X |χ(t) = 1∀t ∈ C}.
1 The cohomology of the complement of T can be expressed as direct

sum over C(X ), the contribution of every C ∈ C(X ) depending (on its
dimension and) on the number of unbroken bases which can be
extracted by XC .

2 The wonderful model of T is obtained by blowing up along those
components C ∈ C(X ) (of codimension > 1 and) such that XC is an
irreducible set of vectors.

Then to make both results explicit, we need an enumeration of the
components, together with a description of the sets XC .
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3. Lie case : combinatorics
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Hyperplane arrangements defined by root systems

Notations:

g a simple Lie algebra of rank n over C
h a Cartan subalgebra

Φ ⊂ h∗ the root system of g

Φ∨ ⊂ h the coroot system

W be the Weyl group of Φ

Φ defines in V = h the hyperplane arrangement
H = {Hα}α∈Φ+ , where Hα = {v ∈ V |α(v) = 0}
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Toric arrangements defined by root systems

The coroot system Φ∨ spans a lattice 〈Φ∨〉 in h.
T

.
= h/〈Φ∨〉 is a complex torus of rank n.

Each root α is a linear map h→ C taking integer values on 〈Φ∨〉.
So it induces a homomorphism T → C/Z ' C∗ that we denote eα.

{eα(t) = 1}α∈Φ defines in T a finite family T of hypersurfaces.
this is the toric arrangement defined by Φ.
Let C(Φ) be the poset of the components .
W acts naturally on T and on C(Φ).
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Kostant partition function

In this case the partition function we are computing is the Kostant
partition function, that counts in how many ways an element of the lattice
〈Φ〉 can be written as sum of positive roots.
It is involved in:

Kostant’s formula for weight multiplicities cλµ
(cλµ is the multiplicity of the weight λ
in the representation V (µ) of g of highest weight µ);

Steinberg’s formula for Littlewood-Richardson coefficients cλµ,ν
(cλµ,ν is the multiplicity of V (λ) in V (µ)⊗ V (ν)).

The previous formulae have been implemented in computer programs,
which are the most efficient for ”large” weights.
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Points of the arrangement

We say that a subset Θ of Φ is a subsystem if:

1 α ∈ Θ⇒ −α ∈ Θ

2 α, β ∈ Θ and α + β ∈ Φ⇒ α + β ∈ Θ.

We start from the set C0(Φ) of the 0-dimensional components, that we
call the points of the arrangement.

For every t ∈ C0(Φ) we will describe its stabilizer W (t) in W and the
subsystem of Φ

Φ(t)
.

= {α ∈ Φ|eα(t) = 1}.
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Affine Dynkin diagrams

Let α1, . . . , αn be simple roots of Φ and α0 the lowest root.
Let Γ be the affine Dynkin diagram of Φ (see picture).
The set of its vertices V (Γ) is in bijection with {α0, α1, . . . , αn}.

Let Φp be the subsystem of Φ generated by {αi}0≤i≤n,i 6=p,
and let Wp be its Weyl group.
The (ordinary) Dynkin diagram Γp of Φp (and of Wp) is obtained by
removing from Γ its vertex p.

Luca Moci (University of Roma Tre (Italy)) An introduction to toric arrangements August, 9 2009 19 / 39



Affine Dynkin diagrams

Let α1, . . . , αn be simple roots of Φ and α0 the lowest root.
Let Γ be the affine Dynkin diagram of Φ (see picture).
The set of its vertices V (Γ) is in bijection with {α0, α1, . . . , αn}.

Let Φp be the subsystem of Φ generated by {αi}0≤i≤n,i 6=p,
and let Wp be its Weyl group.
The (ordinary) Dynkin diagram Γp of Φp (and of Wp) is obtained by
removing from Γ its vertex p.

Luca Moci (University of Roma Tre (Italy)) An introduction to toric arrangements August, 9 2009 19 / 39



Affine Dynkin diagrams

Let α1, . . . , αn be simple roots of Φ and α0 the lowest root.
Let Γ be the affine Dynkin diagram of Φ (see picture).
The set of its vertices V (Γ) is in bijection with {α0, α1, . . . , αn}.

Let Φp be the subsystem of Φ generated by {αi}0≤i≤n,i 6=p,
and let Wp be its Weyl group.
The (ordinary) Dynkin diagram Γp of Φp (and of Wp) is obtained by
removing from Γ its vertex p.

Luca Moci (University of Roma Tre (Italy)) An introduction to toric arrangements August, 9 2009 19 / 39



Affine Dynkin diagrams

Let α1, . . . , αn be simple roots of Φ and α0 the lowest root.
Let Γ be the affine Dynkin diagram of Φ (see picture).
The set of its vertices V (Γ) is in bijection with {α0, α1, . . . , αn}.

Let Φp be the subsystem of Φ generated by {αi}0≤i≤n,i 6=p,
and let Wp be its Weyl group.
The (ordinary) Dynkin diagram Γp of Φp (and of Wp) is obtained by
removing from Γ its vertex p.

Luca Moci (University of Roma Tre (Italy)) An introduction to toric arrangements August, 9 2009 19 / 39



Points theorem

Theorem (M.)

There is a bijection V (Γ)↔ C0(Φ)/W, having the property that
given a vertex p and a point t in the corresponding orbit Op , then:

Φ(t) is W−conjugated to Φp;

W (t) is W−conjugated to Wp.

Then we have:

|C0(Φ)| =
∑

p∈V (Γ)

|W |
|Wp|

.
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Example: Case Cn

Φ+ = {z∗i − z∗j }i<j ∪ {z∗i + z∗j } ∪ {2z∗i }

Then on the torus T = {(t1, . . . , tn), ti ∈ C∗} the equations eα(t) = 1 are:

{ti t−1
j = 1} ∪ {ti tj = 1} ∪ {t2

i = 1}.

The system of n independent equations

t2
1 = 1, . . . , t2

n = 1

has 2n solutions: (±1, . . . ,±1)
and all other systems do not have other solutions.
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Example: Case Cn, 2

W ' Sn n (C2)n acts on T by permutations and inversions
thus the second factor acts trivially on C0(Φ).
Then orbits are given by the number of negative coordinates.
Let Op be the set of points with p negative coordinates.

Clearly the stabilizer of a such point is

Sp ×Sn−p n (C2)n

thus |Op| =
(n
p

)
and our formula is checked:

|C0(Φ)| =
n∑

p=0

(
n

p

)
= 2n.

(see example).
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|C0(Φ)| =
n∑

p=0

(
n

p

)
= 2n.

(see example).
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Example: Case Cn, 3

The previous choice is not canonical!
(we could define as well Op as the set of points
with p positive coordinates)

Observation:

Γ has a symmetry exchanging the vertices p and n − p.

Multiplication by −1 exchanges the corresponding orbits.
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The center

Given the coweight lattice

Λ(Φ)
.

= {h ∈ h|α(h) ∈ Z∀α ∈ Φ}

we define the center

Z (Φ)
.

=
Λ(Φ)

〈Φ∨〉
= {t ∈ T |Φ(t) = Φ}.

Thus:

Z (Φ) ⊆ C0(Φ);

Z (Φ) acts by multiplication on C0(Φ).
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Canonical bijection

We can make canonical the bijection between vertices and W−orbits
by identifying:

Aut(Γ)−conjugated vertices

Z (Φ)−conjugated orbits
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Complete subsystems

We define the completion of a subsystem Θ as

Θ
.

= 〈Θ〉R ∩ Φ

and we say that Θ is complete if Θ = Θ. (see example).

Let Kd be the set of complete subsystems of Φ of rank n − d : they are in
natural bijection with the d−dimensional elements of L(Φ) (the
intersection poset of H).
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Spaces and components

The poset L(Φ) has been completely described for every Φ, computing
how many elements (and W−orbits) there are for each type of subsystem.
This was done in 1980 by Orlik and Solomon
case-by-case according to the type of Φ.

We now show a case-free way to extend this analysis
to the poset C(Φ).
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Components and subsystems

Given a component C of T let us consider

ΘC
.

= {α ∈ Φ|eα(t) = 1 ∀t ∈ C}.

In general ΘC is not complete (see example).
Then for each complete subsystem Θ let us define CΦ

Θ as the set of
components C such that ΘC = Θ.
This is clearly a partition of the set of d−dimensional components of T :

Cd(Φ) =
⊔

Θ∈Kd

CΦ
Θ

Then we just have to describe every CΦ
Θ, that is the set of the elements of

C(Φ) corresponding to a given element of L(Φ).
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Example: 1-dimensional components of C3

There are 3 conjugation classes of 1-dimensional spaces of H,
having representatives

(h, h, h) , (h, h, 0) , (h, 0, 0) , h ∈ C

corresponding respectively to 1, 2, 4 components of T :

(t, t, t) , (t, t,±1) , (t,±1,±1) , t ∈ C∗

This suggests to relate the components of CΦ
Θ to the points of a smaller

toric arrangement.
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Reduction theorem

Notations:

Θ be a complete subsystem of Φ

W Θ its Weyl group

Z (Θ)
.

= Λ(Θ)
〈Θ∨〉 the center

D the toric arrangement defined by Θ on the torus D

C0(Θ) the set of points of D

Theorem (M.)

There is a W Θ−equivariant surjective map

ϕ : CΦ
Θ → C0(Θ)/Z (Θ)

such that kerϕ ' Z (Φ) ∩ Z (Θ) and ΘU = Θ(ϕ(U)).
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The number of the components

Corollary

|CΦ
Θ| = n−1

Θ |C0(Θ)|

where nΘ
.

= |Z(Θ)|
|Z(Φ)∩Z(Θ)| .

Then
|Cd(Φ)| =

∑
Θ∈Kd

n−1
Θ |C0(Θ)|.

Moreover the reduction theorem yields a description
of the action of W on C(Φ).
Then we get a W−equivariant decomposition of the cohomology of R.
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4. Lie case : applications
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Degrees, components and Poincaré polynomial

Our results about the components yield more explicit description
of the cohomology of the complement R of

⋃
U∈T U in T .

Let d1, . . . , dn be the degrees of W
(i.e. the degrees of the generators of the ring
of W−invariant regular functions on h).
It is well known that d1 . . . dn = |W |.
We define B(Φ)

.
= (d1 − 1) . . . (dn − 1).

By De Concini-Procesi formula for cohomology, the Poincaré polynomial is

PΦ(q) =
∑
C

B(ΘC )(q + 1)d(C)qn−d(C)

where C varies on all the components of T and d(C ) is its dimension.
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PΦ(q) =
∑
C

B(ΘC )(q + 1)d(C)qn−d(C)

where C varies on all the components of T and d(C ) is its dimension.

Luca Moci (University of Roma Tre (Italy)) An introduction to toric arrangements August, 9 2009 33 / 39



Degrees, components and Poincaré polynomial
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The Euler characteristic

Theorem

The Euler characteristic χΦ of R is equal to (−1)n|W |

Proof.
1 When we evaluate the Poincaré polynomial in q = −1 all the

contributions vanish except for those of the points.

2 Applying our ”points theorem” theorem we get

χΦ = (−1)n
n∑

p=0

|W |
|Wp|

B(Φp).

3 The equivalence between this expression and the claimed one

is the ”curious identity”
∑n

p=0
(dp

1−1)...(dp
n−1)

dp
1 ...d

p
n

= 1

(where dp
1 , . . . , d

p
n are the degrees of Wp)

(De Concini and Procesi; Stembridge; Denham).
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The Poincaré polynomial

Moreover we get a formula which allows to compute explicitly the Poincaré
polynomial PΦ(q) of R:

Corollary

PΦ(q) =
n∑

d=0

(q + 1)dqn−d
∑

Θ∈Kd

n−1
Θ |W

Θ|
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Wonderful models for toric arrangements

Let be
I(Φ)

.
= {C ∈ C(Φ)|ΘC is irreducible}

where we recall that

ΘC
.

= {α ∈ Φ|eα(t) = 1 ∀t ∈ C}.

Corollary

T has a wonderful model, which is obtained blowing-up T along all the
components C ∈ I(Φ) of codimension > 1 (in any dimension-increasing
order). The irreducible components of the NCD are in bijection with the
elements of I(Φ). Moreover this model is minimal among all the
wonderful models obtained by blow-ups.
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Description of I(Φ)

The proof follows from a general theorem of Procesi and MacPherson on
”conical stratifications”. However, now we know exactly who I(Φ) is:
if subsystem Θ is irreducible, then also its completion Θ is, and the
Dynkin diagram of Θ is connected and is obtained by removing a vertex
from the affine Dynkin diagram of Θ.
Then we just need the list of complete irreducible subsystems of Φ, that
we can get by Orlik and Solomon’s tables.
Finally, by the ”reduction theorem” we know how many components
correspond to a given subsystem.

Luca Moci (University of Roma Tre (Italy)) An introduction to toric arrangements August, 9 2009 37 / 39



Description of I(Φ)

The proof follows from a general theorem of Procesi and MacPherson on
”conical stratifications”. However, now we know exactly who I(Φ) is:
if subsystem Θ is irreducible, then also its completion Θ is, and the
Dynkin diagram of Θ is connected and is obtained by removing a vertex
from the affine Dynkin diagram of Θ.
Then we just need the list of complete irreducible subsystems of Φ, that
we can get by Orlik and Solomon’s tables.
Finally, by the ”reduction theorem” we know how many components
correspond to a given subsystem.

Luca Moci (University of Roma Tre (Italy)) An introduction to toric arrangements August, 9 2009 37 / 39



Description of I(Φ)

The proof follows from a general theorem of Procesi and MacPherson on
”conical stratifications”. However, now we know exactly who I(Φ) is:
if subsystem Θ is irreducible, then also its completion Θ is, and the
Dynkin diagram of Θ is connected and is obtained by removing a vertex
from the affine Dynkin diagram of Θ.
Then we just need the list of complete irreducible subsystems of Φ, that
we can get by Orlik and Solomon’s tables.
Finally, by the ”reduction theorem” we know how many components
correspond to a given subsystem.

Luca Moci (University of Roma Tre (Italy)) An introduction to toric arrangements August, 9 2009 37 / 39



Description of I(Φ)

The proof follows from a general theorem of Procesi and MacPherson on
”conical stratifications”. However, now we know exactly who I(Φ) is:
if subsystem Θ is irreducible, then also its completion Θ is, and the
Dynkin diagram of Θ is connected and is obtained by removing a vertex
from the affine Dynkin diagram of Θ.
Then we just need the list of complete irreducible subsystems of Φ, that
we can get by Orlik and Solomon’s tables.
Finally, by the ”reduction theorem” we know how many components
correspond to a given subsystem.

Luca Moci (University of Roma Tre (Italy)) An introduction to toric arrangements August, 9 2009 37 / 39



Description of I(Φ)

The proof follows from a general theorem of Procesi and MacPherson on
”conical stratifications”. However, now we know exactly who I(Φ) is:
if subsystem Θ is irreducible, then also its completion Θ is, and the
Dynkin diagram of Θ is connected and is obtained by removing a vertex
from the affine Dynkin diagram of Θ.
Then we just need the list of complete irreducible subsystems of Φ, that
we can get by Orlik and Solomon’s tables.
Finally, by the ”reduction theorem” we know how many components
correspond to a given subsystem.

Luca Moci (University of Roma Tre (Italy)) An introduction to toric arrangements August, 9 2009 37 / 39



The End
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