An introduction to toric arrangements MSJ SI 2009 on Arrangements of Hyperplanes

Luca Moci

University of Roma Tre (Italy)

August, 9 2009

1. Introduction

A 🖓 h

э

• What are toric arrangements?

• Why are they interesting objects?

• What is it known about them?

- What are toric arrangements?
- Why are they interesting objects?
- What is it known about them?

- What are toric arrangements?
- Why are they interesting objects?
- What is it known about them?

Let be $V = \mathbb{C}^2$ with coordinates (z_1, z_2) , $T = (\mathbb{C}^*)^2$ with coordinates (t_1, t_2) , and

$$X = \{2z_1^*, 2z_2^*, z_1^* + z_2^*, z_1^* - z_2^*\} \subset V^*.$$

We associate to X 3 arrangements:

- a central h.a. $\mathcal{H} = \{H_{\chi}\}_{\chi \in X}$ in V, defined by the equations $\chi(v) = 0$ (e.g. $2z_1 = 0$)
- 2 a periodic affine h.a. $\mathcal{A} = \{H_{\chi,m}\}_{\chi \in X, m \in \mathbb{Z}}$ in V, defined by the equations $\chi(v) = m$ (e.g. $2z_1 = 7$)
- (a) a toric arrangement $\mathcal{T} = \{U_{\chi}\}_{\chi \in X}$ in \mathcal{T} , defined by the equations: $t_1^2 = 1$, $t_2^2 = 1$, $t_1 t_2 = 1$, $t_1 t_2^{-1} = 1$.

How does T arise, and how is it related with A?

Let be $V = \mathbb{C}^2$ with coordinates (z_1, z_2) , $T = (\mathbb{C}^*)^2$ with coordinates (t_1, t_2) , and

$$X = \{2z_1^*, 2z_2^*, z_1^* + z_2^*, z_1^* - z_2^*\} \subset V^*.$$

We associate to X 3 arrangements:

- **1** a central h.a. $\mathcal{H} = \{H_{\chi}\}_{\chi \in X}$ in V, defined by the equations $\chi(v) = 0$ (e.g. $2z_1 = 0$)
- ② a periodic affine h.a. $\mathcal{A} = \{H_{\chi,m}\}_{\chi \in X, m \in \mathbb{Z}}$ in *V*, defined by the equations $\chi(v) = m$ (e.g. $2z_1 = 7$)
- 3 a toric arrangement $\mathcal{T} = \{U_{\chi}\}_{\chi \in X}$ in \mathcal{T} , defined by the equations: $t_1^2 = 1$, $t_2^2 = 1$, $t_1t_2 = 1$, $t_1t_2^{-1} = 1$.

How does \mathcal{T} arise, and how is it related with \mathcal{A} ?

Let be $V = \mathbb{C}^2$ with coordinates (z_1, z_2) , $T = (\mathbb{C}^*)^2$ with coordinates (t_1, t_2) , and

$$X = \{2z_1^*, 2z_2^*, z_1^* + z_2^*, z_1^* - z_2^*\} \subset V^*.$$

We associate to X 3 arrangements:

- a central h.a. $\mathcal{H} = \{H_{\chi}\}_{\chi \in X}$ in V, defined by the equations $\chi(v) = 0$ (e.g. $2z_1 = 0$)
- **2** a periodic affine h.a. $\mathcal{A} = \{H_{\chi,m}\}_{\chi \in X, m \in \mathbb{Z}}$ in V, defined by the equations $\chi(v) = m$ (e.g. $2z_1 = 7$)

(a) a toric arrangement $\mathcal{T} = \{U_{\chi}\}_{\chi \in X}$ in \mathcal{T} , defined by the equations: $t_1^2 = 1$, $t_2^2 = 1$, $t_1t_2 = 1$, $t_1t_2^{-1} = 1$. How does \mathcal{T} arise, and how is it related with \mathcal{A} ?

Let be $V = \mathbb{C}^2$ with coordinates (z_1, z_2) , $T = (\mathbb{C}^*)^2$ with coordinates (t_1, t_2) , and

$$X = \{2z_1^*, 2z_2^*, z_1^* + z_2^*, z_1^* - z_2^*\} \subset V^*.$$

We associate to X 3 arrangements:

- a central h.a. $\mathcal{H} = \{H_{\chi}\}_{\chi \in X}$ in V, defined by the equations $\chi(v) = 0$ (e.g. $2z_1 = 0$)
- **2** a periodic affine h.a. $\mathcal{A} = \{H_{\chi,m}\}_{\chi \in X, m \in \mathbb{Z}}$ in V, defined by the equations $\chi(v) = m$ (e.g. $2z_1 = 7$)
- a toric arrangement $\mathcal{T} = \{U_{\chi}\}_{\chi \in X}$ in \mathcal{T} , defined by the equations: $t_1^2 = 1$, $t_2^2 = 1$, $t_1t_2 = 1$, $t_1t_2^{-1} = 1$.

How does T arise, and how is it related with A?

Let be $V = \mathbb{C}^2$ with coordinates (z_1, z_2) , $T = (\mathbb{C}^*)^2$ with coordinates (t_1, t_2) , and

$$X = \{2z_1^*, 2z_2^*, z_1^* + z_2^*, z_1^* - z_2^*\} \subset V^*.$$

We associate to X 3 arrangements:

- a central h.a. $\mathcal{H} = \{H_{\chi}\}_{\chi \in X}$ in V, defined by the equations $\chi(v) = 0$ (e.g. $2z_1 = 0$)
- **2** a periodic affine h.a. $\mathcal{A} = \{H_{\chi,m}\}_{\chi \in X, m \in \mathbb{Z}}$ in V, defined by the equations $\chi(v) = m$ (e.g. $2z_1 = 7$)

• a toric arrangement $\mathcal{T} = \{U_{\chi}\}_{\chi \in X}$ in \mathcal{T} , defined by the equations: $t_1^2 = 1$, $t_2^2 = 1$, $t_1 t_2 = 1$, $t_1 t_2^{-1} = 1$.

How does T arise, and how is it related with A?

 $exp: V \to V/\Lambda \simeq T$

(topologically $exp: \mathbb{C}^2 \to \mathbb{C}^2/\mathbb{Z}^2 \simeq (\mathbb{C}^*)^2$)

 $\underline{z} \mapsto \underline{t} \doteq e^{2\pi i \underline{z}}.$

exp maps $\{H_{\chi,m}\}_{m\in\mathbb{Z}}$ onto U_{χ} , and the complement of \mathcal{A} onto the complement of \mathcal{T} (covering with fiber Λ).

$$exp:V
ightarrow V/\Lambda\simeq T$$

(topologically
$$exp: \mathbb{C}^2
ightarrow \mathbb{C}^2/\mathbb{Z}^2 \simeq (\mathbb{C}^*)^2)$$

$$\underline{z} \mapsto \underline{t} \doteq e^{2\pi i \underline{z}}.$$

exp maps $\{H_{\chi,m}\}_{m\in\mathbb{Z}}$ onto U_{χ} , and the complement of \mathcal{A} onto the complement of \mathcal{T} (covering with fiber Λ).

$$exp:V
ightarrow V/\Lambda\simeq T$$

(topologically
$$exp: \mathbb{C}^2
ightarrow \mathbb{C}^2/\mathbb{Z}^2 \simeq (\mathbb{C}^*)^2)$$

$$\underline{z} \mapsto \underline{t} \doteq e^{2\pi i \underline{z}}.$$

exp maps $\{H_{\chi,m}\}_{m\in\mathbb{Z}}$ onto U_{χ} , and the complement of \mathcal{A} onto the complement of \mathcal{T} (covering with fiber Λ).

$$exp: V o V/\Lambda \simeq T$$

(topologically $exp: \mathbb{C}^2
ightarrow \mathbb{C}^2/\mathbb{Z}^2 \simeq (\mathbb{C}^*)^2)$

$$\underline{z} \mapsto \underline{t} \doteq e^{2\pi i \underline{z}}.$$

exp maps $\{H_{\chi,m}\}_{m\in\mathbb{Z}}$ onto U_{χ} , and the complement of \mathcal{A} onto the complement of \mathcal{T} (covering with fiber Λ).

$$exp: V \to V/\Lambda \simeq T$$

(topologically
$$exp: \mathbb{C}^2 \to \mathbb{C}^2/\mathbb{Z}^2 \simeq (\mathbb{C}^*)^2)$$

$$\underline{z} \mapsto \underline{t} \doteq e^{2\pi i \underline{z}}.$$

exp maps $\{H_{\chi,m}\}_{m\in\mathbb{Z}}$ onto U_{χ} , and the complement of \mathcal{A} onto the complement of \mathcal{T} (covering with fiber Λ).

$$exp: V \to V/\Lambda \simeq T$$

(topologically
$$exp: \mathbb{C}^2 \to \mathbb{C}^2/\mathbb{Z}^2 \simeq (\mathbb{C}^*)^2)$$

$$\underline{z} \mapsto \underline{t} \doteq e^{2\pi i \underline{z}}.$$

exp maps $\{H_{\chi,m}\}_{m\in\mathbb{Z}}$ onto U_{χ} , and the complement of \mathcal{A} onto the complement of \mathcal{T} (covering with fiber Λ).

A hyperplane arrangement in a vector space V is a family of hyperplanes $\mathcal{H} = \{H_{\chi}\}_{\chi \in X}$, where $X \subset Hom(V, \mathbb{C})$ and $H_{\chi} \doteq \{v \in V | \chi(v) = 0\}$. A toric (toral) arrangement in a torus T is a family of hypersurfaces $\mathcal{T} = \{U_{\chi}\}_{\chi \in X}$, where $X \subset Hom(T, \mathbb{C}^*)$ and $U_{\chi} \doteq \{t \in T | \chi(t) = 1\}$.

(Lehrer and others in the '90s; De Concini and Procesi, 2005).

A hyperplane arrangement in a vector space V is a family of hyperplanes $\mathcal{H} = \{H_{\chi}\}_{\chi \in X}$, where $X \subset Hom(V, \mathbb{C})$ and $H_{\chi} \doteq \{v \in V | \chi(v) = 0\}$. A toric (toral) arrangement in a torus T is a family of hypersurfaces $\mathcal{T} = \{U_{\chi}\}_{\chi \in X}$, where $X \subset Hom(T, \mathbb{C}^*)$ and $U_{\chi} \doteq \{t \in T | \chi(t) = 1\}$.

(Lehrer and others in the '90s; De Concini and Procesi, 2005).

A hyperplane arrangement in a vector space V is a family of hyperplanes $\mathcal{H} = \{H_{\chi}\}_{\chi \in X}$, where $X \subset Hom(V, \mathbb{C})$ and $H_{\chi} \doteq \{v \in V | \chi(v) = 0\}$. A toric (toral) arrangement in a torus T is a family of hypersurfaces $\mathcal{T} = \{U_{\chi}\}_{\chi \in X}$, where $X \subset Hom(T, \mathbb{C}^*)$ and $U_{\chi} \doteq \{t \in T | \chi(t) = 1\}$.

(Lehrer and others in the '90s; De Concini and Procesi, 2005).

A hyperplane arrangement in a vector space V is a family of hyperplanes $\mathcal{H} = \{H_{\chi}\}_{\chi \in X}$, where $X \subset Hom(V, \mathbb{C})$ and $H_{\chi} \doteq \{v \in V | \chi(v) = 0\}$. A toric (toral) arrangement in a torus T is a family of hypersurfaces $\mathcal{T} = \{U_{\chi}\}_{\chi \in X}$, where $X \subset Hom(T, \mathbb{C}^*)$ and $U_{\chi} \doteq \{t \in T | \chi(t) = 1\}$.

(Lehrer and others in the '90s; De Concini and Procesi, 2005).

- ${\mathcal H}$ is more related with splines, ${\mathcal T}$ with partition functions;
- ${\mathcal H}$ with differential equations, ${\mathcal T}$ with difference equations;
- ${\mathcal H}$ with volume of polytopes, ${\mathcal T}$ with integral points in polytopes;

(see De Concini and Procesi's forthcoming book "Topics in Hyperplane Arrangements, Polytopes, and Box Splines").

- ${\mathcal H}$ is more related with splines, ${\mathcal T}$ with partition functions;
- ${\mathcal H}$ with differential equations, ${\mathcal T}$ with difference equations;
- $\bullet~\mathcal{H}$ with volume of polytopes, $\mathcal T$ with integral points in polytopes;

(see De Concini and Procesi's forthcoming book "Topics in Hyperplane Arrangements, Polytopes, and Box Splines").

- ${\mathcal H}$ is more related with splines, ${\mathcal T}$ with partition functions;
- $\mathcal H$ with differential equations, $\mathcal T$ with difference equations;
- \bullet ${\mathcal H}$ with volume of polytopes, ${\mathcal T}$ with integral points in polytopes;

(see De Concini and Procesi's forthcoming book "Topics in Hyperplane Arrangements, Polytopes, and Box Splines").

- ${\mathcal H}$ is more related with splines, ${\mathcal T}$ with partition functions;
- $\mathcal H$ with differential equations, $\mathcal T$ with difference equations;
- ${\mathcal H}$ with volume of polytopes, ${\mathcal T}$ with integral points in polytopes;

(see De Concini and Procesi's forthcoming book "Topics in Hyperplane Arrangements, Polytopes, and Box Splines").

- ${\mathcal H}$ is more related with splines, ${\mathcal T}$ with partition functions;
- ${\mathcal H}$ with differential equations, ${\mathcal T}$ with difference equations;
- ${\mathcal H}$ with volume of polytopes, ${\mathcal T}$ with integral points in polytopes;

(see De Concini and Procesi's forthcoming book "Topics in Hyperplane Arrangements, Polytopes, and Box Splines").

One-dimensional problem: to count in how many ways an integer m can be written as a sum of given positive integers m_i . This amounts to compute the coefficient of x^m in the generating function

$$\prod_{i} \left(\sum_{k=0}^{\infty} x^{k \, m_i} \right) = \prod_{i} \frac{1}{1 - x^{m_i}}$$

i.e. to compute the residue at 0 of the function $\prod_i \frac{x^{-m-1}}{1-x^{m_i}}$ which is the opposite of the sum of the residues at the other poles, that are the d-th roots of 1, where $d = GCD\{m_i\}$.

- m_i are replaced with vectors α_i in a *n*-dimensional lattice;
- the generating function has *n* variables, and its poles are the points of a toric arrangement.

One-dimensional problem: to count in how many ways an integer m can be written as a sum of given positive integers m_i . This amounts to compute the coefficient of x^m in the generating function

$$\prod_{i} \left(\sum_{k=0}^{\infty} x^{k m_{i}} \right) = \prod_{i} \frac{1}{1 - x^{m_{i}}}$$

i.e. to compute the residue at 0 of the function $\prod_i \frac{x^{-m-1}}{1-x^{m_i}}$ which is the opposite of the sum of the residues at the other poles, that are the *d*-th roots of 1, where $d = GCD\{m_i\}$.

- m_i are replaced with vectors α_i in a *n*-dimensional lattice;
- the generating function has *n* variables, and its poles are the points of a toric arrangement.

One-dimensional problem: to count in how many ways an integer m can be written as a sum of given positive integers m_i . This amounts to compute the coefficient of x^m in the generating function

$$\prod_{i} \left(\sum_{k=0}^{\infty} x^{k m_{i}} \right) = \prod_{i} \frac{1}{1 - x^{m_{i}}}$$

i.e. to compute the residue at 0 of the function $\prod_i \frac{x^{-m-1}}{1-x^{m_i}}$ which is the opposite of the sum of the residues at the other poles, that are the *d*-th roots of 1, where $d = GCD\{m_i\}$.

- m_i are replaced with vectors α_i in a *n*-dimensional lattice;
- the generating function has *n* variables, and its poles are the points of a toric arrangement.

One-dimensional problem: to count in how many ways an integer m can be written as a sum of given positive integers m_i . This amounts to compute the coefficient of x^m in the generating function

$$\prod_{i} \left(\sum_{k=0}^{\infty} x^{k m_{i}} \right) = \prod_{i} \frac{1}{1 - x^{m_{i}}}$$

i.e. to compute the residue at 0 of the function $\prod_i \frac{x^{-m-1}}{1-x^{m_i}}$ which is the opposite of the sum of the residues at the other poles, that are the d-th roots of 1, where $d = GCD\{m_i\}$.

- m_i are replaced with vectors α_i in a *n*-dimensional lattice;
- the generating function has *n* variables, and its poles are the points of a toric arrangement.

One-dimensional problem: to count in how many ways an integer m can be written as a sum of given positive integers m_i . This amounts to compute the coefficient of x^m in the generating function

$$\prod_{i} \left(\sum_{k=0}^{\infty} x^{k m_{i}} \right) = \prod_{i} \frac{1}{1 - x^{m_{i}}}$$

i.e. to compute the residue at 0 of the function $\prod_i \frac{x^{-m-1}}{1-x^{m_i}}$ which is the opposite of the sum of the residues at the other poles, that are the d-th roots of 1, where $d = GCD\{m_i\}$.

- m_i are replaced with vectors α_i in a *n*-dimensional lattice;
- the generating function has *n* variables, and its poles are the points of a toric arrangement.

One-dimensional problem: to count in how many ways an integer m can be written as a sum of given positive integers m_i . This amounts to compute the coefficient of x^m in the generating function

$$\prod_{i} \left(\sum_{k=0}^{\infty} x^{k m_{i}} \right) = \prod_{i} \frac{1}{1 - x^{m_{i}}}$$

i.e. to compute the residue at 0 of the function $\prod_i \frac{x^{-m-1}}{1-x^{m_i}}$ which is the opposite of the sum of the residues at the other poles, that are the *d*-th roots of 1, where $d = GCD\{m_i\}$.

In the general problem:

• m_i are replaced with vectors α_i in a *n*-dimensional lattice;

• the generating function has *n* variables, and its poles are the points of a toric arrangement.

One-dimensional problem: to count in how many ways an integer m can be written as a sum of given positive integers m_i . This amounts to compute the coefficient of x^m in the generating function

$$\prod_{i} \left(\sum_{k=0}^{\infty} x^{k m_{i}} \right) = \prod_{i} \frac{1}{1 - x^{m_{i}}}$$

i.e. to compute the residue at 0 of the function $\prod_i \frac{x^{-m-1}}{1-x^{m_i}}$ which is the opposite of the sum of the residues at the other poles, that are the *d*-th roots of 1, where $d = GCD\{m_i\}$.

In the general problem:

• m_i are replaced with vectors α_i in a *n*-dimensional lattice;

• the generating function has *n* variables, and its poles are the points of a toric arrangement.

One-dimensional problem: to count in how many ways an integer m can be written as a sum of given positive integers m_i . This amounts to compute the coefficient of x^m in the generating function

$$\prod_{i} \left(\sum_{k=0}^{\infty} x^{k m_{i}} \right) = \prod_{i} \frac{1}{1 - x^{m_{i}}}$$

i.e. to compute the residue at 0 of the function $\prod_i \frac{x^{-m-1}}{1-x^{m_i}}$ which is the opposite of the sum of the residues at the other poles, that are the *d*-th roots of 1, where $d = GCD\{m_i\}$.

- m_i are replaced with vectors α_i in a *n*-dimensional lattice;
- the generating function has *n* variables, and its poles are the points of a toric arrangement.

2. General results

A 🖓 h

We recall that the Tutte polynomial associated to a list of vectors X is

$$T(x,y) \doteq \sum_{A \subseteq X} (x-1)^{r(X)-r(A)} (y-1)^{|A|-r(A)}.$$

This is an important invariant of the matroid...

In particular it specializes to the characteristic polynomial of $\mathcal{L}(X)$:

$$(-1)^n T(1-q,0) = \chi(q).$$

This reflects the fact that $\mathcal{L}(X)$ only depends on the matroid defined by X. The same is not true for $\mathcal{C}(X)$: we need to add to the matroid some "arithmetic data". We recall that the Tutte polynomial associated to a list of vectors X is

$$T(x,y) \doteq \sum_{A \subseteq X} (x-1)^{r(X)-r(A)} (y-1)^{|A|-r(A)}.$$

This is an important invariant of the matroid...

In particular it specializes to the characteristic polynomial of $\mathcal{L}(X)$:

$$(-1)^n T(1-q,0) = \chi(q).$$

This reflects the fact that $\mathcal{L}(X)$ only depends on the matroid defined by X. The same is not true for $\mathcal{C}(X)$: we need to add to the matroid some "arithmetic data".
We recall that the Tutte polynomial associated to a list of vectors X is

$$T(x,y) \doteq \sum_{A \subseteq X} (x-1)^{r(X)-r(A)} (y-1)^{|A|-r(A)}.$$

This is an important invariant of the matroid...

In particular it specializes to the characteristic polynomial of $\mathcal{L}(X)$:

$$(-1)^n T(1-q,0) = \chi(q).$$

This reflects the fact that $\mathcal{L}(X)$ only depends on the matroid defined by X. The same is not true for $\mathcal{C}(X)$: we need to add to the matroid some "arithmetic data". We recall that the Tutte polynomial associated to a list of vectors X is

$$T(x,y) \doteq \sum_{A \subseteq X} (x-1)^{r(X)-r(A)} (y-1)^{|A|-r(A)}.$$

This is an important invariant of the matroid...

In particular it specializes to the characteristic polynomial of $\mathcal{L}(X)$:

$$(-1)^n T(1-q,0) = \chi(q).$$

This reflects the fact that $\mathcal{L}(X)$ only depends on the matroid defined by X. The same is not true for $\mathcal{C}(X)$: we need to add to the matroid some "arithmetic data". We recall that the Tutte polynomial associated to a list of vectors X is

$$T(x,y) \doteq \sum_{A \subseteq X} (x-1)^{r(X)-r(A)} (y-1)^{|A|-r(A)}.$$

This is an important invariant of the matroid...

In particular it specializes to the characteristic polynomial of $\mathcal{L}(X)$:

$$(-1)^n T(1-q,0) = \chi(q).$$

This reflects the fact that $\mathcal{L}(X)$ only depends on the matroid defined by X. The same is not true for $\mathcal{C}(X)$: we need to add to the matroid some "arithmetic data".

Let be $X \subset \mathbb{Z}^n$. For every $A \subseteq X$ let us define

 $m(A) \doteq [\mathbb{Z}^n \cap \langle A \rangle_{\mathbb{Q}} : \langle A \rangle_{\mathbb{Z}}].$

We can then define a polynomial $\widetilde{T}(x, y)$ depending only on the matroid and on the multiplicity function *m*:

$$\widetilde{T}(x,y) \doteq \sum_{A \subseteq X} m(A)(x-1)^{r(X)-r(A)}(y-1)^{|A|-r(A)}.$$

This seems to be the right analogous of the Tutte polynomial; in particular $\widetilde{\mathcal{T}}(1,1)$ equals the volume of the zonotope associated to X, and

Theorem (M.)

$$(-1)^n \widetilde{T}(1-q,0) = \chi(q)$$

Let be $X \subset \mathbb{Z}^n$. For every $A \subseteq X$ let us define

$$m(A) \doteq [\mathbb{Z}^n \cap \langle A \rangle_{\mathbb{Q}} : \langle A \rangle_{\mathbb{Z}}].$$

We can then define a polynomial T(x, y) depending only on the matroid and on the multiplicity function m:

$$\widetilde{\mathcal{T}}(x,y) \doteq \sum_{A \subseteq X} m(A)(x-1)^{r(X)-r(A)}(y-1)^{|A|-r(A)}$$

This seems to be the right analogous of the Tutte polynomial; in particular $\widetilde{T}(1,1)$ equals the volume of the zonotope associated to X, and

Theorem (M.)

$$(-1)^n \widetilde{T}(1-q,0) = \chi(q)$$

Let be $X \subset \mathbb{Z}^n$. For every $A \subseteq X$ let us define

$$m(A) \doteq [\mathbb{Z}^n \cap \langle A \rangle_{\mathbb{Q}} : \langle A \rangle_{\mathbb{Z}}].$$

We can then define a polynomial T(x, y) depending only on the matroid and on the multiplicity function m:

$$\widetilde{\mathcal{T}}(x,y) \doteq \sum_{A \subseteq X} m(A)(x-1)^{r(X)-r(A)}(y-1)^{|A|-r(A)}$$

This seems to be the right analogous of the Tutte polynomial; in particular $\widetilde{T}(1,1)$ equals the volume of the zonotope associated to X, and

Theorem (M.

$$(-1)^n \widetilde{T}(1-q,0) = \chi(q)$$

Let be $X \subset \mathbb{Z}^n$. For every $A \subseteq X$ let us define

$$m(A) \doteq [\mathbb{Z}^n \cap \langle A \rangle_{\mathbb{Q}} : \langle A \rangle_{\mathbb{Z}}].$$

We can then define a polynomial $\overline{T}(x, y)$ depending only on the matroid and on the multiplicity function m:

$$\widetilde{T}(x,y) \doteq \sum_{A \subseteq X} m(A)(x-1)^{r(X)-r(A)}(y-1)^{|A|-r(A)}$$

This seems to be the right analogous of the Tutte polynomial; in particular $\widetilde{T}(1,1)$ equals the volume of the zonotope associated to X, and

Theorem (M.)

$$(-1)^n \widetilde{T}(1-q,0) = \chi(q)$$

Let be $X \subset \mathbb{Z}^n$. For every $A \subseteq X$ let us define

$$m(A) \doteq [\mathbb{Z}^n \cap \langle A \rangle_{\mathbb{Q}} : \langle A \rangle_{\mathbb{Z}}].$$

We can then define a polynomial T(x, y) depending only on the matroid and on the multiplicity function m:

$$\widetilde{T}(x,y) \doteq \sum_{A \subseteq X} m(A)(x-1)^{r(X)-r(A)}(y-1)^{|A|-r(A)}$$

This seems to be the right analogous of the Tutte polynomial; in particular $\widetilde{T}(1,1)$ equals the volume of the zonotope associated to X, and

Theorem (M.)

$$(-1)^n \widetilde{T}(1-q,0) = \chi(q)$$

- Cohomology of the complement (Orlik and Solomon)
- 2 Wonderful models (De Concini and Procesi)

There are some analogues for ${\mathcal T}$ are:

- Cohomology of the complement (Looijenga; De Concini and Procesi)
- Wonderful models (M.)

- Cohomology of the complement (Orlik and Solomon)
- Wonderful models (De Concini and Procesi)

There are some analogues for ${\mathcal T}$ are:

- Cohomology of the complement (Looijenga; De Concini and Procesi)
- Wonderful models (M.)

- Cohomology of the complement (Orlik and Solomon)
- Wonderful models (De Concini and Procesi)

There are some analogues for \mathcal{T} are:

- Cohomology of the complement (Looijenga; De Concini and Procesi)
- Wonderful models (M.)

- Cohomology of the complement (Orlik and Solomon)
- Wonderful models (De Concini and Procesi)

There are some analogues for $\ensuremath{\mathcal{T}}$ are:

Ochomology of the complement (Looijenga; De Concini and Procesi)

Wonderful models (M.)

- Cohomology of the complement (Orlik and Solomon)
- Wonderful models (De Concini and Procesi)

There are some analogues for $\ensuremath{\mathcal{T}}$ are:

- Ochomology of the complement (Looijenga; De Concini and Procesi)
- Wonderful models (M.)

- Cohomology of the complement (Orlik and Solomon)
- Wonderful models (De Concini and Procesi)

There are some analogues for $\ensuremath{\mathcal{T}}$ are:

- Ochomology of the complement (Looijenga; De Concini and Procesi)
- Wonderful models (M.)

For every $C \in C(X)$, let us define $X_C \doteq \{\chi \in X | \chi(t) = 1 \forall t \in C\}$.

- The cohomology of the complement of *T* can be expressed as direct sum over *C*(*X*), the contribution of every *C* ∈ *C*(*X*) depending (on its dimension and) on the number of unbroken bases which can be extracted by *X_C*.
- ② The wonderful model of *T* is obtained by blowing up along those components *C* ∈ *C*(*X*) (of codimension > 1 and) such that *X_C* is an irreducible set of vectors.
- Then to make both results explicit, we need an enumeration of the components, together with a description of the sets X_C .

For every $C \in \mathcal{C}(X)$, let us define $X_C \doteq \{\chi \in X | \chi(t) = 1 \forall t \in C\}$.

- The cohomology of the complement of *T* can be expressed as direct sum over *C*(*X*), the contribution of every *C* ∈ *C*(*X*) depending (on its dimension and) on the number of unbroken bases which can be extracted by *X_C*.
- One wonderful model of *T* is obtained by blowing up along those components *C* ∈ *C*(*X*) (of codimension > 1 and) such that *X_C* is an irreducible set of vectors.

Then to make both results explicit, we need an enumeration of the components, together with a description of the sets X_C .

For every $C \in \mathcal{C}(X)$, let us define $X_C \doteq \{\chi \in X | \chi(t) = 1 \forall t \in C\}$.

- The cohomology of the complement of *T* can be expressed as direct sum over *C*(*X*), the contribution of every *C* ∈ *C*(*X*) depending (on its dimension and) on the number of unbroken bases which can be extracted by *X_C*.
- ② The wonderful model of *T* is obtained by blowing up along those components *C* ∈ *C*(*X*) (of codimension > 1 and) such that *X_C* is an irreducible set of vectors.

Then to make both results explicit, we need an enumeration of the components, together with a description of the sets X_C .

For every $C \in \mathcal{C}(X)$, let us define $X_C \doteq \{\chi \in X | \chi(t) = 1 \forall t \in C\}$.

- The cohomology of the complement of *T* can be expressed as direct sum over *C*(*X*), the contribution of every *C* ∈ *C*(*X*) depending (on its dimension and) on the number of unbroken bases which can be extracted by *X_C*.
- ② The wonderful model of *T* is obtained by blowing up along those components *C* ∈ *C*(*X*) (of codimension > 1 and) such that *X_C* is an irreducible set of vectors.

Then to make both results explicit, we need an enumeration of the components, together with a description of the sets X_C .

3. Lie case : combinatorics

Luca Moci (University of Roma Tre (Italy)) An introduction to toric arrangements

- ▲ 17

Notations:

- \mathfrak{g} a simple Lie algebra of rank n over \mathbb{C}
- h a Cartan subalgebra
- $\Phi \subset \mathfrak{h}^*$ the root system of \mathfrak{g}
- $\Phi^{\vee} \subset \mathfrak{h}$ the coroot system
- W be the Weyl group of Φ

 Φ defines in $V = \mathfrak{h}$ the hyperplane arrangement $\mathcal{H} = \{H_{\alpha}\}_{\alpha \in \Phi^+}$, where $H_{\alpha} = \{v \in V | \alpha(v) = 0\}$ Notations:

- \mathfrak{g} a simple Lie algebra of rank n over \mathbb{C}
- h a Cartan subalgebra
- $\Phi \subset \mathfrak{h}^*$ the root system of \mathfrak{g}
- $\Phi^{\vee} \subset \mathfrak{h}$ the coroot system
- W be the Weyl group of Φ

 Φ defines in $V = \mathfrak{h}$ the hyperplane arrangement $\mathcal{H} = \{H_{\alpha}\}_{\alpha \in \Phi^+}$, where $H_{\alpha} = \{v \in V | \alpha(v) = 0\}$

The coroot system Φ^{\vee} spans a lattice $\langle \Phi^{\vee} \rangle$ in \mathfrak{h} . $\mathcal{T} \doteq \mathfrak{h} / \langle \Phi^{\vee} \rangle$ is a complex torus of rank *n*.

Each root α is a linear map $\mathfrak{h} \to \mathbb{C}$ taking integer values on $\langle \Phi^{\vee} \rangle$. So it induces a homomorphism $\mathcal{T} \to \mathbb{C}/\mathbb{Z} \simeq \mathbb{C}^*$ that we denote e^{α} .

 $\{e^{\alpha}(t) = 1\}_{\alpha \in \Phi}$ defines in \mathcal{T} a finite family \mathcal{T} of hypersurfaces. this is the toric arrangement defined by Φ . Let $\mathcal{C}(\Phi)$ be the poset of the components . W acts naturally on \mathcal{T} and on $\mathcal{C}(\Phi)$.

 $\{e^{\alpha}(t) = 1\}_{\alpha \in \Phi}$ defines in \mathcal{T} a finite family \mathcal{T} of hypersurfaces. this is the toric arrangement defined by Φ . Let $\mathcal{C}(\Phi)$ be the poset of the components . W acts naturally on \mathcal{T} and on $\mathcal{C}(\Phi)$.

 $\{e^{\alpha}(t) = 1\}_{\alpha \in \Phi}$ defines in T a finite family T of hypersurfaces. this is the toric arrangement defined by Φ .

Let $\mathcal{C}(\Phi)$ be the poset of the components . W acts naturally on \mathcal{T} and on $\mathcal{C}(\Phi)$.

 $\{ e^{\alpha}(t) = 1 \}_{\alpha \in \Phi} \text{ defines in } \mathcal{T} \text{ a finite family } \mathcal{T} \text{ of hypersurfaces.} \\ \text{this is the toric arrangement defined by } \Phi. \\ \text{Let } \mathcal{C}(\Phi) \text{ be the poset of the components }. \\ \mathcal{W} \text{ acts naturally on } \mathcal{T} \text{ and on } \mathcal{C}(\Phi). \\ \end{array}$

 $\{e^{\alpha}(t) = 1\}_{\alpha \in \Phi} \text{ defines in } \mathcal{T} \text{ a finite family } \mathcal{T} \text{ of hypersurfaces.} \\ \text{this is the toric arrangement defined by } \Phi. \\ \text{Let } \mathcal{C}(\Phi) \text{ be the poset of the components }. \\ \mathcal{W} \text{ acts naturally on } \mathcal{T} \text{ and on } \mathcal{C}(\Phi). \\ \end{array}$

In this case the partition function we are computing is the Kostant partition function, that counts in how many ways an element of the lattice $\langle \Phi \rangle$ can be written as sum of positive roots.

It is involved in:

- Kostant's formula for weight multiplicities c^λ_μ
 (c^λ_μ is the multiplicity of the weight λ in the representation V(μ) of g of highest weight μ);
- Steinberg's formula for Littlewood-Richardson coefficients $c_{\mu,\nu}^{\lambda}$ $(c_{\mu,\nu}^{\lambda})$ is the multiplicity of $V(\lambda)$ in $V(\mu) \otimes V(\nu)$.

In this case the partition function we are computing is the Kostant partition function, that counts in how many ways an element of the lattice $\langle \Phi \rangle$ can be written as sum of positive roots. It is involved in:

- Kostant's formula for weight multiplicities c^λ_μ (c^λ_μ is the multiplicity of the weight λ in the representation V(μ) of g of highest weight μ);
- Steinberg's formula for Littlewood-Richardson coefficients $c_{\mu,\nu}^{\lambda}$ $(c_{\mu,\nu}^{\lambda}$ is the multiplicity of $V(\lambda)$ in $V(\mu) \otimes V(\nu)$).

In this case the partition function we are computing is the Kostant partition function, that counts in how many ways an element of the lattice $\langle \Phi \rangle$ can be written as sum of positive roots. It is involved in:

- Kostant's formula for weight multiplicities c^λ_μ
 (c^λ_μ is the multiplicity of the weight λ in the representation V(μ) of g of highest weight μ);
- Steinberg's formula for Littlewood-Richardson coefficients $c_{\mu,\nu}^{\lambda}$ $(c_{\mu,\nu}^{\lambda}$ is the multiplicity of $V(\lambda)$ in $V(\mu) \otimes V(\nu)$).

In this case the partition function we are computing is the Kostant partition function, that counts in how many ways an element of the lattice $\langle \Phi \rangle$ can be written as sum of positive roots. It is involved in:

- Kostant's formula for weight multiplicities c^λ_μ
 (c^λ_μ is the multiplicity of the weight λ in the representation V(μ) of g of highest weight μ);
- Steinberg's formula for Littlewood-Richardson coefficients $c_{\mu,\nu}^{\lambda}$ $(c_{\mu,\nu}^{\lambda}$ is the multiplicity of $V(\lambda)$ in $V(\mu) \otimes V(\nu)$).

We say that a subset Θ of Φ is a subsystem if:

$$a \in \Theta \Rightarrow -\alpha \in \Theta$$

2
$$\alpha, \beta \in \Theta$$
 and $\alpha + \beta \in \Phi \Rightarrow \alpha + \beta \in \Theta$.

We start from the set $C_0(\Phi)$ of the 0-dimensional components, that we call the points of the arrangement.

For every $t \in C_0(\Phi)$ we will describe its stabilizer W(t) in W and the subsystem of Φ

$$\Phi(t) \doteq \{ \alpha \in \Phi | e^{\alpha}(t) = 1 \}.$$

We say that a subset Θ of Φ is a subsystem if:

We start from the set $C_0(\Phi)$ of the 0-dimensional components, that we call the points of the arrangement.

For every $t \in C_0(\Phi)$ we will describe its stabilizer W(t) in W and the subsystem of Φ

$$\Phi(t) \doteq \{ \alpha \in \Phi | e^{\alpha}(t) = 1 \}.$$

We say that a subset Θ of Φ is a subsystem if:

We start from the set $C_0(\Phi)$ of the 0-dimensional components, that we call the points of the arrangement.

For every $t \in C_0(\Phi)$ we will describe its stabilizer W(t) in W and the subsystem of Φ

$$\Phi(t) \doteq \{ \alpha \in \Phi | e^{\alpha}(t) = 1 \}.$$

Let $\alpha_1, \ldots, \alpha_n$ be simple roots of Φ and α_0 the lowest root.

Let Γ be the affine Dynkin diagram of Φ (see picture). The set of its vertices $V(\Gamma)$ is in bijection with $\{\alpha_0, \alpha_1, \dots, \alpha_n\}$.

Let Φ_p be the subsystem of Φ generated by $\{\alpha_i\}_{0 \le i \le n, i \ne p}$, and let W_p be its Weyl group. The (ordinary) Dynkin diagram Γ_p of Φ_p (and of W_p) is obtained by removing from Γ its vertex p. Let $\alpha_1, \ldots, \alpha_n$ be simple roots of Φ and α_0 the lowest root. Let Γ be the affine Dynkin diagram of Φ (see picture). The set of its vertices $V(\Gamma)$ is in bijection with $\{\alpha_0, \alpha_1, \ldots, \alpha_n\}$.

Let Φ_p be the subsystem of Φ generated by $\{\alpha_i\}_{0 \le i \le n, i \ne p}$, and let W_p be its Weyl group. The (ordinary) Dynkin diagram Γ_p of Φ_p (and of W_p) is obtained by removing from Γ its vertex p. Let $\alpha_1, \ldots, \alpha_n$ be simple roots of Φ and α_0 the lowest root. Let Γ be the affine Dynkin diagram of Φ (see picture). The set of its vertices $V(\Gamma)$ is in bijection with $\{\alpha_0, \alpha_1, \ldots, \alpha_n\}$.

Let Φ_p be the subsystem of Φ generated by $\{\alpha_i\}_{0 \le i \le n, i \ne p}$, and let W_p be its Weyl group.

The (ordinary) Dynkin diagram Γ_p of Φ_p (and of W_p) is obtained by removing from Γ its vertex p.
Let $\alpha_1, \ldots, \alpha_n$ be simple roots of Φ and α_0 the lowest root. Let Γ be the affine Dynkin diagram of Φ (see picture). The set of its vertices $V(\Gamma)$ is in bijection with $\{\alpha_0, \alpha_1, \ldots, \alpha_n\}$.

Let Φ_p be the subsystem of Φ generated by $\{\alpha_i\}_{0 \le i \le n, i \ne p}$, and let W_p be its Weyl group. The (ordinary) Dynkin diagram Γ_p of Φ_p (and of W_p) is obtained by removing from Γ its vertex p.

There is a bijection $V(\Gamma) \leftrightarrow C_0(\Phi)/W$, having the property that given a vertex p and a point t in the corresponding orbit \mathcal{O}_p , then:

- $\Phi(t)$ is *W*-conjugated to Φ_p ;
- W(t) is W-conjugated to W_p .

$$|\mathcal{C}_0(\Phi)| = \sum_{p \in V(\Gamma)} \frac{|W|}{|W_p|}.$$

There is a bijection $V(\Gamma) \leftrightarrow C_0(\Phi)/W$, having the property that given a vertex p and a point t in the corresponding orbit \mathcal{O}_p , then:

- $\Phi(t)$ is *W*-conjugated to Φ_p ;
- W(t) is W-conjugated to W_p .

$$|\mathcal{C}_0(\Phi)| = \sum_{p \in V(\Gamma)} \frac{|W|}{|W_p|}.$$

There is a bijection $V(\Gamma) \leftrightarrow C_0(\Phi)/W$, having the property that given a vertex p and a point t in the corresponding orbit \mathcal{O}_p , then:

- $\Phi(t)$ is W-conjugated to Φ_p ;
- W(t) is W-conjugated to W_p .

$$|\mathcal{C}_0(\Phi)| = \sum_{p \in V(\Gamma)} \frac{|W|}{|W_p|}.$$

There is a bijection $V(\Gamma) \leftrightarrow C_0(\Phi)/W$, having the property that given a vertex p and a point t in the corresponding orbit \mathcal{O}_p , then:

- $\Phi(t)$ is W-conjugated to Φ_p ;
- W(t) is W-conjugated to W_p .

$$|\mathcal{C}_0(\Phi)| = \sum_{p \in V(\Gamma)} \frac{|W|}{|W_p|}.$$

$$\Phi^+ = \{z_i^* - z_j^*\}_{i < j} \cup \{z_i^* + z_j^*\} \cup \{2z_i^*\}$$

Then on the torus $T = \{(t_1, \dots, t_n), t_i \in \mathbb{C}^*\}$ the equations $e^{\alpha}(t) = 1$ are: $\{t_i t_j^{-1} = 1\} \cup \{t_i t_j = 1\} \cup \{t_i^2 = 1\}.$

The system of n independent equations

$$t_1^2=1,\ldots,t_n^2=1$$

has 2^n solutions: $(\pm 1,\ldots,\pm 1)$ and all other solutions.

$$\Phi^+ = \{z_i^* - z_j^*\}_{i < j} \cup \{z_i^* + z_j^*\} \cup \{2z_i^*\}$$

Then on the torus $T = \{(t_1, \dots, t_n), t_i \in \mathbb{C}^*\}$ the equations $e^{\alpha}(t) = 1$ are: $\{t_i t_j^{-1} = 1\} \cup \{t_i t_j = 1\} \cup \{t_i^2 = 1\}.$

The system of n independent equations

$$t_1^2=1,\ldots,t_n^2=1$$

has 2^n solutions: $(\pm 1, \ldots, \pm 1)$ and all other systems do not have other solutions.

$$\Phi^+ = \{z_i^* - z_j^*\}_{i < j} \cup \{z_i^* + z_j^*\} \cup \{2z_i^*\}$$

Then on the torus $T = \{(t_1, \dots, t_n), t_i \in \mathbb{C}^*\}$ the equations $e^{\alpha}(t) = 1$ are: $\{t_i t_j^{-1} = 1\} \cup \{t_i t_j = 1\} \cup \{t_i^2 = 1\}.$

The system of n independent equations

$$t_1^2=1,\ldots,t_n^2=1$$

has 2^n solutions: $(\pm 1, \ldots, \pm 1)$ and all other systems do not have other solutions.

 $W \simeq \mathfrak{S}_n \ltimes (\mathfrak{C}_2)^n$ acts on \mathcal{T} by permutations and inversions thus the second factor acts trivially on $\mathcal{C}_0(\Phi)$.

Then orbits are given by the number of negative coordinates. Let \mathcal{O}_{ρ} be the set of points with ρ negative coordinates.

Clearly the stabilizer of a such point is

$$\mathfrak{S}_p \times \mathfrak{S}_{n-p} \ltimes (\mathfrak{C}_2)^n$$

thus $|\mathcal{O}_{p}| = \binom{n}{p}$ and our formula is checked:

$$|\mathcal{C}_0(\Phi)| = \sum_{p=0}^n \binom{n}{p} = 2^n.$$

 $W \simeq \mathfrak{S}_n \ltimes (\mathfrak{C}_2)^n$ acts on T by permutations and inversions thus the second factor acts trivially on $\mathcal{C}_0(\Phi)$. Then orbits are given by the number of negative coordinates. Let \mathcal{O}_p be the set of points with p negative coordinates.

Clearly the stabilizer of a such point is

 $\mathfrak{S}_p \times \mathfrak{S}_{n-p} \ltimes (\mathfrak{C}_2)^n$

thus $|\mathcal{O}_p| = \binom{n}{p}$ and our formula is checked:

$$|\mathcal{C}_0(\Phi)| = \sum_{p=0}^n \binom{n}{p} = 2^n.$$

 $W \simeq \mathfrak{S}_n \ltimes (\mathfrak{C}_2)^n$ acts on T by permutations and inversions thus the second factor acts trivially on $\mathcal{C}_0(\Phi)$. Then orbits are given by the number of negative coordinates. Let \mathcal{O}_p be the set of points with p negative coordinates.

Clearly the stabilizer of a such point is

$$\mathfrak{S}_p \times \mathfrak{S}_{n-p} \ltimes (\mathfrak{C}_2)^n$$

thus $|\mathcal{O}_p| = {n \choose p}$ and our formula is checked:

$$|\mathcal{C}_0(\Phi)| = \sum_{p=0}^n \binom{n}{p} = 2^n.$$

 $W \simeq \mathfrak{S}_n \ltimes (\mathfrak{C}_2)^n$ acts on T by permutations and inversions thus the second factor acts trivially on $\mathcal{C}_0(\Phi)$. Then orbits are given by the number of negative coordinates. Let \mathcal{O}_p be the set of points with p negative coordinates.

Clearly the stabilizer of a such point is

$$\mathfrak{S}_p \times \mathfrak{S}_{n-p} \ltimes (\mathfrak{C}_2)^n$$

thus $|\mathcal{O}_p| = \binom{n}{p}$ and our formula is checked:

$$|\mathcal{C}_0(\Phi)| = \sum_{p=0}^n \binom{n}{p} = 2^n.$$

 $W \simeq \mathfrak{S}_n \ltimes (\mathfrak{C}_2)^n$ acts on T by permutations and inversions thus the second factor acts trivially on $\mathcal{C}_0(\Phi)$. Then orbits are given by the number of negative coordinates. Let \mathcal{O}_p be the set of points with p negative coordinates.

Clearly the stabilizer of a such point is

$$\mathfrak{S}_p \times \mathfrak{S}_{n-p} \ltimes (\mathfrak{C}_2)^n$$

thus $|\mathcal{O}_p| = \binom{n}{p}$ and our formula is checked:

$$|\mathcal{C}_0(\Phi)| = \sum_{p=0}^n \binom{n}{p} = 2^n.$$

The previous choice is not canonical! (we could define as well \mathcal{O}_p as the set of points with p positive coordinates)

Observation:

- Γ has a symmetry exchanging the vertices p and n p.
- Multiplication by -1 exchanges the corresponding orbits.

The previous choice is not canonical! (we could define as well \mathcal{O}_p as the set of points with p positive coordinates)

Observation:

- Γ has a symmetry exchanging the vertices p and n p.
- Multiplication by -1 exchanges the corresponding orbits.

Given the coweight lattice

$$\Lambda(\Phi) \doteq \{h \in \mathfrak{h} | \alpha(h) \in \mathbb{Z} \forall \alpha \in \Phi\}$$

we define the center

$$Z(\Phi) \doteq rac{\Lambda(\Phi)}{\langle \Phi^{ee}
angle} = \{t \in T | \Phi(t) = \Phi\}.$$

Thus:

Z(Φ) ⊆ C₀(Φ);
Z(Φ) acts by multiplication on C₀(Φ).

Given the coweight lattice

$$\Lambda(\Phi) \doteq \{h \in \mathfrak{h} | \alpha(h) \in \mathbb{Z} \forall \alpha \in \Phi\}$$

we define the $\ensuremath{\mathsf{center}}$

$$Z(\Phi) \doteq rac{\Lambda(\Phi)}{\langle \Phi^{ee}
angle} = \{t \in T | \Phi(t) = \Phi\}.$$

Thus:

Given the coweight lattice

$$\Lambda(\Phi) \doteq \{h \in \mathfrak{h} | \alpha(h) \in \mathbb{Z} \forall \alpha \in \Phi\}$$

we define the $\ensuremath{\mathsf{center}}$

$$Z(\Phi) \doteq rac{\Lambda(\Phi)}{\langle \Phi^{ee}
angle} = \{t \in T | \Phi(t) = \Phi\}.$$

Thus:

We can make canonical the bijection between vertices and W-orbits by identifying:

- Aut(Γ)-conjugated vertices
- $Z(\Phi)$ -conjugated orbits

We define the completion of a subsystem $\boldsymbol{\Theta}$ as

 $\overline{\Theta} \doteq \langle \Theta \rangle_{\mathbb{R}} \cap \Phi$

and we say that Θ is complete if $\Theta = \overline{\Theta}$. (see example).

Let \mathcal{K}_d be the set of complete subsystems of Φ of rank n - d: they are in natural bijection with the d-dimensional elements of $\mathcal{L}(\Phi)$ (the intersection poset of \mathcal{H}).

We define the completion of a subsystem $\boldsymbol{\Theta}$ as

$$\overline{\Theta} \doteq \langle \Theta
angle_{\mathbb{R}} \cap \Phi$$

and we say that Θ is complete if $\Theta = \overline{\Theta}$. (see example).

Let \mathcal{K}_d be the set of complete subsystems of Φ of rank n - d: they are in natural bijection with the d-dimensional elements of $\mathcal{L}(\Phi)$ (the intersection poset of \mathcal{H}).

We define the completion of a subsystem $\boldsymbol{\Theta}$ as

$$\overline{\Theta} \doteq \langle \Theta
angle_{\mathbb{R}} \cap \Phi$$

and we say that Θ is complete if $\Theta = \overline{\Theta}$. (see example).

Let \mathcal{K}_d be the set of complete subsystems of Φ of rank n - d: they are in natural bijection with the d-dimensional elements of $\mathcal{L}(\Phi)$ (the intersection poset of \mathcal{H}).

The poset $\mathcal{L}(\Phi)$ has been completely described for every Φ , computing how many elements (and W-orbits) there are for each type of subsystem. This was done in 1980 by Orlik and Solomon case-by-case according to the type of Φ .

We now show a case-free way to extend this analysis to the poset $\mathcal{C}(\Phi)$.

The poset $\mathcal{L}(\Phi)$ has been completely described for every Φ , computing how many elements (and *W*-orbits) there are for each type of subsystem. This was done in 1980 by Orlik and Solomon case-by-case according to the type of Φ .

We now show a case-free way to extend this analysis to the poset $\mathcal{C}(\Phi)$.

The poset $\mathcal{L}(\Phi)$ has been completely described for every Φ , computing how many elements (and *W*-orbits) there are for each type of subsystem. This was done in 1980 by Orlik and Solomon case-by-case according to the type of Φ .

We now show a case-free way to extend this analysis to the poset $C(\Phi)$.

$$\Theta_{\mathcal{C}} \doteq \{ \alpha \in \Phi | e^{\alpha}(t) = 1 \ \forall t \in \mathcal{C} \}.$$

In general Θ_C is not complete (see example).

Then for each complete subsystem Θ let us define $\mathcal{C}_{\Theta}^{\Phi}$ as the set of components C such that $\overline{\Theta_C} = \Theta$.

This is clearly a partition of the set of d-dimensional components of T:

$$\mathcal{C}_d(\Phi) = \bigsqcup_{\Theta \in \mathcal{K}_d} \mathcal{C}_{\Theta}^{\Phi}$$

Then we just have to describe every $\mathcal{C}_{\Theta}^{\Phi}$, that is the set of the elements of $\mathcal{C}(\Phi)$ corresponding to a given element of $\mathcal{L}(\Phi)$.

$$\Theta_{\mathcal{C}} \doteq \{ \alpha \in \Phi | e^{\alpha}(t) = 1 \ \forall t \in \mathcal{C} \}.$$

In general Θ_C is not complete (see example). Then for each complete subsystem Θ let us define $\mathcal{C}_{\Theta}^{\Phi}$ as the set of components C such that $\overline{\Theta_C} = \Theta$.

This is clearly a partition of the set of d-dimensional components of T:

$$\mathcal{C}_d(\Phi) = \bigsqcup_{\Theta \in \mathcal{K}_d} \mathcal{C}_{\Theta}^{\Phi}$$

Then we just have to describe every $\mathcal{C}_{\Theta}^{\Phi}$, that is the set of the elements of $\mathcal{C}(\Phi)$ corresponding to a given element of $\mathcal{L}(\Phi)$.

$$\Theta_{\mathcal{C}} \doteq \{ \alpha \in \Phi | e^{\alpha}(t) = 1 \ \forall t \in \mathcal{C} \}.$$

In general Θ_C is not complete (see example). Then for each complete subsystem Θ let us define $\mathcal{C}^{\Phi}_{\Theta}$ as the set of

components *C* such that $\overline{\Theta_C} = \Theta$.

This is clearly a partition of the set of d-dimensional components of T:

$$\mathcal{C}_d(\Phi) = \bigsqcup_{\Theta \in \mathcal{K}_d} \mathcal{C}_{\Theta}^{\Phi}$$

Then we just have to describe every $\mathcal{C}_{\Theta}^{\Phi}$, that is the set of the elements of $\mathcal{C}(\Phi)$ corresponding to a given element of $\mathcal{L}(\Phi)$.

$$\Theta_{\mathcal{C}} \doteq \{ \alpha \in \Phi | e^{\alpha}(t) = 1 \ \forall t \in \mathcal{C} \}.$$

In general Θ_C is not complete (see example).

Then for each complete subsystem Θ let us define $\mathcal{C}_{\Theta}^{\Phi}$ as the set of components C such that $\overline{\Theta_C} = \Theta$.

This is clearly a partition of the set of d-dimensional components of T:

$$\mathcal{C}_d(\Phi) = \bigsqcup_{\Theta \in \mathcal{K}_d} \mathcal{C}_{\Theta}^{\Phi}$$

Then we just have to describe every C_{Θ}^{Φ} , that is the set of the elements of $C(\Phi)$ corresponding to a given element of $\mathcal{L}(\Phi)$.

 $\left(h,h,h
ight),\left(h,h,0
ight),\left(h,0,0
ight),\ h\in\mathbb{C}$

corresponding respectively to 1, 2, 4 components of \mathcal{T} :

$$\left(t,t,t
ight),\left(t,t,\pm1
ight),\left(t,\pm1,\pm1
ight),\,t\in\mathbb{C}^{*}$$

 $\left(h,h,h
ight),\left(h,h,0
ight),\left(h,0,0
ight),\ h\in\mathbb{C}$

corresponding respectively to 1, 2, 4 components of \mathcal{T} :

$$egin{aligned} egin{aligned} egi$$

 $\left(h,h,h
ight),\left(h,h,0
ight),\left(h,0,0
ight),\ h\in\mathbb{C}$

corresponding respectively to 1, 2, 4 components of \mathcal{T} :

$$egin{aligned} egin{aligned} egi$$

 $\left(h,h,h
ight),\left(h,h,0
ight),\left(h,0,0
ight),\ h\in\mathbb{C}$

corresponding respectively to 1, 2, 4 components of \mathcal{T} :

$$\left(t,t,t
ight),\left(t,t,\pm1
ight),\left(t,\pm1,\pm1
ight),\,t\in\mathbb{C}^{*}$$

$$(h, h, h), (h, h, 0), (h, 0, 0), h \in \mathbb{C}$$

corresponding respectively to 1, 2, 4 components of \mathcal{T} :

$$\left(t,t,t
ight),\left(t,t,\pm1
ight),\left(t,\pm1,\pm1
ight),\,t\in\mathbb{C}^{*}$$

Reduction theorem

Notations:

- Θ be a complete subsystem of Φ
- W^{Θ} its Weyl group
- $Z(\Theta) \doteq \frac{\Lambda(\Theta)}{\langle \Theta^{\vee} \rangle}$ the center
- $\mathcal D$ the toric arrangement defined by Θ on the torus D
- $\mathcal{C}_0(\Theta)$ the set of points of $\mathcal D$

Theorem (M.)

There is a W^{\O}-equivariant surjective map

 $\varphi: \mathcal{C}^{\Phi}_{\Theta} \to \mathcal{C}_{0}(\Theta)/Z(\Theta)$

such that ker $\varphi \simeq Z(\Phi) \cap Z(\Theta)$ and $\Theta_U = \Theta(\varphi(U))$.

Reduction theorem

Notations:

- Θ be a complete subsystem of Φ
- W^{Θ} its Weyl group
- $Z(\Theta) \doteq \frac{\Lambda(\Theta)}{\langle \Theta^{\vee} \rangle}$ the center
- ${\mathcal D}$ the toric arrangement defined by Θ on the torus D
- $\mathcal{C}_0(\Theta)$ the set of points of \mathcal{D}

Theorem (M.)

There is a W^{Θ} -equivariant surjective map

$$\varphi: \mathcal{C}^{\Phi}_{\Theta} \to \mathcal{C}_{0}(\Theta)/Z(\Theta)$$

such that ker $\varphi \simeq Z(\Phi) \cap Z(\Theta)$ and $\Theta_U = \Theta(\varphi(U))$.
$$\begin{aligned} |\mathcal{C}_{\Theta}^{\Phi}| &= n_{\Theta}^{-1} |\mathcal{C}_{0}(\Theta)| \\ \text{where } n_{\Theta} \doteq \frac{|Z(\Theta)|}{|Z(\Phi) \cap Z(\Theta)|}. \\ \text{Then} \\ |\mathcal{C}_{d}(\Phi)| &= \sum_{\Theta \in \mathcal{K}_{d}} n_{\Theta}^{-1} |\mathcal{C}_{0}(\Theta)|. \end{aligned}$$

Moreover the reduction theorem yields a description of the action of W on $\mathcal{C}(\Phi)$. Then we get a W-equivariant decomposition of the cohomology of R.

$$|\mathcal{C}_{\Theta}^{\Phi}| = n_{\Theta}^{-1} |\mathcal{C}_{0}(\Theta)|$$

where
$$n_{\Theta} \doteq \frac{|Z(\Theta)|}{|Z(\Phi) \cap Z(\Theta)|}$$
.
Then
 $|C_d(\Phi)| = \sum_{\Theta \in \mathcal{K}_d} n_{\Theta}^{-1} |C_0(\Theta)|.$

Moreover the reduction theorem yields a description of the action of W on $C(\Phi)$. Then we get a W-equivariant decomposition of the cohomology of R.

$$|\mathcal{C}_{\Theta}^{\Phi}| = n_{\Theta}^{-1}|\mathcal{C}_{0}(\Theta)|$$

where
$$n_{\Theta} \doteq \frac{|Z(\Theta)|}{|Z(\Phi) \cap Z(\Theta)|}$$
.
Then
 $|C_d(\Phi)| = \sum_{\Theta \in \mathcal{K}_d} n_{\Theta}^{-1} |C_0(\Theta)|.$

Moreover the reduction theorem yields a description of the action of W on $C(\Phi)$.

Then we get a W-equivariant decomposition of the cohomology of R.

$$|\mathcal{C}_{\Theta}^{\Phi}| = n_{\Theta}^{-1}|\mathcal{C}_{0}(\Theta)|$$

where
$$n_{\Theta} \doteq \frac{|Z(\Theta)|}{|Z(\Phi) \cap Z(\Theta)|}$$
.
Then
 $|C_d(\Phi)| = \sum_{\Theta \in \mathcal{K}_d} n_{\Theta}^{-1} |C_0(\Theta)|.$

Moreover the reduction theorem yields a description of the action of W on $C(\Phi)$. Then we get a W-equivariant decomposition of the cohomology of R.

4. Lie case : applications

Luca Moci (University of Roma Tre (Italy)) An introduction to toric arrangements

A 🖓 h

Let d_1, \ldots, d_n be the degrees of W(i.e. the degrees of the generators of the ring of W-invariant regular functions on \mathfrak{h}). It is well known that $d_1 \ldots d_n = |W|$. We define $\mathcal{B}(\Phi) \doteq (d_1 - 1) \ldots (d_n - 1)$. By De Concini-Procesi formula for cohomology, the Poincaré polynomial is

$$P_{\Phi}(q) = \sum_{C} \mathcal{B}(\Theta_{C})(q+1)^{d(C)}q^{n-d(C)}$$

Let d_1, \ldots, d_n be the degrees of W(i.e. the degrees of the generators of the ring of W-invariant regular functions on \mathfrak{h}). It is well known that $d_1 \ldots d_n = |W|$. We define $\mathcal{B}(\Phi) \doteq (d_1 - 1) \ldots (d_n - 1)$. By De Concini-Procesi formula for cohomology, the Poincaré polynomial is

$$P_{\Phi}(q) = \sum_{C} \mathcal{B}(\Theta_{C})(q+1)^{d(C)}q^{n-d(C)}$$

Let d_1, \ldots, d_n be the degrees of W(i.e. the degrees of the generators of the ring of W-invariant regular functions on \mathfrak{h}). It is well known that $d_1 \ldots d_n = |W|$. We define $\mathcal{B}(\Phi) \doteq (d_1 - 1) \ldots (d_n - 1)$. By De Concini-Procesi formula for cohomology, the Poincaré polynomial is

$$P_{\Phi}(q) = \sum_{C} \mathcal{B}(\Theta_{C})(q+1)^{d(C)}q^{n-d(C)}$$

Let d_1, \ldots, d_n be the degrees of W(i.e. the degrees of the generators of the ring of W-invariant regular functions on \mathfrak{h}). It is well known that $d_1 \ldots d_n = |W|$. We define $\mathcal{B}(\Phi) \doteq (d_1 - 1) \ldots (d_n - 1)$. By De Concini-Procesi formula for cohomology, the Poincaré polynomial is

$$P_{\Phi}(q) = \sum_{C} \mathcal{B}(\Theta_{C})(q+1)^{d(C)}q^{n-d(C)}$$

Let d_1, \ldots, d_n be the degrees of W(i.e. the degrees of the generators of the ring of W-invariant regular functions on \mathfrak{h}). It is well known that $d_1 \ldots d_n = |W|$. We define $\mathcal{B}(\Phi) \doteq (d_1 - 1) \ldots (d_n - 1)$. By De Concini-Procesi formula for cohomology, the Poincaré polynomial is

$$P_{\Phi}(q) = \sum_{C} \mathcal{B}(\Theta_{C})(q+1)^{d(C)}q^{n-d(C)}$$

Theorem

The Euler characteristic χ_{Φ} of \mathcal{R} is equal to $(-1)^n |W|$

Proof.

- When we evaluate the Poincaré polynomial in q = -1 all the contributions vanish except for those of the points.
- Applying our "points theorem" theorem we get

$$\chi_{\Phi} = (-1)^n \sum_{\rho=0}^n \frac{|W|}{|W_{\rho}|} \mathcal{B}(\Phi_{\rho}).$$

The equivalence between this expression and the claimed one is the "curious identity" ∑ⁿ_{p=0} (d^p₁-1)...(d^p_n-1)/(d^p₁...d^p_n) = 1 (where d^p₁,..., d^p_n) are the degrees of W_p) (De Concini and Procesi; Stembridge; Denham).

Theorem

The Euler characteristic χ_{Φ} of \mathcal{R} is equal to $(-1)^n |W|$

Proof.

- When we evaluate the Poincaré polynomial in q = -1 all the contributions vanish except for those of the points.
- Applying our "points theorem" theorem we get

$$\chi_{\Phi} = (-1)^n \sum_{\rho=0}^n \frac{|W|}{|W_{\rho}|} \mathcal{B}(\Phi_{\rho}).$$

The equivalence between this expression and the claimed one is the "curious identity" ∑ⁿ_{p=0} (d^p₁-1)...(d^p_n-1)/(d^p₁...d^p_n) = 1 (where d^p₁,..., d^p_n are the degrees of W_p) (De Concini and Procesi; Stembridge; Denham).

Theorem

The Euler characteristic χ_{Φ} of \mathcal{R} is equal to $(-1)^n |W|$

Proof.

- When we evaluate the Poincaré polynomial in q = -1 all the contributions vanish except for those of the points.
- Applying our "points theorem" theorem we get

$$\chi_{\Phi} = (-1)^n \sum_{\rho=0}^n \frac{|W|}{|W_{\rho}|} \mathcal{B}(\Phi_{\rho}).$$

The equivalence between this expression and the claimed one is the "curious identity" ∑ⁿ_{p=0} (d^p₁-1)...(d^p_n-1)/(d^p₁...d^p_n) = 1 (where d^p₁,..., d^p_n are the degrees of W_p) (De Concini and Procesi; Stembridge; Denham).

Theorem

The Euler characteristic χ_{Φ} of \mathcal{R} is equal to $(-1)^n |W|$

Proof.

- When we evaluate the Poincaré polynomial in q = -1 all the contributions vanish except for those of the points.
- Applying our "points theorem" theorem we get

$$\chi_{\Phi} = (-1)^n \sum_{\rho=0}^n \frac{|W|}{|W_{\rho}|} \mathcal{B}(\Phi_{\rho}).$$

The equivalence between this expression and the claimed one is the "curious identity" ∑ⁿ_{p=0} (d^p₁-1)...(d^p_n-1)/(d^p₁...d^p_n) = 1 (where d^p₁,...,d^p_n) are the degrees of W_p) (De Concini and Procesi; Stembridge; Denham).

Moreover we get a formula which allows to compute explicitly the Poincaré polynomial $P_{\Phi}(q)$ of \mathcal{R} :

Corollary

$$egin{aligned} & P_{\Phi}(q) = \sum_{d=0}^n (q+1)^d q^{n-d} \sum_{\Theta \in \mathcal{K}_d} n_{\Theta}^{-1} |W^{\Theta}| \end{aligned}$$

Let be

$$\mathcal{I}(\Phi) \doteq \{ C \in \mathcal{C}(\Phi) | \Theta_C \text{ is irreducible} \}$$

where we recall that

$$\Theta_{\mathcal{C}} \doteq \{ \alpha \in \Phi | e^{\alpha}(t) = 1 \, \forall t \in \mathcal{C} \}.$$

Corollary

T has a wonderful model, which is obtained blowing-up T along all the components $C \in \mathcal{I}(\Phi)$ of codimension > 1 (in any dimension-increasing order). The irreducible components of the NCD are in bijection with the elements of $\mathcal{I}(\Phi)$. Moreover this model is minimal among all the wonderful models obtained by blow-ups.

Let be

$$\mathcal{I}(\Phi) \doteq \{ C \in \mathcal{C}(\Phi) | \Theta_C \text{ is irreducible} \}$$

where we recall that

$$\Theta_{\mathcal{C}} \doteq \{ \alpha \in \Phi | e^{\alpha}(t) = 1 \, \forall t \in \mathcal{C} \}.$$

Corollary

 \mathcal{T} has a wonderful model, which is obtained blowing-up \mathcal{T} along all the components $C \in \mathcal{I}(\Phi)$ of codimension > 1 (in any dimension-increasing order). The irreducible components of the NCD are in bijection with the elements of $\mathcal{I}(\Phi)$. Moreover this model is minimal among all the wonderful models obtained by blow-ups.

Let be

$$\mathcal{I}(\Phi) \doteq \{ C \in \mathcal{C}(\Phi) | \Theta_C \text{ is irreducible} \}$$

where we recall that

$$\Theta_{\mathcal{C}} \doteq \{ \alpha \in \Phi | e^{\alpha}(t) = 1 \, \forall t \in \mathcal{C} \}.$$

Corollary

 \mathcal{T} has a wonderful model, which is obtained blowing-up \mathcal{T} along all the components $C \in \mathcal{I}(\Phi)$ of codimension > 1 (in any dimension-increasing order). The irreducible components of the NCD are in bijection with the elements of $\mathcal{I}(\Phi)$. Moreover this model is minimal among all the wonderful models obtained by blow-ups.

Let be

$$\mathcal{I}(\Phi) \doteq \{ C \in \mathcal{C}(\Phi) | \Theta_C \text{ is irreducible} \}$$

where we recall that

$$\Theta_{\mathcal{C}} \doteq \{ \alpha \in \Phi | e^{\alpha}(t) = 1 \, \forall t \in \mathcal{C} \}.$$

Corollary

 \mathcal{T} has a wonderful model, which is obtained blowing-up \mathcal{T} along all the components $C \in \mathcal{I}(\Phi)$ of codimension > 1 (in any dimension-increasing order). The irreducible components of the NCD are in bijection with the elements of $\mathcal{I}(\Phi)$. Moreover this model is minimal among all the wonderful models obtained by blow-ups.

- The proof follows from a general theorem of Procesi and MacPherson on "conical stratifications". However, now we know exactly who $\mathcal{I}(\Phi)$ is:
- if subsystem Θ is irreducible, then also its completion $\overline{\Theta}$ is, and the Dynkin diagram of Θ is connected and is obtained by removing a vertex from the affine Dynkin diagram of $\overline{\Theta}$.
- Then we just need the list of complete irreducible subsystems of Φ , that we can get by Orlik and Solomon's tables.
- Finally, by the "reduction theorem" we know how many components correspond to a given subsystem.

- The proof follows from a general theorem of Procesi and MacPherson on "conical stratifications". However, now we know exactly who $\mathcal{I}(\Phi)$ is: if subsystem Θ is irreducible, then also its completion $\overline{\Theta}$ is, and the Dynkin diagram of Θ is connected and is obtained by removing a vertex from the affine Dynkin diagram of $\overline{\Theta}$.
- Then we just need the list of complete irreducible subsystems of Φ , that we can get by Orlik and Solomon's tables.
- Finally, by the "reduction theorem" we know how many components correspond to a given subsystem.

The proof follows from a general theorem of Procesi and MacPherson on "conical stratifications". However, now we know exactly who $\mathcal{I}(\Phi)$ is: if subsystem Θ is irreducible, then also its completion $\overline{\Theta}$ is, and the Dynkin diagram of Θ is connected and is obtained by removing a vertex from the affine Dynkin diagram of $\overline{\Theta}$.

Then we just need the list of complete irreducible subsystems of Φ , that we can get by Orlik and Solomon's tables. Finally, by the "reduction theorem" we know how many components The proof follows from a general theorem of Procesi and MacPherson on "conical stratifications". However, now we know exactly who $\mathcal{I}(\Phi)$ is: if subsystem Θ is irreducible, then also its completion $\overline{\Theta}$ is, and the Dynkin diagram of Θ is connected and is obtained by removing a vertex from the affine Dynkin diagram of $\overline{\Theta}$.

Then we just need the list of complete irreducible subsystems of Φ , that we can get by Orlik and Solomon's tables.

Finally, by the "reduction theorem" we know how many components correspond to a given subsystem.

The proof follows from a general theorem of Procesi and MacPherson on "conical stratifications". However, now we know exactly who $\mathcal{I}(\Phi)$ is: if subsystem Θ is irreducible, then also its completion $\overline{\Theta}$ is, and the Dynkin diagram of Θ is connected and is obtained by removing a vertex from the affine Dynkin diagram of $\overline{\Theta}$. Then we just need the list of complete irreducible subsystems of Φ , that we can get by Orlik and Solomon's tables.

Finally, by the "reduction theorem" we know how many components correspond to a given subsystem.

The End

Luca Moci (University of Roma Tre (Italy)) An introduction to toric arrangements

・ロト ・回ト ・ヨト

2

An introduction to toric arrangements MSJ SI 2009 on Arrangements of Hyperplanes

Luca Moci

University of Roma Tre (Italy)

August, 9 2009