On Rybnikov's example

Miguel Angel Marco Buzunariz

${ }^{1}$ Consejo Superior de Investigaciones Cientificas

2nd MSJ-SI
Sapporo, August 11, 2009

- Constructing the arrangements and the presentations of the groups.
- Distinguishing up to homologically trivial isomorphism: Alexander invariant.
- Showing that every isomorphism is homologically trivial: homological rigidity.

McLane arrangements

$x \cdot y \cdot(x-y) \cdot z \cdot(x-z) \cdot\left(z+\omega^{ \pm} y\right) \cdot\left(z+\omega^{ \pm} y-\left(\omega^{ \pm}+1\right) x\right) \cdot\left(z+\left(\omega^{ \pm}+1\right) y-x\right)$ where $\omega^{ \pm}=e^{\frac{ \pm 2 \pi i}{3}}$.
Are the two realizations of the dualization of the configuration of points in $\mathbb{F}_{3} \mathbb{P}^{2}$.

Rybnikov's arrangements

Take a generic projective transformation ρ that fixes the lines $x, y, x-y$, and glue $M L^{+}$with $\rho\left(M L^{ \pm}\right)$

Fundamental group of the complement.

Presentation of the fundamental group.

Theorem (Zariski-Van Kampen)

The group $\pi_{1}\left(\mathbb{C}^{2} \backslash \bigcup \mathscr{L}\right)$ admits a presentation as follows:

- Generators: the meridians around the lines, $\left\{x_{1}, \ldots, x_{n}\right\}$.
- Relations: the actions of the braids image of $\pi_{1}(\mathbb{C} \backslash \pi(\Delta))$ by the braid monodromy.
- In $\mathbb{C P}^{2}$: the meridian at infinity $x_{0} x_{1} x_{2} \cdots x_{n}$.

Presentation of the fundamental group.

Theorem (Zariski-Van Kampen)

The group $\pi_{1}\left(\mathbb{C}^{2} \backslash \bigcup \mathscr{L}\right)$ admits a presentation as follows:

- Generators: the meridians around the lines, $\left\{x_{1}, \ldots, x_{n}\right\}$.
- Relations: the actions of the braids image of $\pi_{1}(\mathbb{C} \backslash \pi(\Delta))$ by the braid monodromy.
- In $\mathbb{C P}^{2}$: the meridian at infinity $x_{0} x_{1} x_{2} \cdots x_{n}$.

The relations are always of the form $\left[x_{i_{1}}^{t_{i_{1}, p}}, \ldots, x_{i_{m}}^{t_{i m}, p}\right]$; where

- $\left[a_{1}, \ldots, a_{m}\right]$ represents $a_{1} \cdots a_{m}=a_{2} \cdots a_{m} a_{1}=\cdots=a_{m} a_{1} \cdots a_{m-1}$.

Presentation of the fundamental group.

Theorem (Zariski-Van Kampen)

The group $\pi_{1}\left(\mathbb{C}^{2} \backslash \bigcup \mathscr{L}\right)$ admits a presentation as follows:

- Generators: the meridians around the lines, $\left\{x_{1}, \ldots, x_{n}\right\}$.
- Relations: the actions of the braids image of $\pi_{1}(\mathbb{C} \backslash \pi(\Delta))$ by the braid monodromy.
- In $\mathbb{C P}^{2}$: the meridian at infinity $x_{0} x_{1} x_{2} \cdots x_{n}$.

The relations are always of the form $\left[x_{i_{1}}^{t_{i_{1}, p}}, \ldots, x_{i_{m}}^{t_{i m}, p}\right]$; where

- $\left[a_{1}, \ldots, a_{m}\right]$ represents $a_{1} \cdots a_{m}=a_{2} \cdots a_{m} a_{1}=\cdots=a_{m} a_{1} \cdots a_{m-1}$.
- p is the intersection point of $l_{i_{1}}, \ldots, l_{i_{m}}$.

Presentation of the fundamental group.

Theorem (Zariski-Van Kampen)

The group $\pi_{1}\left(\mathbb{C}^{2} \backslash \bigcup \mathscr{L}\right)$ admits a presentation as follows:

- Generators: the meridians around the lines, $\left\{x_{1}, \ldots, x_{n}\right\}$.
- Relations: the actions of the braids image of $\pi_{1}(\mathbb{C} \backslash \pi(\Delta))$ by the braid monodromy.
- In $\mathbb{C P}^{2}$: the meridian at infinity $x_{0} x_{1} x_{2} \cdots x_{n}$.

The relations are always of the form $\left[x_{i_{1}}^{t_{i_{1}, p}}, \ldots, x_{i_{m}}^{t_{i m}, p}\right]$; where

- $\left[a_{1}, \ldots, a_{m}\right]$ represents $a_{1} \cdots a_{m}=a_{2} \cdots a_{m} a_{1}=\cdots=a_{m} a_{1} \cdots a_{m-1}$.
- p is the intersection point of $l_{i_{1}}, \ldots, l_{i_{m}}$.
- $t_{i_{j}, p}$ is some word in x_{1}, \ldots, x_{n}.

Alexander Invariant

Let X be a topological space. $G=\pi_{1}(X)$.

Alexander Invariant

Let X be a topological space. $G=\pi_{1}(X)$.

The fundamental group of \widetilde{X} is $G^{\prime}:=[G, G]$, and its first homology group is $G^{\prime} / G^{\prime \prime}$. The transformation group of the cover, H acts on them.

Alexander Invariant

Let X be a topological space. $G=\pi_{1}(X)$.

The fundamental group of \widetilde{X} is $G^{\prime}:=[G, G]$, and its first homology group is $G^{\prime} / G^{\prime \prime}$. The transformation group of the cover, H acts on them. Hence, $G^{\prime} / G^{\prime \prime}$ has a module structure over $\Lambda:=\mathbb{Z}[H]=\mathbb{Z}\left[\mathbb{Z}^{n}\right]$. This module will be denoted M_{G}.

Algebraic setting

$$
\begin{array}{rlc}
G / G^{\prime} \times G^{\prime} / G^{\prime \prime} & \rightarrow & G^{\prime} / G^{\prime \prime} \\
(g,[a, b]) & \longmapsto g *[a, b] \bmod G^{\prime \prime}=[g,[a, b]]+[a, b]
\end{array}
$$

where $a * b:=a \cdot b \cdot a^{-1}$.

Presentation of M_{G}

Theorem

A presentation of M_{G} as Λ-module can be obtained as follows:

- The generators $\left\{\left[x_{i}, x_{j}\right] \mid 1 \leq i<j \leq n\right\}$.
- The relations of G expressed in terms of the generators.
- The Jacobi relations:

$$
\left(t_{x_{i}}-1\right)\left[x_{j}, x_{k}\right]+\left(t_{x_{j}}-1\right)\left[x_{k}, x_{i}\right]+\left(t_{x_{k}}-1\right)\left[x_{i}, x_{j}\right]
$$

Properties

Lema

The following relations hold in M_{G} :

- $[x, p]=\left(t_{x}-1\right) p \forall p \in G^{\prime}$.
- $\left[x^{-1}, y\right]=-t_{x}^{-1}[x, y]$.
- $\left[x_{1} \cdots x_{m}, y_{1} \cdots y_{k}\right]=\sum_{i=1}^{m} \sum_{j=1}^{k} T_{i j}\left[x_{i}, y_{i}\right]$ where $T_{i j}=\prod_{k=1}^{i-1} t_{x_{k}} \cdot \prod_{l=1}^{j-1} t_{y_{l}}$.
- $\left[p_{1} \cdots p_{m}, x\right]=-\left(t_{x}-1\right)\left(p_{1}+\cdots p_{m}\right) \forall p_{i} \in G^{\prime}$.
- $\left[p_{x} x, p_{y} y\right]=[x, y]+\left(t_{x}-1\right) p_{y}-\left(t_{y}-1\right) p_{x} \forall p_{x}, p_{y} \in G^{\prime}$.
- $\left[x_{1}^{\alpha_{1}} \cdots x_{m}^{\alpha_{m}}, y_{1}^{\beta_{1}} \cdots y_{k}^{\beta_{k}}\right]=\sum_{i=1}^{m} \sum_{j=1}^{k} T_{i j}\left(\left[x_{i}, x_{j}\right]+\delta(i, j)\right)$, where $\delta(i, j)=-\left(t_{y_{j}}-1\right)\left[\alpha_{i}^{-1}, x_{i}\right]+\left(t_{x_{i}}-1\right)\left[\beta_{j}^{-1}, y_{j}\right]$.

Distinguishing the modules

- We have presentations of both modules.
- An isomorphism is given by a matrix corresponding to the generating systems, with entries in the ring Λ.
- Such a matrix induces an isomorphism if and only if and only if the image of the relations is in the submodule generated by the relations.
- To check the existence of such a matrix can be very difficult.
- Solution: truncate by powers of the augmentation ideal $\left(t_{1}-1, \ldots, t_{n}-1\right)$.
- Then the problem becomes solving a system of equations over \mathbb{Z}.
- They have no solution!

Situation

$$
G_{1} \longrightarrow G_{2}
$$

Situation

$$
G_{1} \longrightarrow G_{2}
$$

$$
M_{G_{1}} \longrightarrow M_{G_{2}}
$$

Situation

$$
\begin{gathered}
G_{1} \longrightarrow G_{2} \\
M_{G_{1}} \longrightarrow M_{G_{2}} \\
H \longrightarrow H
\end{gathered}
$$

Situation

$$
\begin{gathered}
G_{1} \longrightarrow G_{2} \\
M_{G_{1}} \longrightarrow M_{G_{2}} \\
H \longrightarrow H \\
\Lambda \longrightarrow \Lambda
\end{gathered}
$$

Situation

$$
\begin{gathered}
G_{1} \longrightarrow G_{2} \\
M_{G_{1}} \longrightarrow M_{G_{2}} \\
H \longrightarrow H \\
\Lambda \longrightarrow \Lambda
\end{gathered}
$$

Isomorphisms of fundamental groups induce twisted isomorphisms of the alexander invariants

Situation

$$
\begin{gathered}
G_{1} \longrightarrow G_{2} \\
M_{G_{1}} \longrightarrow M_{G_{2}} \\
H \longrightarrow H \\
\\
\Lambda \longrightarrow \Lambda
\end{gathered}
$$

Isomorphisms of fundamental groups induce twisted isomorphisms of the alexander invariants We need to study which are the possible isomorphisms of H.

Lower central series

- $\gamma_{1} G:=G$
- $\gamma_{i+1} G:=\left[G, \gamma_{i} G\right]$
- $g r_{i} G:=\gamma_{i} G / \gamma_{i+1} G$

Lower central series

- $\gamma_{1} G:=G$
- $\gamma_{i+1} G:=\left[G, \gamma_{i} G\right]$
- $g r_{i} G:=\gamma_{i} G / \gamma_{i+1} G$

When $G=\pi_{1}\left(\mathbb{C P}^{2} \backslash \bigcup \mathscr{L}\right)$ we have the following:

- $g r_{1} G=\mathbb{Z} \bar{x}_{1} \oplus \ldots \oplus \mathbb{Z} \bar{x}_{n}=: H=\mathbb{Z} \bar{x}_{0} \oplus \ldots \oplus \mathbb{Z} \bar{x}_{n} / x_{0}+\cdots+x_{n}$
- $g r_{2} G=H \bigwedge H / R$, where $R=\left\langle\sum_{l_{j} \in p} x_{j} \wedge x_{i} \mid p \in \mathscr{P}, l_{i} \in p\right\rangle$.

Example

gives the following relations: $\left\{\left(x_{1}+x_{2}+x_{3}\right) \wedge x_{i}\right\}_{i=1,2,3}$
So a basis of the quotient is $\left\{x_{i} \wedge x_{j} \mid p(i, j)_{1}<i<j\right\}$, where $p(i, j)_{1}$ is the index of the first line that goes through $l_{i} \cap l_{j}$.

Example

gives the following relations: $\left\{\left(x_{1}+x_{2}+x_{3}\right) \wedge x_{i}\right\}_{i=1,2,3}$ So a basis of the quotient is $\left\{x_{i} \wedge x_{j} \mid p(i, j)_{1}<i<j\right\}$, where $p(i, j)_{1}$ is the index of the first line that goes through $l_{i} \cap l_{j}$.

Conditions on the isomorphism

A relation should be mapped to zero in the quotient:

$$
R_{1} \xrightarrow{i} H \wedge H \xrightarrow{\phi \wedge \phi} H \wedge H \xrightarrow{p} \frac{H \wedge H}{R_{2}}
$$

Conditions on the isomorphism

Let $A=\left(a_{i, j}\right)$ be a matrix that represents ϕ on the canonical generating system. Since it is not a basis, the comlumns of the matrix are defined modulo $(1, \ldots, 1)$.
The coordinates of the relations corresponding to the point $\left\{l_{i_{1}}, \ldots l_{i_{m}}\right\}$ on the elements of the basis of the quotient coming from $\left\{l_{j_{1}}, l_{j_{2}}, l_{j_{3}}\right\}$ are

Conditions on the isomorphism

Let $A=\left(a_{i, j}\right)$ be a matrix that represents ϕ on the canonical generating system. Since it is not a basis, the comlumns of the matrix are defined modulo $(1, \ldots, 1)$.
The coordinates of the relations corresponding to the point $\left\{l_{i_{1}}, \ldots l_{i_{m}}\right\}$ on the elements of the basis of the quotient coming from $\left\{l_{j_{1}}, l_{j_{2}}, l_{j_{3}}\right\}$ are

$$
\left|\begin{array}{ccc}
a_{j_{1}, i_{k}} & a_{j_{1}, i_{1}}+\cdots+a_{j_{1}, i_{m}} & 1 \\
a_{j_{2}, i_{k}} & a_{j_{2}, i_{1}}+\cdots+a_{j_{2}, i_{m}} & 1 \\
a_{j_{3}, i_{k}} & a_{j_{3}, i_{1}}+\cdots+a_{j_{3}, i_{m}} & 1
\end{array}\right|
$$

Conditions on the isomorphism

That is, for each point of multiplicity m, we have a map $\alpha: \mathcal{L}: \mathbb{Z}^{m-1}$ satisfying:

- For every point $p=\left\{l_{i_{1}}, \ldots, l_{i_{m}}\right\}$, and each line $l_{i_{j}} \in p$, the vectors $\alpha\left(l_{i_{j}}\right)$ and $\alpha\left(l_{i_{1}}\right)+\cdots+\alpha\left(l_{i_{m}}\right)$ are linearly deppendent.
- The images span \mathbb{Z}^{m-1}.

If we write this map in the form of a matrix, the conditions are equivalent to the rows belonging to a component of the resonance variety.
This is actually expected, since R and the subspace of the relations of the OS algebra are orthogonal. So in fact, H induces a permutation of the components of the resonance variety.

Combinatorial pencils

Theorem

Let S be a k-dimensional component of the resonance variety and \mathscr{L}^{\prime} the subarrangement formed by the lines in its support. Then there exists Π_{0}, \ldots, Π_{k} a partition of \mathscr{L}^{\prime} and a map $m: \mathscr{L}^{\prime} \rightarrow \mathbb{Z}^{+}$such that, at every intersection point p, one of the following conditions hold:

- All the lines in p are in the same Π_{i}.
- $\sum_{l \in \Pi_{i}} m(l)$ is independent of i.

The converse is also true.

Combinatorial pencils

Theorem

Let S be a k-dimensional component of the resonance variety and \mathscr{L}^{\prime} the subarrangement formed by the lines in its support. Then there exists Π_{0}, \ldots, Π_{k} a partition of \mathscr{L}^{\prime} and a map $m: \mathscr{L}^{\prime} \rightarrow \mathbb{Z}^{+}$such that, at every intersection point p, one of the following conditions hold:

- All the lines in p are in the same Π_{i}.
- $\sum_{l \in \Pi_{i}} m(l)$ is independent of i.

The converse is also true.

Definition

A triple (\mathscr{L}, Π, m) as before is called a combinatorial pencil

Examples of combinatorial pencils

- Multiple points
- Ceva arrangement
- Double cover branched along Ceva
- Finite fields.

Examples of combinatorial pencils

- Multiple points
- Ceva arrangement
- Double cover branched along Ceva
- Finite fields.

Examples of combinatorial pencils

- Multiple points
- Ceva arrangement
- Double cover branched along Ceva
- Finite fields.

Examples of combinatorial pencils

- Multiple points
- Ceva arrangement
- Double cover branched along Ceva
- Finite fields.

Existing combinatorial pencils

lines	combinatorics	pencils
3	2	1
4	3	1
5	5	1
6	10	2
7	24	1
8	69	1
9	384	6
10	5250	1
11	232929	3

Triangles of combinatorial pencils

Let $\alpha_{1}, \alpha_{2}, \alpha_{3}$ be components of the resonance variety.

Definition

We will say that $\left\{\alpha_{1}, \alpha_{2}, \alpha_{3}\right\}$ form a triangle if $\sum_{i=1}^{3} \operatorname{dim}\left(\left\{\alpha_{i}\right\}\right)-\operatorname{dim}\left(\left\langle\alpha_{1}, \alpha_{2}, \alpha_{3}\right\rangle\right)=1$.

Triangles of combinatorial pencils

Let $\alpha_{1}, \alpha_{2}, \alpha_{3}$ be components of the resonance variety.

Definition

We will say that $\left\{\alpha_{1}, \alpha_{2}, \alpha_{3}\right\}$ form a triangle if
$\sum_{i=1}^{3} \operatorname{dim}\left(\left\{\alpha_{i}\right\}\right)-\operatorname{dim}\left(\left\langle\alpha_{1}, \alpha_{2}, \alpha_{3}\right\rangle\right)=1$.
In the case that they correspond to point subarrangements, they are in triangle if and only if they are in the following disposition:

Permutation of the pencils.

- An isomorphism of H that respect the resonance variety induces a permutation of the combinatorial pencils.

Permutation of the pencils.

- An isomorphism of H that respect the resonance variety induces a permutation of the combinatorial pencils.
- This permutation must preserve triangles.

Permutation of the pencils.

- An isomorphism of H that respect the resonance variety induces a permutation of the combinatorial pencils.
- This permutation must preserve triangles.
- Using the triangular structure, we can bound the group of such permutations.

Permutation of the pencils.

- An isomorphism of H that respect the resonance variety induces a permutation of the combinatorial pencils.
- This permutation must preserve triangles.
- Using the triangular structure, we can bound the group of such permutations.
- This group must contain $\operatorname{Aut}(\mathscr{L}, \mathscr{P}) \times \pm I d$.

Permutation of the pencils.

- An isomorphism of H that respect the resonance variety induces a permutation of the combinatorial pencils.
- This permutation must preserve triangles.
- Using the triangular structure, we can bound the group of such permutations.
- This group must contain $\operatorname{Aut}(\mathscr{L}, \mathscr{P}) \times \pm I d$.
- If the previous inclusion is an identity, the combinatorics is said to be homologically rigid.

Homological rigidity.

Definition

We will say that a combinatorcs $(\mathscr{L}, \mathscr{P})$ is strongly connected if, given three distinct lines, two of them can be connected by multiple points not belonging to the thirthd.

Theorem

Let $(\mathscr{L}, \mathscr{P})$ be a strongly connected combinatorics, $\sigma \in \operatorname{Aut}(\mathscr{L}, \mathscr{P})$, and $\tau \in \operatorname{Aut}_{(\mathscr{L}, \mathscr{P})}(H)$ such that the induced permutation of components of the resonance variety coincides with the one determined by σ. Then $\tau= \pm \sigma$.

Some results.

Definition

We will say that a combinatorics has enough triangles if every pair of alligned multiple points lies in some triangle, and each line passes through at least two multiple points.

Some results.

Definition

We will say that a combinatorics has enough triangles if every pair of alligned multiple points lies in some triangle, and each line passes through at least two multiple points.

Theorem

If a strongly connected combinatorics has enough triangles, and the only combinatorial pencils contained in it are of point type, then the combinatorics is homologically rigid.

Some results.

Definition

We will say that a combinatorics has enough triangles if every pair of alligned multiple points lies in some triangle, and each line passes through at least two multiple points.

Theorem

If a strongly connected combinatorics has enough triangles, and the only combinatorial pencils contained in it are of point type, then the combinatorics is homologically rigid.

Corollary

Rybnikov combinatorics homologically rigid.

Some results.

Definition

We will say that a combinatorics has enough triangles if every pair of alligned multiple points lies in some triangle, and each line passes through at least two multiple points.

Theorem

If a strongly connected combinatorics has enough triangles, and the only combinatorial pencils contained in it are of point type, then the combinatorics is homologically rigid.

Corollary

Rybnikov combinatorics homologically rigid.

Corollary

The fundamental groups of Rybnikov's arrangements are non isomorphic.

Thank you!

Questions?

