On Rybnikov's example

Miguel Angel Marco Buzunariz

¹Consejo Superior de Investigaciones Científicas

2nd MSJ-SI Sapporo, August 11, 2009

- Constructing the arrangements and the presentations of the groups.
- Distinguishing up to homologically trivial isomorphism: Alexander invariant.
- Showing that every isomorphism is homologically trivial: homological rigidity.

McLane arrangements

 $x \cdot y \cdot (x - y) \cdot z \cdot (x - z) \cdot (z + \omega^{\pm} y) \cdot (z + \omega^{\pm} y - (\omega^{\pm} + 1)x) \cdot (z + (\omega^{\pm} + 1)y - x)$ where $\omega^{\pm} = e^{\frac{\pm 2\pi i}{3}}$.

Are the two realizations of the dualization of the configuration of points in $\mathbb{F}_3\mathbb{P}^2$.

Rybnikov's arrangements

Take a generic projective transformation ρ that fixes the lines x, y, x - y, and glue ML^+ with $\rho(ML^{\pm})$

- 0

The group $\pi_1(\mathbb{C}^2 \setminus \bigcup \mathscr{L})$ *admits a presentation as follows:*

- Generators: the meridians around the lines, $\{x_1, \ldots, x_n\}$.
- *Relations: the actions of the braids image of* π₁(C \ π(Δ)) *by the braid monodromy.*
- In \mathbb{CP}^2 : the meridian at infinity $x_0 x_1 x_2 \cdots x_n$.

The group $\pi_1(\mathbb{C}^2 \setminus \bigcup \mathscr{L})$ *admits a presentation as follows:*

- Generators: the meridians around the lines, $\{x_1, \ldots, x_n\}$.
- *Relations: the actions of the braids image of* π₁(C \ π(Δ)) *by the braid monodromy.*
- In \mathbb{CP}^2 : the meridian at infinity $x_0 x_1 x_2 \cdots x_n$.

The relations are always of the form $[x_{i_1}^{t_{i_1,p}}, \ldots, x_{i_m}^{t_{i_m,p}}]$; where

• $[a_1, \ldots, a_m]$ represents $a_1 \cdots a_m = a_2 \cdots a_m a_1 = \cdots = a_m a_1 \cdots a_{m-1}$.

The group $\pi_1(\mathbb{C}^2 \setminus \bigcup \mathscr{L})$ *admits a presentation as follows:*

- Generators: the meridians around the lines, $\{x_1, \ldots, x_n\}$.
- *Relations: the actions of the braids image of* π₁(C \ π(Δ)) *by the braid monodromy.*
- In \mathbb{CP}^2 : the meridian at infinity $x_0 x_1 x_2 \cdots x_n$.

The relations are always of the form $[x_{i_1}^{t_{i_1,p}}, \ldots, x_{i_m}^{t_{i_m,p}}]$; where

- $[a_1, \ldots, a_m]$ represents $a_1 \cdots a_m = a_2 \cdots a_m a_1 = \cdots = a_m a_1 \cdots a_{m-1}$.
- *p* is the intersection point of l_{i_1}, \ldots, l_{i_m} .

The group $\pi_1(\mathbb{C}^2 \setminus \bigcup \mathscr{L})$ *admits a presentation as follows:*

- Generators: the meridians around the lines, $\{x_1, \ldots, x_n\}$.
- *Relations: the actions of the braids image of* π₁(C \ π(Δ)) *by the braid monodromy.*
- In \mathbb{CP}^2 : the meridian at infinity $x_0 x_1 x_2 \cdots x_n$.

The relations are always of the form $[x_{i_1}^{t_{i_1,p}}, \ldots, x_{i_m}^{t_{i_m,p}}]$; where

- $[a_1, \ldots, a_m]$ represents $a_1 \cdots a_m = a_2 \cdots a_m a_1 = \cdots = a_m a_1 \cdots a_{m-1}$.
- *p* is the intersection point of l_{i_1}, \ldots, l_{i_m} .
- $t_{i_j,p}$ is some word in x_1, \ldots, x_n .

Alexander Invariant

Let *X* be a topological space. $G = \pi_1(X)$.

-0

Alexander Invariant

Let *X* be a topological space. $G = \pi_1(X)$.

The fundamental group of \widetilde{X} is G' := [G, G], and its first homology group is G'/G''. The transformation group of the cover, *H* acts on them.

Alexander Invariant

Let *X* be a topological space. $G = \pi_1(X)$.

The fundamental group of X is G' := [G, G], and its first homology group is G'/G''. The transformation group of the cover, H acts on them. Hence, G'/G'' has a module structure over $\Lambda := \mathbb{Z}[H] = \mathbb{Z}[\mathbb{Z}^n]$. This module will be denoted M_G .

$$\begin{array}{rcl} G/G' \times G'/G'' & \to & G'/G'' \\ (g, [a, b]) & \longmapsto & g * [a, b] \bmod G'' & = [g, [a, b]] + [a, b] \end{array}$$

where $a * b := a \cdot b \cdot a^{-1}$.

Theorem

A presentation of M_G as Λ -module can be obtained as follows:

- The generators $\{[x_i, x_j] \mid 1 \le i < j \le n\}$.
- The relations of G expressed in terms of the generators.
- The Jacobi relations:

$$(t_{x_i} - 1)[x_j, x_k] + (t_{x_j} - 1)[x_k, x_i] + (t_{x_k} - 1)[x_i, x_j]$$

Lema

The following relations hold in M_G : • $[x, p] = (t_x - 1)p \ \forall p \in G'.$ • $[x^{-1}, y] = -t_x^{-1}[x, y].$ • $[x_1 \cdots x_m, y_1 \cdots y_k] = \sum_{i=1}^m \sum_{j=1}^k T_{ij}[x_i, y_i]$ where $T_{ii} = \prod_{k=1}^{i-1} t_{x_k} \cdot \prod_{l=1}^{j-1} t_{y_l}$ • $[p_1 \cdots p_m, x] = -(t_x - 1)(p_1 + \cdots + p_m) \forall p_i \in G'.$ • $[p_x x, p_y y] = [x, y] + (t_x - 1)p_y - (t_y - 1)p_x \ \forall p_x, p_y \in G'.$ • $[x_1^{\alpha_1} \cdots x_m^{\alpha_m}, y_1^{\beta_1} \cdots y_k^{\beta_k}] = \sum_{i=1}^m \sum_{j=1}^k T_{ij}([x_i, x_j] + \delta(i, j)),$ where $\delta(i,j) = -(t_{v_i} - 1)[\alpha_i^{-1}, x_i] + (t_{x_i} - 1)[\beta_i^{-1}, y_j].$

伺き くきき くきき

- We have presentations of both modules.
- An isomorphism is given by a matrix corresponding to the generating systems, with entries in the ring Λ.
- Such a matrix induces an isomorphism if and only if and only if the image of the relations is in the submodule generated by the relations.
- To check the existence of such a matrix can be very difficult.
- Solution: truncate by powers of the augmentation ideal $(t_1 1, \dots, t_n 1)$.
- Then the problem becomes solving a system of equations over \mathbb{Z} .
- They have no solution!

 $G_1 \longrightarrow G_2$

- 0

 $M_{G_1} \longrightarrow M_{G_2}$

$$M_{G_1} \longrightarrow M_{G_2}$$

$$H \longrightarrow H$$

Situation

$$M_{G_1} \longrightarrow M_{G_2}$$

$$M_{G_1} \longrightarrow M_{G_2}$$

$$H \longrightarrow H$$

$$\Lambda \longrightarrow \Lambda$$

Isomorphisms of fundamental groups induce **twisted** isomorphisms of the alexander invariants

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

$$M_{G_1} \longrightarrow M_{G_2}$$

$$H \longrightarrow H$$

$$\Lambda \longrightarrow \Lambda$$

Isomorphisms of fundamental groups induce **twisted** isomorphisms of the alexander invariants We need to study which are the possible isomorphisms of H.

< □ > < □ > < □ > < □ > <</p>

- $\gamma_1 G := G$
- $\gamma_{i+1}G := [G, \gamma_i G]$
- $gr_iG := \gamma_iG/\gamma_{i+1}G$

Image: A matrix and a matrix

- $\gamma_1 G := G$
- $\gamma_{i+1}G := [G, \gamma_i G]$
- $gr_iG := \gamma_iG/\gamma_{i+1}G$

When $G = \pi_1(\mathbb{CP}^2 \setminus \bigcup \mathscr{L})$ we have the following:

- $gr_1G = \mathbb{Z}\bar{x}_1 \oplus \ldots \oplus \mathbb{Z}\bar{x}_n =: H = \mathbb{Z}\bar{x}_0 \oplus \ldots \oplus \mathbb{Z}\bar{x}_n/x_0 + \cdots + x_n$
- $gr_2G = H \bigwedge H/R$, where $R = \langle \sum_{l_j \in p} x_j \land x_i \mid p \in \mathscr{P}, l_i \in p \rangle$.

gives the following relations: $\{(x_1 + x_2 + x_3) \land x_i\}_{i=1,2,3}$

So a basis of the quotient is $\{x_i \land x_j \mid p(i,j)_1 < i < j\}$, where $p(i,j)_1$ is the index of the first line that goes through $l_i \cap l_j$.

gives the following relations: $\{(x_1 + x_2 + x_3) \land x_i\}_{i=1,2,3}$ So a basis of the quotient is $\{x_i \land x_j \mid p(i,j)_1 < i < j\}$, where $p(i,j)_1$ is the index of the first line that goes through $l_i \cap l_j$. A relation should be mapped to zero in the quotient:

$$R_1 \xrightarrow{i} H \wedge H \xrightarrow{\phi \wedge \phi} H \wedge H \xrightarrow{p} \frac{H \wedge H}{R_2}$$

Let $A = (a_{i,j})$ be a matrix that represents ϕ on the canonical generating system. Since it is not a basis, the comlumns of the matrix are defined modulo $(1, \ldots, 1)$.

The coordinates of the relations corresponding to the point $\{l_{i_1}, \ldots, l_{i_m}\}$ on the elements of the basis of the quotient coming from $\{l_{j_1}, l_{j_2}, l_{j_3}\}$ are

$$\begin{array}{cccc} a_{j_1,i_k} & a_{j_1,i_1} + \dots + a_{j_1,i_m} & 1 \\ a_{j_2,i_k} & a_{j_2,i_1} + \dots + a_{j_2,i_m} & 1 \\ a_{j_3,i_k} & a_{j_3,i_1} + \dots + a_{j_3,i_m} & 1 \end{array}$$

-0

Let $A = (a_{i,j})$ be a matrix that represents ϕ on the canonical generating system. Since it is not a basis, the comlumns of the matrix are defined modulo $(1, \ldots, 1)$.

The coordinates of the relations corresponding to the point $\{l_{i_1}, \ldots, l_{i_m}\}$ on the elements of the basis of the quotient coming from $\{l_{j_1}, l_{j_2}, l_{j_3}\}$ are

$$\begin{array}{rrrr} a_{j_1,i_k} & a_{j_1,i_1} + \dots + a_{j_1,i_m} & 1 \\ a_{j_2,i_k} & a_{j_2,i_1} + \dots + a_{j_2,i_m} & 1 \\ a_{j_3,i_k} & a_{j_3,i_1} + \dots + a_{j_3,i_m} & 1 \end{array}$$

-0

That is, for each point of multiplicity *m*, we have a map $\alpha : \mathcal{L} : \mathbb{Z}^{m-1}$ satisfying:

- For every point p = {l_{i1},..., l_{im}}, and each line l_{ij} ∈ p, the vectors α(l_{ij}) and α(l_{i1}) + ··· + α(l_{im}) are linearly dependent.
- The images span \mathbb{Z}^{m-1} .

If we write this map in the form of a matrix, the conditions are equivalent to the rows belonging to a component of the resonance variety.

This is actually expected, since R and the subspace of the relations of the OS algebra are orthogonal. So in fact, H induces a permutation of the components of the resonance variety.

Theorem

Let S be a k-dimensional component of the resonance variety and \mathcal{L}' the subarrangement formed by the lines in its support. Then there exists Π_0, \ldots, Π_k a partition of \mathcal{L}' and a map $m : \mathcal{L}' \to \mathbb{Z}^+$ such that, at every intersection point p, one of the following conditions hold:

• All the lines in p are in the same Π_i .

• $\sum_{l\in\Pi_i} m(l)$ is independent of *i*.

The converse is also true.

Theorem

Let S be a k-dimensional component of the resonance variety and \mathcal{L}' the subarrangement formed by the lines in its support. Then there exists Π_0, \ldots, Π_k a partition of \mathcal{L}' and a map $m : \mathcal{L}' \to \mathbb{Z}^+$ such that, at every intersection point p, one of the following conditions hold:

- All the lines in p are in the same Π_i .
- $\sum_{l\in\Pi_i} m(l)$ is independent of *i*.

The converse is also true.

Definition

A triple (\mathcal{L}, Π, m) as before is called a **combinatorial pencil**

• Multiple points

- Ceva arrangement
- Double cover branched along Ceva
- Finite fields.

- Multiple points
- Ceva arrangement
- Double cover branched along Ceva
- Finite fields.

- Multiple points
- Ceva arrangement
- Double cover branched along Ceva
- Finite fields.

- Multiple points
- Ceva arrangement
- Double cover branched along Ceva
- Finite fields.

Existing combinatorial pencils

lines	combinatorics	pencils
3	2	1
4	3	1
5	5	1
6	10	2
7	24	1
8	69	1
9	384	6
10	5250	1
11	232929	3

Triangles of combinatorial pencils

Let $\alpha_1, \alpha_2, \alpha_3$ be components of the resonance variety.

Definition

We will say that $\{\alpha_1, \alpha_2, \alpha_3\}$ form a triangle if $\sum_{i=1}^{3} dim(\{\alpha_i\}) - dim(\langle \alpha_1, \alpha_2, \alpha_3 \rangle) = 1.$

Triangles of combinatorial pencils

Let $\alpha_1, \alpha_2, \alpha_3$ be components of the resonance variety.

Definition

We will say that $\{\alpha_1, \alpha_2, \alpha_3\}$ form a triangle if $\sum_{i=1}^{3} dim(\{\alpha_i\}) - dim(\langle \alpha_1, \alpha_2, \alpha_3 \rangle) = 1.$

In the case that they correspond to point subarrangements, they are in triangle if and only if they are in the following disposition:

• An isomorphism of *H* that respect the resonance variety induces a permutation of the combinatorial pencils.

- An isomorphism of *H* that respect the resonance variety induces a permutation of the combinatorial pencils.
- This permutation must preserve triangles.

- An isomorphism of *H* that respect the resonance variety induces a permutation of the combinatorial pencils.
- This permutation must preserve triangles.
- Using the triangular structure, we can bound the group of such permutations.

- An isomorphism of *H* that respect the resonance variety induces a permutation of the combinatorial pencils.
- This permutation must preserve triangles.
- Using the triangular structure, we can bound the group of such permutations.
- This group must contain $Aut(\mathcal{L}, \mathcal{P}) \times \pm Id$.

- An isomorphism of *H* that respect the resonance variety induces a permutation of the combinatorial pencils.
- This permutation must preserve triangles.
- Using the triangular structure, we can bound the group of such permutations.
- This group must contain $Aut(\mathcal{L}, \mathcal{P}) \times \pm Id$.
- If the previous inclusion is an identity, the combinatorics is said to be **homologically rigid**.

We will say that a combinatorcs $(\mathcal{L}, \mathcal{P})$ is **strongly connected** if, given three distinct lines, two of them can be connected by multiple points not belonging to the thirthd.

Theorem

Let $(\mathcal{L}, \mathcal{P})$ be a strongly connected combinatorics, $\sigma \in Aut(\mathcal{L}, \mathcal{P})$, and $\tau \in Aut_{(\mathcal{L}, \mathcal{P})}(H)$ such that the induced permutation of components of the resonance variety coincides with the one determined by σ . Then $\tau = \pm \sigma$.

We will say that a combinatorics has **enough triangles** if every pair of alligned multiple points lies in some triangle, and each line passes through at least two multiple points.

We will say that a combinatorics has **enough triangles** if every pair of alligned multiple points lies in some triangle, and each line passes through at least two multiple points.

Theorem

If a strongly connected combinatorics has enough triangles, and the only combinatorial pencils contained in it are of point type, then the combinatorics is homologically rigid.

We will say that a combinatorics has **enough triangles** if every pair of alligned multiple points lies in some triangle, and each line passes through at least two multiple points.

Theorem

If a strongly connected combinatorics has enough triangles, and the only combinatorial pencils contained in it are of point type, then the combinatorics is homologically rigid.

Corollary

Rybnikov combinatorics homologically rigid.

We will say that a combinatorics has **enough triangles** if every pair of alligned multiple points lies in some triangle, and each line passes through at least two multiple points.

Theorem

If a strongly connected combinatorics has enough triangles, and the only combinatorial pencils contained in it are of point type, then the combinatorics is homologically rigid.

Corollary

Rybnikov combinatorics homologically rigid.

Corollary

The fundamental groups of Rybnikov's arrangements are non isomorphic.

Thank you!

Questions?

• • • • • • • •