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Summary

Constructing the arrangements and the presentations of the groups.

Distinguishing up to homologically trivial isomorphism: Alexander
invariant.

Showing that every isomorphism is homologically trivial: homological
rigidity.
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McLane arrangements

x ·y · (x−y) · z · (x− z) · (z +ω±y) · (z +ω±y− (ω±+ 1)x) · (z +(ω±+ 1)y−x)
where ω± = e

±2πi
3 .

Are the two realizations of the dualization of the configuration of points in
F3P2.

x x x

x x x

x x
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Rybnikov’s arrangements

Take a generic projective transformation ρ that fixes the lines x, y, x− y, and
glue ML+ with ρ(ML±)
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Fundamental group of the complement.
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Presentation of the fundamental group.

Theorem (Zariski-Van Kampen)

The group π1(C2 \
⋃

L ) admits a presentation as follows:

Generators: the meridians around the lines, {x1 , . . . , xn}.
Relations: the actions of the braids image of π1(C \ π(∆)) by the braid
monodromy.

In CP2: the meridian at infinity x0x1x2 · · · xn.

The relations are always of the form [x
ti1,p
i1 , . . . , xtim,p

im ]; where

[a1 , . . . , am] represents a1 · · · am = a2 · · · ama1 = · · · = ama1 · · · am−1 .

p is the intersection point of li1 , . . . , lim .

tij,p is some word in x1, . . . , xn.
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Alexander Invariant

Let X be a topological space. G = π1(X).

X̃

p

��

	 H := G/G ′

X

The fundamental group of X̃ is G ′ := [G,G], and its first homology group is
G ′/G ′′. The transformation group of the cover, H acts on them.
Hence, G ′/G ′′ has a module structure over Λ := Z[H] = Z[Zn]. This module
will be denoted MG.
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Algebraic setting

G/G ′ × G ′/G ′′ → G ′/G ′′

(g, [a, b]) 7−→ g ∗ [a, b] mod G ′′ = [g, [a, b]] + [a, b]

where a ∗ b := a · b · a−1.
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Presentation of MG

Theorem
A presentation of MG as Λ-module can be obtained as follows:

The generators {[xi, xj] | 1 ≤ i < j ≤ n}.
The relations of G expressed in terms of the generators.

The Jacobi relations:

(txi − 1)[xj, xk] + (txj − 1)[xk, xi] + (txk − 1)[xi, xj]
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Properties

Lema
The following relations hold in MG:

[x, p] = (tx − 1)p ∀p ∈ G′.

[x−1, y] = −t−1
x [x, y].

[x1 · · · xm, y1 · · · yk] =
∑m

i=1
∑k

j=1 Tij[xi, yi] where

Tij =
∏i−1

k=1 txk ·
∏j−1

l=1 tyl .

[p1 · · · pm, x] = −(tx − 1)(p1 + · · · pm) ∀pi ∈ G′.

[pxx, pyy] = [x, y] + (tx − 1)py − (ty − 1)px ∀px, py ∈ G′.

[xα1
1 · · · xαm

m , yβ1
1 · · · y

βk
k ] =

∑m
i=1
∑k

j=1 Tij([xi, xj] + δ(i, j)), where
δ(i, j) = −(tyj − 1)[α−1

i , xi] + (txi − 1)[β−1
j , yj].
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Distinguishing the modules

We have presentations of both modules.

An isomorphism is given by a matrix corresponding to the generating
systems, with entries in the ring Λ.

Such a matrix induces an isomorphism if and only if and only if the
image of the relations is in the submodule generated by the relations.

To check the existence of such a matrix can be very difficult.

Solution: truncate by powers of the augmentation ideal
(t1 − 1, . . . , tn − 1).

Then the problem becomes solving a system of equations over Z.

They have no solution!
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Situation

G1 // G2
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Situation

G1 // G2

MG1
// MG2
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Situation

G1 // G2

MG1
// MG2

H // H

() On Rybnikov’s example August 1-13, 2009 14 / 28



Situation

G1 // G2

MG1
// MG2

H // H

Λ // Λ

Isomorphisms of fundamental groups induce twisted isomorphisms of the
alexander invariants We need to study which are the possible isomorphisms of
H.
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Lower central series

γ1G := G

γi+1G := [G, γiG]
griG := γiG/γi+1G

When G = π1(CP2 \
⋃

L ) we have the following:

gr1G = Zx̄1 ⊕ . . .⊕ Zx̄n =: H = Zx̄0 ⊕ . . .⊕ Zx̄n/x0 + · · ·+ xn

gr2G = H
∧

H/R, where R = 〈
∑

lj∈p xj ∧ xi | p ∈P, li ∈ p〉.
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Example

@
@
@
@
@

l1
l2

l3

gives the following relations: {(x1 + x2 + x3) ∧ xi}i=1,2,3
So a basis of the quotient is {xi ∧ xj | p(i, j)1 < i < j}, where p(i, j)1 is the
index of the first line that goes through li ∩ lj.
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Conditions on the isomorphism

A relation should be mapped to zero in the quotient:

R1
i // H ∧ H

φ∧φ // H ∧ H
p // H∧H

R2
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Conditions on the isomorphism

Let A = (ai,j) be a matrix that represents φ on the canonical generating
system. Since it is not a basis, the comlumns of the matrix are defined modulo
(1, . . . , 1).
The coordinates of the relations corresponding to the point {li1 , . . . lim} on the
elements of the basis of the quotient coming from {lj1 , lj2 , lj3} are∣∣∣∣∣∣

aj1,ik aj1,i1 + · · ·+ aj1,im 1
aj2,ik aj2,i1 + · · ·+ aj2,im 1
aj3,ik aj3,i1 + · · ·+ aj3,im 1

∣∣∣∣∣∣
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Conditions on the isomorphism

That is, for each point of multiplicity m, we have a map α : L : Zm−1

satisfying:

For every point p = {li1 , . . . , lim}, and each line lij ∈ p, the vectors α(lij)
and α(li1) + · · ·+ α(lim) are linearly deppendent.

The images span Zm−1.

If we write this map in the form of a matrix, the conditions are equivalent to
the rows belonging to a component of the resonance variety.
This is actually expected, since R and the subspace of the relations of the OS
algebra are orthogonal. So in fact, H induces a permutation of the components
of the resonance variety.
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Combinatorial pencils

Theorem
Let S be a k-dimensional component of the resonance variety and L ′ the
subarrangement formed by the lines in its support. Then there exists
Π0, . . . ,Πk a partition of L ′ and a map m : L ′ → Z+ such that, at every
intersection point p, one of the following conditions hold:

All the lines in p are in the same Πi.∑
l∈Πi

m(l) is independent of i.

The converse is also true.

Definition
A triple (L ,Π,m) as before is called a combinatorial pencil
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Examples of combinatorial pencils

Multiple points
Ceva arrangement
Double cover branched along Ceva
Finite fields.
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Examples of combinatorial pencils
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Existing combinatorial pencils

lines combinatorics pencils
3 2 1
4 3 1
5 5 1
6 10 2
7 24 1
8 69 1
9 384 6
10 5250 1
11 232929 3
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Triangles of combinatorial pencils

Let α1, α2, α3 be components of the resonance variety.

Definition
We will say that {α1, α2, α3} form a triangle if∑3

i=1 dim({αi})− dim(〈α1, α2, α3〉) = 1.

In the case that they correspond to point subarrangements, they are in triangle
if and only if they are in the following disposition:
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Permutation of the pencils.

An isomorphism of H that respect the resonance variety induces a
permutation of the combinatorial pencils.

This permutation must preserve triangles.

Using the triangular structure, we can bound the group of such
permutations.

This group must contain Aut(L ,P)×±Id.

If the previous inclusion is an identity, the combinatorics is said to be
homologically rigid.
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Homological rigidity.

Definition
We will say that a combinatorcs (L ,P) is strongly connected if, given three
distinct lines, two of them can be connected by multiple points not belonging
to the thirthd.

Theorem
Let (L ,P) be a strongly connected combinatorics, σ ∈ Aut(L ,P), and
τ ∈ Aut(L ,P)(H) such that the induced permutation of components of the
resonance variety coincides with the one determined by σ. Then τ = ±σ.
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Some results.

Definition
We will say that a combinatorics has enough triangles if every pair of
alligned multiple points lies in some triangle, and each line passes through at
least two multiple points.

Theorem
If a strongly connected combinatorics has enough triangles, and the only
combinatorial pencils contained in it are of point type, then the combinatorics
is homologically rigid.

Corollary
Rybnikov combinatorics homologically rigid.

Corollary
The fundamental groups of Rybnikov’s arrangements are non isomorphic.
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Thank you!

Questions?
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