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Introduction

A = {H1, · · · , Hm} : arrangement of affine hyperplanes in the
complex vector space Cn

Consider the complement

M(A) = Cn \
⋃
H∈A

H

Some topological properties of M(A) are determined
combinatorially by the intersection lattice L(A)

Betti numbers

Cohomology ring (isomorphic to Orlik-Solomon algebra)

Homotopy type of M(A) is not determined by L(A).
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Real arrangements and complexification

Let VR = Rn be a real vector space.
A = {H1, · · · , Hm} : arrangement of real affine hyperplanes in the
complex vector space Rn

VR \
⋃
H∈A consists of finitely many connected components called

chambers.
Consider the complement of the complexified real arrangement

M(A) = Cn \
⋃
H∈A

H ⊗C
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Some classical formulae

ch(A) : the set of chambers
bch(A) : the set of bounded chambers

[Zaslavsky]

|ch(A)| =
n∑
i=0

bi(M(A))

|bch(A)| = |
n∑
i=0

(−1)ibi(M(A))|
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Salvetti complex

The real hyperplane arrangement A determines a stratification S
(facet decomposition) of Rn.

F1 > F2 ⇐⇒ F1 ⊃ F2

For a flag F = (Fj0 < · · · < Fjp) one associated a dual simplex
σ(F ).

For a facet F the dual cell is defined by

D(F ) =
⋃
σ(F i < F i−1 < · · · < F 0)

with F i = F and codimF j = j.
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Salvetti complex (continued)

Let π : M(A) −→ Rn be the projection corresponding the the real
part.
A facet decomposition of M(A) is given by⋃

F

π−1(F )

The associated dual complex is called the Salvetti complex S(A),
which is an n dimensional CW complex.

Theorem (Salvetti)

The inclusion
S(A) −→M(A)

is a homotopy equivalence.

Toshitake Kohno Arrangements and Topology 1



Salvetti complex (continued)

Let π : M(A) −→ Rn be the projection corresponding the the real
part.
A facet decomposition of M(A) is given by⋃

F

π−1(F )

The associated dual complex is called the Salvetti complex S(A),
which is an n dimensional CW complex.

Theorem (Salvetti)

The inclusion
S(A) −→M(A)

is a homotopy equivalence.

Toshitake Kohno Arrangements and Topology 1



Related problems

Cohomology of Artin groups with coefficients in local systems
(De Concini, Procesi, Salvetti)

K(π, 1) problem for M(A) : When is the universal covering
of S(A) contractible?

– Deligne : Simplicial arrangement is K(π, 1). This class contains
complexified Coxeter arrangements (see also Brieskorn-Saito)

– Falk’s K(π, 1) test
– Description of the universal covering of S(A) (Paris)
– Remarkable progress in unitary reflection arrangements (Bessis)
– Discrete Morse theory
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Local system homology

L : rank 1 local system over M(A).
Study the local system homology H∗(M(A),L).

Compare with H lf
∗ (M(A),L), homology with locally finite

(possibly infinite) chains.

In the case of complexified real arrangement the facet
decomposition of M(A) defined by the projection

π : M(A) −→ Rn

associating the imaginary part provides a complex to compute the
homology H lf

∗ (M(A),L).
The image of the natural map

H∗(M(A),L) −→ H lf
∗ (M(A),L)

is generated by bounded chambers.
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Vanishing theorem

For a complex arrangement A choose a smooth compactification
i : M(A) −→ X with normal crossing divisors.

Assume that the local system L is generic in the following sense:
There is an isomorphism

i∗L ∼= i!L

where i∗ is the direct image and i! is the extension by 0. This
means that the monodromy of L along any divisor at infinity is not
equal to 1.

Theorem

If the local system is generic in the above sense, then there is an
isomorphism

H∗(M(A),L) ∼= H lf
∗ (M(A),L)

We have Hj(M(A),L) = 0 for any j 6= n.
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Vanishing theorem (continued)

In case of complexified real arrangement the above H lf
∗ (M(A),L)

is spanned by bounded chambers.
For the proof of vanishing theorem we use the following: In general
we have

H∗(X, i∗L) ∼= H∗(M(A),L), H∗(X, i!L) ∼= H∗c (M(A),L)

where Hc denote the cohomology with compact supports.
There is a Poincaré duality isomorphism:

H lf
k (M(A),L) ∼= H2n−k((M(A),L)

Hk(M(A),L) ∼= H2n−k
c ((M(A),L).
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Related work on cohomology

A cohomological counterpart for the vanishing theorem for
Orlik-Solomon algebra and Aomoto complex has been studied by:

Esnault-Viehweg, Aomoto, Orlik, Kita,
Schechtman-Terao-Varchenko, Yuzvinsky, D. Cohen, Suciu ....

There are also works on characteristic and resonance varieties.

The case of discriminantal arrangement was studied systematically
by Varchenko and Schechtman in relation with the solution of KZ
equation by hypergeometric integrals. There is “resonance at
infinity” in the case of conformal field theory.
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Minimality

Theorem (Dimca-Papadima, Randell)

Let A be an arrangement of affine hyperplanes in Cn. Then the
complement M(A) is homotopy equivalent to an n-dimensional
minimal CW complex, i.e., the number of k-dimensional cells
equals to bk(M(A)) for any k ≥ 0.
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Minimality (continued)

The proof of minimality uses the idea of Lefschetz hyperplane
section theorem and combinatorial description of the cohomology
ring.

Yoshinaga gave a description of the attaching maps in the case of
complexified real arrangement.

As a corollary of minimality we have

dimHk(M(A),L)) ≤ bk(M(A))

which was shown by D. Cohen by a different method.
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Iterated integals - an overview

In this part we describe the application of the theory of iterated
integrals to hyperplane arrangements.
The theory of iterated integrals of differential forms was developed
by K. T. Chen in 1980’s.

Iterated integrals of differential forms on a simply connected
manifold M computes the de Rham cohomology of the loop
space ΩM .

Iterated integrals of 1-forms provide “non-commutative”
information on the fundamental group.

Remark: Kontsevich integral can be considered as a generalization
of iterated integrals on braids for the case of knots.
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Iterated integals of 1-forms

ω1, · · · , ωk : differential 1-forms on a smooth manifold M
γ : [0, 1]→M a smooth path
pull-back γ∗ωi = fi(t)dt, 1 ≤ i ≤ k

The iterated integral of the 1-forms
∫
γ ω1ω2 · · ·ωk is defined as∫

0≤t1≤···≤tk≤1
f1(t1)f2(t2) · · · fk(tk) dt1dt2 · · · dtk.

example. Dilogarithm is expressed as the iterated integral of
ω1 = dz

1−z and ω0 = dz
z as

Li2(z) = −
∫ z

0

log(1− z)
z

dz.
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Definition of iterated integals of differential forms

ω1, · · · , ωk : differential forms on M
ΩM : loop space M

∆k = {(t1, · · · , tk) ∈ Rk ; 0 ≤ t1 ≤ · · · ≤ tk ≤ 1}

ϕ : ∆k × ΩM →M × · · · ×M︸ ︷︷ ︸
k

defined by ϕ(t1, · · · , tk; γ) = (γ(t1), · · · , γ(tk))

The iterated integral of ω1, · · · , ωk is defined as∫
ω1 · · ·ωk =

∫
∆k

ϕ∗(ω1 × · · · × ωk)
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Iterated integrals as differential forms on loop space

The expression ∫
∆k

ϕ∗(ω1 × · · · × ωk)

is the integration along fiber with respect to the projection
p : ∆k × ΩM → ΩM .

differential form on the loop space ΩM
with degree p1 + · · ·+ pk − k.
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Differentiation on loop spaces

As a differential form on the loop space d
∫
ω1 · · ·ωk is

k∑
j=1

(−1)νj−1+1

∫
ω1 · · ·ωj−1dωj ωj+1 · · ·ωk

+
k−1∑
j=1

(−1)νj+1

∫
ω1 · · ·ωj−1(ωj ∧ ωj+1)ωj+2 · · ·ωk

where νj = degω1 + · · ·+ degωj − j.
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Bar complex

E∗−1(M) : the differential graded algebra whose degree j part is

Ej+1(M), j > 0

E1(M)/dE0(M), j = 0

The tensor algebra TE∗−1(M) is equipped with the structure of a
graded algebra. We set

B−k,p(M) =

[
k⊗
E∗−1(M)

]p−k
where the right hand side stands for the degree p− k part.

Toshitake Kohno Arrangements and Topology 1



Bar complex

E∗−1(M) : the differential graded algebra whose degree j part is

Ej+1(M), j > 0

E1(M)/dE0(M), j = 0

The tensor algebra TE∗−1(M) is equipped with the structure of a
graded algebra. We set

B−k,p(M) =

[
k⊗
E∗−1(M)

]p−k
where the right hand side stands for the degree p− k part.

Toshitake Kohno Arrangements and Topology 1



The structure of a double complex

For a differential q form ϕ we set Jϕ = (−1)qϕ. The differential
d′ : B−k,p(M) −→ B−k,p+1(M) is defined by

d′(ϕ1⊗· · ·⊗ϕk) =
k∑
i=1

(−1)i Jϕ1⊗· · ·⊗Jϕi−1⊗dϕi⊗ϕi+1⊗· · ·⊗ϕk.

The differential d′′ : B−k,p(M) −→ B−k+1,p(M) is defined by

d′′(ϕ1 ⊗ · · · ⊗ ϕk)

=
k∑
i=1

(−1)i−1 Jϕ1 ⊗ · · · ⊗ [(Jϕi) ∧ ϕi+1]⊗ · · · ⊗ ϕk.

⊕k,pB−k,p(M) has a structure of a double complex.
The associated total complex is denoted by B∗(M) and is called
the bar complex of the de Rham complex of M .
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Chen’s main theorem

There is a cochain map from the bar complex to the de Rham
complex of the loop space

I : B∗(M) −→ E∗(ΩM)

given by the iterated integral

I(ω1 ⊗ · · · ⊗ ωk) =
∫
ω1 · · ·ωk

Theorem (K. T. Chen)

If M is simply connected, then the above map I induces an
isomorphism

H∗(B∗(M)) ∼= H∗(ΩM).
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Bar complex for Orlik-Solomon algebra

Let A be the Orlik-Solomon algebra.
Define the reduced complex by

A
q =

{
0, q < 0
Aq+1, q ≥ 0

The reduced bar complex of the Orlik-Solomon algebra is the
tensor algebra defined by

B
∗(A) =

⊕
k≥0

(
k⊗
A

)
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Bar complex for Orlik-Solomon algebra (continued)

The coboundary operator for the bar complex is

d(ϕ1 ⊗ · · · ⊗ ϕk)

=
k−1∑
j=1

(−1)νj+1ϕ1 ⊗ · · · ⊗ (ϕj ∧ ϕj+1)⊗ · · · ⊗ ϕk

with ϕj ∈ A
qj and νj = q1 + · · ·+ qj .

There is a natural filtration defined by

F−k(B∗(A)) =
⊕
`≤k

(
⊗̀

A)
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Comparison theorem

Theorem

For the complement of hyperplane arrangement the integration
map I : B∗(A) −→ B∗(M(A)) induces an isomorphism

H∗(B∗(A)) ∼= H∗(B∗(M(A))
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Bar complex and fundamental group

Theorem

For the reduced bar complex for the Orlik-Solomon algebra there is
an isomorphism

F−kH0(B∗(A)) ∼= Hom(Zπ1(M,x0)/Jk+1,C)

Toshitake Kohno Arrangements and Topology 1


