On a problem of arrangements related to the hypergeometric integrals of confluent type

Hironobu Kimura
Graduate school of Science and Technology, Kumamoto University

August 11, 2009

Purpose

- Explanation of general HGI from the view point of Radon transform using Gauss HGF and its confluent functions.

Purpose

- Explanation of general HGI from the view point of Radon transform using Gauss HGF and its confluent functions.
- Compute the rational de Rham cohomology groups for the general HGI .

Purpose

- Explanation of general HGI from the view point of Radon transform using Gauss HGF and its confluent functions.
- Compute the rational de Rham cohomology groups for the general HGI.
- Provide a working example to the hyperplane arragement theory.

Classical HGF
 Gauss HGF:

${ }_{2} F_{1}(a, b, c ; x)$
$=\sum_{m=0}^{\infty} \frac{(a)_{m}(b)_{m}}{(c)_{m} m!} x^{m}$
$=\frac{\Gamma(c)}{\Gamma(a) \Gamma(c-a)} \int_{0}^{1} u^{a-1}(1-u)^{c-a-1}(1-x u)^{-b} d u$
holomorphic solution at $\boldsymbol{x}=\mathbf{0}$ of

$$
x(1-x) y^{\prime \prime}+\{c-(a+b+1) x\} y^{\prime}-a b y=0
$$

with $y(0)=1$.

Confluent type functions considered here:

$$
{ }_{2} F_{1}(a, b, c ; x)=C \int_{0}^{1} u^{a-1}(1-u)^{c-a-1}(1-x u)^{-b} a
$$

(Gauss)

$$
{ }_{1} F_{1}(a, c ; x)=C \int_{0}^{1} e^{x u} u^{a-1}(1-u)^{c-a-1} d u
$$

(Kummer)
$J_{a}(x)=C \int_{\gamma} e^{x(u-1 / u)} u^{-a-1} d u$
(Bessel)
$H_{a}(x)=C \int_{\gamma} e^{x u-\frac{1}{2} u^{2}} u^{-a-1} d u$
(Hermite)
$\operatorname{Ai}(x)=C \int_{\gamma} e^{x u-\frac{1}{3} u^{3}} d u$

The differential equations

$$
\begin{array}{lr}
x(1-x) y^{\prime \prime}+\{c-(a+b+1) x\} y^{\prime}-a b y=0, \\
x y^{\prime \prime}+(c-x) y^{\prime}-a y=0, & \text { (Kummer) } \\
x^{2} y^{\prime \prime}+x y^{\prime}+\left(x^{2}-a^{2}\right) y=0, & \text { (Bessel) } \\
y^{\prime \prime}-x y^{\prime}+a y=0, & \text { (Hermite) } \\
y^{\prime \prime}-x y=0 & \text { (Airy) }
\end{array}
$$

HGF and partition of 4

Arrange these functions as

To these functions we associate the partitions of 4 :

Question: What these partitions mean in the context of GHGI?

Question: What these partitions mean in the context of GHGI?

Answer: They indicate the type of strata of regular elements of $\mathrm{GL}_{4}(\mathbb{C})$.

Question: What these partitions mean in the context of GHGI?

Answer: They indicate the type of strata of regular elements of $\mathrm{GL}_{4}(\mathbb{C})$.

Definition
$a \in \mathrm{GL}_{4}(\mathbb{C})$ a regular element.
$\Leftrightarrow O(a)=\left\{g a g^{-1} \mid g \in \mathrm{GL}_{4}(\mathbb{C})\right\}$ is of maximum dimension.
\Leftrightarrow any two Jordan cells of \boldsymbol{a} have different eigenvalues.

If $a \in \mathbf{G L}_{4}(\mathbb{C})$ is regular , then a is similar to
$\left(\begin{array}{llll}a_{0} & & & \\ & a_{1} & & \\ & & a_{2} & \\ & & & a_{3}\end{array}\right)$
$\left(\begin{array}{llll}a_{0} & 1 & & \\ & a_{0} & & \\ & & a_{2} & \\ & & & a_{3}\end{array}\right)$
$\left(\begin{array}{llll}a_{0} & 1 & & \\ & a_{0} & & \\ & & a_{2} & 1 \\ & & & a_{2}\end{array}\right)$
$\longleftrightarrow(1+1+1+1)$
$\longleftrightarrow(2+1+1)$
$\longleftrightarrow(2+2)$

$$
\begin{array}{ll}
\left(\begin{array}{cccc}
a_{0} & 1 & & \\
& a_{0} & 1 & \\
& & a_{0} & \\
& & & a_{3}
\end{array}\right) \\
\left(\begin{array}{cccc}
a_{0} & 1 & & \\
& a_{0} & 1 & \\
& & a_{0} & 1 \\
& & & a_{0}
\end{array}\right)
\end{array}
$$

where $a_{i} \neq a_{j}(i \neq j)$.

Regular elements \rightarrow the centralizers.

$$
\begin{aligned}
H_{(1,1,1,1)} & =\left\{\left(\begin{array}{llll}
h_{0} & & & \\
& h_{1} & & \\
& & h_{2} & \\
& & & h_{3}
\end{array}\right)\right\} \\
H_{(2,1,1)} & =\left\{\left(\begin{array}{llll}
h_{0} & h_{1} & & \\
& h_{0} & & \\
& & h_{2} & \\
& & & h_{3}
\end{array}\right)\right\} \\
H_{(2,2)} & =\left\{\left(\begin{array}{llll}
h_{0} & h_{1} & & \\
& h_{0} & & \\
& & h_{2} & h_{3} \\
& & & h_{2}
\end{array}\right)\right\}
\end{aligned}
$$

$$
\begin{array}{cl}
\boldsymbol{H}_{(3,1)} & =\left\{\left(\begin{array}{llll}
h_{0} & h_{1} & h_{2} & \\
& h_{0} & h_{1} & \\
& & h_{0} & \\
& & & h_{3}
\end{array}\right)\right\} \\
\boldsymbol{H}_{(4)} & =\left\{\left(\begin{array}{llll}
h_{0} & h_{1} & h_{2} & h_{3} \\
& h_{0} & h_{1} & h_{2} \\
& & h_{0} & h_{1} \\
& & & h_{0}
\end{array}\right)\right\}
\end{array}
$$

Gauss case

$$
\begin{aligned}
& { }_{2} F_{1}(a, b, c ; x) \\
& =C \int_{0}^{1} u^{a-1}(1-u)^{c-a-1}(1-x u)^{-b} d u .
\end{aligned}
$$

- Zeros of $\boldsymbol{u}, \mathbf{1}-\boldsymbol{u}, \mathbf{1}-\boldsymbol{x} \boldsymbol{u}$ is important.
- The information at $\boldsymbol{u}=\infty$ is also important!
- Make $u=\infty$ visible.
- $t=\left(t_{0}, t_{1}\right)$: homog. coord. of \mathbb{P}^{1}.
- $u \in \mathbb{C} \subset \mathbb{P}^{1}$ is related by $u=t_{1} / t_{0}$.
- Put $\left(\alpha_{1}, \alpha_{2}, \alpha_{3}\right):=(a-1, c-a-1,-b)$
integrand

$$
\begin{aligned}
& =\left(\frac{t_{1}}{t_{0}}\right)^{\alpha_{1}}\left(1-\frac{t_{1}}{t_{0}}\right)^{\alpha_{2}}\left(1-x \frac{t_{1}}{t_{0}}\right)^{\alpha_{3}} d\left(\frac{t_{1}}{t_{0}}\right) \\
& =t_{0}^{-2-\alpha_{1}-\alpha_{2}-\alpha_{3}} t_{1}^{\alpha_{1}}\left(t_{0}-t_{1}\right)^{\alpha_{2}}\left(t_{0}-x t_{1}\right)^{\alpha_{3}} \\
& \times\left(t_{0} d t_{1}-t_{1} d t_{0}\right) .
\end{aligned}
$$

- Put $\alpha_{0}=-2-\alpha_{1}-\alpha_{2}-\alpha_{3}$.
- The behavior at $\boldsymbol{u}=\infty$ is visible as the term $\boldsymbol{t}_{0}^{\alpha_{0}}$.

We think the integrand is constructed as follows:

- $\lambda=(1,1,1,1)$,

$$
H=\left\{h=\left(\begin{array}{llll}
h_{0} & & & \\
& h_{1} & & \\
& & h_{2} & \\
& & & h_{3}
\end{array}\right)\right\} \subset \mathrm{GL}_{4}(\mathbb{C})
$$

- $\chi: \tilde{\boldsymbol{H}} \rightarrow \mathbb{C}^{\times}:$a character

$$
\chi(h ; \alpha)=h_{0}^{\alpha_{0}} \cdots h_{3}^{\alpha_{3}},
$$

with $\alpha=\left(\alpha_{0}, \alpha_{1}, \alpha_{2}, \alpha_{3}\right)$ such that

$$
\alpha_{0}+\alpha_{1}+\alpha_{2}+\alpha_{3}=-2
$$

- Substitute into χ the linear functions of t_{0}, t_{1} :

$$
\begin{aligned}
& h_{0}(t)=t_{0}, h_{1}(t)=t_{1} \\
& h_{2}(t)=t_{0}-t_{1}, h_{3}(t)=t_{0}-x t_{1}
\end{aligned}
$$

$$
{ }_{2} F_{1}(a, b, c ; x)=C \int \chi(h(t) ; \alpha)\left(t_{0} d t_{1}-t_{1} d t_{0}\right)
$$

$\boldsymbol{h}_{i}(\boldsymbol{t})$ are determined by the columns of

$$
\begin{align*}
h(t) & =\left(t_{0}, t_{1}, t_{0}-t_{1}, t_{0}-x t_{1}\right) \\
& =\left(t_{0}, t_{1}\right)\left(\begin{array}{cccc}
1 & 0 & 1 & 1 \\
0 & 1 & -1 & -x
\end{array}\right) \tag{1}
\end{align*}
$$

$\boldsymbol{h}_{i}(\boldsymbol{t})$ are determined by the columns of

$$
\begin{align*}
h(t) & =\left(t_{0}, t_{1}, t_{0}-t_{1}, t_{0}-x t_{1}\right) \\
& =\left(t_{0}, t_{1}\right)\left(\begin{array}{cccc}
1 & 0 & 1 & 1 \\
0 & 1 & -1 & -x
\end{array}\right) \tag{1}
\end{align*}
$$

Question: Why the particular linear polynomials specified by (1) are chosen?

Gelfand's idea: Replace the matrix (1) by a general 2×4 matrix.

- $Z=\left\{z \in \operatorname{Mat}_{2,4}(\mathbb{C}) \mid\right.$ any 2-minor $\left.\neq 0\right\}$
- For $z=\left(z_{0}, z_{1}, z_{2}, z_{3}\right) \in Z$, put

$$
h(t)=t z=\left(t z_{0}, t z_{1}, t z_{2}, t z_{3}\right)
$$

- Gelfand HGF:

$$
F(z ; \gamma)=\int_{\gamma} \chi(h(t) ; \alpha) \cdot\left(t_{0} d t_{1}-t_{1} d t_{0}\right)
$$

Question: How far Gauss HGF is generalized by Gelfand's HGF?

Question: How far Gauss HGF is generalized by Gelfand's HGF?

Answer: Essentially the same!

Question: How far Gauss HGF is generalized by Gelfand's HGF?

Answer: Essentially the same!
We will explain why essentially the same.

Consider the action of $\mathrm{GL}_{2}(\mathbb{C}) \times \boldsymbol{H}$ on \boldsymbol{Z} :

$$
\begin{equation*}
\mathrm{GL}_{2}(\mathbb{C}) \times Z \times H \ni(g, z, h) \mapsto g z h \in Z \tag{2}
\end{equation*}
$$

Proposition

1) For $g \in \mathrm{GL}_{2}(\mathbb{C})$

$$
\boldsymbol{F}\left(g z ; \gamma^{\prime}\right)=(\operatorname{det} g)^{-1} \boldsymbol{F}(z ; \gamma)
$$

where $\gamma^{\prime}=\left(\boldsymbol{g}^{-1}\right)_{*} \gamma$ is the image of γ by $\boldsymbol{t} \mapsto \boldsymbol{t g}^{-1}$. 2) For $\boldsymbol{h} \in \tilde{\boldsymbol{H}}$,

$$
F(z h ; \gamma)=F(z ; \gamma) \chi(h ; \alpha)
$$

The above proposition says
(1) the values of \boldsymbol{F} on the orbit $\boldsymbol{O}(\boldsymbol{z})$ is determined by the value at \boldsymbol{z}.
(2) If we can take $\boldsymbol{X} \subset \boldsymbol{Z}$ which intersect once with each orbit, the restriction of \boldsymbol{F} on \boldsymbol{X} determines \boldsymbol{F}.
(3) As a realization $X \subset Z$ of $\mathrm{GL}_{2}(\mathbb{C}) \backslash \boldsymbol{Z} / \boldsymbol{H}$, we can take

$$
X=\left\{\left(\begin{array}{cccc}
1 & 0 & 1 & 1 \\
0 & 1 & -1 & -x
\end{array}\right)\right\} \subset Z
$$

Conclusion

Gauss HGF
 \Leftrightarrow Radon transform of $\boldsymbol{\chi}(\boldsymbol{h}, \boldsymbol{\alpha})$ of $\tilde{\boldsymbol{H}}_{(1,1,1,1)}$.

Airy's case

We can understand the Airy integral

$$
\operatorname{Ai}(x)=\int_{\gamma} \exp \left(x u-\frac{1}{3} u^{3}\right) d u
$$

in a similar way.

- $\boldsymbol{\lambda}=(4)$: a partition of 4 .
- $\boldsymbol{\lambda}=(4)$: a partition of 4 .

$$
\begin{aligned}
H_{(4)} & =\left\{h=\left(\begin{array}{llll}
h_{0} & h_{1} & h_{2} & h_{3} \\
& h_{0} & h_{1} & h_{2} \\
& & h_{0} & h_{1} \\
& & & h_{0}
\end{array}\right)\right\} \subset \mathrm{GL}_{4}(\mathbb{C}) \\
& =\left\{h_{0} I+h_{1} \Lambda+h_{2} \Lambda^{2}+h_{3} \Lambda^{3} \mid h_{0} \neq 0\right\} \\
& =\left(\mathbb{C}[T] /\left(T^{4}\right)\right)^{\times}
\end{aligned}
$$

- $\boldsymbol{\lambda}=(4)$: a partition of 4 .

$$
\begin{aligned}
\boldsymbol{H}_{(4)} & =\left\{h=\left(\begin{array}{llll}
h_{0} & h_{1} & h_{2} & h_{3} \\
& h_{0} & h_{1} & h_{2} \\
& & h_{0} & h_{1} \\
& & & h_{0}
\end{array}\right)\right\} \subset \mathrm{GL}_{4}(\mathbb{C}) \\
& =\left\{h_{0} I+h_{1} \Lambda+h_{2} \Lambda^{2}+h_{3} \Lambda^{3} \mid h_{0} \neq 0\right\} \\
& =\left(\mathbb{C}[T] /\left(T^{4}\right)\right)^{\times}
\end{aligned}
$$

- $\chi: \tilde{\boldsymbol{H}} \rightarrow \mathbb{C}^{\times}:$a character.

Explicit form of χ.
Let $\boldsymbol{\theta}_{j}(\boldsymbol{h})(\boldsymbol{j}=\mathbf{0}, \ldots, 3)$ be defined by

$$
\begin{align*}
& \log \left(h_{0} I+h_{1} \Lambda+h_{2} \Lambda^{2}+h_{3} \Lambda^{3}\right) \\
& =\left(\log h_{0}\right) I+\theta_{1}(h) \Lambda+\theta_{2}(h) \Lambda^{2}+\theta_{3}(h) \Lambda^{3} \tag{3}
\end{align*}
$$

The Taylor expansion of \log gives

$$
\begin{aligned}
\theta_{1}(h) & =\frac{h_{1}}{h_{0}} \\
\theta_{2}(h) & =\frac{h_{2}}{h_{0}}-\frac{1}{2}\left(\frac{h_{1}}{h_{0}}\right)^{2} \\
\theta_{3}(h) & =\frac{h_{3}}{h_{0}}-\left(\frac{h_{1}}{h_{0}}\right)\left(\frac{h_{2}}{h_{0}}\right)+\frac{1}{3}\left(\frac{h_{1}}{h_{0}}\right)^{3} .
\end{aligned}
$$

- The map $\boldsymbol{h} \mapsto\left(\boldsymbol{h}_{\mathbf{0}}, \boldsymbol{\theta}_{\mathbf{1}}(\boldsymbol{h}), \ldots, \boldsymbol{\theta}_{\mathbf{3}}(\boldsymbol{h})\right)$ gives an isomorphism $\boldsymbol{H}_{(4)} \simeq \mathbb{C}^{\times} \times \mathbb{C}^{3}$.
- The map $\boldsymbol{h} \mapsto\left(\boldsymbol{h}_{0}, \boldsymbol{\theta}_{\mathbf{1}}(\boldsymbol{h}), \ldots, \boldsymbol{\theta}_{\mathbf{3}}(\boldsymbol{h})\right)$ gives an isomorphism $\boldsymbol{H}_{(4)} \simeq \mathbb{C}^{\times} \times \mathbb{C}^{3}$.
- For some $\alpha=\left(\alpha_{0}, \alpha_{1}, \alpha_{2}, \alpha_{3}\right) \in \mathbb{C}^{4}$,
$\chi(h ; \alpha)=h_{0}^{\alpha_{0}} \exp \left(\alpha_{1} \theta_{1}(h)+\alpha_{2} \theta_{2}(h)+\alpha_{3} \theta_{3}(h)\right)$
- The map $\boldsymbol{h} \mapsto\left(\boldsymbol{h}_{0}, \boldsymbol{\theta}_{\mathbf{1}}(\boldsymbol{h}), \ldots, \boldsymbol{\theta}_{\mathbf{3}}(\boldsymbol{h})\right)$ gives an isomorphism $\boldsymbol{H}_{(4)} \simeq \mathbb{C}^{\times} \times \mathbb{C}^{3}$.
- For some $\alpha=\left(\alpha_{0}, \alpha_{1}, \alpha_{2}, \alpha_{3}\right) \in \mathbb{C}^{4}$,
$\chi(h ; \alpha)=h_{0}^{\alpha_{0}} \exp \left(\alpha_{1} \theta_{1}(h)+\alpha_{2} \theta_{2}(h)+\alpha_{3} \theta_{3}(h)\right)$
- Take $\alpha=(-2,0,0,-1)$.
- The map $\boldsymbol{h} \mapsto\left(\boldsymbol{h}_{0}, \boldsymbol{\theta}_{1}(\boldsymbol{h}), \ldots, \boldsymbol{\theta}_{\mathbf{3}}(\boldsymbol{h})\right)$ gives an isomorphism $\boldsymbol{H}_{(4)} \simeq \mathbb{C}^{\times} \times \mathbb{C}^{3}$.
- For some $\alpha=\left(\alpha_{0}, \alpha_{1}, \alpha_{2}, \alpha_{3}\right) \in \mathbb{C}^{4}$,
$\chi(h ; \alpha)=h_{0}^{\alpha_{0}} \exp \left(\alpha_{1} \theta_{1}(h)+\alpha_{2} \theta_{2}(h)+\alpha_{3} \theta_{3}(h)\right)$
- Take $\alpha=(-2,0,0,-1)$.
- Substitute in $\chi: \boldsymbol{h}(\boldsymbol{u})=$

$$
(1, u)\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & -x
\end{array}\right)=(1, u, 0,-x u)
$$

- The map $\boldsymbol{h} \mapsto\left(\boldsymbol{h}_{0}, \boldsymbol{\theta}_{\mathbf{1}}(\boldsymbol{h}), \ldots, \boldsymbol{\theta}_{\mathbf{3}}(\boldsymbol{h})\right)$ gives an isomorphism $\boldsymbol{H}_{(4)} \simeq \mathbb{C}^{\times} \times \mathbb{C}^{3}$.
- For some $\alpha=\left(\alpha_{0}, \alpha_{1}, \alpha_{2}, \alpha_{3}\right) \in \mathbb{C}^{4}$,
$\chi(h ; \alpha)=h_{0}^{\alpha_{0}} \exp \left(\alpha_{1} \theta_{1}(h)+\alpha_{2} \theta_{2}(h)+\alpha_{3} \theta_{3}(h)\right)$
- Take $\alpha=(-2,0,0,-1)$.
- Substitute in $\chi: \boldsymbol{h}(\boldsymbol{u})=$
$(1, u)\left(\begin{array}{cccc}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & -x\end{array}\right)=(1, u, 0,-x u)$.
- $\chi(h(u))=\exp \left(x u-\frac{1}{3} u^{3}\right)$.
- The map $\boldsymbol{h} \mapsto\left(\boldsymbol{h}_{0}, \boldsymbol{\theta}_{\mathbf{1}}(\boldsymbol{h}), \ldots, \boldsymbol{\theta}_{\mathbf{3}}(\boldsymbol{h})\right)$ gives an isomorphism $\boldsymbol{H}_{(4)} \simeq \mathbb{C}^{\times} \times \mathbb{C}^{3}$.
- For some $\alpha=\left(\alpha_{0}, \alpha_{1}, \alpha_{2}, \alpha_{3}\right) \in \mathbb{C}^{4}$,
$\chi(h ; \alpha)=h_{0}^{\alpha_{0}} \exp \left(\alpha_{1} \theta_{1}(h)+\alpha_{2} \theta_{2}(h)+\alpha_{3} \theta_{3}(h)\right)$
- Take $\alpha=(-2,0,0,-1)$.
- Substitute in $\chi: \boldsymbol{h}(\boldsymbol{u})=$

$$
(1, u)\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & -x
\end{array}\right)=(1, u, 0,-x u)
$$

- $\chi(h(u))=\exp \left(x u-\frac{1}{3} u^{3}\right)$.

$$
\operatorname{Ai}(x)=\int_{\gamma} \chi(h(u) ; \alpha) d u
$$

Question: Why we choose particluar linear polynomials specified by

$$
\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & -x
\end{array}\right)
$$

Question: Why we choose particluar linear polynomials specified by

$$
\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & -x
\end{array}\right)
$$

The answer is again given by considering the generalized Airy function.

- $Z_{(4)}=\left\{\left(z_{0}, \ldots, z_{3}\right) \in \operatorname{Mat}_{2,4}(\mathbb{C}) ;[0,1] \neq 0\right\}$.

Question: Why we choose particluar linear polynomials specified by

$$
\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & -x
\end{array}\right)
$$

The answer is again given by considering the generalized Airy function.

- $Z_{(4)}=\left\{\left(z_{0}, \ldots, z_{3}\right) \in \operatorname{Mat}_{2,4}(\mathbb{C}) ;[0,1] \neq 0\right\}$.
- Define

$$
F(z, \gamma)=\int_{\gamma} \chi(h(t) ; \alpha)\left(t_{0} d t_{1}-t_{1} d t_{0}\right)
$$

with $h(t)=t z, z \in Z_{(4)}$

- We can show $\boldsymbol{F}(\boldsymbol{z}, \gamma)$ satisfies

$$
\begin{aligned}
F\left(g z ; \gamma^{\prime}\right) & =(\operatorname{det} g)^{-1} F(z ; \gamma), g \in \mathrm{GL}_{2}(\mathbb{C}) \\
F(z h ; \gamma) & =F(z ; \gamma) \chi(h ; \alpha), \tilde{h} \in H_{(4)} .
\end{aligned}
$$

- We can show $\boldsymbol{F}(\boldsymbol{z}, \gamma)$ satisfies

$$
\begin{aligned}
\boldsymbol{F}\left(\boldsymbol{g} z ; \gamma^{\prime}\right) & =(\operatorname{det} \boldsymbol{g})^{-1} \boldsymbol{F}(z ; \gamma), \boldsymbol{g} \in \mathrm{GL}_{2}(\mathbb{C}) \\
\boldsymbol{F}(z h ; \gamma) & =\boldsymbol{F}(z ; \gamma) \chi(\boldsymbol{h} ; \boldsymbol{\alpha}), \tilde{\boldsymbol{h}} \in \boldsymbol{H}_{(4)}
\end{aligned}
$$

$$
\mathrm{GL}_{2}(\mathbb{C}) \backslash \boldsymbol{Z}_{(4)} / \boldsymbol{H}_{(4)} \simeq\left\{\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & -x
\end{array}\right) ; x \in \mathbb{C}\right\}
$$

This explain that the generalized Airy function is essentially the same as the classical one.

Remark
The reason for choosing $\boldsymbol{\alpha}$ in χ as

$$
\alpha=(-2,0,0,-1)
$$

\Rightarrow the group of symmetry for GAI which is an analogue of Weyl group: $\boldsymbol{N}_{\mathrm{GL}_{4}(\mathbb{C})}\left(\boldsymbol{H}_{(4)}\right) / \boldsymbol{H}_{(4)}$.

General Hypergeometric integrals

Consider a generalization of the above examples.
Maximal abelian group

- $N \geq 3$ integer.
- $\boldsymbol{\lambda}=\left(\boldsymbol{n}_{1}, \ldots, \boldsymbol{n}_{\ell}\right)$, a partition of \boldsymbol{N}, i.e.,

$$
n_{1} \geq n_{2} \geq \cdots \geq n_{\ell}>0, \quad n_{1}+\cdots+n_{\ell}=N
$$

- A maximal abelian subgroup

$$
H_{\lambda}=J\left(n_{1}\right) \times \cdots \times J\left(n_{\ell}\right) \subset \mathrm{GL}_{N}(\mathbb{C})
$$

where

$$
\begin{aligned}
J(n) & =\left\{h=\left(\begin{array}{cccc}
h_{0} & h_{1} & \cdots & h_{n-1} \\
& \ddots & \ddots & \vdots \\
& & \ddots & h_{1} \\
& & & h_{0}
\end{array}\right) ; h_{0} \neq 0\right\} \\
& \simeq\left(\mathbb{C}[T] /\left(T^{n}\right)\right)^{\times} \text {Jordan group. }
\end{aligned}
$$

- An element $\boldsymbol{h} \in \boldsymbol{H}_{\boldsymbol{\lambda}}$ is denoted as

$$
h=\left(h^{(1)}, \ldots, h^{(\ell)}\right), \quad h^{(k)} \in J\left(n_{k}\right)
$$

- An element $\boldsymbol{h} \in \boldsymbol{H}_{\boldsymbol{\lambda}}$ is denoted as

$$
h=\left(h^{(1)}, \ldots, h^{(\ell)}\right), \quad h^{(k)} \in J\left(n_{k}\right)
$$

- Isomorphism $J(n) \simeq \mathbb{C}^{\times} \times \mathbb{C}^{n-1}$ is given by

$$
h \mapsto\left(h_{0}, \theta_{1}(h), \ldots, \theta_{n-1}(h)\right),
$$

where $\theta_{m}(h)(m=1,2, \ldots)$ is defined by

$$
\begin{aligned}
\log h & =\log \left(h_{0} I+h_{1} \Lambda+\cdots+h_{n-1} \Lambda^{n-1}\right) \\
& =\left(\log h_{0}\right) I+\sum_{m=1}^{n-1} \theta_{m}(h) \Lambda^{m}
\end{aligned}
$$

where $\Lambda=\left(\delta_{i+1, j}\right) \in \operatorname{Mat}_{n}(\mathbb{C})$ the shift matrix.

Put $\boldsymbol{\theta}_{\mathbf{0}}(\boldsymbol{h})=\log \boldsymbol{h}_{\mathbf{0}} . \boldsymbol{\theta}_{\boldsymbol{m}}(\boldsymbol{h})$ is explicitely given as
$\boldsymbol{\theta}_{m}(\boldsymbol{h})$

$$
=\sum(-1)^{|k|-1} \frac{(|k|-1)!}{k_{1}!\cdots k_{m}!}\left(\frac{h_{1}}{h_{0}}\right)^{k_{1}} \cdots\left(\frac{h_{m}}{h_{0}}\right)^{k_{m}}
$$

where the sum is taken for \boldsymbol{k} s.t. $k_{1}+2 k_{2}+\cdots+m k_{m}=m$.

Character of $\boldsymbol{H}_{\boldsymbol{\lambda}}$

- $\chi_{n}: \tilde{J}(n) \longrightarrow \mathbb{C}^{\times}$is given by

$$
\chi_{n}(h ; \alpha)=\exp \left(\alpha_{0} \theta_{0}(h)+\cdots+\alpha_{n-1} \theta_{n-1}(h)\right)
$$

- $\chi: \tilde{\boldsymbol{H}}_{\lambda} \rightarrow \mathbb{C}^{\times}$is

$$
\begin{aligned}
& \qquad \begin{aligned}
\chi(h ; \alpha) & =\prod_{k=1}^{\ell} \chi_{n_{k}}\left(h^{(k)} ; \alpha^{(k)}\right) \\
& =\prod_{k=1}^{\ell} \exp \left(\sum_{m=0}^{n_{k}-1} \alpha_{m}^{(k)} \theta_{m}\left(h^{(k)}\right)\right), \\
\text { where } \alpha^{(k)} & =\left(\alpha_{0}^{(k)}, \ldots, \alpha_{n_{k}-1}^{(k)}\right) \in \mathbb{C}^{n_{k}}
\end{aligned}
\end{aligned}
$$

- Assumption:

$$
\sum_{k=1}^{\ell} \alpha_{0}^{(k)}=-r-1, \quad \alpha_{n_{k}-1}^{(k)} \neq 0(\forall k)
$$

Radon transform Consider the Radon transform of the character $\chi(\cdot ; \boldsymbol{\alpha})$ of $\tilde{\boldsymbol{H}}_{\lambda}$.

- $\overrightarrow{\boldsymbol{u}}=\left(1, u_{1}, \ldots, u_{r}\right)$: variables of integration: $\mathbb{C}^{r} \subset \mathbb{P}^{r}$.
- Space of coefficients of linear polynomials:

$$
\begin{aligned}
& Z_{r, N}^{\lambda}=\left\{z=\left(z^{(1)}, \ldots, z^{(\ell)}\right) \in \operatorname{Mat}_{r+1, N}(\mathbb{C}) \mid(*\right. \\
& \text { where } z^{(k)}=\left(z_{0}^{(k)}, \ldots, z_{n_{k}-1}^{(k)}\right) \in \operatorname{Mat}_{r+1, n_{k}}(\mathbb{C})
\end{aligned}
$$

- The condition $\left(^{*}\right)$: for any $\left(\boldsymbol{m}_{1}, \ldots, \boldsymbol{m}_{\ell}\right)$ s.t. (1) $0 \leq m_{k} \leq n_{k} \quad(k=1, \ldots, \ell)$,
(2) $m_{1}+\cdots+m_{\ell}=r+1$,
$\operatorname{det}\left(z_{0}^{(1)}, \ldots, z_{m_{1}-1}^{(1)}, \ldots, z_{0}^{(\ell)}, \ldots, z_{m_{\ell}-1}^{(\ell)}\right) \neq 0$.
- The condition (*): for any $\left(\boldsymbol{m}_{1}, \ldots, \boldsymbol{m}_{\ell}\right)$ s.t.

$$
\begin{aligned}
& \text { (1) } 0 \leq m_{k} \leq n_{k} \quad(k=1, \ldots, \ell) \text {, } \\
& \text { (2) } m_{1}+\cdots+m_{\ell}=r+1, \\
& \operatorname{det}\left(z_{0}^{(1)}, \ldots, z_{m_{1}-1}^{(1)}, \ldots, z_{0}^{(\ell)}, \ldots, z_{m_{\ell}-1}^{(\ell)}\right) \neq 0 .
\end{aligned}
$$

- For a character of $\chi(\cdot ; \boldsymbol{\alpha})$ of $\tilde{\boldsymbol{H}}_{\boldsymbol{\lambda}}$ with (4), GHGI is

$$
I(z, \alpha, c)=\int_{c} \chi(\vec{u} z ; \alpha) d u
$$

where $\boldsymbol{d u}=\boldsymbol{d} \boldsymbol{u}_{\mathbf{1}} \wedge \cdots \wedge \boldsymbol{d} \boldsymbol{u}_{r}$ and \boldsymbol{c} is a cycle of some homology group defined by using $\chi(\overrightarrow{\boldsymbol{u}} z ; \alpha)$.

Remark

From the explicit form of $\boldsymbol{\theta}_{\boldsymbol{m}}, \Rightarrow$

- the integrand $\chi(\overrightarrow{\boldsymbol{u}} \boldsymbol{z} ; \boldsymbol{\alpha})$ is a multivalued holo. function of $\boldsymbol{u} \in \mathbb{C}^{r}$.

Remark

From the explicit form of $\boldsymbol{\theta}_{\boldsymbol{m}}, \Rightarrow$

- the integrand $\chi(\overrightarrow{\boldsymbol{u}} \boldsymbol{z} ; \boldsymbol{\alpha})$ is a multivalued holo. function of $\boldsymbol{u} \in \mathbb{C}^{r}$.
- the branch locus is the arrangement
$\mathcal{A}=\left\{\boldsymbol{H}_{1}, \ldots, \boldsymbol{H}_{\ell}\right\}$, where

$$
H_{k}=\left\{u \in \mathbb{C}^{r} \mid \vec{u} \cdot z_{0}^{(k)}=0\right\}
$$

Twisted de Rham cohomology

We want to compute explicitely the twisted de Rham cohomology group for GHGI of type $\boldsymbol{\lambda}=\left(\boldsymbol{n}_{1}, \ldots, \boldsymbol{n}_{\ell}\right)$.

Twisted de Rham cohomology

We want to compute explicitely the twisted de Rham cohomology group for GHGI of type $\boldsymbol{\lambda}=\left(\boldsymbol{n}_{1}, \ldots, \boldsymbol{n}_{\ell}\right)$.

- $\chi=\chi(\vec{u} z ; \alpha)$.

Twisted de Rham cohomology

We want to compute explicitely the twisted de Rham cohomology group for GHGI of type $\boldsymbol{\lambda}=\left(n_{1}, \ldots, n_{\ell}\right)$.

- $\chi=\chi(\vec{u} z ; \alpha)$.
- $\mathcal{A}=\left\{\boldsymbol{H}_{1}, \ldots, \boldsymbol{H}_{\ell}\right\}$: arrangement in \mathbb{C}^{r} where

$$
H_{k}=\left\{\vec{u} \cdot z_{0}^{(k)}=0\right\} \subset \mathbb{C}^{r}
$$

Twisted de Rham cohomology

We want to compute explicitely the twisted de Rham cohomology group for GHGI of type $\boldsymbol{\lambda}=\left(\boldsymbol{n}_{1}, \ldots, \boldsymbol{n}_{\ell}\right)$.

- $\chi=\chi(\vec{u} z ; \alpha)$.
- $\mathcal{A}=\left\{\boldsymbol{H}_{1}, \ldots, \boldsymbol{H}_{\ell}\right\}$: arrangement in \mathbb{C}^{r} where $H_{k}=\left\{\vec{u} \cdot z_{0}^{(k)}=0\right\} \subset \mathbb{C}^{r}$.
- $\Omega^{p}(* \mathcal{A})$: the set of rational p-forms having poles at most on $\bigcup_{k=1}^{\ell} \boldsymbol{H}_{k}$.
- twisted differentiation $\nabla: \Omega^{p}(* \mathcal{A}) \rightarrow \Omega^{p+1}(* \mathcal{A})$:

$$
\begin{aligned}
\nabla(\eta) & =\left(\chi^{-1} \cdot d \cdot \chi\right)(\eta) \\
& =d \eta+(d \log \chi(\vec{u} z ; \alpha)) \wedge \eta
\end{aligned}
$$

- twisted differentiation $\nabla: \Omega^{p}(* \mathcal{A}) \rightarrow \Omega^{p+1}(* \mathcal{A})$:

$$
\begin{aligned}
\nabla(\eta) & =\left(\chi^{-1} \cdot d \cdot \chi\right)(\eta) \\
& =d \eta+(d \log \chi(\vec{u} z ; \alpha)) \wedge \eta
\end{aligned}
$$

- $d \log \chi(\vec{u} z ; \alpha)$ is a rational 1-form having a pole of order $\boldsymbol{n}_{\boldsymbol{k}}$ on $\boldsymbol{H}_{\boldsymbol{k}}$.
- twisted differentiation $\nabla: \Omega^{p}(* \mathcal{A}) \rightarrow \Omega^{p+1}(* \mathcal{A})$:

$$
\begin{aligned}
\nabla(\eta) & =\left(\chi^{-1} \cdot d \cdot \chi\right)(\eta) \\
& =d \eta+(d \log \chi(\vec{u} z ; \alpha)) \wedge \eta
\end{aligned}
$$

- $d \log \chi(\vec{u} z ; \alpha)$ is a rational 1-form having a pole of order $\boldsymbol{n}_{\boldsymbol{k}}$ on $\boldsymbol{H}_{\boldsymbol{k}}$.
- $\nabla \circ \nabla=0$.
- twisted differentiation $\nabla: \Omega^{p}(* \mathcal{A}) \rightarrow \Omega^{p+1}(* \mathcal{A})$:

$$
\begin{aligned}
\nabla(\eta) & =\left(\chi^{-1} \cdot d \cdot \chi\right)(\eta) \\
& =d \eta+(d \log \chi(\vec{u} z ; \alpha)) \wedge \eta
\end{aligned}
$$

- $d \log \chi(\vec{u} z ; \alpha)$ is a rational 1-form having a pole of order $\boldsymbol{n}_{\boldsymbol{k}}$ on $\boldsymbol{H}_{\boldsymbol{k}}$.
- $\boldsymbol{\nabla} \circ \boldsymbol{\nabla}=0$.
- Twisted rational de Rham complex:

$$
C_{z, \alpha}(* \mathcal{A}): \Omega^{0}(* \mathcal{A}) \xrightarrow{\nabla} \cdots \xrightarrow{\nabla} \Omega^{r}(* \mathcal{A}) \rightarrow 0
$$

We sometimes write $C_{z, \alpha}$ instead of $C_{z, \alpha}(* \mathcal{A})$.

Twisted de Rham cohomology group:
$H^{p}\left(C_{z, \alpha}(* \mathcal{A})\right):=\frac{\operatorname{Ker}\left\{\nabla: \Omega^{p}(* \mathcal{A}) \rightarrow \Omega^{p+1}(* \mathcal{A})\right\}}{\operatorname{Im}\left\{\nabla: \Omega^{p-1}(* \mathcal{A}) \rightarrow \Omega^{p}(* \mathcal{A})\right\}}$.

We know the following cases about the computation of the cohomology groups.

1) $r=1$. i.e. the HGI is 1 -dimensional.
2) r is general, and $\boldsymbol{\lambda}=(1, \ldots, \mathbf{1})$. The case of Aomoto-Gelfand.
3) \boldsymbol{r} is general and $\boldsymbol{\lambda}=(\boldsymbol{N})$. The case of generalized Airy integral.
4) r is general and $\boldsymbol{\lambda}=(\boldsymbol{q}+\mathbf{1}, \mathbf{1}, \ldots, \mathbf{1})$.

1-dimensional case

Proposition

For $z \in Z_{1, N}^{\lambda}$, we have
(1) $\boldsymbol{H}^{p}\left(C_{z, \alpha}\right)=0$ for $\boldsymbol{p} \neq 1$.
(0) $\operatorname{dim}_{\mathbb{C}} H^{1}\left(C_{z, \alpha}\right)=N-2$.

- As a basis of $\boldsymbol{H}^{1}\left(\boldsymbol{C}_{z, \alpha}\right)$ we can take
$d \theta_{1}\left(\vec{u} z^{(1)}\right), \ldots, d \theta_{n_{1}-2}\left(\vec{u} z^{(1)}\right)$,
$d \theta_{0}\left(\vec{u} z^{(k)}\right), \ldots, d \theta_{n_{k}-1}\left(\vec{u} z^{(k)}\right), \quad(2 \leq k \leq \ell)$.

Generalized Airy case

- $\boldsymbol{\lambda}=(\boldsymbol{N})$: a partition of \boldsymbol{N}.
- $Z=Z_{r, N}^{\lambda}=\left\{z=\left(z_{0}, \ldots, z_{N-1}\right) \in\right.$ $\left.\operatorname{Mat}_{r+1, N}(\mathbb{C}) \mid \operatorname{det}\left(z_{0}, \ldots, z_{r}\right) \neq 0\right\}$,
- Assumption:

$$
z_{0}=\left(\begin{array}{c}
1 \\
0 \\
\vdots \\
0
\end{array}\right), \quad \alpha_{N-1} \neq 0
$$

- Put
$\chi(\vec{u} z ; \alpha)=e^{f(u)}, \quad f(u)=\sum_{m=1}^{N-1} \alpha_{m} \theta_{m}(\vec{u} z)$,
- $\boldsymbol{f}(\boldsymbol{u}) \in \mathbb{C}\left[u_{1}, \ldots, u_{r}\right]$, has isolated critical point, $\boldsymbol{\mu}(f)=\binom{N-2}{r}$ Milnor number.
- Put
$\chi(\vec{u} z ; \alpha)=e^{f(u)}, \quad f(u)=\sum_{m=1}^{N-1} \alpha_{m} \theta_{m}(\vec{u} z)$,
- $\boldsymbol{f}(\boldsymbol{u}) \in \mathbb{C}\left[\boldsymbol{u}_{1}, \ldots, \boldsymbol{u}_{r}\right]$, has isolated critical point, $\boldsymbol{\mu}(\boldsymbol{f})=\binom{N-2}{r}$ Milnor number.

Proposition
For the generalized Airy integral,
(1) $\boldsymbol{H}^{p}\left(C_{z, \alpha}\right)=0$ for $\boldsymbol{p} \neq \boldsymbol{r}$.
(2) $\operatorname{dim}_{\mathbb{C}} H^{r}\left(C_{z, \alpha}\right)=\binom{N-2}{r}$.

To state the result on a basis of $\boldsymbol{H}^{r}\left(\boldsymbol{C}_{\boldsymbol{z}, \alpha}\right)$, we prepare some notations.

To state the result on a basis of $\boldsymbol{H}^{r}\left(\boldsymbol{C}_{\boldsymbol{z}, \alpha}\right)$, we prepare some notations.

- $\mathcal{Y}(r, l)$: the set of Young diagram contained in $\boldsymbol{r} \times \boldsymbol{l}$ box, namely $\boldsymbol{Y} \in \mathcal{Y}(\boldsymbol{r}, \boldsymbol{l})$ if $\ell(\boldsymbol{Y}) \leq \boldsymbol{r}$ and " parts of $\boldsymbol{Y}^{\prime \prime} \leq \boldsymbol{l}$.

To state the result on a basis of $\boldsymbol{H}^{r}\left(\boldsymbol{C}_{\boldsymbol{z}, \alpha}\right)$, we prepare some notations.

- $\mathcal{Y}(r, l)$: the set of Young diagram contained in $\boldsymbol{r} \times \boldsymbol{l}$ box, namely $\boldsymbol{Y} \in \mathcal{Y}(\boldsymbol{r}, \boldsymbol{l})$ if $\ell(\boldsymbol{Y}) \leq \boldsymbol{r}$ and " parts of $Y^{\prime \prime} \leq l$.
- $s_{Y}(v)$: Schur polynomial of v_{1}, \ldots, v_{r} for $\boldsymbol{Y} \in \mathcal{Y}(r, l)$.

To state the result on a basis of $\boldsymbol{H}^{r}\left(\boldsymbol{C}_{\boldsymbol{z}, \alpha}\right)$, we prepare some notations.

- $\mathcal{Y}(r, l)$: the set of Young diagram contained in $\boldsymbol{r} \times \boldsymbol{l}$ box, namely $\boldsymbol{Y} \in \mathcal{Y}(\boldsymbol{r}, \boldsymbol{l})$ if $\ell(\boldsymbol{Y}) \leq \boldsymbol{r}$ and " parts of $Y^{\prime \prime} \leq l$.
- $s_{Y}(v)$: Schur polynomial of v_{1}, \ldots, v_{r} for $\boldsymbol{Y} \in \mathcal{Y}(r, l)$.
- $\boldsymbol{S}_{Y}(\boldsymbol{u})$: polynomial of \boldsymbol{u} s.t.

$$
s_{Y}(v)=S_{Y}(e(v))
$$

where $e_{1}(v), \ldots, e_{r}(v)$ are elementary symmetric functions of \boldsymbol{v}.

Proposition

For the generalized Airy integral, we can take a basis of $\boldsymbol{H}^{r}\left(\boldsymbol{C}_{z, \alpha}\right)$ as

$$
\begin{equation*}
S_{Y}(u) d u, \quad Y \in \mathcal{Y}(r, N-r-2) \tag{5}
\end{equation*}
$$

Remark

(1) In the case $\boldsymbol{r}=\mathbf{1}$, namely the integral is one dimensional, the basis above is
$d u, u d u, \ldots, u^{N-3} d u$.

Remark

(1) In the case $r=1$, namely the integral is one dimensional, the basis above is

$$
d u, u d u, \ldots, u^{N-3} d u
$$

(2) Another choice of a basis is given in Proposition 5.

$$
d\left(\theta_{1}(\vec{u} z)\right), \ldots, d\left(\theta_{N-2}(\vec{u} z)\right)
$$

It is an analogue of flat basis of the Jacobi ring of singularity of $\boldsymbol{A}_{\boldsymbol{N}-2}$ type.

$\lambda=(q+1,1, \ldots, 1)$ case

In this case the integral has the form

$$
F(z)=\int \chi(\vec{u} z ; \alpha) d u
$$

with

$$
\chi(\vec{u} z ; \alpha)=e^{g(u, z)} \prod_{j=q+1}^{N-1} f_{j}^{\alpha_{j}}
$$

where

$$
\begin{aligned}
f_{j} & =\vec{u} z_{j}, \quad(0 \leq j<N) \\
g & =\sum_{k=1}^{q} \alpha_{k} \theta_{k}\left(f_{0}, f_{2}, \ldots, f_{q}\right)
\end{aligned}
$$

Exterior power structure

A partition $\boldsymbol{\lambda}$ of \boldsymbol{N} is general,
Compute the cohomology group at Veronese points
$\tilde{z} \in Z_{r, N}^{\lambda}$.
At Veronese points, $\boldsymbol{H}^{r}\left(\boldsymbol{C}_{\tilde{z}, \tilde{\alpha}}\right) \simeq \bigwedge^{r} \boldsymbol{H}^{1}\left(C_{z, \alpha}\right)$

Veronese map for $\boldsymbol{\lambda}=(1, \ldots, 1)$

- Consider the map

$$
\psi: \mathbb{C}^{2} \ni\binom{v_{0}}{v_{1}} \mapsto\left(\begin{array}{c}
v_{0}^{r-1} v_{1} \tag{6}\\
\vdots \\
v_{1}^{r}
\end{array}\right) \in \mathbb{C}^{r+1}
$$

- It induces the Veronese map $\bar{\psi}$:

$$
\mathbb{P}^{1} \ni\left[\boldsymbol{v}_{0}, \boldsymbol{v}_{1}\right] \mapsto\left[\boldsymbol{v}_{0}^{r}, \boldsymbol{v}_{0}^{r-1} \boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{1}^{r}\right] \in \mathbb{P}^{r}
$$

- For $\boldsymbol{\lambda}=(1, \ldots, 1)$, the $\operatorname{map} \Psi_{(1, \ldots, 1)}$:

$$
\begin{aligned}
& Z_{1, N} \ni\left(\begin{array}{ccc}
z_{00} & \ldots & z_{0, N-1} \\
z_{10} & \cdots & z_{1, N-1}
\end{array}\right) \\
& \mapsto\left(\begin{array}{clc}
\left(z_{00}\right)^{r} & \cdots & \left(z_{0, N-1}\right)^{r} \\
\left(z_{00}\right)^{r-1} z_{10} & \cdots & \left(z_{0, N-1}\right)^{r-1} z_{1, N-1} \\
\vdots & & \vdots \\
\left(z_{10}\right)^{r} & \cdots & \left(z_{1, N-1}\right)^{r}
\end{array}\right) \in Z_{r}
\end{aligned}
$$

which we call also the Veronese map.

Veronese map for $\lambda=\left(n_{1}, \ldots, n_{\ell}\right)$

Want to define the analogous map Ψ_{λ} to $\Psi_{(1, \ldots, 1)}$. Recall the usual Veronese map $\boldsymbol{\psi}$ is stated as follows.

Veronese map for $\lambda=\left(n_{1}, \ldots, n_{\ell}\right)$

Want to define the analogous map Ψ_{λ} to $\Psi_{(1, \ldots, 1)}$. Recall the usual Veronese map $\boldsymbol{\psi}$ is stated as follows.

- V : vector space of $\operatorname{dim}_{\mathbb{C}} \boldsymbol{V}=\mathbf{2}$.
- $\boldsymbol{S}^{r} \boldsymbol{V}$: \boldsymbol{r}-th symmetric tensor product. $\operatorname{dim}_{\mathbb{C}} \boldsymbol{S}^{r} V=r+1$.

$$
\psi: V \ni v \mapsto \overbrace{v \otimes \cdots \otimes v} \in S^{r} V
$$

- Let e_{0}, e_{1} be a basis of V, and let $\mathbf{e}_{0}, \ldots, \mathbf{e}_{r}$ be a basis of $\boldsymbol{S}^{r} \boldsymbol{V}$ defined by

$$
\mathbf{e}_{k}=\sum_{i_{1}+i_{2}+\cdots+i_{r}=k} e_{i_{1}} \otimes \cdots \otimes e_{i_{r}}
$$

$$
\left(v_{0} e_{0}+v_{1} e_{1}\right)^{\otimes r}=\sum_{k=0}^{r} v_{0}^{r-k} v_{1}^{k} \mathrm{e}_{k}
$$

we see that $\boldsymbol{\psi}$ is the same as

$$
\psi: \mathbb{C}^{2} \ni\binom{\boldsymbol{v}_{0}}{\boldsymbol{v}_{1}} \mapsto\left(\begin{array}{c}
\boldsymbol{v}_{0}^{r-1} \boldsymbol{v}_{1} \\
\vdots \\
\boldsymbol{v}_{1}^{r}
\end{array}\right) \in \mathbb{C}^{r+1}
$$

Veronese map for $\lambda=\left(n_{1}, \ldots, n_{\ell}\right)$ again

- V : a vector space of $\operatorname{dim}_{\mathbb{C}} \boldsymbol{V}=2$,
- $\boldsymbol{R}_{n}=\mathbb{C}[T] /\left(T^{n}\right)$, with T indeterminate,
- $\boldsymbol{V}_{n}:=\boldsymbol{V} \otimes \boldsymbol{R}_{n}: \boldsymbol{R}_{n}$-module.
- $\boldsymbol{S}^{r} \boldsymbol{V}_{n}: \boldsymbol{r}$-th symmetric tensor product as \boldsymbol{R}_{n}-module.
- Define the map

$$
\psi_{n}: V_{n} \ni v \mapsto \overbrace{\boldsymbol{v} \otimes \cdots \otimes v}^{r} \in \boldsymbol{S}^{r} V_{n} .
$$

- Let us express ψ_{n} using \mathbb{C}-base

$$
e_{i} \otimes T^{j} \text { for } V_{n}, \quad \mathbf{e}_{i} \otimes T^{j} \quad \text { for } S^{r} V_{n}
$$

$$
\begin{aligned}
V_{n} & \ni \sum_{i, j} v_{i j} e_{i} \otimes T^{j} \\
& \leftrightarrow\left(\begin{array}{cccc}
v_{00} & v_{01} & \ldots & v_{0, n-1} \\
v_{10} & v_{11} & \ldots & v_{1, n-1}
\end{array}\right) \in \operatorname{Mat}_{2, n}(\mathbb{C}), \\
S^{r} V_{n} & \ni \sum_{i, j} w_{i j} \mathbf{e}_{i} \otimes T^{j} \\
& \leftrightarrow\left(\begin{array}{cccc}
w_{00} & w_{01} & \ldots & w_{0, n-1} \\
\vdots & \vdots & & \vdots \\
w_{r 0} & w_{r 1} & \ldots & w_{r, n-1}
\end{array}\right) \in \operatorname{Mat}_{r+1, n}(\mathbb{C})
\end{aligned}
$$

- The map $\psi_{n}: \boldsymbol{V}_{n} \rightarrow \boldsymbol{S}^{r} \boldsymbol{V}_{n}$ induces the map $\psi_{n}: \operatorname{Mat}_{2, n}(\mathbb{C}) \rightarrow \operatorname{Mat}_{r+1, n}(\mathbb{C})$.
- For $\boldsymbol{\lambda}=\left(n_{1}, \ldots, n_{\ell}\right)$, define $\Psi_{\lambda}: Z_{1, N}^{\lambda} \rightarrow Z_{r, N}^{\lambda}$ by

$$
z=\left(z^{(1)}, \ldots, z^{(\ell)}\right) \mapsto\left(\psi_{n_{1}}\left(z^{(1)}\right), \ldots, \psi_{n_{\ell}}\left(z^{(\ell)}\right)\right)
$$

We call this map the Veronese map of type $\boldsymbol{\lambda}$ and the set $\Psi_{\lambda}\left(Z_{1, N}^{\lambda}\right)$ the Veronese image.

Example

Let $\boldsymbol{r}=\mathbf{2}$. Then the map
$\psi_{3}: \operatorname{Mat}_{2,3}(\mathbb{C}) \rightarrow \operatorname{Mat}_{3,3}(\mathbb{C})$ is given by as follows:
$v \mapsto\left(\begin{array}{ccc}v_{00}^{2} & 2 v_{00} v_{01} & 2 v_{00} v_{02}+v_{01}^{2} \\ v_{00} v_{01} & v_{00} v_{11}+v_{01} v_{10} & v_{00} v_{12}+v_{02} v_{10}+v_{01} \\ v_{01}^{2} & 2 v_{01} v_{11} & 2 v_{10} v_{12}+v_{11}^{2}\end{array}\right)$

Power structure of cohomology group

Theorem
Let $z \in Z_{1, N}^{\lambda}$ be such that $z_{0}^{(1)}={ }^{t}(1,0)$ and let
$\tilde{z}=\Psi(z) \in Z_{r, N}^{\lambda}, \quad \tilde{\alpha}=\alpha+(-r+1,0, \ldots, 0)$.
Then we have

$$
H^{r}\left(C_{\tilde{z}, \tilde{\alpha}}\right) \simeq \bigwedge^{r} H^{1}\left(C_{z, \alpha}\right),
$$

and

$$
\operatorname{dim}_{\mathbb{C}} H^{r}\left(C_{\tilde{z}, \tilde{\alpha}}\right)=\binom{N-2}{r}
$$

Examples

Generalized Airy case $\lambda=(N)$

Let $z \in Z_{1, N}$ and $\tilde{z}=\Psi_{\lambda}(z)$. Theorem says: if we take a basis of $\boldsymbol{H}^{1}\left(\boldsymbol{C}_{z, \alpha}\right)$ as

$$
\varphi_{i}=u^{i} d u, \quad(0 \leq i \leq N-3)
$$

then

$$
\varphi_{i_{1}} \square \cdots \square \varphi_{i_{r}} \mapsto S_{Y}(v) d v_{1} \wedge \cdots \wedge d v_{r}
$$

Here $\boldsymbol{i}_{\boldsymbol{1}}>\boldsymbol{i}_{\boldsymbol{2}}>\cdots>\boldsymbol{i}_{\boldsymbol{r}} \geq \mathbf{0}$ and

$$
\begin{aligned}
Y & =\left(i_{1}-r+1, i_{2}-r+2, \ldots, i_{r}\right) \\
& \in \mathcal{Y}(r, N-r-2)
\end{aligned}
$$

If one take a basis of $\boldsymbol{H}^{1}\left(\boldsymbol{C}_{z, \alpha}\right)$ as

$$
\varphi_{i}=d \theta_{i}(\vec{u} z), \quad(1 \leq i \leq N-2)
$$

then

$$
\varphi_{i_{1}} \square \cdots \square \varphi_{i_{r}} \mapsto d \theta_{i_{1}}(\vec{v} \tilde{z}) \wedge \cdots \wedge d \theta_{i_{r}}(\vec{v} \tilde{z})
$$

Example $\left(\boldsymbol{\lambda}=\left(\boldsymbol{n}_{1}, \ldots, \boldsymbol{n}_{\ell}\right)\right.$ case $)$
Let $z \in Z_{1, N}^{\lambda}$ then as a basis of $\boldsymbol{H}^{1}\left(C_{z, \alpha}\right)$ we can take
$d \theta_{1}\left(\vec{u} z^{(1)}\right), \ldots, d \theta_{n_{1}-2}\left(\vec{u} z^{(1)}\right)$
$d \theta_{0}\left(\vec{u} z^{(k)}\right), d \theta_{1}\left(\vec{u} z^{(k)}\right), \ldots, d \theta_{n_{k}-1}\left(\vec{u} z^{(k)}\right), \quad(2 \leq k$
Put $\tilde{\boldsymbol{z}}=\Psi_{\lambda}(\boldsymbol{z})$. Then as a basis of $\boldsymbol{H}^{r}\left(C_{\tilde{z}, \tilde{\alpha}}\right)$ we can take the r-forms obtained by choosing r forms $\boldsymbol{d}\left(\boldsymbol{\theta}_{j}\left(\overrightarrow{\boldsymbol{v}} \tilde{\boldsymbol{z}}^{(\boldsymbol{k})}\right)\right)$ and taking exterior product of them.

Question:

In the case $\boldsymbol{\lambda}=\left(n_{1}, \ldots, n_{\ell}\right)$, do the r-forms, constructed above in Example, give a basis for $\boldsymbol{H}^{r}\left(\boldsymbol{C}_{z, \alpha}\right)$ at any point $\boldsymbol{z} \in \boldsymbol{Z}_{r, N^{N}}^{\lambda}$?

