Definitions	Method and Goal	Example 000000	Conclusion

Matroids and Hyperplane Arrangements Part Two

Christin Bibby, Ian Williams, Dr. Michael Falk

NASA Space Grant Symposium

April 18, 2009

Christin Bibby, Ian Williams, Dr. Michael Falk

Matroids and Hyperplane Arrangements

Definitions	Method and Goal	Example	Conclusion
•00			
Defintions			

For the following definitions, let A be a hyperplane arrangement with matroid M_A on ground set E, and let X ⊆ E.

Christin Bibby, Ian Williams, Dr. Michael Falk

Definitions ●00	Method and Goal	Example 000000	Conclusion
Defintions			

- For the following definitions, let A be a hyperplane arrangement with matroid M_A on ground set E, and let X ⊆ E.
- ► A base of X, is a maximal independent subset of X.

Christin Bibby, Ian Williams, Dr. Michael Falk

Definitions ●00	Method and Goal	Example 000000	Conclusion
Defintions			

- For the following definitions, let A be a hyperplane arrangement with matroid M_A on ground set E, and let X ⊆ E.
- ► A base of X, is a maximal independent subset of X.
- ▶ Theorem: Any two bases of X have the same size.

Definitions ●00	Method and Goal	Example 000000	Conclusion
Defintions			

- For the following definitions, let A be a hyperplane arrangement with matroid M_A on ground set E, and let X ⊆ E.
- ► A base of X, is a maximal independent subset of X.
- Theorem: Any two bases of X have the same size.
- The rank of X, is the size of a base of X.

Definitions ●00	Method and Goal	Example 000000	Conclusion
Defintions			

- For the following definitions, let A be a hyperplane arrangement with matroid M_A on ground set E, and let X ⊆ E.
- ► A base of X, is a maximal independent subset of X.
- ▶ Theorem: Any two bases of *X* have the same size.
- The rank of X, is the size of a base of X.
- The closure of X is

 $cl(X) = \{x \in E : \operatorname{Rank}(X \cup x) = \operatorname{Rank}(X)\}$

Christin Bibby, Ian Williams, Dr. Michael Falk

Matroids and Hyperplane Arrangements

.

Definitions ●00	Method and Goal	Example 000000	Conclusion
Defintions			

- For the following definitions, let A be a hyperplane arrangement with matroid M_A on ground set E, and let X ⊆ E.
- ► A base of X, is a maximal independent subset of X.
- Theorem: Any two bases of X have the same size.
- The rank of X, is the size of a base of X.
- The closure of X is

 $cl(X) = \{x \in E : \operatorname{Rank}(X \cup x) = \operatorname{Rank}(X)\}$

• X is a **flat** of
$$\mathcal{M}$$
 if $X = cl(X)$.

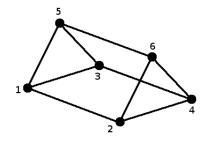
Christin Bibby, Ian Williams, Dr. Michael Falk

Matroids and Hyperplane Arrangements

.

Definitions	Method and Goal	Example	Conclusion
000			
Defintions			

Example



<ロ > < 合 > < 言 > < 言 > 三 シ へへ NASA Space Grant Symposium

Christin Bibby, Ian Williams, Dr. Michael Falk

Definitions	Method and Goal	Example	Conclusion
000			
Defintions			

▶ Now assume that $\mathcal{M}_{\mathcal{A}}$ is a rank-four matroid.

· < ㅁ > < @ > < 돈 > < 돈 > 돈 · 이 <

Christin Bibby, Ian Williams, Dr. Michael Falk

Matroids and Hyperplane Arrangements

000 00000	
000 00000 000000	00
Defintions	

- ▶ Now assume that $\mathcal{M}_{\mathcal{A}}$ is a rank-four matroid.
- A rank-3 flat X is irreducible if Rank(X − i) = Rank(X) = 3 for every i ∈ X. Otherwise, X is reducible.

NASA Space Grant Symposium

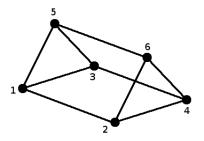
Christin Bibby, Ian Williams, Dr. Michael Falk

Definitions	Method and Goal	Example	Conclusion
000			
Defintions			

- Now assume that M_A is a rank-four matroid.
- A rank-3 flat X is irreducible if Rank(X − i) = Rank(X) = 3 for every i ∈ X. Otherwise, X is reducible.
- A matroid is **2-generic** if for every flat X with $Rank(X) \le 2$, Rank(X) = |X|.

Definitions	Method and Goal	Example	Conclusion
000			
Defintions			

- ▶ Now assume that $\mathcal{M}_{\mathcal{A}}$ is a rank-four matroid.
- A rank-3 flat X is irreducible if Rank(X − i) = Rank(X) = 3 for every i ∈ X. Otherwise, X is reducible.
- A matroid is **2-generic** if for every flat X with $Rank(X) \le 2$, Rank(X) = |X|.



Definitions	Method and Goal	Example	Conclusion
	00000		
Method and Goal			

Consider an arrangement of hyperplanes, A, that gives us a 2-generic matroid with Rank(M_A) = 4.

▲ □ ▶ ▲ @ ▶ ▲ 분 ▶ ▲ 분 ▶ ~ 분 ~) 익 (3

Christin Bibby, Ian Williams, Dr. Michael Falk

Matroids and Hyperplane Arrangements

Definitions	Method and Goal	Example	Conclusion
000	00000	000000	00
Method and Goal			

- ► Consider an arrangement of hyperplanes, A, that gives us a 2-generic matroid with Rank(M_A) = 4.
- The degree-two resonance variety is

 $\mathcal{R}^2 = \{a \in A^1 | \exists b \in A^2 \text{ with } a \land b = 0 \text{ and } b \text{ is not a multiple of } a\}.$

Definitions	Method and Goal ●୦୦୦୦	Example 000000	Conclusion
Method and Goal			

- Consider an arrangement of hyperplanes, A, that gives us a 2-generic matroid with Rank(M_A) = 4.
- The degree-two resonance variety is

 $\mathcal{R}^2 = \{a \in A^1 | \exists b \in A^2 \text{ with } a \land b = 0 \text{ and } b \text{ is not a multiple of } a\}.$

We are looking for elements in the subset

$$\mathcal{M}^2 = \{ a \in A^1 | \exists b \land c \in A^2 \text{ with } a \land b \land c = 0 \\ \text{and } b \land c \text{ is not a multiple of } a \} \subseteq \mathcal{R}^2.$$

Definitions	Method and Goal ●୦୦୦୦	Example 000000	Conclusion
Method and Goal			

- Consider an arrangement of hyperplanes, A, that gives us a 2-generic matroid with Rank(M_A) = 4.
- The degree-two resonance variety is

 $\mathcal{R}^2 = \{a \in A^1 | \exists b \in A^2 \text{ with } a \land b = 0 \text{ and } b \text{ is not a multiple of } a\}.$

We are looking for elements in the subset

$$\mathcal{M}^2 = \{ a \in A^1 | \exists b \land c \in A^2 \text{ with } a \land b \land c = 0 \\ \text{and } b \land c \text{ is not a multiple of } a \} \subseteq \mathcal{R}^2.$$

We do this by finding a matrix Λ with matroid M_Λ that satisfies certain properties so that the columns of Λ correspond to elements in M².

Definitions	Method and Goal	Example	Conclusion
	0000		
Method and Goal			

Let 𝔅 = {X₁,..., X_n} be a chosen set of irreducible rank-3 flats of 𝓜, called the **base locus**.

Christin Bibby, Ian Williams, Dr. Michael Falk

Definitions	Method and Goal	Example	Conclusion
	00000		
Method and Goal			

- Let 𝔅 = {X₁,...,X_n} be a chosen set of irreducible rank-3 flats of 𝓜, called the **base locus**.
- ▶ Then build the adjacency matrix $J_{\mathfrak{X}}$, where the entry $m_{ij} = 1$ if $j \in X_i$ and $m_{ij} = 0$ otherwise.

Definitions	Method and Goal	Example	Conclusion
	00000		
Method and Goal			

- Let 𝔅 = {X₁,...,X_n} be a chosen set of irreducible rank-3 flats of 𝓜, called the **base locus**.
- ▶ Then build the adjacency matrix $J_{\mathfrak{X}}$, where the entry $m_{ij} = 1$ if $j \in X_i$ and $m_{ij} = 0$ otherwise.

For the prism example, let $\mathfrak{X} = \{1234, 1256, 3456\}$. Then

Christin Bibby, Ian Williams, Dr. Michael Falk

Definitions	Method and Goal	Example	Conclusion
	00000		
Method and Goal			

Choose 3 linearly independent vectors in ker(J_X), Λ₁, Λ₂, Λ₃, and let Λ = [Λ₁|Λ₂|Λ₃].

NASA Space Grant Symposium

Christin Bibby, Ian Williams, Dr. Michael Falk

Definitions	Method and Goal	Example	Conclusion
	00000		
Method and Goal			

- Choose 3 linearly independent vectors in ker(J_X), Λ₁, Λ₂, Λ₃, and let Λ = [Λ₁|Λ₂|Λ₃].
- ► This guarantees that Rank(M_Λ) = 3 and J_XΛ = 0, which are two of the properties we desire.

Definitions	Method and Goal	Example	Conclusion
	00000		
Method and Goal			

- Choose 3 linearly independent vectors in ker(J_X), Λ₁, Λ₂, Λ₃, and let Λ = [Λ₁|Λ₂|Λ₃].
- ► This guarantees that Rank(M_Λ) = 3 and J_XΛ = 0, which are two of the properties we desire.
- X ⊆ E is a 1-clique if Rank(X) = 1, and X is a maximal 1-clique if it is a rank-1 flat.

Christin Bibby, Ian Williams, Dr. Michael Falk

Definitions	Method and Goal	Example	Conclusion
	00000		
Method and Goal			

- Choose 3 linearly independent vectors in ker(J_X), Λ₁, Λ₂, Λ₃, and let Λ = [Λ₁|Λ₂|Λ₃].
- ► This guarantees that Rank(M_Λ) = 3 and J_XΛ = 0, which are two of the properties we desire.
- X ⊆ E is a 1-clique if Rank(X) = 1, and X is a maximal 1-clique if it is a rank-1 flat.
- X ⊆ E is a 2-clique if Rank(X) = 2, and X is a maximal
 2-clique if it is a rank-2 flat.

Definitions	Method and Goal	Example	Conclusion
	00000		
Method and Goal			

- Choose 3 linearly independent vectors in ker(J_X), Λ₁, Λ₂, Λ₃, and let Λ = [Λ₁|Λ₂|Λ₃].
- ► This guarantees that Rank(M_Λ) = 3 and J_XΛ = 0, which are two of the properties we desire.
- X ⊆ E is a 1-clique if Rank(X) = 1, and X is a maximal 1-clique if it is a rank-1 flat.
- X ⊆ E is a 2-clique if Rank(X) = 2, and X is a maximal
 2-clique if it is a rank-2 flat.
- For the third property, we check that Γ, the set of maximal 2-cliques, satisfies the neighborly condition.

Definitions	Method and Goal	Example	Conclusion
	00000		
Method and Goal			

We say that Γ is **neighborly** if it satisfies the following properties for each rank-3 flat X in $\mathcal{M}_{\mathcal{A}}$.

(1) If X is an irreducible flat with $\sum_{j \in X} \lambda_{ji} \neq 0$ for some $i \leq 3$, then $X \subseteq S$ for some $S \in \Gamma$ (If X is irreducible and $X \notin \mathfrak{X}$, then X is contained in a 2-clique).

Definitions	Method and Goal	Example	Conclusion
	00000		
Method and Goal			

We say that Γ is **neighborly** if it satisfies the following properties for each rank-3 flat X in $\mathcal{M}_{\mathcal{A}}$.

- (1) If X is an irreducible flat with $\sum_{j \in X} \lambda_{ji} \neq 0$ for some $i \leq 3$, then $X \subseteq S$ for some $S \in \Gamma$ (If X is irreducible and $X \notin \mathfrak{X}$, then X is contained in a 2-clique).
- (2) If X is a reducible rank-3 flat in $\mathcal{M}_{\mathcal{A}}$, then $X \subseteq S$ for some $S \in \Gamma$ (If X is reducible, then X is contained in a 2-clique).

Christin Bibby, Ian Williams, Dr. Michael Falk

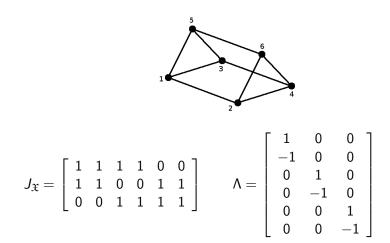
Definitions	Method and Goal	Example	Conclusion
	00000		
Method and Goal			

We say that Γ is **neighborly** if it satisfies the following properties for each rank-3 flat X in $\mathcal{M}_{\mathcal{A}}$.

- (1) If X is an irreducible flat with $\sum_{j \in X} \lambda_{ji} \neq 0$ for some $i \leq 3$, then $X \subseteq S$ for some $S \in \Gamma$ (If X is irreducible and $X \notin \mathfrak{X}$, then X is contained in a 2-clique).
- (2) If X is a reducible rank-3 flat in $\mathcal{M}_{\mathcal{A}}$, then $X \subseteq S$ for some $S \in \Gamma$ (If X is reducible, then X is contained in a 2-clique).
- (2') If X {i} ⊆ S for some i ∈ X, S ∈ Γ, then X ⊆ S.
 (Generalization of condition (2). If X {i} is contained in a 2-clique for some i ∈ X, then so is X.)

000 00000 00000 00000 00000 00000 00000 0000	onclusion
Method and Goal	

Example



Christin Bibby, Ian Williams, Dr. Michael Falk

Definitions	Method and Goal	Example ●○○○○○	Conclusion
Cube			

Consider the hyperplane arrangement

$$\mathcal{A} = \{x \pm y, y \pm z, z \pm w, w \pm x\}.$$

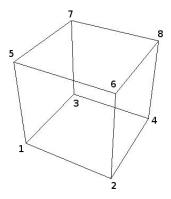
with matroid $\mathcal{M}_\mathcal{A}$ given by

$$A = \left[egin{array}{cccccc} 1 & 1 & 0 & 0 \ 1 & -1 & 0 & 0 \ 0 & 1 & 1 & 0 \ 0 & 1 & -1 & 0 \ 0 & 0 & 1 & 1 \ 0 & 0 & 1 & -1 \ 1 & 0 & 0 & 1 \ -1 & 0 & 0 & 1 \end{array}
ight]$$

Christin Bibby, Ian Williams, Dr. Michael Falk

Matroids and Hyperplane Arrangements

Definitions	Method and Goal	Example o●oooo	Conclusion
Cube			



Christin Bibby, Ian Williams, Dr. Michael Falk

Matroids and Hyperplane Arrangements

NASA Space Grant Symposium

3

・ロト ・ 日 ・ ・ 日 ・ ・ 日

Definitions	Method and Goal	Example ○○●○○○	Conclusion
Cube			

$$\mathfrak{X} = \{1357, 2358, 1458, 2457, 1368, 2367, 1467, 2468\}$$

Then:

$$J_{\mathfrak{X}} = \begin{bmatrix} 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 & 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 1 & 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 & 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 0 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0 & 0 & 1 & 1 & 0 \\ 1 & 0 & 0 & 1 & 0 & 1 & 0 & 1 \end{bmatrix}$$

Christin Bibby, Ian Williams, Dr. Michael Falk

Matroids and Hyperplane Arrangements

æ

・ロト ・ 日 ・ ・ 日 ・ ・

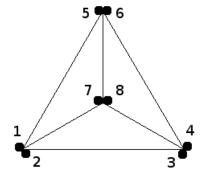
Definitions	Method and Goal	Example ○○○●○○	Conclusion
Cube			

$$\Lambda = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \\ -1 & -1 & -1 \\ -1 & -1 & -1 \end{bmatrix}$$

The matroid \mathcal{M}_Λ is determined by the rows of $\Lambda,$ and it consists of four double points.

Christin Bibby, Ian Williams, Dr. Michael Falk Matroids and Hyperplane Arrangements

Definitions	Method and Goal	Example oooo●o	Conclusion
Cube			



Christin Bibby, Ian Williams, Dr. Michael Falk

Matroids and Hyperplane Arrangements

NASA Space Grant Symposium

3

▲□▶ ▲圖▶ ▲≧▶ ▲≧▶

Definitions	iviethod and Goal	Example	Conclusion
		00000	
Cube			

$$\Lambda = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \\ -1 & -1 & -1 \\ -1 & -1 & -1 \end{bmatrix}$$

This tells us that in the OS Algebra for this arrangement,

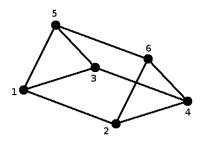
$$[(e_1+e_2)-(e_7+e_8)]\wedge[(e_3+e_4)-(e_7+e_8)]\wedge[(e_5+e_6)-(e_7+e_8)]=0$$

Christin Bibby, Ian Williams, Dr. Michael Falk

Matroids and Hyperplane Arrangements

Definitions	Method and Goal	Example	Conclusion
			00
Conclusion			

Graphic Matroids



Christin Bibby, Ian Williams, Dr. Michael Falk

Definitions	Method and Goal	Example	Conclusion
000	00000	000000	00
Conclusion			

Thank you.

<ロ>

Christin Bibby, Ian Williams, Dr. Michael Falk

Matroids and Hyperplane Arrangements