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Definitions Method and Goal Example Conclusion

Defintions

I For the following definitions, let A be a hyperplane
arrangement with matroid MA on ground set E, and let
X ⊆ E .

I A base of X, is a maximal independent subset of X .

I Theorem: Any two bases of X have the same size.

I The rank of X, is the size of a base of X .

I The closure of X is

cl(X ) = {x ∈ E : Rank(X ∪ x) = Rank(X )}

.

I X is a flat of M if X = cl(X ).
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Defintions

Example
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Defintions

I Now assume that MA is a rank-four matroid.

I A rank-3 flat X is irreducible if Rank(X − i) = Rank(X ) = 3
for every i ∈ X . Otherwise, X is reducible.

I A matroid is 2-generic if for every flat X with Rank(X ) ≤ 2,
Rank(X ) = |X |.
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Method and Goal

I Consider an arrangement of hyperplanes, A, that gives us a
2-generic matroid with Rank(MA) = 4.

I The degree-two resonance variety is

R2 = {a ∈ A1|∃b ∈ A2 with a∧b = 0 and b is not a multiple of a}.

I We are looking for elements in the subset

M2 = {a ∈ A1|∃b ∧ c ∈ A2 with a ∧ b ∧ c = 0

and b ∧ c is not a multiple of a} ⊆ R2.

I We do this by finding a matrix Λ with matroid MΛ that
satisfies certain properties so that the columns of Λ
correspond to elements in M2.
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Method and Goal

I Let X = {X1, . . . ,Xn} be a chosen set of irreducible rank-3
flats of MA, called the base locus.

I Then build the adjacency matrix JX, where the entry mij = 1
if j ∈ Xi and mij = 0 otherwise.

For the prism example, let X = {1234, 1256, 3456}. Then 1 1 1 1 0 0
1 1 0 0 1 1
0 0 1 1 1 1


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Method and Goal

I Choose 3 linearly independent vectors in ker(JX), Λ1,Λ2,Λ3,
and let Λ = [Λ1|Λ2|Λ3].

I This guarantees that Rank(MΛ) = 3 and JXΛ = 0, which are
two of the properties we desire.

I X ⊆ E is a 1-clique if Rank(X ) = 1, and X is a maximal
1-clique if it is a rank-1 flat.

I X ⊆ E is a 2-clique if Rank(X ) = 2, and X is a maximal
2-clique if it is a rank-2 flat.

I For the third property, we check that Γ, the set of maximal
2-cliques, satisfies the neighborly condition.
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Method and Goal

We say that Γ is neighborly if it satisfies the following properties
for each rank-3 flat X in MA.

(1) If X is an irreducible flat with
∑

j∈X λji 6= 0 for some i ≤ 3,
then X ⊆ S for some S ∈ Γ (If X is irreducible and X /∈ X,
then X is contained in a 2-clique).

(2) If X is a reducible rank-3 flat in MA, then X ⊆ S for some
S ∈ Γ (If X is reducible, then X is contained in a 2-clique).

(2’) If X − {i} ⊆ S for some i ∈ X , S ∈ Γ, then X ⊆ S .
(Generalization of condition (2). If X − {i} is contained in a
2-clique for some i ∈ X , then so is X.)
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Method and Goal

Example

JX =

 1 1 1 1 0 0
1 1 0 0 1 1
0 0 1 1 1 1

 Λ =



1 0 0
−1 0 0
0 1 0
0 −1 0
0 0 1
0 0 −1


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Cube

Consider the hyperplane arrangement

A = {x ± y , y ± z , z ± w ,w ± x}.

with matroid MA given by

A =



1 1 0 0
1 −1 0 0
0 1 1 0
0 1 −1 0
0 0 1 1
0 0 1 −1
1 0 0 1
−1 0 0 1


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Cube

X = {1357, 2358, 1458, 2457, 1368, 2367, 1467, 2468}

Then:

JX =



1 0 1 0 1 0 1 0
0 1 1 0 1 0 0 1
1 0 0 1 1 0 0 1
0 1 0 1 1 0 1 0
1 0 1 0 0 1 0 1
0 1 1 0 0 1 1 0
1 0 0 1 0 1 1 0
0 1 0 1 0 1 0 1



Christin Bibby, Ian Williams, Dr. Michael Falk NASA Space Grant Symposium

Matroids and Hyperplane Arrangements



Definitions Method and Goal Example Conclusion

Cube

Λ =



1 0 0
1 0 0
0 1 0
0 1 0
0 0 1
0 0 1
−1 −1 −1
−1 −1 −1


The matroid MΛ is determined by the rows of Λ, and it consists of
four double points.
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Cube

Λ =



1 0 0
1 0 0
0 1 0
0 1 0
0 0 1
0 0 1
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
This tells us that in the OS Algebra for this arrangement,

[(e1+e2)−(e7+e8)]∧[(e3+e4)−(e7+e8)]∧[(e5+e6)−(e7+e8)] = 0
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Conclusion

Graphic Matroids
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Conclusion

Thank you.
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