Characterization of a Line Arrangement whose Fundamental Group of the Complement is a Direct Sum of Free Groups

Meital Eliyahu

Joint work with Eran Liberman, Mina Teicher and Malka Schaps

Bar Ilan University

11.8.09

Definition

The incidence lattice of an arrangement

Let $\mathcal{L} = \{L_1, \dots, L_n\}$ be an arrangement of lines. By $\text{Lat}(\mathcal{L})$ we denote the partially-ordered set of non-empty intersections of the L_i , ordered by inclusion. We include the whole plane and the empty set in $\text{Lat}(\mathcal{L})$, so that it becomes a lattice.

◆□ → ◆□ → ◆ □ → ◆ □ →

≣ ୬୯୯

The fundamental Group

Every line arrangement Σ is equipped with several invariants. The most important is the fundamental group of the complement $\pi_1(\mathbb{C}^2 - \Sigma)$.

・ロト・日本・モート モー うへぐ

The fundamental Group

Every line arrangement Σ is equipped with several invariants. The most important is the fundamental group of the complement $\pi_1(\mathbb{C}^2 - \Sigma)$.

Computation

There are several algorithms to compute the fundamental group of the complement:

- Orlik-Terao
- Cohen-Suciu Algorithm.
- Moishezon-Teicher Algorithm + Van Kampen Theorem.

Combinatorics \Rightarrow Fundamental Group ?

Fundamental Group \Rightarrow Combinatorics?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Known Results

 Rybnikov (1994): two complex arrangements with the same lattice and different fundamental groups of the complement.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Combinatorics \Rightarrow Fundamental Group?

Known Results

- Rybnikov (1994): two complex arrangements with the same lattice and different fundamental groups of the complement.
- Fan (1997): Up to 6 **complex** lines, the lattice determines the fundamental group of the complement.

Combinatorics \Rightarrow Fundamental Group?

Known Results

- Rybnikov (1994): two complex arrangements with the same lattice and different fundamental groups of the complement.
- Fan (1997): Up to 6 **complex** lines, the lattice determines the fundamental group of the complement.
- Garber Teicher Vishne (2002–3): Up to **real** 8 lines, the lattice determines the fundamental group of the complement.

Counterexample:

Figure: The arrangements Σ_1 and Σ_2

▲ロト ▲圖 ト ▲ 臣 ト ▲ 臣 ト ○ 臣 - のへで

Counterexample:

Figure: The arrangements Σ_1 and Σ_2

$$\pi_1(\mathbb{C}^2 - \Sigma_1) = \pi_1(\mathbb{C}^2 - \Sigma_2) \cong \mathbb{F}_2 \oplus \mathbb{F}_2 \oplus \mathbb{Z}^2$$

▲ロト ▲圖 ト ▲ 臣 ト ▲ 臣 ト ○ 臣 - のへで

Introduction

Fan (1997): The graph $G(\Sigma)$ lies on the arrangement Σ :

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

Introduction

Fan (1997): The graph $G(\Sigma)$ lies on the arrangement Σ :

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Vertices: the multiple points (with multiplicity ≥ 3).

Fan (1997): The graph $G(\Sigma)$ lies on the arrangement Σ :

Vertices: the multiple points (with multiplicity ≥ 3).

Edges: the segments between multiple points on lines which pass through more than one multiple point.

If two lines occur to meet in a simple point we ignore it (i.e. we do not consider it as a vertex of the graph).

Introduction

Fan (1997): The graph $G(\Sigma)$ lies on the arrangement Σ :

Vertices: the multiple points (with multiplicity ≥ 3).

Edges: the segments between multiple points on lines which pass through more than one multiple point.

If two lines occur to meet in a simple point we ignore it (i.e. we do not consider it as a vertex of the graph).

Figure: Graphs of line arrangements a, the set of the s

Theorem (Fan, 1997)

If $G(\mathcal{L})$ has no cycles, then:

$$\pi_1(\mathbb{CP}^2 - \mathcal{L}) \cong \mathbb{F}_{m_1 - 1} \oplus \cdots \oplus \mathbb{F}_{m_k - 1} \oplus \mathbb{Z}^{\ell - (\sum_{i=1}^k (m_i - 1)) - 1},$$

where m_1, \ldots, m_k are the multiplicities of the multiple intersection points in \mathcal{L} and ℓ is the number of lines.

Theorem (Fan, 1997)

If $G(\mathcal{L})$ has no cycles, then:

$$\pi_1(\mathbb{CP}^2 - \mathcal{L}) \cong \mathbb{F}_{m_1 - 1} \oplus \cdots \oplus \mathbb{F}_{m_k - 1} \oplus \mathbb{Z}^{\ell - (\sum_{i=1}^k (m_i - 1)) - 1},$$

where m_1, \ldots, m_k are the multiplicities of the multiple intersection points in \mathcal{L} and ℓ is the number of lines.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Conjecture (Fan)

The converse is also true.

Theorem (Fan, 1997)

If $G(\mathcal{L})$ has no cycles, then:

$$\pi_1(\mathbb{CP}^2 - \mathcal{L}) \cong \mathbb{F}_{m_1 - 1} \oplus \cdots \oplus \mathbb{F}_{m_k - 1} \oplus \mathbb{Z}^{\ell - (\sum_{i=1}^k (m_i - 1)) - 1},$$

where m_1, \ldots, m_k are the multiplicities of the multiple intersection points in \mathcal{L} and ℓ is the number of lines.

Conjecture (Fan)

The converse is also true.

Main Theorem (E-Liberman-Schaps-Teicher, 2009)

Fan's conjecture is true.

Presentation of The Fundamental Group

Orlik-Terao (1988), Arvola (1992), Cohen-Suciu (1997)

Let $\Sigma = \{L_1, \ldots, L_n\} \subseteq \mathbb{C}^2$ be a line arrangement. We associate a generator Γ_i to each line L_i such that

$$G = \pi_1(\mathbb{C}^2 - \Sigma) = \langle \Gamma_1, \dots, \Gamma_n | R \rangle.$$

・ロト・日本・モート モー うへぐ

Presentation of The Fundamental Group

Orlik-Terao (1988), Arvola (1992), Cohen-Suciu (1997)

Let $\Sigma = \{L_1, \ldots, L_n\} \subseteq \mathbb{C}^2$ be a line arrangement. We associate a generator Γ_i to each line L_i such that

$$G = \pi_1(\mathbb{C}^2 - \Sigma) = \langle \Gamma_1, \dots, \Gamma_n | R \rangle.$$

Every intersection point of L_{i_1}, \ldots, L_{i_m} creates a set of relations

$$\Gamma_{i_1}^{x_1}\Gamma_{i_2}^{x_2}\cdots\Gamma_{i_m}^{x_m}=\Gamma_{i_m}^{x_m}\Gamma_{i_1}^{x_1}\cdots\Gamma_{i_{m-1}}^{x_{m-1}}=\Gamma_{i_2}^{x_2}\cdots\Gamma_{i_m}^{x_m}\Gamma_{i_1}^{x_1}$$

where $x_i \in G$ and $\Gamma_i^{x_i} = x_i^{-1} \Gamma_i x_i$. It is equivalent to:

$$[\Gamma_{i_j}^{x_j}, \Gamma_{i_1}^{x_1} \cdots \Gamma_{i_m}^{x_m}] = e, 1 \le j \le m.$$

Algebraic Background

Let G be a group. $G_2 = [G,G], G_3 = [G,[G,G]]$ $G_2/G_3 = [G,G]/[G,[G,G]].$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Algebraic Background

Let G be a group.
$$G_2 = [G, G], G_3 = [G, [G, G]]$$

 $G_2/G_3 = [G, G]/[G, [G, G]].$

Lemma

Let G be a group and let $\{x_1, \ldots, x_k\}$ be the generators of G. Then : $G_2/G_3 = \left\langle [x_i, x_j] \middle| \begin{array}{l} i \neq j, \ 1 \leq i, j \leq k \\ induced \ relations \ from \ relations \ of \ G. \end{array} \right\rangle$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへ⊙

In the case $G = \pi_1(\mathbb{C}^2 - \Sigma)$, it is easy to calculate G_2/G_3 :

Lemma

An implementation for line arrangements. Let Σ be a line arrangement and $G = \pi_1(\mathbb{C}^2 - \Sigma)$. Then the abelian group G_2/G_3 can be written as

$$G_2/G_3 = \left\langle [\Gamma_i, \Gamma_j] \middle| \begin{array}{l} [\Gamma_i, \Gamma_j] = [\Gamma_j, \Gamma_i]^{-1}, \\ [\Gamma_i, \Gamma_j] [\Gamma_k, \Gamma_l] = [\Gamma_k, \Gamma_l] [\Gamma_i, \Gamma_j], \\ \prod_{\Gamma_x \in \Gamma(p)} [\Gamma_x, \Gamma_y], p \in \mathcal{P}, \Gamma_y \in \Gamma(p) \end{array} \right\rangle.$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

where $\Gamma(p)$ are the generators related to lines intersect in p.

Remark

We can see that if Γ_1 and Γ_2 are related to lines meeting in one point and Γ_3 and Γ_4 are related to lines meeting in a different point, there is no relation combining $[\Gamma_1, \Gamma_2]$ and $[\Gamma_3, \Gamma_4]$. Therefore,

$$G_2/G_3 = \bigoplus_{p \in \mathcal{P}} C_p$$

where

$$C_{p} = \left\langle [\Gamma_{i}, \Gamma_{j}], \Gamma_{i}, \Gamma_{j} \in \Gamma(p) \right| \begin{bmatrix} \Gamma_{i}, \Gamma_{j} \end{bmatrix} = [\Gamma_{j}, \Gamma_{i}]^{-1} \\ [\Gamma_{i}, \Gamma_{j}][\Gamma_{k}, \Gamma_{l}] = [\Gamma_{k}, \Gamma_{l}][\Gamma_{i}, \Gamma_{j}] \\ \Gamma_{i}, \Gamma_{j}, \Gamma_{k}, \Gamma_{l} \in \Gamma(p) \\ \prod_{\Gamma_{x} \in \Gamma(p)} [\Gamma_{x}, \Gamma_{y}], \Gamma_{y} \in \Gamma(p) \end{bmatrix} \right\rangle.$$

Definition

$$f: G/G_2 \times G/G_2 \to G_2/G_3$$

$$f(\overline{a}, \overline{b}) = [a, b]/G_3.$$

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

Definition

$$f: G/G_2 \times G/G_2 \to G_2/G_3$$

$$f(\overline{a}, \overline{b}) = [a, b]/G_3.$$

Lemma

Let
$$a, b, c \in G/G_2$$
. Then:
1 $f(a \cdot b, c) = f(a, c) \cdot f(b, c)$.
2 $f(a, b \cdot c) = f(a, b) \cdot f(a, c)$.
3 *if* $n, m \in \mathbb{Z}$ *then* $f(a^n, b^m) = f(a, b)^{nm}$ *for* $m, n \in \mathbb{Z}$.
4 $f(b, a) = (f(a, b))^{-1}$.

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

For any $\overline{x} \in G/G_2$, we define:

$$S(\overline{x}) = \{\overline{y} \in G/G_2 | f(\overline{y}, \overline{x}) = e\} \le G/G_2.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Meaning: $S(\overline{x}) \leq G/G_2$ contains elements whose quotient commutes with \overline{x} in G_2/G_3 .

For any $\overline{x} \in G/G_2$, we define:

$$S(\overline{x}) = \{\overline{y} \in G/G_2 | f(\overline{y}, \overline{x}) = e\} \le G/G_2.$$

Meaning: $S(\overline{x}) \leq G/G_2$ contains elements whose quotient commutes with \overline{x} in G_2/G_3 .

Theorem

Let $Q \in \mathcal{P}$ be an intersection point of $\{L_{i_1}, \dots, L_{i_m}\}$. Let $\Gamma(Q) = \{\Gamma_{i_1}, \dots, \Gamma_{i_m}\}$ and the induced relations of the point Q is $\Gamma_{i_1}^{x_1}\Gamma_{i_2}^{x_2}\cdots\Gamma_{i_m}^{x_m}=\Gamma_{i_m}^{x_m}\Gamma_{i_1}^{x_1}\cdots\Gamma_{i_{m-1}}^{x_{m-1}}=\Gamma_{i_2}^{x_2}\cdots\Gamma_{i_m}^{x_m}\Gamma_{i_1}^{x_1}$. Let $M = \Gamma_{i_1}^{x_1}\cdots\Gamma_{i_m}^{x_m}$. Then $S(\overline{M}) = \left\langle \overline{\Gamma(Q)} \cup \left(\bigcap_{\Gamma \in \Gamma(Q)} S(\overline{\Gamma})\right) \right\rangle.$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ♥ ♥ ♥

We call $S(\overline{M})$ the stabilizer of the intersection point Q.

Theorem

Assume:

$$G = \pi_1(\mathbb{C}^2 - \Sigma) \simeq (\bigoplus_{i=1}^n A_i) \oplus \mathbb{Z}^l$$

where A_i is a free group. Then for any multiple point Q of k lines $\{l_1, \ldots, l_k\}$, there exists $r, 1 \leq r \leq n$, and a projection onto A_r , $\varphi_Q : G \to G$ such that $A_r = \langle \varphi_Q(\Gamma_1), \ldots, \varphi_Q(\Gamma_k) \rangle \cong \mathbb{F}_{k-1}$. If l_i is a line do not pass through the point, then $\varphi_Q(\Gamma_i) = e$.

Moreover, if $\{p_1, \ldots, p_m\}$ are the multiple points of Σ and n_i is the number of lines pass through the point p_i , then $G \cong (\bigoplus_{i=1}^m C_i) \oplus B$, where $C_i \cong \mathbb{F}_{n_i-1}$. If l is a line which does not pass through p_i and let Γ be its corresponding generator, then $\operatorname{pr}_i(\Gamma) = e$ (where pr_i is the projection onto C_i).

Proof of main theorem

Theorem

Let $\Sigma \subseteq \mathbb{C}^2$ be a line arrangement which has no pair of parallel lines. Then if

$$\pi_1(\mathbb{C}^2 - \Sigma) = \bigoplus_{i=1}^{r} A_i \oplus \mathbb{Z}^l,$$

where A_i are free groups. Then $G(\Sigma)$ has no cycles.

Theorem

Let $\Sigma \subseteq \mathbb{C}^2$ be a line arrangement which has no pair of parallel lines. Then if

$$\pi_1(\mathbb{C}^2 - \Sigma) = \bigoplus_{i=1}^{\prime} A_i \oplus \mathbb{Z}^l,$$

where A_i are free groups. Then $G(\Sigma)$ has no cycles.

Proof:

Assume by negation there is at least one cycle in the graph. We choose the minimal one.

By the previous Theorem we can write : $G\cong (\bigoplus_{i=1}^m C_i)\oplus B$, where $C_i\cong \mathbb{F}_{n_i-1}.$

Define:

$$\begin{split} \{\Gamma_1,\ldots,\Gamma_n\}\text{- generators related to the lines of the arrangement.} \\ \{\Gamma_{x_1},\ldots,\Gamma_{x_t}\}\text{ - generators related to the lines of the cycle.} \\ Z := \Gamma_1\cdots\Gamma_n \\ N := \langle \Gamma_{x_1},\ldots,\Gamma_{x_t},Z\rangle \\ H := G/N \end{split}$$

There is a contradiction related to the rank of H.

The End!

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ