Characterization of a Line Arrangement whose Fundamental Group of the Complement is a Direct Sum of Free Groups

Meital Eliyahu
Joint work with
Eran Liberman, Mina Teicher and Malka Schaps

Bar Ilan University
11.8.09

Definition

The incidence lattice of an arrangement
Let $\mathcal{L}=\left\{L_{1}, \cdots, L_{n}\right\}$ be an arrangement of lines. By $\operatorname{Lat}(\mathcal{L})$ we denote the partially-ordered set of non-empty intersections of the L_{i}, ordered by inclusion. We include the whole plane and the empty set in $\operatorname{Lat}(\mathcal{L})$, so that it becomes a lattice.

Every line arrangement Σ is equipped with several invariants. The most important is the fundamental group of the complement $\pi_{1}\left(\mathbb{C}^{2}-\Sigma\right)$.

Every line arrangement Σ is equipped with several invariants. The most important is the fundamental group of the complement $\pi_{1}\left(\mathbb{C}^{2}-\Sigma\right)$.

Computation
There are several algorithms to compute the fundamental group of the complement:

- Orlik-Terao

■ Cohen-Suciu Algorithm.
■ Moishezon-Teicher Algorithm + Van Kampen Theorem.

Combinatorics \Rightarrow Fundamental Group ?

Fundamental Group \Rightarrow Combinatorics?

Known Results

■ Rybnikov (1994): two complex arrangements with the same lattice and different fundamental groups of the complement.

Known Results

■ Rybnikov (1994): two complex arrangements with the same lattice and different fundamental groups of the complement.

- Fan (1997): Up to 6 complex lines, the lattice determines the fundamental group of the complement.

Known Results

■ Rybnikov (1994): two complex arrangements with the same lattice and different fundamental groups of the complement.

- Fan (1997): Up to 6 complex lines, the lattice determines the fundamental group of the complement.

■ Garber Teicher Vishne (2002-3): Up to real 8 lines, the lattice determines the fundamental group of the complement.

Counterexample:

Figure: The arrangements Σ_{1} and Σ_{2}

Counterexample:

Figure: The arrangements Σ_{1} and Σ_{2}

$$
\pi_{1}\left(\mathbb{C}^{2}-\Sigma_{1}\right)=\pi_{1}\left(\mathbb{C}^{2}-\Sigma_{2}\right) \cong \mathbb{F}_{2} \oplus \mathbb{F}_{2} \oplus \mathbb{Z}^{2}
$$

Introduction

Fan (1997): The graph $G(\Sigma)$ lies on the arrangement Σ :

Introduction

Fan (1997): The graph $G(\Sigma)$ lies on the arrangement Σ :
Vertices: the multiple points (with multiplicity ≥ 3).

Introduction

Fan (1997): The graph $G(\Sigma)$ lies on the arrangement Σ :
Vertices: the multiple points (with multiplicity ≥ 3).
Edges: the segments between multiple points on lines which pass through more than one multiple point.
If two lines occur to meet in a simple point we ignore it (i.e. we do not consider it as a vertex of the graph).

Fan (1997): The graph $G(\Sigma)$ lies on the arrangement Σ :
Vertices: the multiple points (with multiplicity ≥ 3).
Edges: the segments between multiple points on lines which pass through more than one multiple point.
If two lines occur to meet in a simple point we ignore it (i.e. we do not consider it as a vertex of the graph).

Figure: Graphs of line arrangements

History

Theorem (Fan, 1997)

If $G(\mathcal{L})$ has no cycles, then:

$$
\pi_{1}\left(\mathbb{C P}^{2}-\mathcal{L}\right) \cong \mathbb{F}_{m_{1}-1} \oplus \cdots \oplus \mathbb{F}_{m_{k}-1} \oplus \mathbb{Z}^{\ell-\left(\sum_{i=1}^{k}\left(m_{i}-1\right)\right)-1}
$$

where m_{1}, \ldots, m_{k} are the multiplicities of the multiple intersection points in \mathcal{L} and ℓ is the number of lines.

Theorem (Fan, 1997)

If $G(\mathcal{L})$ has no cycles, then:

$$
\pi_{1}\left(\mathbb{C P}^{2}-\mathcal{L}\right) \cong \mathbb{F}_{m_{1}-1} \oplus \cdots \oplus \mathbb{F}_{m_{k}-1} \oplus \mathbb{Z}^{\ell-\left(\sum_{i=1}^{k}\left(m_{i}-1\right)\right)-1}
$$

where m_{1}, \ldots, m_{k} are the multiplicities of the multiple intersection points in \mathcal{L} and ℓ is the number of lines.

Conjecture (Fan)

The converse is also true.

Theorem (Fan, 1997)

If $G(\mathcal{L})$ has no cycles, then:

$$
\pi_{1}\left(\mathbb{C P}^{2}-\mathcal{L}\right) \cong \mathbb{F}_{m_{1}-1} \oplus \cdots \oplus \mathbb{F}_{m_{k}-1} \oplus \mathbb{Z}^{\ell-\left(\sum_{i=1}^{k}\left(m_{i}-1\right)\right)-1}
$$

where m_{1}, \ldots, m_{k} are the multiplicities of the multiple intersection points in \mathcal{L} and ℓ is the number of lines.

Conjecture (Fan)

The converse is also true.

Main Theorem (E-Liberman-Schaps-Teicher, 2009)

Fan's conjecture is true.

Orlik-Terao (1988), Arvola (1992), Cohen-Suciu (1997)
Let $\Sigma=\left\{L_{1}, \ldots, L_{n}\right\} \subseteq \mathbb{C}^{2}$ be a line arrangement.
We associate a generator Γ_{i} to each line L_{i} such that

$$
G=\pi_{1}\left(\mathbb{C}^{2}-\Sigma\right)=\left\langle\Gamma_{1}, \ldots, \Gamma_{n} \mid R\right\rangle
$$

Orlik-Terao (1988), Arvola (1992), Cohen-Suciu (1997)
Let $\Sigma=\left\{L_{1}, \ldots, L_{n}\right\} \subseteq \mathbb{C}^{2}$ be a line arrangement.
We associate a generator Γ_{i} to each line L_{i} such that

$$
G=\pi_{1}\left(\mathbb{C}^{2}-\Sigma\right)=\left\langle\Gamma_{1}, \ldots, \Gamma_{n} \mid R\right\rangle
$$

Every intersection point of $L_{i_{1}}, \ldots, L_{i_{m}}$ creates a set of relations

$$
\Gamma_{i_{1}}^{x_{1}} \Gamma_{i_{2}}^{x_{2}} \cdots \Gamma_{i_{m}}^{x_{m}}=\Gamma_{i_{m}}^{x_{m}} \Gamma_{i_{1}}^{x_{1}} \cdots \Gamma_{i_{m-1}}^{x_{m-1}}=\Gamma_{i_{2}}^{x_{2}} \cdots \Gamma_{i_{m}}^{x_{m}} \Gamma_{i_{1}}^{x_{1}}
$$

where $x_{i} \in G$ and $\Gamma_{i}^{x_{i}}=x_{i}{ }^{-1} \Gamma_{i} x_{i}$.
It is equivalent to:

$$
\left[\Gamma_{i_{j}}^{x_{j}}, \Gamma_{i_{1}}^{x_{1}} \cdots \Gamma_{i_{m}}^{x_{m}}\right]=e, 1 \leq j \leq m
$$

Algebraic Background

Let G be a group. $G_{2}=[G, G], G_{3}=[G,[G, G]]$
$G_{2} / G_{3}=[G, G] /[G,[G, G]]$.

Algebraic Background

Let G be a group. $G_{2}=[G, G], G_{3}=[G,[G, G]]$
$G_{2} / G_{3}=[G, G] /[G,[G, G]]$.

Lemma

Let G be a group and let $\left\{x_{1}, \ldots, x_{k}\right\}$ be the generators of G. Then :

$$
G_{2} / G_{3}=\left\langle\left[x_{i}, x_{j}\right] \left\lvert\, \begin{array}{l}
i \neq j, 1 \leq i, j \leq k \\
\text { induced relations from relations of } G .
\end{array}\right.\right\rangle
$$

In the case $G=\pi_{1}\left(\mathbb{C}^{2}-\Sigma\right)$, it is easy to calculate G_{2} / G_{3} :

Lemma

An implementation for line arrangements. Let Σ be a line arrangement and $G=\pi_{1}\left(\mathbb{C}^{2}-\Sigma\right)$. Then the abelian group G_{2} / G_{3} can be written as

$$
G_{2} / G_{3}=\left\langle\left[\Gamma_{i}, \Gamma_{j}\right] \left\lvert\, \begin{array}{l}
{\left[\Gamma_{i}, \Gamma_{j}\right]=\left[\Gamma_{j}, \Gamma_{i}\right]^{-1},} \\
{\left[\Gamma_{i}, \Gamma_{j}\right]\left[\Gamma_{k}, \Gamma_{l}\right]=\left[\Gamma_{k}, \Gamma_{l}\right]\left[\Gamma_{i}, \Gamma_{j}\right]} \\
\prod_{\Gamma_{x} \in \Gamma(p)}\left[\Gamma_{x}, \Gamma_{y}\right], p \in \mathcal{P}, \Gamma_{y} \in \Gamma(p)
\end{array}\right.\right\rangle .
$$

where $\Gamma(p)$ are the generators related to lines intersect in p.

Remark

We can see that if Γ_{1} and Γ_{2} are related to lines meeting in one point and Γ_{3} and Γ_{4} are related to lines meeting in a different point, there is no relation combining $\left[\Gamma_{1}, \Gamma_{2}\right]$ and $\left[\Gamma_{3}, \Gamma_{4}\right]$.
Therefore,

$$
G_{2} / G_{3}=\bigoplus_{p \in \mathcal{P}} C_{p}
$$

where

$$
C_{p}=\left\langle\left[\Gamma_{i}, \Gamma_{j}\right], \Gamma_{i}, \Gamma_{j} \in \Gamma(p)\right.
$$

$$
\begin{aligned}
& {\left[\Gamma_{i}, \Gamma_{j}\right]=\left[\Gamma_{j}, \Gamma_{i}\right]^{-1}} \\
& {\left[\Gamma_{i}, \Gamma_{j}\right]\left[\Gamma_{k}, \Gamma_{l}\right]=\left[\Gamma_{k}, \Gamma_{l}\right][\Gamma} \\
& \quad \Gamma_{i}, \Gamma_{j}, \Gamma_{k}, \Gamma_{l} \in \Gamma(p)
\end{aligned} \quad \begin{aligned}
& \prod_{\Gamma_{x} \in \Gamma(p)}\left[\Gamma_{x}, \Gamma_{y}\right], \Gamma_{y} \in \Gamma(p)
\end{aligned}
$$

Definition
 $f: G / G_{2} \times G / G_{2} \rightarrow G_{2} / G_{3}$ $f(\bar{a}, \bar{b})=[a, b] / G_{3}$.

Definition

$$
\begin{aligned}
& f: G / G_{2} \times G / G_{2} \rightarrow G_{2} / G_{3} \\
& f(\bar{a}, \bar{b})=[a, b] / G_{3} .
\end{aligned}
$$

Lemma

Let $a, b, c \in G / G_{2}$. Then:
$1 f(a \cdot b, c)=f(a, c) \cdot f(b, c)$.
$2 f(a, b \cdot c)=f(a, b) \cdot f(a, c)$.
3 if $n, m \in \mathbb{Z}$ then $f\left(a^{n}, b^{m}\right)=f(a, b)^{n m}$ for $m, n \in \mathbb{Z}$.
$4 f(b, a)=(f(a, b))^{-1}$.

For any $\bar{x} \in G / G_{2}$, we define:

$$
S(\bar{x})=\left\{\bar{y} \in G / G_{2} \mid f(\bar{y}, \bar{x})=e\right\} \leq G / G_{2} .
$$

Meaning: $S(\bar{x}) \leq G / G_{2}$ contains elements whose quotient commutes with \bar{x} in G_{2} / G_{3}.

For any $\bar{x} \in G / G_{2}$, we define:

$$
S(\bar{x})=\left\{\bar{y} \in G / G_{2} \mid f(\bar{y}, \bar{x})=e\right\} \leq G / G_{2} .
$$

Meaning: $S(\bar{x}) \leq G / G_{2}$ contains elements whose quotient commutes with \bar{x} in G_{2} / G_{3}.

Theorem

Let $Q \in \mathcal{P}$ be an intersection point of $\left\{L_{i_{1}}, \ldots, L_{i_{m}}\right\}$.
Let $\Gamma(Q)=\left\{\Gamma_{i_{1}}, \ldots, \Gamma_{i_{m}}\right\}$ and the induced relations of the point
Q is $\Gamma_{i_{1}}^{x_{1}} \Gamma_{i_{2}}^{x_{2}} \cdots \Gamma_{i_{m}}^{x_{m}}=\Gamma_{i_{m}}^{x_{m}} \Gamma_{i_{1}}^{x_{1}} \cdots \Gamma_{i_{m-1}}^{x_{m-1}}=\Gamma_{i_{2}}^{x_{2}} \cdots \Gamma_{i_{m}}^{x_{m}} \Gamma_{i_{1}}^{x_{1}}$.
Let $M=\Gamma_{i_{1}}^{x_{1}} \cdots \Gamma_{i_{m}}^{x_{m}}$.
Then

$$
S(\bar{M})=\left\langle\overline{\Gamma(Q)} \cup\left(\bigcap_{\Gamma \in \Gamma(Q)} S(\bar{\Gamma})\right)\right\rangle
$$

We call $S(\bar{M})$ the stabilizer of the intersection point Q.

Theorem

Assume:

$$
G=\pi_{1}\left(\mathbb{C}^{2}-\Sigma\right) \simeq\left(\bigoplus_{i=1}^{n} A_{i}\right) \oplus \mathbb{Z}^{l}
$$

where A_{i} is a free group. Then for any multiple point Q of k lines $\left\{l_{1}, \ldots, l_{k}\right\}$, there exists $r, 1 \leq r \leq n$, and a projection onto A_{r}, $\varphi_{Q}: G \rightarrow G$ such that $A_{r}=\left\langle\varphi_{Q}\left(\Gamma_{1}\right), \ldots, \varphi_{Q}\left(\Gamma_{k}\right)\right\rangle \cong \mathbb{F}_{k-1}$. If l_{j} is a line do not pass through the point, then $\varphi_{Q}\left(\Gamma_{j}\right)=e$. Moreover, if $\left\{p_{1}, \ldots, p_{m}\right\}$ are the multiple points of Σ and n_{i} is the number of lines pass through the point p_{i}, then $G \cong\left(\bigoplus_{i=1}^{m} C_{i}\right) \oplus B$, where $C_{i} \cong \mathbb{F}_{n_{i}-1}$. If l is a line which does not pass through p_{i} and let Γ be its corresponding generator, then $\operatorname{pr}_{i}(\Gamma)=e$ (where pr_{i} is the projection onto C_{i}).

Theorem

Let $\Sigma \subseteq \mathbb{C}^{2}$ be a line arrangement which has no pair of parallel lines. Then if

$$
\pi_{1}\left(\mathbb{C}^{2}-\Sigma\right)=\bigoplus_{i=1}^{r} A_{i} \oplus \mathbb{Z}^{l}
$$

where A_{i} are free groups. Then $G(\Sigma)$ has no cycles.

Theorem

Let $\Sigma \subseteq \mathbb{C}^{2}$ be a line arrangement which has no pair of parallel lines. Then if

$$
\pi_{1}\left(\mathbb{C}^{2}-\Sigma\right)=\bigoplus_{i=1}^{r} A_{i} \oplus \mathbb{Z}^{l}
$$

where A_{i} are free groups. Then $G(\Sigma)$ has no cycles.

Proof:

Assume by negation there is at least one cycle in the graph. We choose the minimal one.
By the previous Theorem we can write : $G \cong\left(\bigoplus_{i=1}^{m} C_{i}\right) \oplus B$, where $C_{i} \cong \mathbb{F}_{n_{i}-1}$.

Define:
$\left\{\Gamma_{1}, \ldots, \Gamma_{n}\right\}$ - generators related to the lines of the arrangement. $\left\{\Gamma_{x_{1}}, \ldots, \Gamma_{x_{t}}\right\}$ - generators related to the lines of the cycle.
$Z:=\Gamma_{1} \cdots \Gamma_{n}$
$N:=\left\langle\Gamma_{x_{1}}, \ldots, \Gamma_{x_{t}}, Z\right\rangle$
$H:=G / N$
There is a contradiction related to the rank of H.

The End！

