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Definition

The incidence lattice of an arrangement

Let L = {L1, · · · , Ln} be an arrangement of lines. By Lat(L) we
denote the partially-ordered set of non-empty intersections of the
Li, ordered by inclusion. We include the whole plane and the
empty set in Lat(L), so that it becomes a lattice.
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The fundamental Group

Every line arrangement Σ is equipped with several invariants. The
most important is the fundamental group of the complement
π1(C
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Computation

There are several algorithms to compute the fundamental group of
the complement:

Orlik-Terao

Cohen-Suciu Algorithm.

Moishezon-Teicher Algorithm + Van Kampen Theorem.
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Combinatorics ⇒ Fundamental Group?

Known Results

Rybnikov (1994): two complex arrangements with the same
lattice and different fundamental groups of the complement.

Fan (1997): Up to 6 complex lines, the lattice determines the
fundamental group of the complement.

Garber Teicher Vishne (2002–3): Up to real 8 lines, the
lattice determines the fundamental group of the complement.
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Fundamental Group ⇒ Combinatorics ?

Counterexample:

Figure: The arrangements Σ1 and Σ2

π1(C
2 − Σ1) = π1(C

2 − Σ2) ∼= F2 ⊕ F2 ⊕ Z
2
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Introduction

Fan (1997): The graph G(Σ) lies on the arrangement Σ:

Vertices: the multiple points (with multiplicity ≥ 3).

Edges: the segments between multiple points on lines which pass
through more than one multiple point.
If two lines occur to meet in a simple point we ignore it (i.e. we do
not consider it as a vertex of the graph).

Figure: Graphs of line arrangements
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Theorem (Fan, 1997)

If G(L) has no cycles, then:

π1(CP
2 − L) ∼= Fm1−1 ⊕ · · · ⊕ Fmk−1 ⊕ Z

ℓ−(
∑k

i=1
(mi−1))−1,

where m1, . . . ,mk are the multiplicities of the multiple intersection
points in L and ℓ is the number of lines.
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History

Theorem (Fan, 1997)

If G(L) has no cycles, then:

π1(CP
2 − L) ∼= Fm1−1 ⊕ · · · ⊕ Fmk−1 ⊕ Z

ℓ−(
∑k

i=1
(mi−1))−1,

where m1, . . . ,mk are the multiplicities of the multiple intersection
points in L and ℓ is the number of lines.

Conjecture (Fan)

The converse is also true.

Main Theorem (E-Liberman-Schaps-Teicher, 2009)

Fan’s conjecture is true.
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Presentation of The Fundamental Group

Orlik-Terao (1988), Arvola (1992), Cohen-Suciu (1997)

Let Σ = {L1, . . . , Ln} ⊆ C
2 be a line arrangement.

We associate a generator Γi to each line Li such that

G = π1(C
2 − Σ) = 〈Γ1, . . . ,Γn|R〉.

Every intersection point of Li1 , . . . , Lim creates a set of relations

Γx1

i1
Γx2

i2
· · ·Γxm

im
= Γxm

im
Γx1

i1
· · ·Γ

xm−1

im−1
= Γx2

i2
· · ·Γxm

im
Γx1

i1

where xi ∈ G and Γxi

i = xi
−1Γixi.

It is equivalent to:

[Γ
xj

ij
,Γx1

i1
· · ·Γxm

im
] = e, 1 ≤ j ≤ m.
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Algebraic Background

Let G be a group. G2 = [G,G], G3 = [G, [G,G]]
G2/G3 = [G,G]/[G, [G,G]].

Lemma

Let G be a group and let {x1, . . . , xk} be the generators of G.
Then :

G2/G3 =

〈

[xi, xj ]

∣

∣

∣

∣

i 6= j, 1 ≤ i, j ≤ k
induced relations from relations of G.

〉



In the case G = π1(C
2 − Σ), it is easy to calculate G2/G3:

Lemma

An implementation for line arrangements. Let Σ be a line
arrangement and G = π1(C

2 −Σ). Then the abelian group G2/G3

can be written as

G2/G3 =

〈

[Γi,Γj ]

∣

∣

∣

∣

∣

∣

∣

∣

∣

[Γi,Γj ] = [Γj ,Γi]
−1,

[Γi,Γj ][Γk,Γl] = [Γk,Γl][Γi,Γj ],
∏

Γx∈Γ(p)

[Γx,Γy], p ∈ P,Γy ∈ Γ(p)

〉

.

where Γ(p) are the generators related to lines intersect in p.



Remark

We can see that if Γ1 and Γ2 are related to lines meeting in one
point and Γ3 and Γ4 are related to lines meeting in a different
point, there is no relation combining [Γ1,Γ2] and [Γ3,Γ4].
Therefore,

G2/G3 =
⊕

p∈P

Cp

where

Cp =

〈

[Γi,Γj],Γi,Γj ∈ Γ(p)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

[Γi,Γj ] = [Γj ,Γi]
−1

[Γi,Γj ][Γk,Γl] = [Γk,Γl][Γi,Γj ]

Γi,Γj,Γk,Γl ∈ Γ(p)
∏

Γx∈Γ(p)

[Γx,Γy],Γy ∈ Γ(p)

〉

.
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f : G/G2 × G/G2 → G2/G3

f(a, b) = [a, b]/G3.
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f : G/G2 × G/G2 → G2/G3

f(a, b) = [a, b]/G3.

Lemma

Let a, b, c ∈ G/G2. Then:

1 f(a · b, c) = f(a, c) · f(b, c).

2 f(a, b · c) = f(a, b) · f(a, c).

3 if n,m ∈ Z then f(an, bm) = f(a, b)nm for m,n ∈ Z.

4 f(b, a) = (f(a, b))−1.



For any x ∈ G/G2, we define:

S(x) = {y ∈ G/G2|f(y, x) = e} ≤ G/G2.

Meaning: S(x) ≤ G/G2 contains elements whose quotient
commutes with x in G2/G3.



For any x ∈ G/G2, we define:

S(x) = {y ∈ G/G2|f(y, x) = e} ≤ G/G2.

Meaning: S(x) ≤ G/G2 contains elements whose quotient
commutes with x in G2/G3.

Theorem

Let Q ∈ P be an intersection point of {Li1 , . . . , Lim}.
Let Γ(Q) = {Γi1 , . . . ,Γim} and the induced relations of the point
Q is Γx1

i1
Γx2

i2
· · ·Γxm

im
= Γxm

im
Γx1

i1
· · ·Γ

xm−1

im−1
= Γx2

i2
· · ·Γxm

im
Γx1

i1
.

Let M = Γx1

i1
· · ·Γxm

im
.

Then

S(M ) =

〈

Γ(Q) ∪

(

⋂

Γ∈Γ(Q)

S(Γ)

)〉

.

We call S(M ) the stabilizer of the intersection point Q.



Theorem

Assume:

G = π1(C
2 − Σ) ≃ (

n
⊕

i=1

Ai) ⊕ Z
l

where Ai is a free group. Then for any multiple point Q of k lines
{l1, . . . , lk}, there exists r, 1 ≤ r ≤ n, and a projection onto Ar,
ϕQ : G → G such that Ar = 〈ϕQ(Γ1), . . . , ϕQ(Γk)〉 ∼= Fk−1.
If lj is a line do not pass through the point, then ϕQ(Γj) = e.

Moreover, if {p1, . . . , pm} are the multiple points of Σ and ni is
the number of lines pass through the point pi, then
G ∼= (

⊕m
i=1 Ci) ⊕ B, where Ci

∼= Fni−1. If l is a line which does
not pass through pi and let Γ be its corresponding generator, then
pri(Γ) = e (where pri is the projection onto Ci).



Proof of main theorem
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Let Σ ⊆ C
2 be a line arrangement which has no pair of parallel

lines. Then if

π1(C
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r
⊕
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Ai ⊕ Z
l,

where Ai are free groups. Then G(Σ) has no cycles.



Proof of main theorem

Theorem

Let Σ ⊆ C
2 be a line arrangement which has no pair of parallel

lines. Then if

π1(C
2 − Σ) =

r
⊕

i=1

Ai ⊕ Z
l,

where Ai are free groups. Then G(Σ) has no cycles.

Proof:

Assume by negation there is at least one cycle in the graph. We
choose the minimal one.
By the previous Theorem we can write : G ∼= (

⊕m
i=1 Ci) ⊕ B,

where Ci
∼= Fni−1.



Define:

{Γ1, . . . ,Γn}- generators related to the lines of the arrangement.
{Γx1

, . . . ,Γxt} - generators related to the lines of the cycle.
Z := Γ1 · · ·Γn

N := 〈Γx1
, . . . ,Γxt , Z〉

H := G/N

There is a contradiction related to the rank of H.



The End!
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