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Outline

History: master functions, zeroes of one-forms
Geometry associated with critical sets:

¢ logarithmic differential forms
e another characterization of free arrangements

Critical points and resonance
The codimension of the critical set is not “combinatorial.”
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History

Definition (Master functions)

Let R=C[xq,..., %], and fi,...,f, € R be linear forms. Let
A= (A1,...,Ap) € C". The master function ®) = &, (fi,...,f)is

defined by:
n
Oy = H i
i=1
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History

Definition (Master functions)

Let R=C[xq,..., %], and fi,...,f, € R be linear forms. Let
A= (A1,...,Ap) € C". The master function ®) = &, (fi,...,f)is

defined by:
n
oy =[]
i=1

Question: describe solutions to V&, = 0. Some history:
e hypergeometric functions: Aomoto, Kita; Orlik, Terao; Mukhin,
Scherbak, Varchenko; Damon; Silvotti.
e optimization (algebraic statistics): Catanese, Hosten, Khetan,
Sturmfels.
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Notation (Hyperplane arrangement)

A will always be an essential, central arrangement of n hyperplanes
in ¢-dimensional affine space. Let

M

UHI7

PM = UH,

Then, for a point x € C¢,

Vo,(x) =0 & Viogd,(x)=0
n
Sy
. fi 1x
i=1

Moral: the question amounts to characterizing the zero locus of a
1-form.
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Example (from s/, KZ-equations)
Consider the master function
Pen = H H — Zx0)™/" H (%o — Xq)?/",
i=1 j=1 1<p<q<e

where k € C*, my,...,my € Z>g,and zy, ..., 2, € C.
Varchenko: isolated critical points ~~ commuting Hamiltonians in
Gaudin model for Bethe Ansatz.
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The smallest example
Let wy :=dlog ®,.

Example

Consider the master function

Then ) ) ) )\
(2t 3 A2 A8
wA_(x—Fx—y)der(y Xﬁy)dy

So wy = 0 when

&—FL:O,

X XxX-y

d2 A

y x-y 7

equivalent (on M)to A1 + Ao + A3 =0, iy + dox = 0.



Background Geometry Resonance Non-combinatorial results

Example (xy?2(x — y)?s, continued)

Soif A1 + A2 + A3 = 0, there is a single critical point at [\p : —)\] € P'.
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for a choice of weights .
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Example (x* y*2(x — y)*s, continued)
Soif Ay + A2 + A3 = 0, there is a single critical point at [\p : —\¢] € P'.

o Lety, =X, (A) = {x € M(A): wr(x) = 0} denote the critical set
for a choice of weights .

 Equations are homogeneous: let PY y be the quotient in P~ 1.
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The (projective) critical set is usually isolated

Theorem (Varchenko/R; Orlik-Terao/C (1995))

For any arrangement A, there is an open set Y C C" such that: for all
A € Y, Px, is isolated and nondegenerate. Moreover,

IPXA| = B(A) = (X(PM)).
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A universal construction

Fixing the arrangement and allowing the weights to vary has good
properties. Let ¥ = Y (A) be the variety of all solutionsto wy =0in
M x C". One may project ¥ C M x C” to either factor.

Theorem (Orlik-Terao ’95)

The projection ¥ — M gives ¥ the structure of a rank n — ¢ vector
bundle on M. In particular, ¥ is smooth and has dimension n.

In equations: let ay, ..., a, be coordinates in C", and
n
wa = Z a,-df,-/f,-.
i=1
Then X = V(/I'), where

I = (<8ixi,wa>: 1<i<Vy),

where (-) denotes the duality pairing on the (co)tangent bundle of M.
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Notation (Logarithmic derivations, forms)

o Let D(A) consist of those derivations 6: R — R for which
0(f;) e (f) foralli,1 <i<n.

o QP(xA): meromorphic p-forms, with (arbitrary) poles on the
hyperplanes, 1 < p < /.

o QP(A): logarithmic p-forms: n € QP(xA) for which Qn and
dQ/Q A n are regular p-forms.

Recall that D(A) and Q'(.A) are dual to each other. For certain
arrangements, D(A) is a free R-module. (A is a “free arrangement.”)

Conjecture (Terao)
IfL(A) = L(A"), then A and A’ are both free, or both not free.
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Definition
Let
I=((0,wa): 6 € D(A)),

a homogeneous ideal of R.

(Compare: I' = ((0/0x;,wa): 1 <i<n),and ¥ = V(I').)
Proposition

For any arrangement A, V(I) =¥ C C* x C".

Main idea: show / = (QI') : Q.

Example (xy(x — y) again)

D(A) is generated by Euler derivation 61 and 0, = x?0/0x + y20/dy,
o)
| = (61 +at+as, aty + agx).
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Remark

% (A) is not smooth. The components of ¥ — ¥ are indexed by
irreducible subspaces in the intersection lattice. (Use
de Concini-Procesi wonderful compactification.)
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A codimension-1 critical set

Example (As3)
Consider arrangement defined by Q = xyz(x — y)(x — z)(y — z). Let
1 = (x(y — 2))/(2(x — ¥)), @2 = (y(x — 2)) (z(x - ).
Let &5 = P242. From this morning’s argument we get
ws = (ay(x — 2) + bx(y — 2)).

where n = dlog ¢ — dlog ®,.
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A codimension-1 critical set

Example (As3)

Consider arrangement defined by Q = xyz(x — y)(x — z)(y — z). Let
1 = (x(y — 2))/(2(x — ¥)), @2 = (y(x — 2)) (z(x - ).
Let &5 = P242. From this morning’s argument we get

wa = (ay(x —2) + bx(y — 2))n,

where n = dlog 1 — dlog ®,. Then X, is given by
ay(x —z)+ bx(y —z) aslong as a, b # 0.



Geometry

A codimension-1 critical set

Example (As)

Consider arrangement defined by Q = xyz(x — y)(x — z)(y — z). Let
o1 = (x(y —2))/(2(x = y)), 2= (y(x — 2))(2(x — y)).
Let ®yap) = d>1ad>‘2’. From this morning’s argument we get

wx = (ay(x —2) + bx(y — 2))n,

where n = dlog ®; — dlog ®,. Then X, is given by
ay(x —z)+ bx(y — z) aslong as a, b # 0.
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A codimension-1 critical set

Example (As)

Consider arrangement defined by Q = xyz(x — y)(x — z)(y — z). Let
o1 = (x(y —2))/(2(x = y)), 2= (y(x — 2))(2(x — y)).
Let ®yap) = d>1ad>‘2’. From this morning’s argument we get

wx = (ay(x —2) + bx(y — 2))n,

where n = dlog ®; — dlog ®,. Then X, is given by
ay(x —z)+ bx(y — z) aslong as a, b # 0.
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Example (A3, continued)

On the other hand, 1,0 is given by y(x — z) = 0, a union of lines.

So: ¥, is not closure of ¥,.
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Another characterization of freeness
Since X is smooth, ¥ is irreducible of codimension ¢ in C¢ x C".

Theorem (CDFV’09)

Y (A) is a complete intersection if and only if A is free.
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Another characterization of freeness
Since X is smooth, ¥ is irreducible of codimension ¢ in C¢ x C".

Theorem (CDFV’09)

Y (A) is a complete intersection if and only if A is free.
Definition

Say an arrangement A is tame if pdimzQP(A) < pfor1 < p < /.
(Includes rank-3 arrangements, generic and free arrangements.)

Theorem (CDFV’09)

If A is tame, then X is arithmetically Cohen-Macaulay.

(C.I. = Gorenstein = a.C.M.)

o If ¥ is arithmetically Cohen-Macaulay, is A tame?
e Are there (nonfree) arrangements A for which ¥ is Gorenstein?
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Example
Let A be arrangement of 15 hyperplanes in C* dual to the points

{(b1, b2, bz, bs): b; € {0,1}, not all zero}.

Then A is not tame (pdim Q' = 2) [Solomon-Terao,87] and X is not
a.C.M.



Geometry

Example
Let A be arrangement of 15 hyperplanes in C* dual to the points

{(b1, b2, bz, bs): b; € {0,1}, not all zero}.

Then A is not tame (pdim Q' = 2) [Solomon-Terao,87] and X is not
a.C.M.

e Converse unknown.
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Resonance varieties

Let A= H (PM, Z), the (deconed) Orlik-Solomon algebra of A.
Identify A" = {A e C": 37, \; =0}.

Definition
The pth resonance variety RP(A) of A:

RP(A) = {wy € A': HP(A,wy A =) # 0}.

Then [Eisenbud-Popescu-Yuzvinsky’03]
0=RCR'CR®C...CRT=A"
Orlik-Terao’s set Y N R!=2 = (), (but Y C A'). Recall
A€eY=codimX,=/¢—-1.

Generalize?
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Resonance

Definition
Master functions with “large” critical sets: let

SP(A) = {N € A': codim T, < p}.

(Note Xy, = X for c #0.)
Then
0=8°cstcs?c...cs"=A"

Compare with resonance varieties?
Positive results:

e [Scherbak, Varchenko, '03]: critical set of discriminental master

function
e [Cohen, Varchenko '03]: curves in critical set « weights in R‘~2.
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A heuristic

Suppose that wy € R'(A). Then 3n € A' for which
wx An=0,

butn & C-wy. But (1) is true on the level of forms, so 3 f, g
polynomials for which

fwy = gn;
wyx = g/f-n.

So X\ D V(9). (So, codimension 1.)
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Resonance = high-dimensional critical sets

Theorem (CDFV’09)

Let A be an arrangement. Then R'(A) C S'(A).
e If A is tame, then additionally R?> C S2.
o If A is free, then RP C SP for all p.
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o If A is free, then RP C SP for all p.

Methods:
o Complex of meromorphic forms resolves defining ideal of X(.A):

0 — () 27 (rd) 2. 2 l(s4) — So/I 0,

where S is polynomial ring in ¢ + n variables (coordinates and
parameters).
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Theorem (CDFV’09)

Let A be an arrangement. Then R'(A) C S'(A).
o If A is tame, then additionally R?> C S2.
e If A is free, then RP C SP for all p.

Methods:
o Complex of meromorphic forms resolves defining ideal of £(A):

0 — Q(nA) 2 Q1 (rA) 2. 2 0f(+4) — So/I' 0,

where S is polynomial ring in £ + n variables (coordinates and
parameters).

e The complex is self-dual, so
HP(Q (xA),wx) = Extg (Sa/I'. (Ra)a),

and codim of X, is least p for which HP(Q'(x.A),wy) # 0.
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methods, continued
e Now consider complex of logarithmic forms,

0 — Q%A) 2.2 Q1 A) 2 QYA) — S/I—0. (2

o If Ais free, this is a free resolution of defining ideal of ¥ (.A)
(Koszul complex).
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methods, continued
e Now consider complex of logarithmic forms,

0—0%A) 2... Bar1 ) Bala) = S/1—0. (@)

o If Ais free, this is a free resolution of defining ideal of ¥ (.A)
(Koszul complex).

o If Aistame, (2) is exact. (In general?)
e Conclude
HP(Q (A), wy) = Torg_,(S/1, Ry),

relate to codimension of .
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methods, continued
Now consider complex of logarithmic forms,

0 — Q%A) 2. ?Qf—‘(A) M—Q}QK(A) —8/1—0. (2

If Ais free, this is a free resolution of defining ideal of X(.A)
(Koszul complex).

If Ais tame, (2) is exact. (In general?)
Conclude

HP(Q (A), wy) = Torg_,(S/1, Ry),
relate to codimension of .
Show (A, wy) — (2 (A),d + wy) is monomorphism in
cohomology via [Schechtman-Varchenko’91].

If Aistame, (A,wy) — (2 (A),d + ew,) is quasiiso. for generic
¢ € C*, via [Wiens-Yuzvinsky’97] and [Farber’01].
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methods, continued
Now consider complex of logarithmic forms,

0 — Q%A) 2. w—%Qé“(A) M—Q}QK(A) —8/1—0. (2

If Ais free, this is a free resolution of defining ideal of X(.A)
(Koszul complex).

If Ais tame, (2) is exact. (In general?)
Conclude
HP(Q (A), wy) = Torg_,(S/1, Ry),
relate to codimension of .
Show (A, wy) — (2 (A),d + wy) is monomorphism in
cohomology via [Schechtman-Varchenko’91].
If Aistame, (A, wy) — (2 (A),d + ew,) is quasiiso. for generic
¢ € C*, via [Wiens-Yuzvinsky’97] and [Farber’01].
Conclude HP(A',wy) # 0 = HP(Q2'(A),wy) # 0.
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“Correct” setting is blown up:

o Let f: be critical set of ®, in in minimal blowup Y x — P~ with
normal crossing divisors.

e [Dimca’08]: A € RP(A) implies codim of fI at most p. (More
generality, too.)
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Resonance is not enough

Theorem

Suppose A is an arrangement with rank-2 flats X, X' for which
11X, | X' = 3;
2. There is no hyperplane H for which H < X and H < X'.

Then there exists a X for which ¥, has codimension 1, but
H'(A,wy) =0. (SoS' O R').
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Suppose A is an arrangement with rank-2 flats X, X' for which
11X, X = 3;
2. There is no hyperplane H for which H < X and H < X'.
Then there exists a A for which X, has codimension 1, but
H'(A,wy) =0. (SoS' O R').

Idea: for a suitable A supported on hyperplanes of X and X', ¥, is
the linear space X + X'.
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Example

Let A be the projective arrangement given by
Q=((x+2)2x+2)(8x + 2)(y + 2)(2y + z)(3y + 2).

O—O0—O0

O—0—0

X
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Example

Let A be the projective arrangement given by
Q=((x+2)2x+2)(8x + 2)(y + 2)(2y + z)(3y + 2).

O—O0—O0

X O—0—0

The two triple points determine the line in P? given by z = 0. This line
is in X, for all master functions

(£ 2)Bx+ 2P\ ((y+2)By + 27\
"’*“’“"”( (2x+2)* ) < 2y +2)* > '

The weight A(bq, bo) is nonresonant (as long as by, bo # 0.)




Non-combinatorial results

some explanation
o Consider the map ¢: R" — Q'(A) given extending
A= wy
R-linearly. Dual ¢*: D(A) — R" by
0 — (0(f)/fi,....0(f2)/Fa).

e Y is the graph of lgf:r/qﬁ.
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some explanation
o Consider the map ¢: R" — Q'(A) given extending
A= wy
R-linearly. Dual ¢*: D(A) — R" by
0 — (0(h)/fr,...,0(f)/F).

e Y is the graph of Ee“r/(;s.

e Pick basis for linear space of relations amongst f’s: say
Siicifi=0for1 <j<n-—¢.

 Let B be the n x (n— ¢) matrix with Bj = ¢;f;.

e Get exact sequences

0*>Rn—éiRn—g@(A)%cokerd)%O,

0‘>D(A)_>R"—B;R” ¢ — coker B* —= 0.



Non-combinatorial results

Example ((x + z)(2x + 2)(3x + 2)(y + 2)(2y + 2)(3y + 2))
Here,

X+z —22x+z) 3x+z O 0 0 ‘
B:( 0 0 0 y+z -2@2y+2z) 3y+z

* * *
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Example ((x + z)(2x + 2)(3x + 2)(y + 2)(2y + 2)(3y + 2))

Here,
X+z —22x+z) 3x+z O 0 0 ‘
B= 0 0 0 y+z -2@2y+2z) 3y+z

Consider this mod z:
- x —4x 3x O 0 0 !
B=]10 0 0 y -4y 3y

Kernels are saturated, so for any X in span of Ay = (1,—4,3,0,0,0),
X2 =(0,0,0,1,—4,3), zero locus of w) contains line z = 0.
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Example ((x + z)(2x + 2)(3x + 2)(y + 2)(2y + 2)(3y + 2))

Here,

X+z —22x+z) 3x+z O 0 0 ‘
B= 0 0 0 y+z -2@2y+2z) 3y+z

Consider this mod z:
- x —4x 3x O 0 0 !
B=]10 0 0 y -4y 3y

Kernels are saturated, so for any X in span of Ay = (1,—4,3,0,0,0),
X2 = (0,0,0,1,—4,3), zero locus of w) contains line z = 0.

Observation: unlike resonance, equations defining S' depend on
choice of matroid realization.
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A more exotic example

Nevertheless, PS' = P' for each realization of the previous
arrangement.
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Example (“Ziegler arrangements”)

Consider arrangements of 9 lines in P? with six triple points:
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Non-combinatorial results

A more exotic example
Nevertheless, PS' = P' for each realization of the previous
arrangement.

Example (“Ziegler arrangements”)

Consider arrangements of 9 lines in P? with six triple points:

O——O0——O
O——O0——O

S —
SO —
S —

All realizations: 4-dimensional. Realizations with six triple points on a
conic: 3-dimensional. Call latter ones special. Special ones detected
by Hilbert series of D(.A) [Ziegler].
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As before, S' contains some P'’s coming from ¥.,’s which are
projective lines.
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As before, S' contains some P'’s coming from ¥.,’s which are
projective lines.

More interesting: If A is a special Ziegler arrangement, then there is
a \ € C", unique up to a scalar, for which X, is determined by the
conic through the six triple points.
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Background Geometry Resonance Non-combinatorial results

As before, S contains some P'’s coming from ¥,’s which are
projective lines.

More interesting: If A is a special Ziegler arrangement, then there is
a \ € C", unique up to a scalar, for which X, is determined by the
conic through the six triple points.

Conclusion: components of S' depend on choice of matroid
realization.



Non-combinatorial results

Explicitly?
The Ziegler matroid realization is given by
Q=xyz(x+y + z)(s1X + Z)(X + Sy + Z)fr(S3X + Szy + Z)(SaX + ¥),
where
fr = (5183 — 53+ 515254+ 5354 — 515354) X+ S2(S1 — S3+S384)y +(S1+ 8254 — 1) 2,

together with some open conditions. The six multiple points lie on a conic iff
s1(1 — s3) = (52 — 1)s354. In that case, let X be any nonzero multiple of

<S1 (s3—1), —5183, —8354, S3, St —S1S3+ 5354, S3(S1—1), S3—51—5354, S3(S4— 1), S1>-
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Explicitly?
The Ziegler matroid realization is given by
Q=xyz(x+y + z)(s1X + Z)(X + Sy + Z)fr(S3X + Szy + Z)(SaX + ¥),
where
fr = (5183 — 53+ 515254+ 5354 — 515354) X+ S2(S1 — S3+S384)y +(S1+ 8254 — 1) 2,

together with some open conditions. The six multiple points lie on a conic iff
s1(1 — s3) = (52 — 1)s354. In that case, let X be any nonzero multiple of

<S1 (s3—1), —S153, —S354, S3, 51 —S1S3+5354, S3(S1—1), S53—51—S354, S3(S4—1), S1>-
The critical set of the corresponding master function ¢, consists of the conic,

(83— 1)yz + 8384(X% + Xy + x2).



