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Topological complexity and motion planning Topological Complexity

The motion planning problem

A motion planning algorithm for a mechanical system is a rule which
assigns to a pair of states (A,B) of the system a continuous motion of
the system starting at A and ending at B

X the configuration space of the system

PX the space of all continuous paths γ : [0,1]→ X

π : PX → X × X , γ 7→ (γ(0), γ(1)), is a fibration

A motion planning algorithm is a section s : X × X → PX

(not necessarily continuous)

Proposition
∃ a globally continuous section s : X × X → PX

⇐⇒ X is contractible
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Topological complexity and motion planning Topological Complexity

Topological complexity

The topological complexity of a topological space X is the sectional
category, or Schwarz genus, of the fibration π : PX → X × X

TC(X ) = secat(π : PX → X × X )

TC(X ): smallest integer k for which X × X has an open cover with k
elements, over each of which π has a continuous section

Proposition

TC(X ) = 1 ⇐⇒ X is contractible
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Topological complexity and motion planning Motion Planning

Solving the motion planning problem

Proposition (Farber)

If X is a Euclidean Neighborhood Retract, then TC(X ) is equal to the
smallest integer k so that there is a section s : X × X → PX of the path
space fibration and a decomposition

X × X = F1 ∪ F2 ∪ · · · ∪ Fk , Fi ∩ Fj = ∅,

with Fi locally compact and s|Fi : Fi → PX continuous for each i

This gives a motion planning algorithm:

If (A,B) ∈ X × X , ∃! Fi with (A,B) ∈ Fi , and the path s(A,B) is a
continuous motion of the system starting at A and ending at B
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Topological complexity and motion planning Motion Planning

Spheres

Example (X = S1)

F1 = {(x ,−x) | x ∈ X} ⊂ X × X F2 = X × X r F1

s|F1 : F1 → PX counterclockwise path from x to −x
s|F2 : F2 → PX shortest geodesic arc from x to y

TC(S1) = 2

Example (X = S2)
fix e ∈ X , ν a nowhere zero tangent vector field on X r e
F1 = {(e,−e)} F2 = {(x ,−x) | x 6= e} F3 = {(x , y) | x 6= −y}
s|F1 : F1 → PX any fixed path from e to −e
s|F2 : F2 → PX path x to −x along semicircle tangent to ν(x)

s|F3 : F3 → PX shortest geodesic arc from x to y
TC(S2) ≤ 3
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Topological complexity and motion planning Collision-free Motion Planning

Main Theorem

Consider motion of n distinct particles in X condition: no collisions

i.e., motion in the configuration space of n distinct ordered points in X

F (X ,n) = {(x1, . . . , xn) ∈ X×n | xi 6= xj for i 6= j}

Focus on case X = Σg an orientable surface (g ≥ 1 for now)

Theorem (C.-Farber)
The topological complexity of the configuration space of n distinct
ordered points on an orientable surface Σg of genus g is

TC(F (Σg ,n)) =

{
2n + 1 if g = 1
2n + 3 if g ≥ 2
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Preliminaries Topological complexity

Requisite properties

• TC(X ) depends only on the homotopy type of X

• upper bounds

TC(X ) ≤ 2 dim(X ) + 1 dim(X ) the covering dimension of X

TC(X × Y ) ≤ TC(X ) + TC(Y )− 1

• lower bound

TC(X ) ≥ zcl(H∗(X )) + 1 H∗(X ) = H∗(X ; Q) unless otherwise noted
zcl(H∗(X )) the zero-divisor cup length of H∗(X )

the cup length of ker
[
H∗(X )⊗ H∗(X )

∪−−→ H∗(X )
]

Example (X = S2 continued recall TC(S2) ≤ 3)

If 0 6= x ∈ H2(S2), then (x ⊗ 1− 1⊗ x)2 = −2x ⊗ x 6= 0
zcl H∗(S2) ≥ 2 =⇒ TC(S2) ≥ 3 so TC(S2) = 3
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Preliminaries Topological complexity

Surfaces

Example (X = T = S1 × S1)

product inequality =⇒ TC(T ) ≤ TC(S1) + TC(S1)− 1 = 3

a,b ∈ H1(T ) generators of H∗(T )

ā = 1⊗ a− a⊗ 1, b̄ = 1⊗ b − b ⊗ 1 zero divisors in H∗(T )⊗ H∗(T )

āb̄ 6= 0 =⇒ zcl H∗(T ) ≥ 2 TC(T ) = 3

Example (X = Σg g ≥ 2)

dim Σg = 2 =⇒ TC(Σg) ≤ 5

a,b, c,d ∈ H1(Σg) generators of H∗(Σg)

ā, b̄, c̄, d̄ zero divisors in H∗(Σg)⊗ H∗(Σg) as above

āb̄c̄d̄ 6= 0 =⇒ zcl H∗(Σg) ≥ 4 TC(Σg) = 5
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Preliminaries Cohomology of configuration spaces

Diagonal cohomology class

X an oriented real manifold dim X = m

∆ ∈ Hm(X × X ) the cohomology class dual to the diagonal

For X closed with ω ∈ Hm(X ) a fixed generator

∆ =
∑

(−1)|βi |βi × β
∗
i

where {βi} and {β∗i } are dual bases for H∗(X ) satisfying

βi ∪ β
∗
j = δi,j ω

|βi | degree of βi

δi,j Kronecker symbol
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Preliminaries Cohomology of configuration spaces

Cohen-Taylor/Totaro spectral sequence

pi : X×n → X pi,j : X×n → X × X natural projections

pi(x1, . . . , xn) = xi pi,j(x1, . . . , xn) = (xi , xj) 1 ≤ i , j ≤ n i 6= j

inclusion F (X ,n) ↪→ X×n determines Leray spectral sequence

which converges to H∗(F (X ,n))

initial term: quotient of the algebra H∗(X×n)⊗ H∗(F (Rm,n))

by the relations (p∗i (x)− p∗j (x))⊗ αi,j for i 6= j and x ∈ H∗(X )

where αi,j generate H∗(F (Rm,n)) (from famous Arnold, Cohen result)

first nontrivial differential: dαi,j = p∗i,j∆
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Preliminaries Cohomology of configuration spaces

Totaro theorem

Theorem
If X is a smooth, complex projective variety, the above spectral
sequence degenerates immediately
The differential d above is the only nontrivial differential

Suppose X as above has real dimension m

Let H = H∗(X×n) and I the ideal in H generated by the elements

∆i,j = p∗i,j(∆) ∈ Hm(X×n) 1 ≤ i < j ≤ n

Proposition

H/I is a subalgebra of H∗(F (X ,n)) TC(F (X ,n)) ≥ zcl H/I + 1

uses Totaro theorem and

Fact: If B is a subalgebra of A, then zcl A ≥ zcl B
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Proof of the main theorem Genus one

TC(F (T , n))

Theorem
The topological complexity of the configuration space of n distinct
ordered points on the torus T is TC(F (T ,n)) = 2n + 1

n = 1: F (T ,1) = T = S1 × S1 =⇒ TC(F (T ,1)) = 3

n ≥ 2: F (T ,n) ∼= T × F (T r {point},n − 1)

F (T r {point},n− 1) is a K (G,1), G pure braid group of T r {point}
G iterated semidirect product of free groups (Fadell-Neuwirth bundles)

=⇒ F (T r {point},n − 1) ' cell complex of dimension n − 1

=⇒ TC(F (T r {point},n − 1)) ≤ 2(n − 1)− 1 = 2n − 1

product inequality:

TC(F (T ,n)) ≤ TC(T ) + TC(F (T r {point},n − 1))− 1 = 2n + 1
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Proof of the main theorem Genus one

TC(F (T , n))

remains to show that zcl H∗(F (T ,n)) ≥ 2n

a,b ∈ H1(T ) generators of H∗(T )

diagonal class in H2(T × T ) given by

∆ = ab × 1 + 1× ab + b × a− a× b = (1× a− a× 1)(1× b − b × 1)

HT = H∗(T×n) an exterior algebra

generators ai ,bi , 1 ≤ i ≤ n, where ui = 1× · · · × u × · · · × 1

IT ideal in HT generated by ∆i,j = p∗i,j∆ = (aj − ai)(bj − bi) i < j

prior Proposition =⇒ AT = HT/IT subalgebra of H∗(F (T ,n))

zcl H∗(F (T ,n)) ≥ zcl AT =⇒ enough to show that zcl AT ≥ 2n
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Proof of the main theorem Genus one

TC(F (T , n)) = 2n + 1

new HT basis: x1 = a1 y1 = b1 xj = aj − a1 yj = bj − b1 2 ≤ j

∆1,j = xjyj ∆i,j = xjyj − xjyi − xiyj + xiyi for i > 1

IT = 〈 xiyi , xkyj + xjyk 〉 2 ≤ i ≤ n 2 ≤ j < k ≤ n deg 2 gens

AT = HT/IT generated by xi , yi , 1 ≤ i ≤ n, and has basis{
xεx1 y εy1 xJyK | εx , εy ∈ {0,1}, J,K ⊂ [2,n], max J < min K

}
x̄j = xj ⊗ 1− 1⊗ xj ȳj = yj ⊗ 1− 1⊗ yj zero-divisors in AT ⊗ AT

n∏
j=1

x̄j ȳj = ± y1y2 · · · yn ⊗ x1x2 · · · xn + other terms 6= 0

=⇒ zcl AT ≥ 2n �
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Proof of the main theorem Genus one

Remarks on AT

The subalgebra AT is not isomorphic to H∗(F (T ,n))

the differential in the Cohen-Taylor/Totaro spectral sequence has
nontrivial kernel

but zcl AT = zcl H∗(F (T ,n)) = 2n

The algebra AT = HT/IT is Koszul

generating set {xjyj , xjyi + xiyj} of IT is a quadratic Gröbner basis
(use the Buchberger criterion)
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Proof of the main theorem Higher genus

TC(F (Σ, n))

Theorem
The topological complexity of the configuration space of n distinct
ordered points on an orientable surface Σ of genus g ≥ 2 is
TC(F (Σ,n)) = 2n + 3

n = 1: F (Σ,1) = Σ =⇒ TC(F (Σ,1)) = 5

n ≥ 2: F (Σ,n) is a K (G,1), G pure braid group of Σ

Fadell-Neuwirth bundle F (Σ,n)→ Σ has a section

=⇒ G ∼= π1(F (Σ r {point},n − 1)) o π1(Σ)

=⇒ G has cohomological dimension n + 1

=⇒ F (Σ,n) ' cell complex of dimension n + 1

=⇒ TC(F (Σ,n)) ≤ 2n + 3

remains to show that zcl H∗(F (Σ,n)) ≥ 2n + 2
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Proof of the main theorem Higher genus

TC(F (Σ, n)) = 2n + 3

H∗(F (Σ,n)) has a subquotient which contains the algebra AT from the
genus one case as a subalgebra

this, zcl AT = 2n, and computation in H∗(Σ) can be used to show that
zcl H∗(F (Σ,n)) ≥ 2n + 2 �

Remark
Compare with the topological complexity of the Cartesian product:

TC(Σ×n) = 4n + 1 TC(F (Σ,n)) = 2n + 3

Complexity of the collision-free motion planning problem for n distinct
points is ∼ half the complexity of the problem when points can collide

Counterintuitive . . . . . . TC(X ) reflects only part of the “true” complexity
of the motion planning problem
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Related results Genus zero

TC(F (S2, n))

Theorem
For n ≥ 3, the topological complexity of the configuration space of n
ordered points on the sphere is TC(F (S2,n)) = 2n − 2.

Proof uses:

F (S2,n) ' SO(3)× F (R2 r {two points},n − 3)

Arrangements make an appearance! Yay!

TC(SO(3)) = 4 (Farber)

TC(F (R2 r {two points},n − 3)) = 2n − 5 (Farber-Grant-Yuz)

zcl H∗(F (S2,n); Z2) ≥ 2n − 3

Note: For n ≤ 2, F (S2,n) ' S2 and TC(F (S2,n)) = 3
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Related results Punctured surfaces

TC(F (Σ r {m points}, n))

Theorem
Let Σ be a surface of genus g ≥ 1. For m ≥ 1, the topological
complexity of the configuration space of n ordered points on
Σ r {m points} is TC(F (Σ r {m points},n)) = 2n + 1.

Proof uses:

F (Σ r {m points},n) ' cell complex of dimension n

=⇒ TC(F (Σ,n)) ≤ 2n + 1

zcl H∗(F (Σ r {m points},n); C) ≥ 2n (used MHS for this)
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Related results Punctured surfaces

TC(F (S2 r {m points}, n))

Theorem (Farber-Yuz, Farber-Grant-Yuz)
For m ≥ 1, the topological complexity of the configuration space of n
ordered points on S2 r {m points} is

TC(F (S2 r {m points},n)) =


1 if m = 1 and n = 1,
2n − 2 if m = 1 and n ≥ 2,
2n if m = 2 and n ≥ 1,
2n + 1 if m ≥ 3 and n ≥ 1.More arrangements! Yay!

Daniel C. Cohen (LSU) Collision-free motion planning on surfaces MSJ Seasonal Institute 2009 22 / 23



Some References

References

Cohen-Farber, Topological complexity of collision-free motion
planning on surfaces, arXiv:0901.0877

Cohen-Taylor, Computations of Gelfand-Fuks cohomology, the
cohomology of function spaces, and the cohomology of
configuration spaces, Lecture Notes in Math. 657

Farber, Topology of robot motion planning, NATO Science Series
II: Mathematics, Physics and Chemistry 217

Farber-Grant-Yuzvinsky, Topological complexity of collision free
motion planning algorithms in the presence of multiple moving
obstacles, Comtemp. Math. 438

Farber-Yuzvinsky, Topological robotics: Subspace arrangements
and collision free motion planning, Amer. Math. Soc. Transl. 212

Totaro, Configuration spaces of algebraic varieties, Topology 35

Daniel C. Cohen (LSU) Collision-free motion planning on surfaces MSJ Seasonal Institute 2009 23 / 23


	Topological complexity and motion planning
	Topological Complexity
	Motion Planning
	Collision-free Motion Planning

	Preliminaries
	Topological complexity
	Cohomology of configuration spaces

	Proof of the main theorem
	Genus one
	Higher genus

	Related results
	Genus zero
	Punctured surfaces

	Some References

