Random walks on complex hyperplane arrangements and self-organizing libraries

* * * * *

Anders Björner

Kungl. Tekniska Högskolan, Stockholm and Institut Mittag-Leffler

* * * * * *

Sapporo, August 10, 2009

Introduction: Tsetlin's library

- Shelf with n numbered books
- ullet Choose book i with probability w_i , move it to front

Studied also in CS: "dynamic file management", "cache management", ...

Much known: stationary distribution, eigenvalues of transition matrix P_w , ...

Theorem. (Donnelly, Kapoor-Reingold, Phatarfod, 1991) For Tsetlin's library:

- The eigenvalues λ_E of P_w are indexed by subsets $E \subseteq [1, \ldots, n]$, and $\lambda_E = \sum_{i \in E} w_i$
- The multiplicity of λ_E is the number of derangements of n-|E| elements.

Libraries with one shelf (\sim Tsetlin), "random-to-front"

 \longrightarrow

Random walks on complement of real hyperplane arrangements (Bidigare-Hanlon-Rockmore, 1998)

Random-to-front shuffle:

 $4721536 \implies 7154236$

What about complex hyperplane arrangements?

Libraries with one shelf (Tsetlin)

Random walks on real hyperplane arrangements (Bidigare-Hanlon-Rockmore, 1998)

 \downarrow

Libraries with several shelves

 \leftarrow

Random walks on complex hyperplane arrangements

Introduction: Overview

Random walks on semigroups

(Ken Brown, 2000)

 \downarrow

Random walks on \mathbb{R} -arrangements *

Random walks on \mathbb{C} -arrangements

Random walks on greedoids

 \downarrow

Libraries with one shelf (Tsetlin)

Libraries with several shelves

* Bidigare-Hanlon-Rockmore (1998), Brown-Diaconis (1999)

Introduction: Library with several shelves

- ullet k shelves with n numbered books, n_j books on shelf j
- ullet Choose set of books $E\subseteq [n]$ with probability w_E
- Move chosen books to front of resp. shelf, in induced order
 AND

Move affected shelves to top, in induced order

Example. Let n = 3 and $\pi = (1, 2 | 3)$.

Four library configurations. Transition matrix P_w :

	<u>1 2</u> <u>3</u>	<u>2 1</u> <u>3</u>	3 2	3 1
1 2 3	$w_1 + w_{1,2} + w_{1,3}$	$w_1 + w_{1,3}$	$w_1 + w_{1,2}$	w_1
2 1 3	$w_2 + w_{2,3}$	$w_2 + w_{1,2} + w_{2,3}$	w_{2}	$w_2 + w_{1,2}$
3 2	w_{3}	0	$w_3 + w_{1,3}$	$w_{1,3}$
3 1	0	w_{3}	$w_{2,3}$	$w_3 + w_{2,3}$

Example (cont'd). Let n=3 and $\pi=(1,2\mid 3)$. Transition matrix P_w (previous slide) has four eigenvalues, all of multiplicity one:

$$\begin{cases} \varepsilon_1 = 0 \\ \varepsilon_2 = w_{1,3} + w_{2,3} \\ \varepsilon_3 = w_3 + w_{1,2} \\ \varepsilon_4 = 1 \end{cases}$$

Theorem. (Eigenvalues for the k-shelf library walk.)

Let π be the partition of $\{1, \ldots, n\}$ into k blocks according to placement on shelves.

1. For each pair of unordered partitions (α, β) such that $\alpha \leq \pi \leq \beta$ (i.e., β refines π and π refines α) there is an eigenvalue

$$arepsilon_{(lpha,eta)} = \sum w_E,$$

the sum extending over all $E \subseteq [n]$ such that E is a union of blocks from β and the union of shelves containing some element of E is a union of blocks from α .

2. The multiplicity of $\varepsilon_{(\alpha,\beta)}$ is

$$\prod (p_i-1)! \prod (q_j-1)!$$

where $(p_1, p_2, ...)$ are the block sizes of β and $(q_1, q_2, ...)$ the block sizes of α modulo π .

3. These are all the eigenvalues.

Questions

1. Is the detour via complex geometry really needed?

— No, not if one wants only the k-shelf library application, which needs no geometry at all.

2. Why stop at k shelves?

- No need to do that. One can have several library rooms, each with a certain number of shelves each carrying books, such that rooms, shelves and books are permuted at each step.
- Or, several library buildings, . . . several planets, and so on

Def: An LRB (left regular band): semigroup Σ satisfying

$$\begin{cases} x^2 = x & \text{for all } x \in \Sigma \\ xyx = xy & \text{for all } x, y \in \Sigma \end{cases}$$

There are two posets related to an LRB semigroup Σ .

Proposition 1. Define a relation " \leq " on Σ by

$$x \le y \quad \Leftrightarrow \quad xy = y \tag{1}$$

This is a partial order relation.

So, an LRB semigroup is also a poset.

The identity element e is the unique minimal element.

The maximal elements form a left ideal:

$$x \in \Sigma$$
, $y \in \max(\Sigma) \Rightarrow xy \in \max(\Sigma)$

Proposition 2. Let Σ be an LRB semigroup. Then there exists a unique finite lattice Λ and an order-preserving and surjective map

$$supp: \Sigma \to \Lambda \tag{2}$$

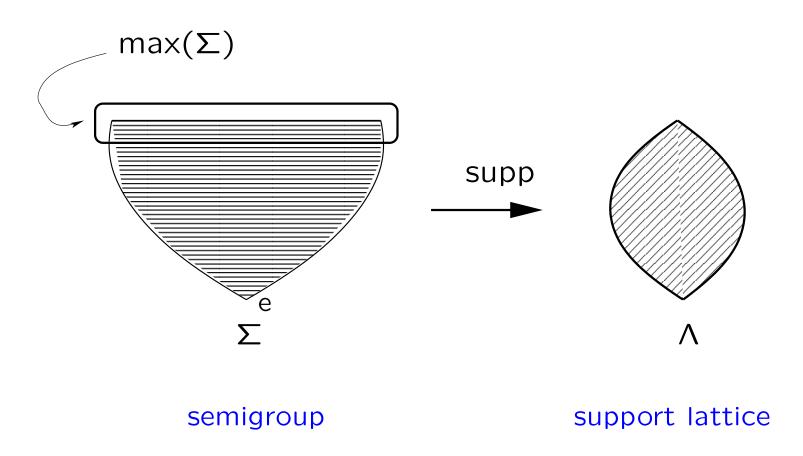
such that for all $x, y \in \Sigma$:

1.
$$supp(xy) = supp(x) \lor supp(y)$$

2.
$$supp(x) \le supp(y) \Leftrightarrow yx = y$$

We call Λ the *support lattice* and supp the *support map*.

"The picture"



Random walk on $\max(\Sigma)$: Probability distribution $\{w_x\}$ on Σ .

STEP: $y \mapsto xy$, where $y \in \max(\Sigma)$ and

 $x \in \Sigma$ is chosen according to w.

Let P_w be the transition matrix of the random walk on max(Σ):

$$P_w(c,d) = \sum_{x: xc=d} w_x$$

for $c, d \in \max(\Sigma)$.

Two fundamental theorems of Brown (2000),

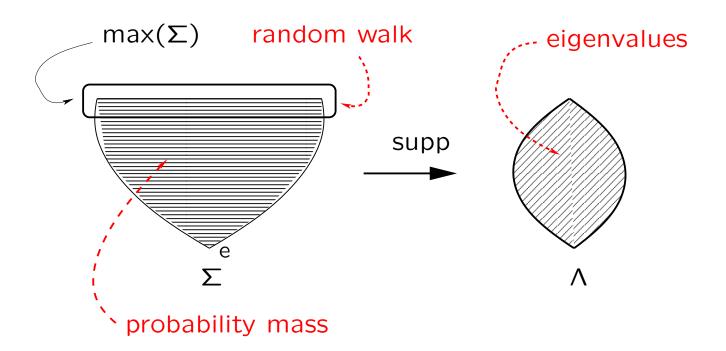
on eigenvalues of P_w resp. stationarity,

generalizing work of Bidigare 97, Bidigare-Hanlon-Rockmore 99, and Brown-Diaconis 98.

Theorem 1. (Eigenvalues)

- 1. The matrix P_w is diagonalizable.
- 2. For each $X \in \Lambda$ there is an eigenvalue $\varepsilon_X = \sum_{y : \text{supp}(y) \leq X} w_y$.
- 3. The multiplicity of the eigenvalue ε_X is $m_X = \sum_{Y:Y \geq X} \mu_{\Lambda}(X,Y) c_Y$, where $c_Y \stackrel{\text{def}}{=} |\max(\Sigma_{\geq y})|$, for any $y \in \text{supp}^{-1}(Y)$.
- 4. These are all the eigenvalues.

"The picture"



Theorem 2. (Stationarity)

Suppose that Σ is generated by $\{x \in \Sigma : w_x > 0\}$. Then the random walk on $\max(\Sigma)$ has a unique stationary distribution π .

Also provided:

- Algorithm how to sample an element distributed from π .
- Measure of convergence to π .
- stationarity will not be further discussed in this talk

$$\mathcal{A} = \{H_1, \dots, H_t\}$$
 arrangement ℓ_1, \dots, ℓ_t linear forms on \mathbb{R}^d $H_i = \{x : \ell_i(x) = 0\} \subseteq \mathbb{R}^d$ hyperplane

 $L_{\mathcal{A}} = \{ \text{intersections of } H_i \text{'s} \} \text{ ordered by reverse inclusion}$ — intersection lattice

Complement — convex cones "regions" or "chambers"

Theorem. (Zaslavsky 1975)

regions =
$$\sum_{x \in L_A} |\mu(\hat{0}, x)|$$

— Where is the semigroup?

Encode position of point $x \in \mathbb{R}^d$ with respect to \mathcal{A} .

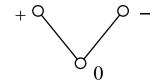
Sign vector (position vector): $\sigma(x) = {\sigma_1, \ldots, \sigma_t} \in {\{+, -, 0\}}^t$

$$\sigma_i = \begin{cases} 0, & \text{if } \ell_i(x) = 0 \\ +, & \text{if } \ell_i(x) > 0 \\ -, & \text{if } \ell_i(x) < 0 \end{cases}$$

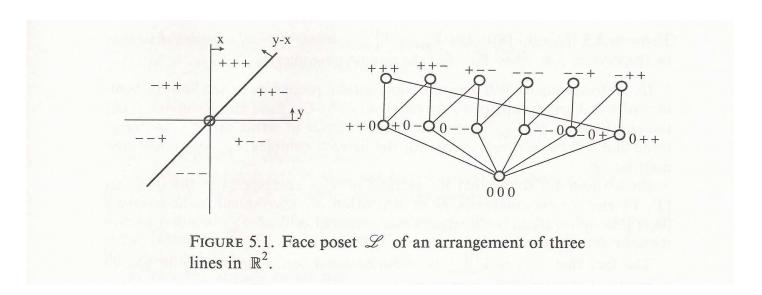
Combinatorics of sign vectors — oriented matroid theory

Face semilattice:

 $F_{\mathcal{A}} = \sigma(\mathbb{R}^d) \subseteq \{+, -, 0\}^t$ — ordered componentwise by



Note: maximal el'ts of $F_{\mathcal{A}} \leftrightarrow$ regions



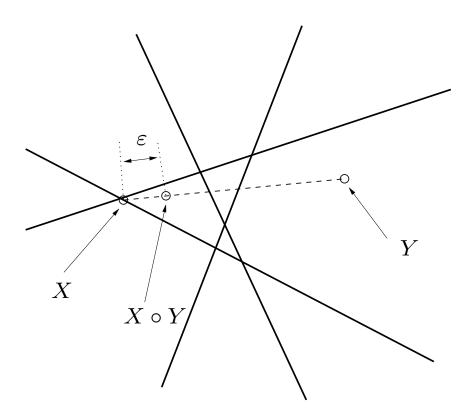
Fact: F_A describes cell structure of regular CW-decomposition of the unit sphere in \mathbb{R}^d (the cell decomposition induced by the hyperplanes)

Composition: $X \circ Y \in \{+, -, 0\}^t$ defined by

$$(X \circ Y)_i = \begin{cases} X_i, & \text{if } X_i \neq 0 \\ Y_i, & \text{if } X_i = 0 \end{cases}$$

• associative, idempotent, unit element = (0, ..., 0)

• $X, Y \in F_{\mathcal{A}} \Rightarrow X \circ Y \in F_{\mathcal{A}}$



Proposition 3. (F_A, \circ) is LRB semigroup with support lattice L_A^{op} . The support map

$$supp: F_{\mathcal{A}} \to L_{\mathcal{A}}^{\mathsf{op}}$$

sends cell σ to linear span $\overline{\sigma}$. (Equivalently, sends sign-vector to the set of positions of its zeroes.)

Consequence: Theory of random walks on \mathbb{R} -arrangements

Probability distribution w on $F_{\mathcal{A}}$ \Rightarrow Random walk on $C_{\mathcal{A}}$

STEP: Choose $X \in F_A$ according to measure w. Then, from current region $C \in C_A$ move to $X \circ C$.

Theorem 3. (Bidigare-Hanlon-Rockmore, Brown-Diaconis)

- (a) Transition matrix is diagonalizable.
- (b) For each $F \in L_A$ there is an eigenvalue

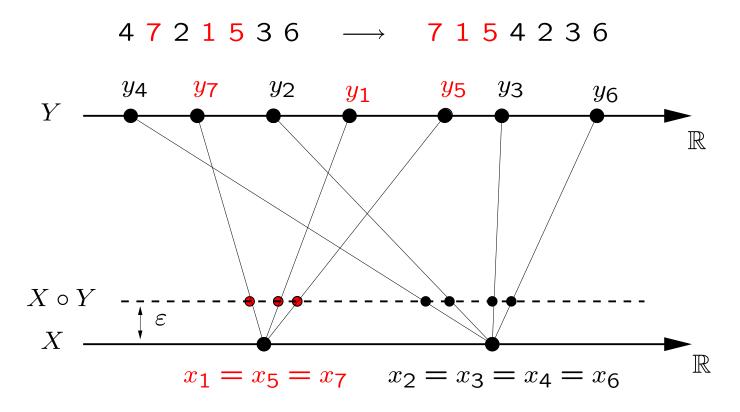
$$\lambda_F = \sum_{X: supp X \subseteq F} w(X)$$

- (c) The multiplicity of λ_F is $|\mu(\hat{0}, F)|$.
- (d) These are all the eigenvalues.

Corollary 1. (Zaslavsky's formula)

regions = size of matrix =
$$\sum_{F \in L_A} |\mu(\hat{0}, F)|$$

Special case, random-to-front shuffle:



Arrangement $\mathcal{A} = \{H_1, \dots, H_t\}$

$$\ell_1,\dots,\ell_t$$
 linear forms on \mathbb{C}^d $H_i=\{x:\ell_i(x)=0\}\subseteq\mathbb{C}^d$ hyperplane $M_A=\mathbb{C}^d\setminus\cup\mathcal{A}$ — complement (2 d -dimensional manifold))

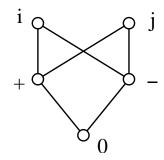
How define random walk? Where is semigroup?

Encode position of point $x \in \mathbb{C}^d$ with respect to A.

Sign vector (position vector): $\sigma(x) = {\sigma_1, \dots, \sigma_t} \in {\{0, +, -, i, j\}^t}$

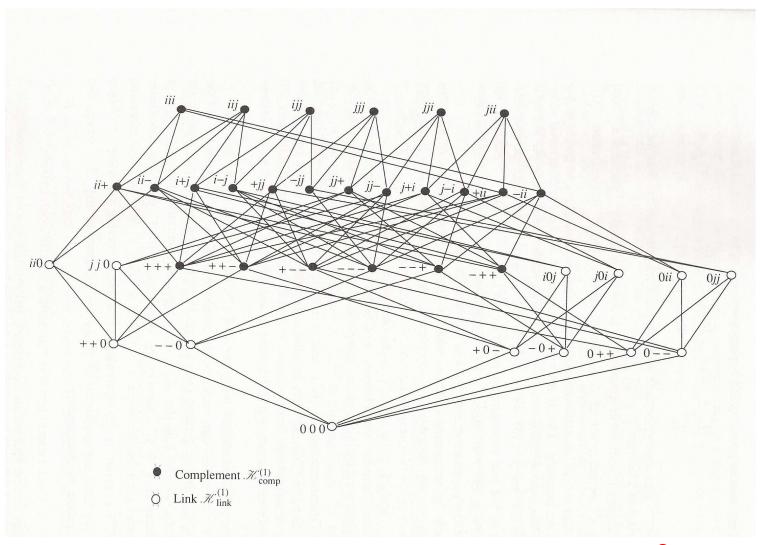
$$\sigma_{i} = \begin{cases} 0, & \text{if } \ell_{i}(x) = 0 \\ +, & \text{if } \Im(\ell_{i}(x)) = 0, \ \Re(\ell_{i}(x) > 0 \\ -, & \text{if } \Im(\ell_{i}(x)) = 0, \ \Re(\ell_{i}(x) < 0 \\ i, & \text{if } \Im(\ell_{i}(x)) > 0 \\ j, & \text{if } \Im(\ell_{i}(x)) < 0 \end{cases}$$

Face poset: $F_{\mathcal{A}} = \sigma(\mathbb{C}^d) \subseteq \{0, +, -, i, j\}^t$

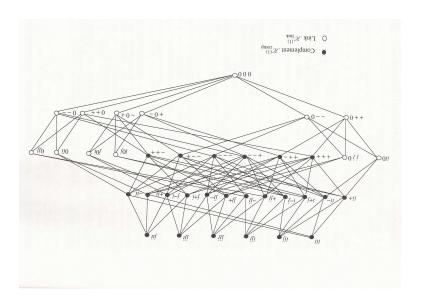


— ordered componentwise by

Proposition 4. F_A is a ranked poset of length 2d



Face poset of arrangement of 3 lines in $\ensuremath{\mathbb{C}}^2$



Theorem. (Bj-Ziegler 1992)

- (a) F_A determines cell structure of regular CW-decomposition of the unit sphere in $\mathbb{R}^{2d}\cong\mathbb{C}^d$
- (b) $C_{\mathcal{A}} \stackrel{\text{def}}{=} F_{\mathcal{A}} \cap \{+, -, i, j\}^t$ with opposite order determines cell structure of a regular CW complex having the homotopy type of the complement $M_{\mathcal{A}}$.

Composition: $Z \circ W \in \{0, +, -, i, j\}^t$ defined by

$$(Z \circ W)_i = \begin{cases} Z_i, & \text{if } W_i \not> Z_i \\ W_i, & \text{if } W_i > Z_i \end{cases}$$

- associative, idempotent, unit element = (0, ..., 0)
- $X, Y \in F_{\mathcal{A}} \Rightarrow X \circ Y \in F_{\mathcal{A}}$ (geometric reason: move ε distance from X toward Y)

Proposition 5. (F_A, \circ) is LRB semigroup.

What is its support lattice?

For \mathbb{C} -arrangements, notion of intersection lattice splits into two.

- 1. The *intersection lattice* L_A : all intersections of subfamilies of hyperplanes H_i ordered by reverse inclusion.
- 2. The augmented intersection lattice $L_{A, \text{aug}}$: all intersections of subfamilies of the augmented arrangement

$$\mathcal{A}_{\mathsf{aug}} = \{H_1, \dots, H_t, H_1^{\mathbb{R}}, \dots, H_t^{\mathbb{R}}\}$$

ordered by reverse inclusion.

Here, $H_i^{\mathbb{R}} \stackrel{\mathsf{def}}{=} \{z \in \mathbb{C}^d : \Im(\ell_i(z)) = 0\}$ is a (2d-1)-dimensional real hyperplane in $\mathbb{C}^d \cong \mathbb{R}^{2d}$ containing H_i .

Proposition 6. (F_A, \circ) is an LRB semigroup with support lattice $L_{A, \text{aug}}^{\text{op}}$. The support map

$$\operatorname{supp}:F_{\mathcal{A}}\to L_{\mathcal{A},\operatorname{aug}}^{\operatorname{op}}$$

sends a "sign vector" $Z \in F_A$ to the intersection of all subspaces in A_{aug} that contain the corresponding stratum.

Consequence: \exists theory of random walks on \mathbb{C} -arrangements

Different versions exist

obtained by choosing various sub-LRB-semigroups of the complex sign vector semigroup (F_A, \circ)

4. Complexified \mathbb{R} -arrangements

All forms $\ell_i(z)$ have \mathbb{R} -coefficients o $\left\{ egin{arrange}{l} {\sf real arrangement } \mathcal{A}^\mathbb{R} \\ {\sf complex arrangement } \mathcal{A}^\mathbb{C} \\ \end{array}
ight.$

Construction specializes to that of M. Salvetti.

Fact: $F_{\mathcal{A}^{\mathbb{C}}}$ is determined by $F_{\mathcal{A}^{\mathbb{R}}}$, namely,

$$\phi: \operatorname{Int}(F_{\mathcal{A}^{\mathbb{R}}}) \to F_{\mathcal{A}^{\mathbb{C}}}$$
$$[Y, X] \mapsto X \circ iY$$

is a poset isomorphism.

Here $\mathrm{Int}(F_{\mathcal{A}^{\mathbb{R}}})\stackrel{\mathrm{def}}{=}$ set of intervals in the real face poset $F_{\mathcal{A}^{\mathbb{R}}}$

4. Complexified \mathbb{R} -arrangements

Structure of $F_{\mathcal{A}^{\mathbb{C}}}$ in terms of intervals $\mathrm{Int}(F_{\mathcal{A}^{\mathbb{R}}})$

Order:

$$[Y, X] \le [R, S] \Leftrightarrow \begin{cases} Y \le R \\ R \circ X \le S \end{cases}$$

Composition:

$$[Y,X] \circ [R,S] = [Y \circ R, Y \circ R \circ X \circ S]$$

5. The real braid arrangement

$$\mathcal{A} = \{x_i - x_j \mid 1 \le i < j \le n\} \text{ in } \mathbb{R}^n.$$

Intersection lattice $L_A \cong \Pi_n$ (set partitions, refinement)

Ex:
$$(134 \mid 27 \mid 5 \mid 6) \leftrightarrow \begin{cases} x_1 = x_3 = x_4 \\ x_2 = x_7 \end{cases}$$

Face semilattice $F_{\mathcal{A}} \cong \Pi_n^{\text{ord}}$ (ordered set partitions, coarsening)

Ex:
$$\langle 134 | 6 | 27 | 5 \rangle \leftrightarrow \begin{cases} x_1 = x_3 = x_4 \\ < x_6 \\ < x_2 = x_7 \\ < x_5 \end{cases}$$

Complement: Regions $C_A \cong S_n$ (permutations of [n])

5. The real braid arrangement

Composition in F_A :

If $X = \langle X_1, \dots, X_p \rangle$ and $Y = \langle Y_1, \dots, Y_q \rangle$, $X_i, Y_j \subseteq [n]$, then

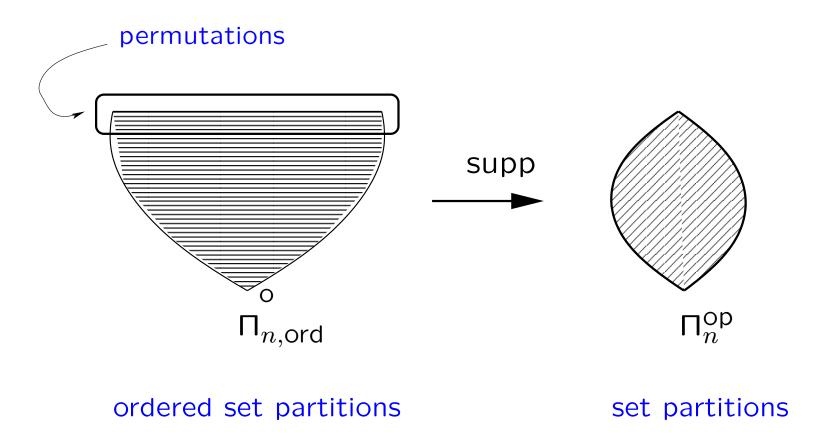
$$X \circ Y = \left\langle X_i \cap Y_j \right\rangle,\,$$

blocks ordered lexicographically by indices (i, j)

Ex: $\langle 257 | 3 | 146 \rangle \circ \langle 17 | 25 | 346 \rangle = \langle 7 | 25 | 3 | 1 | 46 \rangle$

5. The real braid arrangement

"The picture"



6. The complex braid arrangement

$$\mathcal{A} = \{x_i - x_j \mid 1 \le i < j \le n\} \text{ in } \mathbb{C}^n.$$

Intersection lattice $L_A \cong \Pi_n$ (set partitions)

Augmented intersection lattice $L_{A, \text{aug}} \cong \text{Int}(\Pi_n)$ (intervals of set partitions)

Face semilattice $F_{\mathcal{A}} \cong \operatorname{Int}(\Pi_n^{\operatorname{ord}})$ (intervals [Y, X] in semilattice of ordered set partitions)

Complement $C_{\mathcal{A}} \cong$ intervals [Y, X], X maximal \leftrightarrow permutation X divided into blocks Y

6. The complex braid arrangement

Complement $C_{\mathcal{A}} \cong$ intervals [Y, X], X maximal \leftrightarrow permutation X divided into blocks Y

Block-divided permutations ↔ library placements of books

So,

Complement $C_{\mathcal{A}} \leftrightarrow \text{library placements of books}$

This is how we get random walk on library placements of books

7. Walks on complex hyperplane arrangements

Returning to earlier slide ...

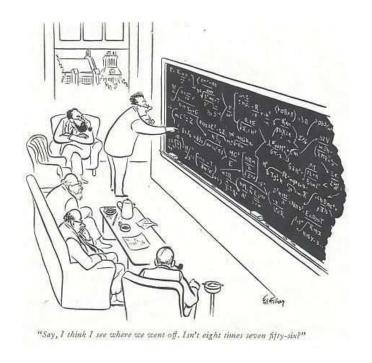
 \exists theory of random walks on \mathbb{C} -arrangements

Different versions exist

obtained by choosing various sub-LRB-semigroups of the complex sign vector semigroup (F_A, \circ)

7. Walks on complex hyperplane arrangements

Working out the combinatorial details for one sub-LRB random walk on the complex braid arrangement



..... we arrive at the description of eigenvalues of the transition matrix of the k-shelf library walk, as stated earlier.

References

 Random walks, arrangements, cell complexes, greedoids, and self-organizing libraries, in "Building Bridges" (eds. M. Grötschel and G. O. H. Katona), Bolyai Soc. Math. Studies 19 (2008), Springer (Berlin) and

Janos Bolyai Math. Studies **19** (2008), Springer (Berlin) and

• Note: Random-to-front shuffles on trees, Elect. Comm. in Probab. 14 (2009), 36–41.

Available at www.math.kth.se/ \sim bjorner