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Let

affine hyperplane arrg ngement in

V=R"

Cd = set of chambers (regions)

;A = set of 4faces

& = intersection poset of A  with mi-
nimum element 0 =V

We =

probability measure on F,




There is @ praduct on the set .’f‘ﬂ which tueas

it Int0 & semi s-ragp :




Recall that for all Fe 3: and Ce C

we have FC
¢ @ "

A

Bidigare, Hanlon and Rockmore defined
o random walk on C,; with taansition

matrix satisfy ng

K(e,c") w (F)

N

Fe=c
fe fA

for C0,C & €.



Some definitions

A probability distdbution ® on C 7 {5
skationarcy for K if

[ ( /
% Gce) = miE) as d =00

S alls €, 6% (-ZA . When it exists, it is

characterized by

Z, BE) MGEE) = iED
Ce GA‘

for all S TG

For prabability distributions P, Q .on e
Linite set X we define the totel wveriation

distance

IP-Ql . = max |RA)- QM)
AS X

We are interested in the vate of wnvergence

L
of lIKC—F.ll—:.aO oS ¢ — 00,



Theomm (BHR, 4998) The characteristic

polynomial of the wmatrix K s equal +o

n
dae(al=-t) = T G )™
)
we L
where
Fe -'FA
Fsw
is an eigenvalue |
,. adhon (W, V)
wy, = | p oW = G P EV,)

and Yo is he Mébius  function on [

Corollary  ( kais Vergnas , Zaslavsky , 49%5)

Z | pCo,wd| = & CA,
We 4,



Theorem ( Brown. -~ Piawnis 193¢ )

(@) The mateix K is di ga@:m,.liig@;[e over K

@G ¥ has o uni que stbationary distribution
T if and mly if FOr each He A there

edists a face Fe J—; such that F ¢4
and w(F) >0,

M‘OF@QM@M ) u@g.m-ing T exXists

(c) Sample without replacement feom , thus
getting an ardarlng Fiown €, of the set
{Fe:ﬂ: wiE) >0t  Hhan Cafaf, -3F, s

oo chamber distributed 4$rom T

(d) We have

¢
b =, & Z. 2,
rle A

¢
where K_  is the distribution of the

chain started $eom Ce (“’A after ¢

Q / ‘ i
steps, e KC(C) 2 6 GEEY).



9*_2@_&'@_ Sgpp.q;e A is e essential | contrml

q‘r-mma@gwm&nt of hyperplanes in V= Rz,

Tivo hgagerplane.s in K

Theorern  (Billerw ~ Brown - Diaconis , 18983) I

w is supported and is wniform on the one-
dimensional faces of A then

L=

e s ——
9\(;0“&)

J

where ( is the nwumber of Jacets (sides)

af Cs @A and §, is the nwmber of

ane - dimensional faces of A,



arrangemen it

y. ='{xi—xj =40 : lSL<jgn}

"
be -+he bruaid qr—-r:qy_-mgb-eﬂm_.gnft in K.

There are b(jections

« ¢ T symmetric group S of permu-

“

takions of [nl:= {42 ... nl
“ F set of ordered partitions
(B, By, B, ) of #he gat [n]

Te 8 to the chamber

n

mapping 2.9,

N\

o H X
2 ¢ Sgen)

X%
xr({ ) T2)



qu‘ MVMQJ‘ J l‘ 'F

© a 2 F L — (B“BE’"“’BK) = B

.@Aa(‘.éz—a fcegn;

then FCe C,  corresponds to the pecmutation

obtained from [ by G nearly or:dﬂnng eoch

block BL accordin g to .

cxample : If n=9 and

= = (81‘134:?:3!21 63315)

B = ({619}11 {4’3.?}3' {qj" {le‘eas)’

then the action of B on T mesuits jn the

& (eema doind G e S & £



Two interesting measures on .’l‘;1
— ——— __.‘ e ———— ———

R-——-———_ANDO‘\-A _.l:_t'?.. -L?_\?. : Let Wy, W5 -, Wy, be pPo-

sibive numbers su mmmg to 4 and tet

W (Y, WIsLel) = w for  1<isn

and  wlB) = O for other ordered partitions
B L]

prab = w,

£\

() @), ..., L, ..., &)

Thus the BHR walk proceeds by mlecb,ns
the wemdinate of o permautation 16 S

¢qual ®o L with probability w. and
mm_im% it in front.



G) C(Phatardod , 1994) Tor each

subset 5 & fnl  (other than these with n-1

elements ) there exists an -&WI ue
A.S = z. w.
— L
Le $

of K of multiplicity equal to the number
of permubations Te S, with set of $ixed

points <qual to =,

(i)  The stationary disteibution 7 5 given
by

Wewy We@y - Waom)

R ST TR
(l'-ww) —wm)- "1:_!_1_.))"' -“ww) * “un-n)

=
—
e
3
i
3
1
1

it gets n(.gg«n steps for the walk o



INVERSE - SHUFFLES : Let @2 be.an

integer . Assign weight (measure) Y %o

n
each of the « weak ordered set parti-

tions

(8, 8y, ..., B, )

&

o{,_ n) (and zero otherwise ).

Exameple: For «=9 +the BHK walk pro-

e R

ceeds by selecting some of the omdina-
tes of o permutmtion e S | unifecmly

at random , and wmoving them in feont,

k&g@m»% their relative order as in = .

(Gt % 986 8 5)

(8 &% & 3 488 6)



C@Y‘O U_ ar

e ——

U4) (Hanlon, 1999 ; Bayer- Piaconis, 1999 )

The ei a.e.m_...v.‘glu,g; of K are 1, . "q‘ M.y
L §

The wmultiplicity of VY, is equel to the

aumber 9§ permutations Te S with n-

cyeles.

Gi) The stationary distribution T is -

fovm on S oand

n

g
4 [
HK‘C_TE“TV < (q) (/)

for every =193 ..

It taKes 3 (og,» steps gor the walk
to. reach stationarity if @=2  (Aldow-

Diasonis , 1986 ; Bayer- Diawonis , 4889 ) ; #he

|

answer is _ in  genercal .
NS wen 5 wghn 3e«n~ al



Let A be any arrangement in Sl

andis B A be a .m_.mr:rzq,m,\gggm.‘ent.

= A
Recall <hat
K.A (C,cj) = Zﬁ uu:')) ¢ & GA
e 2’

' the transition mathix of the BHR walk
on C P At each step of the walk

record tae chamber D€ G.ﬁ' of &S an

which the current chamber C¢ €, les.



This process defines a Markovy subchain

o-{l +he Markov chain

G, Tk, %, GBS

Indeed, given 2. 2 o @ and M"“ﬁ

(3
Ce GJ with €& D, the probability
K BB = 2. K Gge)
® T A
Ce CA
cecp’

of mm!mﬁ feomn D indo ’D’ is Wﬁ‘-

ent of the chamber C<D of A chosen
Question:  What wn one say ahout the
analysis of these subchains on c‘& ?

Note: In a special case, shis

was wnsider-

ed b y J.-C. Uyemure Re,g\e.s . 9009



Motivation: Let A be +the braid arcange-

ment in V“—'Rn, so that @ < A Qmeapnnﬂs

€0 o simple 3,r-@|g-h G & ( [;]) on the node

set [nl = {i“la.‘.‘n}.

« 1§ 6= { el 43k . kIS gor some Kk,
24k ¢ n then the subchain mecords <he
position of 1 relative 0 each of &, .. k
at eoach step of +he walk.

. g @& = “::‘) FOr som€ 232K Ln then
the subchain cecords the position of

1,9, ...,k relative o each other
o I G = {ingl 3885, .., Instn} ] shendhe
subchan rewrds the descent set

Pos (&)

- -1
of the permutation < .



Back to the generul wse of an armangement
A in V=R subarrangement @ <A and

probability measure w on T, .

Lemma : We have

K(B(D,D’D = 9. e

fe Fgo

Ep=p

[
Jor- D,D &« Cg , where

e N, S

EeﬂrA

ESF
for Fe F® ]
Note: Far W in the intersection poset i@

of B we have

= " 5t
L (i) L Z w (E)
Fe CF@ E'clfA
FsWw EaWw

1
N
)]



(A - Diaconis , 2008)

Let L @ dJdenote the interse

tion poset of
. d e the Msbius functi
B and Jg denote the Mdbius junction of 'CB'

(@) The watnx K ® IS dﬁi_.géam(i zable over R

and its eigenvalues are included among
those of k,i‘ Sp£-c.iff€-%-((3.

n

.... W
det [xL- K(B) =« W G- 20
\Me.ﬂ"B
wheare
. wdim (W, V)
i, = | o (O] = Ga) P (Vo)

(b) K @ NS & unique stationary disenbution

T, if and only if for each He @
there exists « face Ee¢ F R4 such that
E$H and w(E)>0.

Moreover, assuming g ex 1S5



@) Sample without replacement From w,
thus agt-@n% an o;rd@ﬂfimg E“Ez,...,Em o;

lee B : wE) 208 . Let C=EE -E, €
and oassume that T A exists. [hen the
unique D€ G@’ which contains C s @

chamber distdbuted from g .

cquivalently , we have

™ = : . @ PC
%, (P) -3 ()
CeC_A
cCs D

Sor each De Cg ,

(d) We have
) €

-
> - <
I b =i i ™ . B

Q { Q 4
where K@CD)?K@,(D,D) for seme

arbitrary but $Hixed initial chamber De

I
GC" and every D Cg.



SLLL'L m_q_na ements 9& the br;w d. qrr,gt-.ﬁ%e ment

Let A be +he braid q;rrgn.a.,_e.m-.e at in TR .
Then B E A s the graphical arcangement
Lorvesp ondi ng to o simap \e %raﬁh

6 ¢ (a)

on the node set [w] and (‘303 oiyects +o

the set of  acyclic odentations of G,

wnsists 0-5- :ti"'x-g ) x(“‘xl.’ P T :(3 ' x‘z‘-‘-l X, =




Lets focus on our Hwo standard wmeasures

on ?A R

RANDOM TO TOP: (We are given positive au-

e ———

mbers Wy, Wy, .oe) Wi SUMII‘:&Q &0 4, ww&
to the nodes de, Q. ... 05 G .

The walk proce eds from the <(urrent acyelic
orientation of G by picking node L with
probability w, and redire ctmg towards i

every edge of G incident to L.



Cg_ro_-u.arﬂ :

B —— ———

mabrix K on the set of «xcyclic onméntations
of G Cis d_i.gao,._m:g;u zable over R and) sa-
tisfies
Mg
tos iy = T =)
5 ¢ (n)
where
A e b
LE S
and LS
m‘s = Zl (-.l> “.t. )
HiRub
where Wy is +the numbker of g_l.c.g-_.t;li C oriente-
tionss of Gt
Gi) The stationary distribution s giver by
Weay wt_,g_g_.) * Wen)
Jc(o) = /4 ( m—p— e —— e am———— — —— g
A=ggyy YA =) bl o™ )

e Lilo)

)



where L(0) is the set of lingar extensions
of the acyclic orientation © of G, e

Log -
pecmutations Tt S suech shat T @ <z ()

whenever there is an edﬁ e (=t in O

(i) We have

Y.

I KQ-TL‘“ s Z'(‘"'wa“w_;].
TV _
{tjleG

[n particular

¢
& 2.
~ < | R
| K rtlw (==

where m is the number of edges of &

B wi“"“'z:""'wﬂ’*vn .



INVERSE o~ SHUFFLES: The walk pro ceeds

Fom  a g-ivﬁn acy clic orientution of G bB
picking  uniformly at randond « weak .osdeced
set  paor ti Hon

(ah aga .22 ) Bq)

of thee noge set G , wish & pests, an d
cedicecting from v to u each edge fu,v]}

of G with  U€ B, usB acil ingsi .

3

C.or'clu ary : (4) The wrrespon d 'l.._n.a transition

matrix K s diagonalizable over R .and)

satisfies
'n"" mt:
= 1
det (xT- K) = T = ;"a)
L=0
wher e
— L n-t
Xe@ = 2, & om
=0

is the chromatic p@l,fg.nmi{.aj_ o} g .



4i) The stationary distribution i¢ given by

B —

where e©) is the number of lnear ex-

<ensions of the acychc orientution o

°‘§’= G,

aii) we have

¢
=gl &
| K rITy .

-

whece ™ is +the number of edges of G.



Bock +to +the random o top measure. Assume

o -4l that
el(o)
guled) = == .
n!

as bedfole.

xample: Let G =2}, {343, ., {2d-1,2a2 |

so that n=2d.

4 3 24~}
1~ -=
2 Yy 9d

The acyclic orientations of G are in one-

to- one Cor responaemc e with the vevtices
of +the d- dimensional cube (o Ud an d
ouy random walk s the Jamiliar nearest

é
nQi gh bor randomm walk on (947,



Example: Let G = ‘l“ﬂ.}, {8, ~--,“,k3} . so sthe

set of acyclic orientations of G bijects tw

the set of subsets of SR i

(orollary G) The e ggn-vg.lu_.ej of the tmnstion

oabcix K are the following.

&, With multiplicity Ine
\ n-i . k=4
wicd o gigh mwtiplisiey () for
148
\

\ill alesd |

i) In the stationary distribution , our subset
has O 4, .. of k=t clements with equal

pro bability A/ k and <each subset of
12.3,.. kY with ¢ eclements has chance

1

————

o [




Gdii) We have

llKa—— i, & (=dd (A==)

We wan also vae

L _ A
i =l ., & (1= =)

using the following :

Lerama:  (Brown ~ Piacenis, 1898) Hor .any BHK

walk on an M-n@mg@m&nt A  we have

I Kl-* 1 |\ 4  Prob {Fl"'Fe ¢ CA}

TV Q
s B ..
He A

New Proof : By o m..p-(img orgu ment. .-,l
' A
Grollary: (n the above situation, | K= gl gy

is bounded obove by the peebability thet
¢ vertices of G, chosen uniformly at caadom
(with repetition allowed) do not cover all

a,_d.ge.-_._s of G .



Srample: Lok G = {483 188}, ..., dastnll

G’ = —l s - oy —o—&—2
A 2 n~ n

The acyclic orientations 0f G ane Qa.gih in

bijection with the subsets of (n—17

s

Gt  Tie e.i_g&n.v alues of the tansition

matrix K are o, V’ﬂ 2 220, ﬂ"—‘;-?" and 4. For
0¢ Kk & n, the mulbiplicity of the -gi%ﬁmmk.-ue
/yy 5 egqual to the number of Compositions

of wm wikh eoxactly k poarts equal to 4

Qi) The stotionary distdbution I satisfies

7(8) = = #—-{teS : D-es('c)‘—“-S}
n! b

for each S Sln~47,

aii) We have

¢
0 9
R D <& il
\ K ﬂ“TV S n)-



Enumeration of walks and ei._ggnvalu._es

CXY

Let A = (0'-&53 e € be a matn x and

let

L) e —
SO0 = s (A = Zoeg e e

for fogy deied &

Lemma : 1§ Ay, 2y, 2 € € are numbers

such that
& # ¢
’S‘(A‘e) = >||+'A2*”‘*2r
for all e 2p@ed, u ,  Ghep .42 Ao afe
<he eigenvalues of +he matmx A,

2%2
example: 1y A= (§ o) € € , shen
4 g 9’; i'} e -mn)
S = ) 0 ¢ odd
v‘ui i ’ "; .
A ¢ [
= <&l

and hence 1 and -1 ace the W-
values of A.



Proof of BHR: In view of the Lemma , it
sufsices +o show that

£
q—

&(Kl @ = 2. mw ')w
we L

sae G493, ..., whese W, = Itho,w)!. By

definition, we have

T > W) WiE, ) - wF,)

CE% F‘FZ“F(C: @

Also, by LasVergnas - Zaslavsky we have

#g{cecjf:rcsc] e & m
' aff(F) < W
Mke £

w

foe eveny Fe F . Hence

50K, ) =



wlR) Wk, ) ~-wlf,) =

Z__: WE) WIF,) --wlF,) =

Q!)U:‘ )“CF; ) W ‘fFe ) =

WEE) WO, ) -~ w€F,) =

w(F)wlE) --wlF,) =



	a1
	a2
	a3

