HYPERPLANE
ARRANGEMENTS,
RANDOM WALKS

AND

EIGENVALUES

Christos A. Athanasiadis
University of Athens

and

Persi Diaconis Stanford University $A = affine hyperplane arrangement in <math>V = \mathbb{R}^n$

C = set of chambers (regions)

F = set of faces

 $\mathcal{L} = \text{intersection poset of } \mathcal{A} \text{ with minimum element } \hat{o} = V$

w = probability measure on Fa

A

There is a product on the set f. which turns it into a semigroup:

Recall that for all $F \in F_A$ and $C \in C_A$ we have $F \subset C \in C_A$.

Bidigare, Hanlon and Rockmore defined a random walk on a with transition matrix satisfying

$$K(c,c') = \sum_{w(F)} w(F)$$
 $Fc=c'$
 $F\varepsilon F_A$

for C, C' & C.

Some definitions

A probability distribution π on C_A is stationary for K if

$$K^{\ell}(C,C') \rightarrow \pi(C')$$
 as $\ell \rightarrow \infty$

for all C, C' & C. When it exists, it is characterized by

for all C'ECA.

For prabability distributions P, Q on a finite set X we define the total variation distance

$$IP-QII_{TV} = max [P(A)-Q(A)]$$
.

ASX

We are interested in the rate of convergence of $\|K_C - \pi\| \to 0$ as $\ell \to \infty$.

Theorem (BHR, 1999) The characteristic polynomial of the matrix K. is equal to

$$\det (xI - K) = TT (x - \lambda_W)^{m_W},$$
We L

where

$$\lambda_{W} = \sum_{F \in \mathcal{F}_{A}} \omega(F)$$

is an eigenvalue,

$$m_W = | \mu_L(\hat{o}, W) | = (-1) \qquad \mu_L(v, W)$$

and ML is the Möbius function on L.

Corollary (Las Vergnas, Zaslavsky, 1975)

Theorem (Brown - Piaconis, 1998)

- (a) The matrix K. is diagonalizable over R.
- (b) K has a unique stationary distribution π if and only if for each $H \in A$ there exists a face $F \in F_A$ such that $F \notin H$ and $\omega(F) > 0$.

Moreover, assuming I exists:

- (c) Sample without replacement from ω , thus getting an ordering $F_1,...,F_m$ of the set $\{F \in \mathcal{F}_1 : \omega(F) > 0\}$. Then $(=F_1 F_2 \cdots F_m)$ is a chamber distributed from π .
- (d) We have

$$\|K_{C}^{\prime} - \pi\|_{TV} \leq \sum_{H \in A} \lambda_{H}$$

where K_c is the distribution of the chain started from $C \in C_A$ after ℓ steps, i.e. $K_c(C') = K'(C,C')$.

Example Suppose A is an essential, central arrangement of hyperplanes in $Y = \mathbb{R}^3$.

Five hyperplanes in TR3

Theorem (Billera-Brown-Diaconis, 1999) If w is supported and is uniform on the one-dimensional faces of A, then

$$\pi(C) = \frac{i-2}{2(f_0-2)},$$

where i is the number of facets (sides)
of CEC, and fo is the number of
one-dimensional faces of A.

The braid arrangement

Let

$$A = \{x_i - x_j = 0 : 1 \le i < j \le n\}$$

be the braid arrangement in R.

There are bijections

- $C_{A} \cong Symmetric group S_{n} of permutations of [n] := {1,2,...,n}$
- $\mathcal{F}_{A} \cong \text{set of ordered partitions}$ $(B_1, B_2, ..., B_k) \text{ of the set [n]}$

mapping e.g. $\tau \in S_n$ to the chamber $x_{\tau(1)} > x_{\tau(2)} > \cdots > x_{\tau(n)}.$

Moreover, if

then $FC \in C_A$ corresponds to the permutation obtained from B by linearly ordering each block B_i according to τ .

Example: If n=9 and

$$\tau = (8,1,4,7,9,2,6,3,5)$$

$$B = (\{6,9\},\{1,3,7\},\{4\},\{2,5,8\}),$$

then the action of B on t results in the permutation

$$\tau' = (9,6,1,7,3,4,8,2,5) \in S_g.$$

Two interesting measures on 5:

RANDOM TO TOP: Let w1, w2, ..., wn be positive numbers summing to 1 and let

 $\omega(\{i\}, [n] \setminus \{i\}) = w_i$ for $1 \le i \le n$

and $\omega(B) = 0$ for other ordered partitions B.

Thus the BHR. walk proceeds by selecting the coordinate of a permutation $\tau \in S_n$ equal to i with probability w_i and moving it in front.

Corollary (i) (Phatarfod, 1991) For each subset SC[n] (other than those with n-1 elements) there exists an eigenvalue

$$\lambda_s = \sum_{i \in s} w_i$$

of K of multiplicity equal to the number of permutations $\tau \in S_n$ with set of fixed points equal to 5.

(ii) The stationary distribution T is given by

$$T(\tau) = \frac{W_{\tau(1)} \ W_{\tau(2)} \ \cdots \ W_{\tau(n)}}{(1 - W_{\tau(1)})(1 - W_{\tau(1)} - W_{\tau(2)}) \cdots (1 - W_{\tau(n)} - W_{\tau(n)})}.$$

(iii) If
$$w_1 = w_2 = \dots = w_n = 1/n$$
 then
$$\|K_z - \pi\|_{TV} \le {n \choose 2} (1 - \frac{2}{n}).$$

It gets nlogn steps for the walk to reach stationarity.

INVERSE α -SHUFFLES: Let $\alpha \geqslant 2$ be an integer. Assign weight (measure) $\frac{1}{\alpha}$ n to each of the α weak ordered set partitions

of [n] (and zero otherwise).

Example: For $\alpha=2$ the BHR walk proceeds by selecting some of the coordinates of a permutation $t\in S_n$, uniformly at random, and moving them in front, keeping their relative order as in t.

Corollary

- (4) (Hanlon, 1990; Bayer-Piaconis, 1992)

 The eigenvalues of K are $1, \frac{1}{4}, \frac{1}{4}, \frac{1}{4}, \dots, \frac{1}{4}$.

 The multiplicity of $1/a^i$ is equal to the number of permutations $T \in S_n$ with n-i cycles.
- (ii) The stationary distribution π is uniform on 5_n and

$$\|K_{\tau}^{\ell} - \pi \|_{TV} \leq {n \choose q} {1 \choose q}^{\ell}$$

for every l=1,2,3,...

It takes $\frac{3}{2}\log_2 n$ steps for the walk to reach stationarity if a=2 (Aldous-Diaconis, 1986; Bayer-Diaconis, 1992); the answer is $\frac{3}{2}\log_k n$ in general.

Let A be any arrangement in $V = \mathbb{R}^n$ and $B \subseteq A$ be a subarrangement.

Recall that

$$K_A(C,C') = \sum_{FC=C'} w(F), \quad C,C' \in C_A$$

is the transition matrix of the BHR walk on C_A . At each step of the walk, record the chamber $D \in C_B$ of B in which the current chamber $C \in C_A$ lies.

This process defines a Markov subchain of the Markov chain

Co, F, Co, F&F, Co, F&F&F, Co, ...

Indeed, given $D, D' \in C_B$ and choosing $C \in C_J$ with $C \subseteq D$, the probability

$$K_{\mathcal{B}}(P,D') = \sum_{c' \in \mathcal{C}_{A}} K_{A}(c,c')$$

$$c' \in \mathcal{C}_{A}$$

$$c' \in \mathcal{D}'$$

of moving from D into D' is independent ent of the chamber (SD of A chosen.

Question: What can one say about the analysis of these subchains on B?

Note: In a special case, this was considered by J.-C. Uyemura Reyes, 2002.

Motivation: Let A be the braid arrangement in $Y = \mathbb{R}^n$, so that $B \subseteq A$ corresponds to a simple graph $G \subseteq \binom{n!}{2}$ on the node set $[n] = \{1, 2, ..., n\}$.

- If $G = \{\{1,2\}, \{1,3\}, ..., \{1,k\}\}\}$ for some k, $2 \le k \le n$, then the subchain records the position of 1 relative to each of 2,...,k at each step of the walk.
- If $G = {k \choose 2}$ for some $2 \le k \le n$, then the subchain records the position of 1, 2, ..., k relative to each other.
- If $G = \{\{1,2\}, \{2,3\}, ..., \{n-1,n\}\}\}$, then the subchain records the descent set

of the permutation τ .

Back to the general case of an arrangement A in $V = \mathbb{R}^n$, subarrangement $B \subseteq A$ and probability measure W on F_A .

Lemma: We have

$$K_{\mathcal{B}}(D,D') = \sum_{i} \vec{w}(F)$$
 $F \in \mathcal{F}_{\mathcal{B}}$
 $F D = D'$

for D, D' & CB, where

$$\omega^*(F) = \sum_{E \in \mathcal{F}_A} \omega(E)$$

$$E \in \mathcal{F}_A$$

$$E \subseteq F$$

for F & FB.

Note: For W in the intersection poset $\mathcal{L}_{\mathcal{B}}$ of \mathcal{B} we have

$$\sum_{w} \omega(F) = \lambda_{w} = \sum_{w} \omega(E).$$

$$F \in F_{B}$$

$$F \subseteq W$$

$$E \subseteq W$$

Corollary: (A - Diaconis, 2008)

Let L_B denote the intersection poset of B and μ_B denote the Möbius function of L_B .

(a) The matrix K_B is diagonalizable over R and its eigenvalues are included among those of K_A. Specifically,

$$\det(xI-K_B) = \prod (x-\lambda_W),$$

$$\text{We } \mathcal{E}_B$$

where

$$n_{W} = |\mu_{B}(\hat{o}, W)| = (-1)$$
 $\mu_{B}(v, W)$.

(b) K_B has a unique stationary distribution π_B if and only if for each $H \in B$ there exists a face $E \in F_A$ such that $E \not= H$ and $\omega(E) > 0$.

Moreover, assuming To exists:

(c) Sample without replacement from ω , thus getting an ordering $E_1, E_2, ..., E_m$ of $\{E \in \mathcal{F}_A : \omega(E) > 0\}$. Let $C = E_1 E_2 ... E_m \in \mathcal{C}_A$ and assume that π_A exists. Then the unique $D \in \mathcal{C}_B$ which contains C is a chamber distributed from π_B .

Equivalently, we have

$$\pi_{\mathcal{B}}(\mathcal{D}) = \sum_{(\in \mathcal{C}_{\mathcal{A}})} \pi_{\mathcal{A}}(c)$$

$$(\in \mathcal{C}_{\mathcal{A}})$$

$$(\in \mathcal{C}_{\mathcal{A}})$$

for each DE CB.

(d) We have

where $K_B(D') = K_B(D,D')$ for some arbitrary but fixed initial chamber $D \in C_B$ and every $D' \in C_B$.

Subarrangements of the braid arrangement

Let A be the braid arrangement in \mathbb{R}^n . Then $B \subseteq A$ is the graphical arrangement corresponding to a simple graph

on the node set [n] and CB bijects to the set of acyclic orientations of G.

Example:

B consists of x1=x9, x1=x4, x2=x3, x2=x4, x3=x4.

acyclic

not acyclic

Lets focus on our two standard measures on F.

RANDOM TO TOP: We are given positive numbers wi, wa, ..., wn summing to 1, assigned to the nodes 1,2,..., n of G.

The walk proceeds from the current acyclic orientation of G by picking node i with probability wi and redirecting towards i every edge of G incident to i.

Corollary: (1) The corresponding transition matrix K on the set of acyclic orientations of G (is diagonalizable over R and) satisfies

$$det(xI-K) = \prod (x-\lambda_s)$$

$$s \in [n]$$

where

$$\lambda_s = \sum_{i \in S} w_i$$

and

$$m_s = \sum_{t \geq s} \frac{t \cdot s}{(-1)} n_t,$$

where n_t is the number of acyclic orientations of $G \setminus t$.

(11) The stationary distribution is given by

$$T(0) = \sum_{M \in \mathcal{U}_{1}} \frac{(1 - M^{\mathcal{U}(1)})(1 - M^{\mathcal{U}(2)} - M^{\mathcal{U}(2)}) \cdots (1 - M^{\mathcal{U}(1)} - M^{\mathcal{U}(1)})}{(1 - M^{\mathcal{U}(1)})(1 - M^{\mathcal{U}(2)} - M^{\mathcal{U}(2)}) \cdots (1 - M^{\mathcal{U}(1)} - M^{\mathcal{U}(1)})}$$

where L(0) is the set of linear extensions of the acyclic orientation o of G, i.e. permutations $T \in S_n$ such that $T^{-1}(i) < \overline{z}^{-1}(j)$ whenever there is an edge $j \rightarrow i$ in o.

(iii) We have

In particular

$$\|K^{e} - \pi\|_{TV} \leq m\left(1 - \frac{2}{n}\right)^{e}$$

where m is the number of edges of G, if $w_1 = w_2 = \cdots = w_n = V_n$.

INVERSE a-SHUFFLES: The walk proceeds

from a given acyclic orientation of G by

picking uniformly at random a weak ordered

set partition

of the node set [n], with a parts, and redirecting from u to u each edge $\{u,u\}$ of G with $u \in B$, $u \in B$, and i < j.

Corollary: (i) The corresponding transition matrix K. (is diagonalizable over R and) satisfies

$$\det (xI - K) = \prod_{i=0}^{m-1} (x - \frac{1}{a^i})^{m_i}$$

where $\chi_{G}(q) = \sum_{i=0}^{n-1} (-1)^{i} m_{i} q^{i}$

is the chromatic polynomial of G.

(i) The stationary distribution is given by

$$\pi(0) = \frac{e(0)}{n!},$$

where e(0) is the number of linear extensions of the acyclic orientation of G.

(ii) We have

$$\|K^{\ell} - \pi\|_{TY} \leq \frac{m}{\alpha^{\ell}}$$

where m is the number of edges of G.

Back to the random to top measure. Assume that $w_1 = w_2 = \cdots = w_n = V_n$, so that

$$\pi(0) = \frac{e(0)}{n!},$$

as before.

Example: Let $G = \{\{1,2\}, \{3,4\}, ..., \{2d-1,2d\}\}$, so that n = 2d.

The acyclic orientations of G are in one-to-one correspondence with the vertices of the d-dimensional cube [0,1] and our random walk is the familiar nearest neighbor random walk on [0,1].

Example: Let $G = \{\{1,2\}, \{1,3\}, ..., \{1,k\}\}\}$, so the set of acyclic orientations of G bijects to the set of subsets of $\{2,3,...,k\}$.

Corollary (1) The eigenvalues of the transition matrix K are the following:

$$\begin{cases} 1, & \text{with multiplicity one,} \\ \frac{n-i-1}{n}, & \text{with multiplicity } \binom{k-1}{i} \text{ for } \\ 1 \leq i \leq k-1. \end{cases}$$

(ii) In the stationary distribution, our subset has 0,1,... or k-1 elements with equal probability 1/k and each subset of {2,3,...,k} with i elements has chance

$$\frac{1}{k \cdot \binom{k-1}{i}}$$

(iii) We have

$$\|K^{\ell} - \pi\|_{TV} \leq (k-1) \left(1 - \frac{2}{n}\right).$$

we can also prove

$$\|K - \pi\|_{TV} \leq \left(1 - \frac{1}{n}\right)^{\frac{1}{n}}$$

using the following:

Lemma: (Brown - Diaconis, 1998) For any BHR. walk on an arrangement A we have

New Proof: By a coupling argument.

Corollary: In the above situation, IK-RITV is bounded above by the probability that evertices of G, chosen uniformly at random (with repetition allowed) do not cover all edges of G.

Example: Let G = {11,23, 12,33, ..., {n-1, n}}.

The acyclic orientations of G are again in bijection with the subsets of [n-1].

Corollary (i) The eigenvalues of the transition matrix K are 0, 1/n, ..., $\frac{n-2}{n}$ and 1. For $0 \le k \le n$, the multiplicity of the eigenvalue k/n is equal to the number of compositions of n with exactly k parts equal to 1.

(ii) The stationary distribution It satisfies

$$\pi(S) = \frac{1}{n!} + \left\{ \tau \in S_n : Des(\tau) = S \right\}$$

for each Sc[n-1].

aii) We have

$$\|K - \pi\|_{TV} \leq (n-1) \left(1 - \frac{2}{n}\right)^{\ell}$$

Enumeration of walks and eigenvalues

Let $A = (a_{ij}) \in \mathbb{C}^{r \times r}$ be a matrix and let

$$f(A, e) = tr(A^e) = \sum_{i=1}^{n} a_{ii_1} a_{i_1 i_2} \cdots a_{i_{e-1}} i_{e-1}$$

for lef1, 2, 3, ... }.

Lemma: If $\lambda_1, \lambda_2, ..., \lambda_r \in \mathbb{C}$ are numbers such that

for all $l \in \{1,2,3,...\}$, then $\lambda_1,\lambda_2,...,\lambda_r$ are the eigenvalues of the matrix A.

Example: If $A = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \in \mathbb{C}$, then

$$f(A,L) = \begin{cases} 2, & \text{if } l \text{ even,} \\ 0, & \text{if } l \text{ odd} \end{cases}$$

and hence 1 and -1 are the eigenvalues of A. Proof of BHR: In view of the Lemma, it suffices to show that

for $\ell = 1, 2, 3, ...,$ where $m_W = | \mu_L(\hat{o}, W) |$. By definition, we have

$$f(K,\ell) = \sum_{C \in G_{\lambda}} \sum_{F_1 F_2 \cdots F_{\ell} C = C} \omega(F_1) \omega(F_2) \cdots \omega(F_{\ell}).$$

Also, by Las Vergnas - Zaslavsky we have

$$\# \{C \in C_{+} : FC = C\} = \sum_{w \in C} m_{w}$$
 $w \in C$

for every F & F. Hence

$$\sum_{C \in C_{A}} \sum_{F \in F_{A}} \sum_{F_{1} \cdots F_{\ell} = F} \omega(F_{1}) \omega(F_{2}) \cdots \omega(F_{\ell}) = C$$

$$\sum_{F \in F_{A}} \# \left\{ C \in C : FC = C \right\} \sum_{F_{1} \cdots F_{\ell} = F} \omega(F_{1}) \omega(F_{2}) \cdots \omega(F_{\ell}) = C$$

$$\sum_{F \in F_{A}} \# \left\{ C \in C : FC = C \right\} \sum_{F_{1} \cdots F_{\ell} = F} \omega(F_{1}) \omega(F_{2}) \cdots \omega(F_{\ell}) = C$$

$$\sum_{F \in F_{A}} \# \left\{ C \in C : FC = C \right\} \sum_{F_{1} \cdots F_{\ell} = F} \omega(F_{1}) \omega(F_{2}) \cdots \omega(F_{\ell}) = C$$

$$\sum_{F \in F_{A}} \# \left\{ C \in C : FC = C \right\} \sum_{F_{1} \cdots F_{\ell} = F} \omega(F_{1}) \omega(F_{2}) \cdots \omega(F_{\ell}) = C$$

$$\sum_{F \in F_{A}} \# \left\{ C \in C : FC = C \right\} \sum_{F_{1} \cdots F_{\ell} = F} \omega(F_{1}) \omega(F_{2}) \cdots \omega(F_{\ell}) = C$$

$$\sum_{F \in F_{A}} \# \left\{ C \in C : FC = C \right\} \sum_{F_{1} \cdots F_{\ell} = F} \omega(F_{1}) \omega(F_{2}) \cdots \omega(F_{\ell}) = C$$

$$\sum_{F \in F_{A}} \# \left\{ C \in C : FC = C \right\} \sum_{F_{1} \cdots F_{\ell} = F} \omega(F_{1}) \omega(F_{2}) \cdots \omega(F_{\ell}) = C$$

$$\sum_{F \in F_{A}} \# \left\{ C \in C : FC = C \right\} \sum_{F_{1} \cdots F_{\ell} = F} \omega(F_{1}) \omega(F_{2}) \cdots \omega(F_{\ell}) = C$$

$$\sum_{F \in F_{A}} \# \left\{ C \in C : FC = C \right\} \sum_{F_{1} \cdots F_{\ell} = F} \omega(F_{1}) \omega(F_{2}) \cdots \omega(F_{\ell}) = C$$

$$\sum_{F \in F_{A}} \# \left\{ C \in C : FC = C \right\} \sum_{F_{1} \cdots F_{\ell} = F} \omega(F_{1}) \omega(F_{2}) \cdots \omega(F_{\ell}) = C$$

$$\sum_{F \in F_{A}} \# \left\{ C \in C : FC = C \right\} \sum_{F_{1} \cdots F_{\ell} = F} \omega(F_{1}) \omega(F_{2}) \cdots \omega(F_{\ell}) = C$$

$$\sum_{F \in F_{A}} \# \left\{ C \in C : FC = C \right\} \sum_{F_{1} \cdots F_{\ell} = F} \omega(F_{1}) \omega(F_{2}) \cdots \omega(F_{\ell}) = C$$

$$\sum_{F \in F_{A}} \# \left\{ C \in C : FC = C \right\} \sum_{F_{1} \cdots F_{\ell} = F} \omega(F_{1}) \omega(F_{2}) \cdots \omega(F_{\ell}) = C$$

$$\sum_{F \in F_{A}} \# \left\{ C \in C : FC = C \right\} \sum_{F_{1} \cdots F_{\ell} = F} \omega(F_{1}) \omega(F_{2}) \cdots \omega(F_{\ell}) = C$$

$$\sum_{F \in F_{A}} \# \left\{ C \in C : FC = C \right\} \sum_{F_{1} \cdots F_{\ell} = F} \omega(F_{1}) \omega(F_{2}) \cdots \omega(F_{\ell}) = C$$

$$\sum_{F \in F_{A}} \# \left\{ C \in C : FC = C \right\} \sum_{F_{1} \cdots F_{\ell} = F} \omega(F_{1}) \omega(F_{2}) \cdots \omega(F_{\ell}) = C$$

$$\sum_{F \in F_{A}} \# \left\{ C \in C : FC = C \right\} \sum_{F_{1} \cdots F_{\ell} = F} \omega(F_{1}) \omega(F_{2}) \cdots \omega(F_{\ell}) = C$$

$$\sum_{F \in F_{A}} \# \left\{ C \in C : FC = C \right\} \sum_{F_{1} \cdots F_{\ell} = F} \omega(F_{1}) \omega(F_{2}) \cdots \omega(F_{\ell}) = C$$

$$\sum_{F \in F_{A}} \# \left\{ C \in C : FC = C \right\} \sum_{F_{1} \cdots F_{\ell} = F} \omega(F_{1}) \omega(F_{2}) \cdots \omega(F_{\ell}) = C$$

$$\sum_{F \in F_{A}} \# \left\{ C \in C : FC = C \right\} \sum_{F_{1} \cdots F_{\ell} = F} \omega(F_{1}) \omega(F_{2}) \cdots \omega(F_{\ell}) = C$$

$$\sum_{F \in F_{A}} \# \left\{ C \in C : FC = C \right\} \sum_{F_{1} \cdots F_{\ell} = F} \omega(F_{1}) \omega(F_{2}) \cdots$$