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Abstract

We construct imaginary cycles for hypergeometric integrals associ-
ated with a hypersphere arrangement and discuss the relation between
the twisted rational de Rham cohomology. We pose two geometric
problems involved in it.
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1 Introduction

First we want to illustrate in one dimensional case the main objective dis-
cussed in this article. Let Q be the complex circle : {ξ = (ξ1, ξ2); ξ

2
1+ξ2

2 = 1 in
the complex affine plane C2. Q is isomorphic to C∗ by taking ξ1+

√
−1ξ2 = ζ.

Consider a family of m complex lines Hj : fj = 0 where

fj = uj,0 + uj,1ξ1 + uj,2ξ2

such that uj,0, uj,1, uj,2 ∈ R and that u2
j,1 + u2

j,2 − u2
j,0 = 1. Denote

ai,j = ui,1uj,1 + ui,2uj,2 − ui.0uj,0, ai,0 = a0,i = ui,0
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The intersection of Q and Hj consisits of 2 different points which we
denote by ζj, ζ

∗
j such that |ζj| = |ζ∗

j | = 1. Let R be the C[ξ1, ξ2] module

R =
∑

ν1≥0,...,νm≥0

C[ξ1, ξ2]
m∏

j=1

f
−νj

j =
∑

ν1≥0,...,νm≥0

C[ζ, ζ−1]
m∏

j=1

{(ζ − ζj)(ζ − ζ∗
j )}−νj

because fj can be written as

fj =
√
−1

(ζ − ζj)(ζ − ζ∗
j )

(ζ∗
j − ζj)ζ

Consider the multiplicative function

Φ0(ξ) =
m∏

j=1

f
λj

j (λj ∈ R>0)

and the associated rational de Rham cohomology on Y = Q − ∪m
j=1Hj

H1(Y,∇0) ∼= RτQ/∇0(R)

defined by the covariant differential ∇0(ψ) = dψ+d log Φ0ψ, where we denote

τQ = −ξ1dξ2 + ξ2dξ1 =
√
−1

dζ

ζ

Suppose that ζ1, ζ
∗
1 , . . . , ζm, ζ∗

m are different from each other. Then one can
prove that for generic λj

H1(Y,∇0) ∼= C2m

and it is spanned by

ϕQ(∅) = τQ, ϕQ(j) =
τQ

fj

= d log
ζ − ζj

ζ − ζ∗
j

(1 ≤ j ≤ m),

ϕQ(j, k) =
τQ

fjfk

(1 ≤ j < k ≤ m)

These 1 forms are not linearly independent on Y. For any different i, j, k there
exists the fundamental linear relation

ciϕQ(i) + cjϕQ(j) + ckϕQ(k) + cj,kϕQ(j, k) + ck,iϕQ(k, i) + ci,jϕQ(i, j) = 0

(1.1)
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where ci, cj, ck, cj,k, ck,i, ci,j can be written in terms of ai,j, ak,0 as

ci = − A(0, i)

A

(
0, i, k
0, i, j

) , cj,k =
A(j, k)

A

(
i, j, k
0, j, k

)
cj, ck, ck,i, ci,j being defined in the same way cyclically. Moreover A(0, i) =

−1 − a2
i,0, A(j, k) = 1 − a2

j,k and A

(
i, j, k
i′, j′, k′

)
denotes the determinant

of the matrix whose components are ap,q (p = i, j, k; q = i′, j′, k′).

The twisted homology H1(Y, L̂0) dual to H1(Y,∇0) is spanned by the
linearly independent cycles which are expressed by the closures (arcs) of the
connected components of <Y .

Suppose now that for a fixed pair i, j, one of ζi or ζ∗
i coincides with one

of ζj or ζ∗
j . This occurs if and only if A(i, j) = 0 i.e.,ai,j = ±1. If ζj tends to

the point ζ∗
i , then the arc connecting the points ζ∗

i , ζj in <Q reduces to the

point. Hence if ζ∗
i = ζj, the dimension of H1(Y, L̂0) decreses by one. On the

other hand one can show that ϕQ(i, j) can be described homologically as a
linear combination of ϕQ(k, i), ϕQ(k, j), ϕQ(k), ϕQ(∅) :

2(λi + λj − 1)ϕQ(i, j) ∼ −
∑
k 6=i,j

λk

{
A(k, i)

ak,i + ak,j

ϕQ(k, i)

+
A(k, j)

ak,i + ak,j

ϕQ(k, j)

}
+

m∑
k=0

λkak,0ϕQ(k) − (λ∞ − 1)

{
A(0, i)

ai,0 + aj,0

ϕQ(i)

+
A(0, j)

ai,0 + aj,0

ϕQ(j)

}
− λ∞ϕQ(∅) (1.2)

where we denote λ∞ =
∑m

j=1 λj.
In particular consider the case where m = 3 and A(1, 2) = A(1, 3) =

A(2, 3) = 0, i.e., ζ∗
1 = ζ2, ζ

∗
2 = ζ3, ζ

∗
3 = ζ1. Then (1.1) reduces to the only one

identity :

ϕQ(1) + ϕQ(2) + ϕQ(3) = 0

and there are three identities of type (1.2) :

2(λi + λj − 1)ϕQ(i, j) ∼
3∑

k=1

λkak,0ϕQ(k)

+(λ∞ − 1)

{
1 + a2

i,0

ai,0 + aj,0

ϕQ(i) +
1 + a2

j,0

ai,0 + aj,0

ϕQ(j)

}
− λ∞ϕQ(∅)
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Hence H1(Y,∇0) is of dimension 3 and is spanned by a basis of representatives
ϕQ(∅), ϕQ(1), ϕQ(2).

In this article we want to extend the above observation to n (n ≥ 1)
dimensional cases. The twisted de Rham cohomology Hn(Y,∇0) can be for-
mulated in the space Y , the complement of a union of n− 1 dimensional hy-
perspheres in the n dimensional fundamental complex hypersphere Q. There
arise two problems.

In the first place, based on my preceding articles (see [1],[4]), we formulate
the twisted de Rham cohomology presenting explicitly its basis in terms of
the invariants ai,j obtained by the Lorentz inner products of the coefficients
of two linear functions defining hyperspheres, together with ak,0 which are
the constant terms of a linear function. The differential structures of the hy-
pergeometric integrals are described by the invariants ai,j, ak,0 under Lorentz
groups or orthogonal groups. In the final section we show how they should
be modified in some degenerate cases.

In the second place the basis of the twisted homology Hn(Y, L̂0) cannot
always be realized by real domains in <Y except in special domain of pa-
rameters. We must construct some of them as imaginary cycles. We want to
show that this can be done by deforming real cycles from a special domain
of parameters involved where all the cycles can be realized by real domains
(see Theorem 13).

2 Basic Properties

Let A be an arrangement of m hyperplanes Hj (1 ≤ j ≤ m) defined over the
real field of coefficients in the n + 1 dimensional complex affine space Cn+1.
Each hyperplane can be described as

Hj : uj,0 +
n∑

ν=1

uj,νξν = 0

for ξ = (ξ1, . . . , ξn+1) ∈ Cn+1

We denote by N(A) the union of hyperplanes : =
⋃

Hj∈A Hj and by

X = M(A) the compliment of N(A) := Cn+1−N(A). Let Q be the complex
hypersphere : f0 = 0 defined by the quadratic polynomialf0 = 1 −

∑n+1
ν=1 ξ2

ν .
Each intersection Hj ∩ Q defines a hypersphere in Q provided it does not
reduce to a point i.e., −u2

j,0 +
∑n+1

ν=1 u2
j,ν 6= 0. Throughout this article we shall
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assume this condition and so may assume that

−u2
j,0 +

n+1∑
ν=1

u2
j,ν = 1

The family A′ = {Hj ∩ Q}1≤j≤m defines a hypersphere arrangement in Q.
We denote by Y the intersection of X and Q : Y = Q − ∪m

j=1Hj ∩ Q. We
denote by <Q the real part of Q which is identified with the n dimensional
real hypersphere. The real part Sj = Hj ∩ <Q is a real (n − 1) dimensional
hypersphere in <Q.

We define the (m + 1) × (m + 1) configuration matrix A = (ai,j)0≤i,j≤m

associated with A′, whose components are Lorentz inner products

ai,j = −ui0uj0 +
n+1∑
ν=1

ui,νuj,ν (1 ≤ i, j ≤ m); ai,0 = a0,i = ui0; a0,0 = −1

so that ai,i = 1 for 1 ≤ i ≤ m.
For a set of indices I = {i1, . . . , ip} ⊂ {0, 1, 2, . . . ,m} the size p will

be denoted by |I|. We say that I is admissible if I ⊂ {1, 2, . . . ,m}. For
two sets of indices I = {i1, i2, . . . , ip} and J = {j1, . . . , jp} we define the
subdeterminant

A

(
I
J

)
=

∣∣∣∣∣∣∣∣∣
ai1,j1 ai1,j2 . . . ai1,jp

ai2,j1 ai2,j2 . . . ai1,jp

...
...

...
aip,j1 aip,j2 . . . aip,jp

∣∣∣∣∣∣∣∣∣
We abbreviate A

(
I
I

)
by A(I).

For an admissible set I = {i1, i2, . . . , ip} and a set J = {j1, j2, . . . , jp} ⊂
{0, 1, 2, . . . , n + 1} (p ≤ n + 2) we denote the subdeterminant

U

(
i1, i2, . . . , ip
j1, . . . , jp

)
=

∣∣∣∣∣∣∣∣∣
ui1,j1 ui1,j2 . . . ui1,jp

ui2,j1 ui2,j2 . . . ui2,jp

...
...

...
uip,j1 uip,j2 . . . uip,jp

∣∣∣∣∣∣∣∣∣
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Remark The matrix A has at most rank n+2. Assume that I is admissible.
Then A(I) = 0 for |I| ≥ n + 3, and

A(I) = −U2

(
i1, i2, . . . , in+2

0, 1, . . . , n + 1

)
for |I| = n + 2. On the other hand A(0, I) = 0 for |I| ≥ n + 2 and

A(0, I) = −U2

(
i1, i2, . . . , in+1

1, . . . , n + 1

)
for |I| = n + 1.

Lemma 1 Fix an admissible set I and consider the intersection subspace
V = ∩j∈IHj in Cn+1.

(i) In case where |I| ≤ n, A(I) = 0 if and only if V has contact with Q
at one point.

(ii) In case where |I| = n + 1, A(I) = 0 if and only if V has a common
point with Q.

(iii) In case where |I| = n + 2, A(I) = 0 if and only if V is not empty.

Assume that
(H1) : A(0, I) < 0 for an arbitrary admissible set I such that |I| ≤ n+1,

i.e., the homogeneous parts of |I| linear functions fj (j ∈ I) are linearly
independent.

Assume further that
(H2) : A(I) 6= 0 for an arbitrary admissible I (2 ≤ |I| ≤ n + 2).
Then for any I ⊂ {1, 2, . . . ,m} with |I| = n + 2 the (n + 2) × (n + 2)

symmetric submatrix (ai,j)i,j∈I has the signature of n + 1 (+)sign and one
(−)sign so that A(I) < 0 for |I| = n + 2. This is equivalent to say that for
any sequence of increasing admissible sets of indices

I1 ⊂ I2 ⊂ · · · ⊂ In+1 ⊂ In+2

such that |Ir| = r, the signs of A(Ir)A(Ir+1) (1 ≤ r ≤ n + 1) are positive
except for one. Hence A(I) < 0 implies A(J) < 0 if I ⊂ J, |J | ≤ n + 2 (see
[8]). In particular the following two cases are interesting :

(H2a): A(I) > 0 for all admissible I with 2 ≤ |I| ≤ n + 1 and A(I) < 0
for all admissible I with |I| = n + 2.

(H2b): A(I) < 0 for all admissible I with 2 ≤ |I| ≤ n + 2.
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Let τ be the n+1 form dξ1 ∧ · · · ∧ dξn+1. on Cn+1. We denote the n form
−τQ on Cn+1 such that its restriction to Q is the standard volume form on
<Q :

−τQ =
n+1∑
ν=1

(−1)ν−1ξνdξ1 ∧ · · · ∧ dξν−1 ∧ dξν+1 ∧ · · · ∧ dξn+1

such that df0 ∧ τQ ≡ τ mod (f0). We consider the multiplicative function
on X

Φ0(ξ) =
m∏

j=1

fj(ξ)
λj

where we assume that every λj ∈ R is positive and generic. We denote by
Hr(X − Y,∇0) and Hr(Y,∇0) the r dimensional twisted rational de Rham
cohomologies on X − Y and Y associated with the covariant differentiation
∇0 respectively :

∇0(ψ) = dψ + d log Φ0 ∧ ψ

These cohomologies are defined in a standard way by using C[ξ1, . . . , ξn+1]-
module

R =
∑

ν1≥0,...,νm≥0

C[ξ1, . . . , ξn+1]
m∏

k=1

fk(ξ)
−νk

L0 be the local systems on X − Y and Y defined by Φ0(ξ) respectively, and
L̂0 be their duals defined by Φ0(ξ)

−1. Then the n + 1 and n dimensional
homologies Hn+1(X −Y, L̂0) and Hn(Y, L̂0) represented by twisted cycles are
dual to the twisted rational de Rham cohomologies Hn+1(X − Y,∇0) and
Hn(Y,∇0) thorough the pairs of integrals respectively

Hn+1(X − Y,∇0) × Hn+1(X − Y, L̂0) 3 (ϕ, c) −→ 〈ϕ, c〉 =

∫
c

Φϕ

(2.1)

Hn(Y,∇0) × Hn(Y, L̂0) 3 (ϕ, c) −→ 〈ϕ, c〉 =

∫
c

Φ0ϕ (2.2)

The following two Propositions have been proved in [2] and [3] (see Proposi-
tion 3.2p, 3.3p and Lemma 4.2 in [2]I, and also [5]).
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Proposition 2 Under the conditions (H1), (H2) we have the isomorphism

Hn(Y,∇0) ∼= Cκn

where κn =
∑n

ν=0

(
m
ν

)
+

(
m−1

n

)
. Hn(Y,∇0) has a basis represented by the

differential n forms

ϕQ(I) =
τQ

fi1 . . . fip

where I moves over the admissible sets I of indices such that 0 ≤ |I| ≤ n+1.
We denote ϕQ(∅) for |I| = 0. There exist the fundamental relations among
them of the following type. For an arbitrary admissible set of indices J with
|J | = n + 2 there exists the identity :

1

2

∑
µ6=ν

(−1)µ+νϕQ(∂µ∂νJ)
A(0, ∂µ∂νJ)

A

(
0, ∂µJ
0, ∂νJ

) +
n+2∑
µ=1

(−1)µ−1ϕQ(∂µJ)
A(∂µJ)

A

(
0, ∂µJ

J

)
= 0 (2.3)

where ∂µJ denotes the subset of J deleted by the µth index jµ. Further for
|I| = n + 2 a partial fraction gives

U

(
I

0, 1, . . . , n + 1

)
ϕQ(I) =

n+2∑
µ=1

(−1)µ−1U

(
∂µI

1, . . . , n + 1

)
ϕQ(∂µI) (2.4)

We denote by B a linear space spanned by the representatives ϕQ(I), 0 ≤
|I| ≤ n + 1.

Proposition 3 Under the condition (H1), (H2a) Hn(Y, L̂0) has a basis rep-
resented by the closures of all the connected components of <Y = <Q ∩ Y.
Their number is equal to κn. In other words, Hn(Y, L̂0) is spanned by only
real twisted cycles defined by connected components of <Y .

For example we have κ1 = 2m, κ2 = m2 − m + 2, κ3 = 1
3
m3 − m2 + 8

3
m.

Remark The number κn is also equal to the number of non-compact con-
nected components of Rn+1 − N(A).
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3 Twisted imaginary cycles

We may assume without losing generality

uj,0 ≤ 0 for all j, 1 ≤ j ≤ m (3.1)

Define the set

Sj,+ : {ξ ∈ <Q; fj(ξ) > 0}

as the inside of the real hypersphere Sj = <Q ∩ Hj. We denote by νj the
unit normal of <Hj :

νj =
(uj,1, uj,2, . . . , uj,n+1)√∑n+1

ν=1 u2
,ν

(3.2)

Remark that νj ∈ Sj,+.
First notice the following:

Lemma 4 Suppose I is admissible. The real affine subspace
⋂

j∈I <Hj is
disjoint with <Q if and only if A(I) < 0.

Proof. In fact the square of the distance between the subspace
⋂

j∈I <Hj

and the origin is equal to {A(I) + A(0, I)}/A(0, I). It is bigger than 1 if and
only if A(I) < 0 because A(0, I) < 0.

Corollary 5 Suppose that A(i, j) < 0, i.e., a2
i,j > 1 for every pair i, j ∈

{1, 2, . . . ,m}, i 6= j then every Sj is disjoint with each other. In this case,
Si,+, Sj,+ are disjoint, or the one is included in the other, according as ai,j <
−1 or ai,j > 1.

Proposition 6 Under the condition (H2) consider an admissible set I such
that 2 ≤ |I| ≤ n + 1. Suppose further A(I) is a positive number near 0 and
that A(J) < 0 for any admissible J ⊃ I, |J | > |I|. Then the compact domain

l(I) := {ξ ∈ <Q; fj(ξ) ≥ 0 (j ∈ I)}

gives a twisted real cycle representing an element Hn(Y, L̂0). This cycle van-
ishes if it is deformed in an isotopic way by the matrix A as A(I) tend to 0,
any other A(K) being never equal to 0.
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Proof. Since A(I) > 0 and near 0, l(I) is one of the compact components
of <Y. This reduces to a point for A(I) → 0 as is seen from Lemma 4.

Definition 7 The cycle l(I) mentioned in Proposition 6 is called the twisted
vanishing cycle (Lefschetz cycle) at the singularity A(I) = 0.

Assume now the conditions (H2b) together with (H1). Then each n − 1
dimensional hypersphere <Q ∩ Hj is disjoint with each other. This means
that <Y has only m+1 connected components which make only a part of the
basis of Hn(Y, L̂0). We want to construct a basis of Hn(Y, L̂0) represented
by imaginary cycles in addition to real ones.

Definition 8 We start from an admissible I = {i, j}, |I| = 2. By hypothesis
we have A(I) < 0 i.e., ai,j < −1. By an orthogonal transformation we may
choose the new coordinates ξ = (ξ1, . . . , ξn+1) such that νi coincides with the
positive ξ1-axis and νj lies in the (ξ1, ξ2)-plane, i.e.,

fi(ξ) = fi(ξ1) = ui,0 + ui,1ξ1, (ui,1 > 0)

fj(ξ) = fj(ξ1, ξ2) = uj,0 + uj,1ξ1 + uj,2ξ2 (uj,2 > 0)

The set of all points ξ = (ξ1, ξ2,
√
−1ξ∗3 , . . . ,

√
−1ξ∗n+1) ∈ (R2×(

√
−1R)n−1)∩

Q which is a piece of an ultra hyperboloid

ξ2
1 + ξ2

2 − ξ∗3
2 − · · · − ξ∗n+1

2 = 1; fi(ξ1) ≤ 0, fj(ξ1, ξ2) ≤ 0}

is denoted by l∗(I). More generally let I be an admissible set such that
|I| = p, 2 ≤ p ≤ n. We have A(I) < 0. We may assume without losing
generality I = {1, 2, . . . , p} and choose the new coordinates ξ = (ξ1, . . . , ξn+1)
of Rn+1 such that ν1 coincides with the positive ξ1-axis and that νr lies in
the r dimensional (ξ1, . . . , ξr)-subspace (1 ≤ r ≤ p) such that

fr(ξ) = fr(ξ1, . . . , ξr) = ur,0 +
r∑

ν=1

ur,νξν , (ur,r > 0) (1 ≤ r ≤ p) (3.3)

We denote by ∆∗(I) the set of all points ξ = (ξ1, . . . , ξp,
√
−1ξ∗p+1, . . . ,

√
−1ξ∗n+1)

∈ (Rp × (
√
−1R)n+1−p) ∩ Q which is a piece of an ultra hyperboloid

ξ2
1 + · · · + ξ2

p − ξ∗p+1
2 − · · · − ξ∗n+1

2 = 1 (3.4)

fr(ξ1, . . . , ξr) ≤ 0 (1 ≤ r ≤ p) (3.5)
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and by ∂p,+∆∗(I) the set of all points ξ = (ξ1, . . . , ξp−1,
√
−1ξ∗p , . . . ,

√
−1ξ∗n+1)

∈ (Rp−1 × (
√
−1R)n+2−p) ∩ Q which is a piece of an ultra hyperboloid :

ξ2
1 + · · · + ξ2

p−1 − ξ∗p
2 − · · · − ξ∗n+1

2 = 1 (3.6)

fr(ξ1, . . . , ξr) ≤ 0 (1 ≤ r ≤ p − 1), ξ∗p ≥ 0 (3.7)

Remark that

∆∗(I) ∩ ∂p,+∆∗(I) = {ξ∗p = 0} ∩ ∂p,+∆∗(I) = ∆∗(I) ∩ ∆∗(∂pI)

One can define similarly the chains ∂j,+∆∗(I) for 1 ≤ j ≤ p − 1 by
exchange of coordinates and can have the identities

∆∗(I) ∩ ∂j,+∆∗(I) = ∆∗(I) ∩ ∆∗(∂jI)

Then the n-chain

l∗(I) = ∆∗(I) +

p∑
j=1

(−1)j−1∂j,+∆∗(I) (3.8)

defines an n-cycle in Hn(Y, L̂0). In fact

∂l∗(I) =

p∑
k=1

(−1)k−1∆∗(∂kI) ∩ ∆∗(I) −
p∑

j=1

(−1)j−1∆∗(∂jI) ∩ ∆∗(I)

+

p∑
k=1,k 6=j

(−1)k−1

p∑
j=1

(−1)j−1∂k,+∂j,+∆∗(I) = 0

since ∂k,+∂j,+ + ∂j,+∂k,+ = 0.
Note that l∗(I) coincides with ∆∗(I) if |I| = 2. l∗(I) is called twisted

Lefschetz cycle associated with I. If A(I) is near 0, this is a deformation
of l(I) as the matrix A moves from the part A(I) > 0 to the one A(I) < 0
being detoured from the singularity A(I) = 0.

The following lemma immediately follows from the above Definition.

Lemma 9 The number of Lefschetz cycles is equal to
∑m

ν=2

(
m
ν

)
.

11



Now we construct the
(

m−1
n

)
remaining imaginary cycles. Since this num-

ber vanishes unless m − 1 ≥ n, we may assume m ≥ n + 1.
First consider the case where n = 1, m ≥ 2. By hypothesis every a2

i,j > 1.
The 2m points ∪m

j=1<Q ∩ Hj are different from each other. Therefore <Y

consists of 2m connected components which make a basis of H1(Y, L̂0). None
of imaginary cycles occur. Next consider the case where n = 2, m ≥ 3.
Suppose I is admissible with |I| = 3. Let ∆(I) be the geodesic triangle in
<Q with the vertices νi, νj, νk. Define the chain ∆∗(I) as

∆∗(I) = ∆(I) − Si,+ − Sj,+ − Sk,+

where the overline ∆ − · · · denotes the closure.
To each geodesic ν̂i,νj going through νi, νj, by an orthogonal transfor-

mation there exist the new coordinates ξ1, ξ2, ξ3 such that νi coincides with
the ξ1-axis, the geodesic lies in the ξ1, ξ2-plane and the inner normal of the
geodesic in ∆(I) coincides with the positive ξ3-axis. Then the Lefschetz cycle
l∗({i, j}) is defined as the chain

{ξ = (ξ1, ξ2,
√
−1ξ∗3) ∈ Q ∩ (R2 ×

√
−1R), fi(ξ1) ≤ 0, fj(ξ1, ξ2) ≤ 0}

The 2 dimensional cell

∂k,+∆∗({i, j, k}) = {ξ = (ξ1, ξ2,
√
−1ξ∗3) ∈ Q ∩ (R2 ×

√
−1R),

ξ∗3 ≥ 0, fi(ξ1) ≤ 0, fj(ξ1, ξ2) ≤ 0}

has the intersection ∆({i, j}) − Si,+ − Sj,+ with ∆∗(I). ∂i,+∆∗({i, j, k}),
∂j,+∆∗({i, j, k}) can be constructed similarly by exchange of coordinates. We
can choose the unique orientations of ∂i,+∆∗({i, j, k}), ∂j,+∆∗({i, j, k}),
∂k,+∆∗({i, j, k}) such that the boundaries satisfy

∂{∆∗(I) + ∂i,+∆∗({i, j, k}) − ∂j,+∆∗({i, j, k}) + ∂k,+∆∗({i, j, k})}
≡ 0 mod Si ∪ Sj ∪ Sk

Hence we have constructed the new 2 dimensional cycle

a∗(∆) = ∆∗(I) + ∂i,+∆∗({i, j, k}) − ∂j,+∆∗({i, j, k}) + ∂k,+∆∗({i, j, k})

The above construction can be extended to higher dimensional cases by in-
duction on dimensions as follows.
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Consider now the case where n ≥ 3. I be an admissible set such that
|I| = n+1. We may assume for simplicity that I = {1, 2, . . . , n+1}. We have
the n dimensional geodesic simplex ∆(I) with the vertices νj (1 ≤ j ≤ n+1).
in <Q such that its edges are geodesic segments and its higher dimensional
faces are all totally geodesic. Define the subdomain ∆∗(I) as

∆∗(I) = ∆(I) −
n+1∑
j=1

Sj,+

Remark that

∂∆∗(I) =
n+1∑
j=1

(−1)j−1{∆(∂jI) −
⋃
k 6=j

Sk,+}

For each j, (1 ≤ j ≤ n + 1), by an orthogonal transformation there exists
the new coordinates system ξ = (ξ1, . . . , ξn+1) such that the j th face ∆(∂jI)
spanned by the normals νk, (k 6= j) included in the ξ1, . . . , ξn-coordinate
subspace and that its inner normal to ∆(∂jI) coincides with the positive
ξn+1-axis. Suppose for simplicity that j = n + 1 and the subspace spanned
by ν1, . . . , νr coincides with the ξ1, . . . , ξr-subspace, i.e.,

fr(ξ) = ur,0 +
r∑

k=1

ur,kξk, (ur,r > 0) (1 ≤ r ≤ n) (3.9)

The n dimensional cell

∂n+1,+∆∗(I) = {ξ = (ξ1, . . . , ξn,
√
−1ξ∗n+1) ∈ Q ∩ (Rn ×

√
−1R), ξ∗n+1 ≥ 0,

fr(ξ1, . . . , ξr) ≤ 0 (1 ≤ r ≤ n)} (3.10)

whose intersection with ∆∗(I) coincides with ∆(∂n+1I) −
⋃n

k=1 Sk,+. Simi-
larly by exchange of coordinates we can construct the cell ∂j,+∆∗(I)) (1 ≤ j ≤
n) whose intersection with ∆∗(I) coincides with ∆(∂jI) −

⋃
k 6=j Sk,+. Hence

there exist a suitable orientation for each ∂j,+∆∗(I) such that the boundary
vanishes:

∂{∆∗(I) +
n+1∑
j=1

(−1)j−1∂j,+∆∗(I)} ≡ 0 mod
n+1⋃
j=1

Sj

13



In the same way as above one can prove that the following chain

a∗(I) = ∆∗(I) +
n+1∑
j=1

(−1)j−1∂j,+∆∗(I) ∈ Hn(Y, L̂0)

is an n dimensional cycle.

Definition 10 The a∗(I) (|I| = n + 1) will be called twisted adjacent cycle
associated with I.

All the cycles thus constructed are not necessarily linearly independent in
Hn(Y, L̂0). In fact we have

Lemma 11 For an admissible I with |I| = n+2, the following identity holds:

n+2∑
j=1

(−1)j−1a∗(∂jI) = 0 (3.11)

Proof. We may assume that I = {1, 2, . . . , n + 2}. Then

a∗(∂jI) = ∆∗(∂jI) +

j−1∑
k=1

(−1)k−1∂k,+∆∗(∂jI) +
n+2∑

k=j+1

(−1)k∂k,+∆∗(∂jI)

On the other hand by definition for j 6= k

∂j,+∆∗(∂kI) = ∂k,+∆∗(∂jI)

also

n+2∑
j=1

(−1)j−1∆∗(∂jI) = 0

Hence the LHS of (3.11) equals

n+2∑
j=1

(−1)j−1{
j−1∑
k=1

(−1)k−1∂k,+∆∗(∂jI) +
n+2∑

k=j+1

(−1)k∂k,+∆∗(∂jI)} = 0

which implies Lemma 11. Q.E.D.
As an immediate consequence we have

14



Corollary 12 Among a∗(I) (|I| = n+1), there exist
(

m−1
n

)
linearly indepen-

dent ones, say a∗(I), 1 ∈ I such that all the others are linear combination of
the latter.

Summing up the above we have proved the following :

Theorem 13 As a basis of Hn(Y, L̂0), one can choose the representatives of
twisted cycles of the following kinds:

(i) Real cycles. This can be realized by the real chambers which are the
closures of the connected components of <Y. Their numbers are 1 + m.

(ii) Imaginary Lefschetz cycles l∗(I). Their numbers are equal to
∑n

ν=2

(
m
ν

)
.

(iii) Adjacent cycles a∗(I) such that 1 ∈ I. Their numbers are equal to(
m−1

n

)
.

4 Stereographic projection

The cycles defined in the previous section can also be described in the n
dimensional Euclidean space as below. The compliment of the south pole, Q−
{(−1, 0, . . . , 0)}, is isomorphic to Rn through the stereopgraphic projection

η1 =
ξ2

1 + ξ1

, . . . , ηn =
ξn+1

1 + ξ1

(4.1)

which is a conformal transformation. Then a hypersphere S in <Q corre-
sponds to a hypersphere or a hyperplane S̃ in Rn :

n∑
ν=1

(ην − vν)
2 = r2 (r > 0)

where a hyperplane can be regarded as a limiting case for r = ∞. Denote the
center of S̃ by v = (v1, . . . , vn) and its length by ||v|| =

√∑n
ν=1 v2

ν . Then we
have

S : u0 +
n+1∑
ν=0

uνξν = 0, (u0 ≤ 0)

u0 =
r2 − 1 − ||v||2

2r
, u1 =

r2 + 1 − ||v||2

2r
, uν+1 =

vν

r
(1 ≤ ν ≤ n)
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or

−u0 =
r2 − 1 − ||v||2

2r
,−u1 =

r2 + 1 − ||v||2

2r
,−uν+1 =

vν

r
(1 ≤ ν ≤ n)

according as r2 − 1 − ||v||2 ≤ 0 or > 0, namely

Lemma 14 S+ corresponds to the inside or the outside of S̃ according as
r2 − 1 − ||v||2 < 0 or > 0.

As for ai,j

ai,j =
r2
i + r2

j − ||v(i) − v(j)||2

2rirj

where ri, rj,v
(i),v(j) denote the radii and the centers of S̃i, S̃j respectively.

Hence

Lemma 15 We have

A(i, j) =
(ri − rj + a)(−ri + rj + a)(ri + rj + a)(ri + rj − a)

4r2
i r

2
j

where we put a = ||v(i)−v(j)||. This implies ai,j > 1 if and only if |ri−rj| > a.
ai,j < −1 if and only if ri + rj < a.

In the same way

Lemma 16 Suppose that |ai,j| < 1 for an admissible I = {i, j, k} and put
− cos αi,j = ai,j such that 0 < αi,j < π. Then

A(i, j, k) = −4 cos
αi,j + αj,k + αi,k

2
· cos

−αi,j + αj,k + αi,k

2
· cos

αi,j − αj,k + αi,k

2

· cos
αi,j + αj,k − αi,k

2

The three hyperspheres S̃i, S̃j, S̃k intersect each other. π−αi,j is equal to the
angle subtended by the tangents of S̃i, S̃j at an intersection point of S̃i ∩ S̃j.
A(1, 2, 3) = 0 if and only if αi,j + αj,k + αi,k = π, or −αi,j + αj,k + αi,k = π,
or αi,j − αj,k + αi,k = π, or αi,j + αj,k − αi,k = π.
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Lemma 17 For an arbitrary admissible I, |I| ≤ n + 1 there exist the new
coordinates η = (η1, . . . , ηn) of Rn such that v(i1) = 0 and v(ir+1) lies in the
η1, . . . , ηr-subspace 2 ≤ r ≤ |I| − 1.

Proof. We may assume that I = {1, 2, . . . , p}. By the change of coordi-
nates (4.1), there exist the coordinates ξ1, . . . , ξn+1 such that νr+1 lies in the
ξ1, . . . , ξr+1-subspace (1 ≤ r ≤ p). Since u1,ν = 0 for ν ≥ 2, v(1) = 0. And
ur,ν = 0 for ν ≥ r + 1, v(r+1) lies in the η1, . . . , ηr-subspace.

The cycles equivalent to the one constructed in section 3 are described as
follows:

Consider the case where m = 2. Let O1, O2 be the centers of S̃1, S̃2 and
the insides of S̃1, S̃2 be denoted by S̃1,+S̃2,+ respectively. Suppose first that
|a1,2| < 1. Then S̃1,+ ∩ S̃2,+ is a non-empty domain so that Rn − S̃1 ∪ S̃2

consists of 4 connected components:

Rn − S̃1+ ∪ S̃2,+, S̃1,+ − S̃2,+, S̃2,+ − S̃1,+, S̃1,+ ∩ S̃2,+

Their closures make the representatives of a basis of Hn(Y, L̂0).
Suppose that a1,2 < −1. Then S̃1,+ is disjoint with S̃2,+. We have three

real domains S̃1,+, S̃2,+,Rn − S̃1+ ∪ S̃2,+. On the other hand suppose that
a1,2 > 1. Then S̃1,+ includes or is included in S̃2,+. Assume for example that
S̃1,+ ⊃ S̃2,+. Then there are three real domains Rn − S̃1,+, S̃1,+ − S̃2+, S̃2,+.

There is the Lefschetz cycle enclosed by two pieces of hyperboloids

l̃({1, 2}) : {η = (η1,
√
−1η∗

2, . . . ,
√
−1η∗

n) ∈ R × (
√
−1R)n−1;

η2
1 −

n∑
ν=2

η∗
ν
2 ≥ r2

1, (η1 − v
(2)
1 )2 −

n∑
ν=2

η∗
ν
2 ≥ r2

2}

More generally suppose that A(I) < 0 for |I| = p (2 ≤ p ≤ n). We
may assume that I = {1, 2, . . . , p}. There exist the new coordinates η =
(η1, . . . , ηn) such that S̃j (1 ≤ j ≤ p) are defined by

j−1∑
ν=1

(ην − v(j)
ν )2 +

n∑
ν=j

η2
ν = r2

j

We define the chain enclosed by p pieces of ultra hyperboloids

∆̃∗(I) = {η = (η1, . . . , ηp−1,
√
−1η∗

p, . . . ,
√
−1η∗

n) ∈ Rp−1 × (
√
−1R)n−p+1;

j−1∑
ν=1

(ην − v(j)
ν )2 +

p−1∑
ν=j

η2
ν −

n∑
ν=p

η∗
ν
2 ≥ r2

j (1 ≤ j ≤ p)}
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Further we put

∂p,+∆̃∗(I) = {η = (η1, . . . , ηp−2,
√
−1η∗

p−1, . . . ,
√
−1η∗

n) ∈ Rp−2

×(
√
−1R)n−p+2;

j−1∑
ν=1

(ην − v(j)
ν )2 +

p−2∑
ν=j

η2
ν −

n∑
ν=p−1

η∗
ν
2 ≥ r2

j (1 ≤ j ≤ p − 1),

η∗
p−1 ≥ 0}

which is the chain enclosed by p − 1 pieces of ultra hyperboloids and the
hyperplane η∗

p−1 = 0. By exchange of coordinates one can similarly define

the chains ∂k,+∆̃∗(I) (1 ≤ k ≤ p − 1). Then the Lefschetz cycle l̃∗(I) is
defined to be

l̃∗(I) = ∆̃∗(I) +

p∑
j=1

(−1)j−1∂j,+∆̃∗(I)

Finally suppose A(I) < 0 for |I| = n+1. We may assume I = {1, 2, . . . , n+1.}
Denote by ∆̃ the Euclidean n-simplex with the vertices v(j). We want to
construct a series of chains ∂j,+∆̃∗(I) associated with each face ∆̃(∂jI) as
follows. For simplicity we may assume j = n+1. There exist the coordinates
η = (η1, . . . , ηn) of Rn such that v(1) = 0, and v(j) lies in the η1, . . . , ηj−1 (2 ≤
j ≤ n.) so that the face ∂n+1∆̃ lie in the η1, . . . , ηn−1-subspace. Define

∂n+1,+∆̃∗(I) = {η = (η1, . . . , ηn−1),
√
−1η∗

n) ∈ Rn−1 ×
√
−1R;

j−1∑
ν=1

(ην − v(j)
ν )2 +

n−1∑
ν=j

η2
ν − η∗

n
2 ≥ r2

j (1 ≤ j ≤ n), η∗
n ≥ 0}

In the same way one can construct the chains ∂j,+∆̃∗(I) (1 ≤ j ≤ n) and
finally put

ã∗(I) = ∆̃∗(I) +
n+1∑
j=1

(−1)j−1∂j,+∆̃∗(I)

Then we have

∂(ã∗(I)) ≡ 0 mod
n+1⋃
j=1

S̃j

i.e., ã∗(I) ∈ Hn(Y, L̂0). Furthermore we have as Lemma 11
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Lemma 18 For any admissible I such that |I| = n + 2, the identity holds

n+2∑
j=1

(−1)j−1∂(ã∗(∂jI)) = 0

In conclusion we may choose admissible I with |I| = n + 1, such that 1 ∈ I
so that any other can be a linear combination of them. We have the same
conclusion as Theorem 13.

5 Degenerate cases

In Section 3, and 4 we have assumed (H1) and (H2). In this section we
discuss the cases where these conditions are not necessarily satisfied.

First note the following (for example, see [2]I, Lemma 4.2) :

Lemma 19 We have the commutative diagram :

Hn+1(X − Y ;∇0)
Res−−−→ Hn(Y ;∇0)xy xy

Hn+1(X − Y ; L̂0)
δ←−−− Hn(Y ; L̂0)

where Res denotes the Residue along Y , and δ means the boundary operation
(Leray map) into a tubular neighborhood of Y in X − Y .

For an arbitrary ϕ(ξ)τ ∈ Rτ such that its representative ∈ Hn+1(X −
Y,∇0), denote

ϕ(1)τQ = Res

(
ϕ

f0

τ

)
=

[
ϕτ

df0

]
Y

, ϕ(2)τQ = Res

(
ϕ

f2
0

τ

)
Then ϕ(1)(I) is equal to the restriction of

ϕ(I) =
1

fi1 · · · fip

to Q. As for ϕ(2)(I) the following two recurrence relations play an important
role in the sequel:
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Lemma 20 For an admissible I with |I| = p (0 ≤ p ≤ n + 1)

A(I)ϕ(2)(I) ∼
∑
k/∈I

λkA

(
0, I
k, I

)
ϕQ(k, I) + (λ∞ + n − p − 1)A(0, I)ϕQ(I)

−
p∑

ν=1

(−1)ν−1A

(
I

0, ∂νI

)
ϕ(2)(∂νI) (5.1)

In particular

ϕ(2)(∅) ∼
m∑

k=1

λkak,0ϕQ(k) − (λ∞ + n − 1)ϕ(∅),

ϕ(2)(j) ∼
∑
k 6=j

λkA

(
0, j
k, j

)
ϕQ(k, j) −

m∑
k=1

λkaj,0ak,0ϕQ(k)

+(λ∞ + n − 2)A(0, j)ϕQ(j) + (λ∞ + n − 1)aj,0ϕQ(∅)

Therefore ϕ(2)(I) can be described as a linear combination of ϕQ(J) such that
|J − J ∩ I| ≤ 1 with the coefficients of rational functions of ai,j, ak,0 whose
denominators are products of A(K) for K ⊂ I.

For the proof see [2]I,Proposition 4.2.

Lemma 21 Fix an admissible I with p = |I| ≤ n + 1. Then an arbitrary
µ, 1 ≤ µ ≤ p

(−1)µ−1(λiµ − 1)A(I)
ϕQ(I)

fiµ

∼ −
∑
k/∈I

λkA

(
I

k, ∂µI

)
ϕQ(k, I)

−(λ∞ + n − p − 1)A

(
I

0, ∂µI

)
ϕQ(I) +

p∑
ν=1

(−1)ν−1A

(
∂µI
∂νI

)
ϕ(2)(∂νI)

(5.2)

For the proof see [1]I, Proposition 4.2.
Owing to Lemma 20 and 21 an arbitray form

τQ
Qm

k=1 f
νk
k

(νk ≥ 0) can be de-

scribed explicitly as a linear combination of the representatives of admissible
forms ϕQ(I)τQ.

Proposition 22 In addition to (H1) suppose the following condition :

20



(HIV (p)) For a fixed admissible I with p = |I| ≤ n, A(I) = 0. But for
any other admissible J such that |J | ≤ n + 2 A(J) 6= 0.

Then l∗(I) vanishes. The dimension of Hn(Y, L̂0) decreases by one and is
equal to κn − 1. On the other hand the representatives ϕQ(I) in Proposition
2 does not make a basis of Hn(Y,∇0). We have a linear relation

(
∑
j∈I

λj + λ∞ + n − p − 1)A(0, I)ϕQ(I) +
∑
k/∈I

λkA

(
0, I
k, I

)
ϕQ(k, I)

−
∑
k/∈I

λk

p∑
ν=1

(−1)ν−1

A

(
I
0, ∂νI

)
A

(
k, ∂νI
0, ∂νI

)
A(∂νI)

ϕQ(k, ∂νI) ≡ 0

mod B(I) (5.3)

where B(I) denotes a linear space spanned by ϕQ(J) such that |J −J ∩I| ≤ 1
and |J | < |I|. Hn(Y,∇0) is of dimension κn − 1 and is spanned by ϕQ(J)
such that J 6= I and |J | ≤ n + 1 with the fundamental relations (2.3), (2.4).

Proof. In fact since A(I) = 0, the LHS of (5.1) vanishes. A repeated
application of (5.1) to ϕ(2)(∂νI) shows the RHS of (5.1) equals the RHS of
(5.3) in view of the Jacobi identities

A2

(
I
0, ∂νI

)
= −A(0, I)A(∂νI)

Proposition 23 In addition to (H1) suppose the following condition :
HIV (n+1) For a fixed admissible I with |I| = n+1, A(I) = 0. But for

any other admissible J such that |J | ≤ n + 2 A(J) 6= 0. Then l∗(I) vanishes
and dim Hn(Y, L̂0) = κn − 1. We have a linear relation

2(
∑
j∈I

λj − 1)A(0, I)ϕQ(I) ≡
∑
k/∈I

n+1∑
ν=1

(−1)ν−1λk

·
A(0, I)A

(
I

k, ∂νI

)
A(k, ∂νI)

A(k, I)A(∂νI)
ϕQ(k, ∂νI) mod B(I) (5.4)

Hn(Y,∇0) is of dimension κn − 1 and is spanned by ϕQ(J) such that J 6= I
and |J | ≤ n + 1 with the fundamental relations (2.3), (2.4).
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Proof. Since A(I) = 0 the LHS of (5.1) vanishes. Applying repeatedly
(2.4) to ϕQ(k, I) and (5.1) to ϕ(2)(∂νI) one sees that the RHS of (5.1) equals

−2(
∑
j∈I

λj − 1)A(0, I)ϕQ(I)

+
∑
k/∈I

n+1∑
ν=1

(−1)ν−1λk

A

(
0, I
k, I

)
A

(
I

0, ∂νI

)
A(k, ∂νI)

A(k, I)A(∂νI)
ϕQ(k, ∂ν) mod B(I)

Hence (5.4) follows owing to the identities

A(k, I) = −U2

(
k, I

0, 1, . . . , n + 1

)
,

A

(
0, I
k, I

)
A

(
0, ∂νI

I

)
= A(0, I)A

(
I

k, ∂νI

)
Corollary 24 Suppose that m = n + 2, n ≥ 1 and that A(I) = 0 for all
admissible I with |I| = n+1. Then Hn(Y,∇0) is of dimension κn− (n+2) =
2n+2 − n − 4 and is spanned by the representatives ϕQ(I) with |I| ≤ n with
the one fundamental relation: For J = {1, 2, . . . , n + 2}∑

µ6=ν

(−1)µ+νϕQ(∂ν∂νJ)
A(0, ∂µ∂νJ)

A

(
0, ∂µJ
0, ∂νJ

) = 0 (5.5)

ϕQ(I) (|I| = n + 1) can be expressed as

2(
∑
j∈I

λj − 1)A(0, I)ϕQ(I) ≡ 0 mod B(I) (5.6)

over the coefficients of rational functions of ai,j, ak,0 with the denominators
A(K) (|K| ≤ n). This identity is just an n dimensional version of (1.2).

Proof. (5.5) is a special case of (2.3) since A(∂µJ) = 0. On the other hand
(5.6) is a special case of (5.4) since A(k, ∂νI) = 0.

Proposition 25 In addition to (H1) suppose the following condition :
(HIV (n + 2)) For a fixed admissible I with |I| = n + 2, A(I) = 0. But

for any other admissible J such that |J | ≤ n + 2 A(J) 6= 0. Then there is
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no vanishing of Lefschetz cycles and dim Hn(Y, L̂0) = κn. On the other hand,
for any fixed µ

(
∑
ν∈I

λν − 1)U

(
∂µI

1, . . . , n + 1

)
ϕQ(I) ≡ 0 mod B(I) (5.7)

Hn(Y,∇0) is of dimension κn and is spanned by ϕQ(J) such that |J | ≤ n+1
with the fundamental relations (2.3), (2.4).

Proof. By hypothesis the LHS of (2.4) vanishes. By a multiplication by fiµ

of both sides of (2.4) one sees that ϕQ(I) is linearly dependent on
ϕQ(∂νI)

fiµ
(ν 6=

µ). On the other hand due to (5.2) each
ϕQ(∂νI)

fiµ
is linearly dependent on

admissible ϕQ(J) with |J | ≤ n + 1. Hence the Proposition follows.

Finally we consider the special case where n ≥ 2,m = n+2 and A(i, j) =
0, i.e., ai,j = ±1 for all i, j ∈ {1, 2, . . . , n+2} (i 6= j). Since the signature of A
is of type (n + 1, 1), we have A(1, 2) = 0, A(1, 2, . . . , p) < 0 if 3 ≤ p ≤ n + 2.

By a suitable Lorentz transformation we may assume that ai,j = −1 for
all i, j (i 6= j). In fact

Lemma 26 There exist a diagonal matrix P with diagonal elements equal
to ±1 such that B = P · A · tP is the matrix with diagonal elements 1 and
off-diagonal elements −1.

Proof. Denote by Br the matrix of size r + 2 with diagonal elements 1
and off-diagonal elements −1. Let Ar be the matrix with the (i, j) elements
ai,j (1 ≤ i, j ≤ r + 2). For r = 0 the Lemma is trivial. Suppose that the
Lemma is true for Ar−1. There exists a diagonal matrix Pr−1 with diagonal
elements ±1 such that Br−1 = Pr−1 · Ar−1 · tPr−1. Let P̃r be the diagonal
matrix of size r +2 such that the first r +1 diagonal elements coincides with
the ones of Pr−1 and the last one equal to 1. Then P̃r ·Ar · tP̃r has the same
components as Br except for the off-diagonal components in the last column
or row. Denote these components by ε1, . . . , εr+1. Then we have

det(P̃r · Ar ·t P̃r) = (1 − r)2r + (r − 2)2r−1

r+1∑
k=1

ε2
k − 2r

∑
1≤i<j≤r+1

εiεj < 0

But this inequality goes to a contradiction except for the case where all εj

equal 1 or all εj equal −1. One sees that the first case is equivalent to Br,
while the last one coincides with Br. Q.E.D.
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Lemma 27 Suppose I = {1, 2, . . . , n+2.} The matrix A for all off diagonal
elements ai,j = −1 defines the hypersphere arrangement A′ if and only if
{aj,0}j satisfy the quadratic relation

(n − 1)
n+2∑
j=1

a2
j,0 − 2

∑
1≤j≤k≤n+2

aj,0ak,0 + 2n = 0

Proof. First remark that if A(0, I) ≤ 0 then A(0, J) < 0 for J ⊂ I, J 6= I.
In fact it is sufficient to show this in case J = {1, . . . , r} (3 ≤ r ≤ n + 1.)
This follows by lowering induction from the identity

A(0, 1, . . . , r)A(1, . . . , r + 1) − A2

(
0, 1, . . . , r

r + 1, 1, . . . , r

)
= A(0, 1, . . . , r + 1)A(1, . . . , r)

because A(1, . . . , r), A(1, . . . , r + 1) are both negative. On the other hand

A(0, I) = 2n{(n − 1)
n+2∑
j=1

a2
j,0 − 2

∑
1≤j≤k≤n+2

aj,0ak,0 + 2n}

Hence the Lemma.

We now apply to it the formula (5.3) for p = 2.
For I = {i, j} we have

A(0, i, j) = −(ai,0 + aj,0)
2, A

(
0, i, j
k, i, j

)
= 2(ai,0 + aj,0)

Hence (5.3) and Lemma 20 give

(λ∞ + n − 3 + λi + λj)(ai,0 + aj,0)ϕQ(i, j) +
∑
k 6=i,j

λk(ak,0 + ai,0)ϕQ(k, i)

+
∑
k 6=i,j

λk(ak,0 + aj,0)ϕQ(k, j) ∼ wi,j (5.8)

where we put

wi,j = 2
∑
k 6=i,j

λkϕQ(k, i, j) + (ai,0 + aj,0)
n+2∑
k=1

λkak,0ϕQ(k) − (λ∞ + n − 1)

·(ai,0 + aj,0)ϕQ(∅) − (λ∞ + n − 2){A(0, i)ϕQ(i) + A(0, j)ϕQ(j)}
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To solve (5.4) with respect to ϕQ(i, j) we put vi,j = (ai,0 + aj,0)ϕQ(i, j) and

Vi =
∑
k 6=i

λkvk,i, V∞ =
∑
i 6=j

λiλjvi,j, Wi =
∑
k 6=i

λkwk,i, W∞ =
∑
i6=j

λiλjwi,j

Then (5.8) is equivalent to

(λ∞ + n − 3)vi,j + Vi + Vj ∼ wi,j (5.9)

(5.9) can be uniquely solved for vi,j:

(λ∞ + n − 3)vi,j ∼ wi,j + V∞

(
1

2λ∞ + n − 3 − 2λi

+
1

2λ∞ + n − 3 − 2λj

)
−

(
Wi

2λ∞ + n − 3 − 2λi

+
Wj

2λ∞ + n − 3 − 2λj

)
(5.10)

where Vi and V∞ are uniquely determined by

(2λ∞ + n − 3 − 2λi)Vi ∼ Wi − V∞,(
1 +

n+2∑
k=1

λk

2λ∞ + n − 3 − 2λk

)
V∞ ∼

n+2∑
k=1

λkWk

2λ∞ + n − 3 − 2λk

provided none of 2λ∞ + n − 3 − 2λk or the symmetric polynomial

G(λ) =
n+2∏
k=1

(2λ∞ + n − 3 − 2λk) +
n+2∑
k=1

λk

∏
j 6=k

(2λ∞ + n − 3 − 2λj)

vanishes. In this way we can conclude

Proposition 28 For m = n + 2, n ≥ 2, suppose that in addition to (H1),
ai,j = −1 for all i, j (i 6= j), and A(I) < 0 for all admissible I with 3 ≤ |I| ≤
n + 2. Suppose further that neither of 2λ∞ + n − 3 − 2λk or λ∞ + n − 3 or
G(λ) vanish. Then all the Lefschetz cycles l∗(I) (|I| = 2) vanish. Hn(Y,∇0)
is of dimension κn −

(
n+2

2

)
and has a basis of representatives ϕQ(I) with

0 ≤ |I| ≤ n + 1, |I| 6= 2 satisfying the fundamental relations (2.3),(2.4).
ϕQ(i, j) can be described as a linear combination of these representatives as
in (5.10).
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6 2 problems

As is seen from Propositon 2, Hn(Y,∇0) is spanned by the representatives
ϕQ(I). The result due to Orlik-Terao (see [9]) suggests that this fact still
holds in general in the following sense :

Conjecture 1 . Without any of the hypotheses (H1) or (H2), Hn(Y,∇0) is
spanned by the representatives ϕQ(I), I ⊂ {1, 2, . . . ,m} including ϕQ(∅).

The complex hypersphere Q has the Kähler metric

ds2 =
n+1∑
ν=1

|dξν |2 =
n∑

µ,ν=1

gµ,νdζµdζν

with respect to local coordinates ζ = (ζν)1≤ν≤n. We put

λj = Nlj + λ′
j (N ∈ Z>0)

for fixed l = (lj)j ∈ (Z>0)
m, λ′ = (λ′

j)j ∈ Rm. For a large N the asymptotic
behavior of the integral (2.2) can be explicitly evaluated if the cycle c is a
stable cycle defined by the gradient vector field on Q :

dζµ =
n∑

ν=1

∂

∂ζν

(
m∑

j=1

lj log |fj|)gµ,νdt

where gµ,ν denotes the inverse matrix of the metric tensor gµ,ν . The critical
points are determined by the equations on Q

m∑
j=1

lj d log fj = 0

Every cycle mentioned in Theorem 13 seems to have one-to-one relation with
a stable cycle corresponding to these critical points. This fact suggests :

Conjecture 2 All the critical points of the gradient vector field lie in <Q.
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arrangements, Ann.Inst.Fourier, 53(2003),977-995.

[6] K.Aomoto and P.Forrester, On a Jacobian identity associated with real
hyperplane arrangements, Compositio Math. 121(2000), 263-295.

[7] K.Aomoto, M.Kita, P.Orlik, and H.Terao, Twisted de Rham cohomol-
ogy groups of logarithmic forms, Ad in Math., 128(1997), 119-152.

[8] F.Gantmacher, The Theory of Matrices I, Chelsea, 1959.

[9] P.Orlik and H.Terao, Commutative algebra for arrangements, Nagoya
Math. J., 134(1994), 65-73.

[10] P.Orlik and H.Terao, The number of critical points of a product of pow-
ers of linear functions, Invent.Math. 120(1995), 1-14.

[11] P.Orlik and H.Terao, Arrangements and Hypergeometric Integrals, MSJ
Memoirs, 9(2001).
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