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MAIN THEME

Some “hard” problems in geometry can be attacked by
“soft” tools

Optimal transport is one such tool

References

e Topics in Optimal Transportation [TOT] (AMS,
2003): Introduction

e Optimal transport, old and new [oldnew]| (Springer,
2008): Reference text, more probabilistic & geometric



Plan of the course (5 chapters)

e DBasic theory

e The Wasserstein space

e Isoperimetric/Sobolev inequalities
e (oncentration of measure

e Stability of a 4th order curvature condition

Most of the time statements, sometimes elements of proof

Complement

J.P. Bourguignon’s Takagi lectures (4-5 oct. 2008) about
optimal transport and Ricci curvature



I. BASIC THEORY OF OPTIMAL
TRANSPORT

e The modern core of the Monge—Kantorovich theory,
built from the eighties to now

e Simplified statements

e Reference: [oldnew, Chap. 4, 5, 10]



The Kantorovich problem (Kantorovich, 1942)

o X, )Y two Polish (= metric separable complete) spaces
e uecPX),ve P
e cc(C(X x)Y;R), c> ceL'(p)+ L'(v)

M, v) = {7‘(‘ € P(X x )); marginals of m are p and V}

(Vh,
[ h(x)n(dedy) = [hdu; [ h(y)n(dedy) = [hdv)

(K) inf )/C(SE,y)ﬂ'(daZ‘ dy)

mell(p,v

Prop: Infimum achieved by compactness of II(u, v)

In the sequel, assume infimum is finite



Probabilistic version

X and Y two given random variables (= with given laws)

(K’) |inf Ec(X,Y)

(Infimum over all couplings of (X,Y))



Engineer’s interpretation

7 (dx dy)

remblais

Given the initial and final distributions, transport
matter at lowest possible cost



The Monge problem (Monge, 1781)

Assume 7 = (Id, T") ppt = p(dx) dy—r(a)
— belongs to II(u,v) iff Thup=v
ie. [(hoT)du= [hdv ie. v[A]=p[T(A)

—> the Kantorovich problem becomes

(M) | inf / (o, T(x) pldz)| = inf Ee(X,T(X))

Typu=v

e Interpretation: Don’t split mass! Y =T(X)

e No compactness = not clear if infimum achieved



History of the Monge problem

e Original Monge cost function: ¢(z,y) = |x — y| in R?

e For this cost, existence of a minimizer proven around
1998-2003 !! (Ambrosio, Caffarelli, Evans, Feldman,
Gangbo, McCann, Sudakov, Trudinger, Wang)

e Kasier solution when the cost is “strictly convex” (e.g.
d(x,y)?, p > 1) — See later.



Kantorovich duality (Kantorovich 1942; still active

research area)

(Kdual)

Wehr%/{;,y)/c(x,y)w(dx dy) = f;g\p {/¢dV—/¢dﬂ}

e 7 € ll(u,v) if m has marginals 4 and v

o (V,0) eV if ¢(y) —v(z) <clz,y) (Vo,y)

e Fconomical interpretation: shipper’s problem (buys at
price ¥ (x) at x, sells at price ¢(y) at y)

e Supremum achieved e.g. if c <¢e€ L' (pu) + L' (v)



c-convexity (I) (Riischendorf, nineties)
o Fixc: AX)Y—R

o ¥:X —RU{+o0},  ¢°(y) = inf [¢(z) + c(z,y)

reX

e ¢:Y—->RU{-o0},  ¢%(z):=sup|d(y) —c(z,y)

yey

e 1 is said c-convex if (¢¢)¢ =)
¢ is said c-concave if (¢%)¢ = ¢
o Ex: c¢(z,y)=—2-yin R" x R™

¢ = —* (Legendre transform);
c-convex <> l.s.c. convex

Rks: (a) many conventions!!

(b) differential criterion for c-convexity?? Yes if the
Ma—Trudinger-Wang condition is satisfied, see later.



c-convexity (II)

o If v is c-convex, define its c-subdifferential 0,y by

Op(w) = {y €V V2 € X, w(2)elz,y) = U(@)+ele,y) |

e ['C X x ) is ccyclically monotone (¢-CM) if

VN € N \V/<x17y1)7°'°7(xN7yN)EFN7

N

N
Y clwny) <Y clwnyiv)  (Yns1 =)
1=1

1=1

e 0.1 is c-CM (immediate)
o Ex: c(r,y)=—-2-y= 0 =0



c-convex analysis (Rockafellar; Riischendorf)
o Y(y) —Y(x) <clzr,y) VY

e 1 isc-convex ((¢°)°¢ =) iff 3¢ ¢ =(°

o O = {(x,y); Y(y) — Y(x) = c(x,y)} is c-CM

o IfI'is ¢-CM then d¢ c-convex s.t. I' C 0,9

Pf: Fix (zg,y) € I', define ¥ (x) :=

sup sup { (o, yo) — c(x1,v0)| + |c(z1,91) — (22, y1)]
me

+ ...+ [c(xn“ ym) — C($ ym)} (l'za y’b) }

e c-convex functions inherit some regularity from c, e.g.

|9¥|Lip < suple(-, y)||Lip, D*y > {Cﬂyf (—DZc)

Yy



Saddle point structure m e ll(p,v), ¥ c-convex

m optimal
Sptm C 0.0 | = —> (Kdual)
) optimal

PE Vi) [ cloy)Rdrdy) > [ [0°() - 0(@)] F(dody)
— [weav— [wan

— [0 - v(@)] rdzdy
~ [ ety n(azy)

> [ 7 ) - @) e dy)

/wdy—/wdu N



Complements (I)

e C(riteria for optimality:
- If 7 is optimal then (¢, 4°) is optimal iff Sptm C 0.
- If (¢, 1) is optimal then 7 is optimal iff Spt 7w C 0.

e 7 is optimal iff Spt 7 is ¢-CM (Pratelli,
Schachermayer—Teichmann 2007-2008)

e This implies stability: If m € II(ug, vx) optimal,
mr — 7 € [(u, v) (weakly), then 7 is optimal



Complements (II)
e Link with Aubry—Mather theory:

c(p) = inf {C(,u,,u); n e P(X)} —> du minimizer

A= ﬂ 0. M = U Spt 7

Y opt. T opt.

These sets play an important role in dynamical systems
theory [Fathi|] [oldnew Chap. §]

e Link with combinatorics: When ¢: X x Y — {0, 1},
(Kdual) reduces to a “continuous” (measure-theoretic)

version of the marriage lemma |[TOT Sect. 1.4]



Solution of the Monge problem under a twist condition
(Brenier, Riischendorf, McCann, Gangbo, ....)

Let u, v, c s.t. the dual Kantorovich problem has a
solution v

Assume

(0) X is a Riemannian manifold
(1) c(x,y) is (uniformly) Lipschitz in x, uniformly in y

(2) [Vac(z,y) = Vac(z,y)| =y =/
(Twist: V,cis a 1-to-1 function of y)

(3) c is superdifferentiable everywhere

(4) pldr) = f(x) vol(dx)

Then 3! solution to the Monge-Kantorovich problem



Structure of the solution

m(dx dy)-a.s.

Vip(x) + Vee(z,y) =0

This determines the transport map:

y=T(x) = (Vye) (2, —=Vi(z))

Ex: (McCann 1999) c¢(z,y) = d(x,y)?/2 on a compact

Riemannian manifold, then

T(x) = exp,(Vi(x)), where 1 is d*/2-convex



Proof of solution of Monge problem

e 1 c-convex % ) Lipschitz
%  differentiable a.e.

10N ¢ differentiable p-a.s.

e Sptm C O = m(drdy)— as.,

Y(z) + ¢(z,y) is minimum at z = x

= —Vi(z) € Vie(-,y)

2 Y = (ch)_l(a:, —Vzb(aj))






II. THE WASSERSTEIN SPACE

e 'Totally inadequate denomination for the space of
probability measures, with the geometry induced by
optimal transport

e Starts with Kantorovich, then many contributors

e Modern viewpoint emerges from Otto’s work (1999)
with many developments

e Still ongoing research

Reference: [oldnew, Chap. 6, 7, 15, 28]



Definition

(X,d) a Polish space, 1 < p < o0

) = { e P [ dtoo o) i) < oo

ol {/d@’y)%(dl’ dy); = € I(x, u)}l/p

p-Wasserstein space: (P,(X), W),).
This 1s a complete, separable metric space.

Rk: P,(X) = lim (X", d")/Sy

N—o0
11/p

1
where dz(?N)(x,y) = | % Zd(ﬂii,yz‘)p

and Sy= symmetric group




Topology of the Wasserstein space

C), 1= continuous functions X — R growing at most like

d(zg, x)?P at infinity

L — o iff [/hduk—> hdu VhECp]

k— 00 k— 00



Properties of the Wasserstein space

e X C P,(X) via x —— ¢, (isometric embedding)

e Pi(X) is the largest closed convex set generated by X
(in a Banach space)

e P,(X) has lost all topological information of &

M compact connected Riemannian manifold
—> P,(X) simply connected

e But P,(X) keeps track of metric properties of X



Continuous dependence

Thm (Lott-V.) X — P,(X) is continuous
(in Gromov—Hausdorff topology)

More precisely: Say p = 1.
Let f: X — ) be an e-isometry, i.e.

d(f(x), f(y)) — d(z,y)| < e

LdA(f(X),y) <e
Then fy : P (X) — Pi()) is an e-isometry

Va,y 4

Recall: X, — A in GH topology means d a gj-isometry
Jo: Xy — X, e — 0



(Geodesic structure: Reminders
e v:[0,1] — (X,d) has length
L(v) = sup Z d(y(t:), ¥(tir1))

O=to<t1<..<tny41=1

e 7 is said geodesic if L(v) = d(~(0),v(1))

e (X, d) is said geodesic if
Va,y € X, 3 geodesic v such that v(0) =z, v(1) =y



Geodesic structure of P,(X)
Thm: If (X, d) is geodesic then so is P,(X)

Pf: Given u,v let w(dx dy) be optimal. For any (z,y)
choose measurably a geodesic (v:(x,y))o<t<1 joining x to
y. Let py = () gm. Then (uy)o<i<1 is geodesic. H

Thm (Lott—V): Any geodesic in P,(X) is generated in
this way

“A geodesic in the space of laws is the law of a (random)

geodesic”



Riemannian structure of P;(M) (Otto, 1999)

M a Riemannian manifold, u € Py(M)

Oyt an infinitesimal variation of p in Py(M)
ol =t { [P dui oV (o) =0
This leads to a (formal) Riemannian calculus on Py(M)

Theme (Otto—V. 2000) Geometric properties of M can

be efficiently encoded /recovered by this structure on
Py (M)

We shall see illustrations in the sequel



The three levels of optimal transport

e; the evaluation at time t: e, () = v(?)
Between o and 1, one can consider:

e an optimal coupling 7(dz dy)

e an interpolation (1)o<i<1

e a dynamical optimal coupling: II, probability measure

,
(60, 61)#1_[ —

on geodesics, such that <

(€)= p






ITII. ISOPERIMETRIC-TYPE INEQUALITIES

e Optimal transport is an efficient way to derive/study
some inequalities with isoperimetric content (e.g. Sobolev

inequalities)

e Ancestors: Knothe, Gromov... (“reparametrization”

= transport, not optimal)

e Otto—V (2000): via interpolation in Wasserstein
space; many works since then

e Reference: [oldnew, Chap. 17, 20, 21]



Intuition

(X,d,v) a Polish space equipped with a reference
measure v

d
U, (1) = /U (d—’[:) dv a “volumic energy”

lA vV 1
= —— U,(p) =v/A]U| —=
= = U = U ()
(pt¢)o<t<1 with pg = p, g1 = v (assume v € P(X) for now)
—— the mass “Hlows from p”

(d/dt)U,(us) can be large only if the “surface of u” is
large — typically, an expression involving derivatives of

du/dv



Theorem

(M, g) a Riemannian manifold, v(dz) = e~V ® vol(dz)

Assume

o V cC?*M),Ric+ V2V — V;@ vV > K ¢ for some

—n
N € (1,400], K > 0 (curvature condition)

e UecC(RL)NC?*(0,+00)), convex, U(0) = 0,

r— ¥ U(r~) convex (thermodynamic condition)

® (o= pol, 1 = p1V, where pg, p; decrease fast
enough at infinity, py Lipschitz

Then




U, (o) —U, (1) < /U"(PO(CCO))\VPO(SUO)\d(iCoaS’?l)W(diUo dz)
K\ Wa(po, p11)°

1
2 max([|poll e, |1 oo ) ¥

where \ = lim (T Ur) - U(T)> > 0



Remarks

e Several variants (including K < 0)
e This formula extends beyond the Riemannian setting

e Moral: a geometric (curvature) condition together
with a thermodynamic condition imply a convexity
property of the energy functional (variant of the

inequality ®(y) — ®(z) > (VP (x),y — x))

e Oftto’s calculus is sometimes a precious help for such
statements

e Applications: see later



Sketch of proof (in R" with K = 0 for simplicity)

Strategy initiated by McCann
Step 1

Introduce a displacement interpolation (geodesic in
Py(M)) between pg and pq: here

pe = (Id +tV)ppy V> -1, (0<t<1)
— fo(x) = fi(x +tV(x)) det(l, + tV3(x))
ft = dpg/dx

= po(x) =
pe(x + tVY () det(I, + tV3h(z)) V@) -Viz+tVi(@)

pr = dpy/dv



Step 2: Change variables

[ U@ vian

_ /U(pt(x+tV¢($)))€V(m+tv¢(x)) det(I, + tV2(z)) " @ v (dx)

(5 s

Jacobian: J,(z) = V@ =VE+VY@) det(1, + tV3)(x))




Step 3: Concavity estimates for Jacobian

d? 1 K 1
Curvature — o — Ji(x)~ < — Ji(x)N

Case V = 0 to simplify: S > —1,,, then

%det([ +t9) = det(I +tS) tr (S(I +tS)™)

2

d o1 N
-3 (det(I +tS)~) = 7 (det(] + £9))~

( [tr S(I +t5)71]° —tr[S(HtS)‘lS(HtS)‘l])

This is < 0 by Cauchy—Schwarz
(A= S(I+tS)"! symmetric, so (tr A)? < n tr A?)



Step 4: Convexity estimates for U,

[otanmtan = [v (gﬂ) () v da)
a;))

where ¥(r) = r¥ U(r=") convex nonincreasing

(¢ — T )N [ po(2)YN concave }

7+ ¥(r) convex nonincreasing

(T FN

— / ,0O MY convex function of ¢



Step 5: Take the tangent

t — U, (us) convex implies

(i) = Uslpio) 2 5| Uilyu)

—odt

t — U, (us) K-convex implies

K
U,(p1) — Us(po) = — | Un(pe) + 5} Wa (o, p1)?

t=0



Step 6: Differentiate U, (1)
— Ulpo(x)) = U'po()) [pe(x) = po()]

:>/ (p¢) dv— / (po du>/U’(po)pth—/U’(po)pgdu

— [ [ (pulo)) = U (pu(a))] mlz
= /[U’(po(%(:v,y))) — U (po(0(,y)))| H(dv)

where II is the dynamical optimal transference plan and

v:(x,y) has constant speed d(z,y)

d

— U dv >
— dt to/ (/Ot) Vv -~

—/U%m@»wmwﬂmuwﬂmww




What has been achieved?

U, (ko) —U, (1) < /U"(Po(%))WPO(QZ‘O)W(%oai’?l)W(dC’?o dz)
KA Ws (o, 1)°

1
2 max([|poll e, |1 roe ) ¥



First particular case

Assume N = o0, v € P,(M), U(r) =rlogr, uy = v,
o = p, p=dp/dv, get

/plogpdV</W/()())‘d( y) (d:vdy)—EWz(u, V)’

\//lvp v)f (dx dy) \// (2, )2 n(dz dy)

This is the HWI inequality of Otto—V



HWI inequality

v = e~V vol reference probability measure on (M, g)

Assume Ric +V?V > Kg, K € R
2
HAﬂ)Zl/pk%pd% L/‘Vp‘dv

ﬂmﬁﬂ)<wﬂm)-Hm——ﬂMm)




About the HWI inequality

e A manifestation of the convexity of H, in Py(M)

under a Ricci curvature condition

e Implies the Bakry—Emery theorem: if ' > 0 then
H,(n) < (2K) ' 1,(i) (log Sobolev)

e Like log Sobolev, works well in infinite dimension

e In the limit u ~ v, reduces to

lullz < C IV ull 2 [Vl 2



Use of HWI

e Used by Gao and Wu to derive uniqueness criteria for
certain spin systems; by Carrillo, McCann and V. to get
convergence rates for certain nonlinear diffusion
equations; by Grunewald, Otto, V. and
Reznikoff-Westdickenberg to (re)prove convergence of
microscopic entropy to macroscopic entropy in the
hydrodynamic limit of Ginzburg—Landau particle system

Robustness

e The HWI inequality (and thus the Bakry—Emery

theorem) remain true in a metric-measure space if one

imposes the convexity properties ot H, as definition of
(Ricci) curvature bound



Lazy gas experiment




Another application of the convexity inequality

Uy (j10)—U, (j12) < / U (pol20)) [V po(a0) | d(o, 1) m(dzo )
KX Wa(po, p11)

1
2 max([|poll e, |1 oo ) ¥



Choose M = R", v = Lebesgue measure,
U(r) = —nr'=t/" K =0, N =n, get

1—1 1—1
n/m " _n/Po "
1 1
: (1 B ﬁ) /Po(iﬁo)m”)!vﬂo(%)! d(zo, x1) T(dxo dy)

1 P ’ , Z
< (1 _ _> ‘V’Oo‘l d i (/ d(xg, x1)? w(dxg dajl))
n pp(H'z)

0

1 Vpol? z

p D

Scaling argument: Replace po(z) by A" po(Ax), A — oo:



. / A= O — 0
A

o — remains constant
p(1+-)
0

1/p'
N Wp’(“D:Ml) — Wp’<507,u1) — (/ ‘y’p M1(dy)>



Rewriting

Take the limit A — oo.

1/p*

Let u=py’" , p* = np/(n — p), the inequality becomes

p(n —1) </ vl g )Up \

assoon as [g=1, [u" =1.

IVul|r

This is a Sobolev inequality
|ul[ o < Cln,p) [Vul[ e



Further comments (in R")

e This method provides optimal constants and works as
soon as nonnegative curvature + homogeneity (say cone

over a CD(n — 2,n — 1) manifold). Works for
non-Fuclidean norms

e The optimal transport approach was used by
Cordero-Erausquin, Nazaret and V., then Maggi and V.,
to study various Sobolev inequalities (including solution
of an old problem by Brézis—Lieb about trace Sobolev
inequalities)

e [Figalli, Maggi and Pratelli use the optimal transport
to prove the stability of isoperimetric inequality:

2
09| > inf <|0B| [ 1+ const. (’QAB|>
|B|=|0 92|







IV. CONCENTRATION OF MEASURE

Idea

(X,d,v) a metric probability space

A C X with v[A] > 1/2 (say)

Then v[A"| > 1 —&(r), g(r) — 0asr — oo

A" = {5136 X; d(x, A) ST}

(By enlarging a set with positive measure, one invades
the whole space)

Equivalent formulation: for any (say) 1-Lipschitz
function f

y[{aze X; f(x) 2m+7“H < é&(r)

m = median or mean



About the concentration of measure

Many applications (Lévy, Milman, Gromov, Talagrand...)
Reference: |[Ledoux| (AMS, 2001)

Two main types of concentration:

C’T‘2

e Gaussian g(r) ~ e~

cr

e cxponential e(r) >~ e~ (for large r)



Optimal transport approach

(X,d,v) a Polish probability space

Fact: One can encode concentration principles by
transport-energy inequalities

Vpe P(X),  Cp,v) <2U(p)

Intuition

1
Take e.g. s = LV, then the r.h.s. controls the volume

V| A

of A while the 1.h.s. says how easily one can invade the

whole space, starting inside A

Pioneers: Marton, Talagrand

Reference: [oldnew, Chap. 22]



1, inequalities

(X, d,v) satisfies T),(K) (K > 0) if

2H,(p)
K

(T,) |VeeP(X),  Wyuv)< \/

dpt
Hu(,u):/plogpdy p=—

oliey) = {/d(x’y)p”(df dy); =€ (p, u)}l/p



T, implies Gaussian concentration




About the (T},) inequalities

e A functional way to encode concentration of measure
e Stronger as p increases

e p =2 is critical because (T5) is preserved under

tensorization:
(X, d,v) sat. To(K) = (XN, d"), 2N also
... 90 15 provides dimension-free concentration

o (1) — /e&d(i’m’m)2 v(dr) < 400

e (75) is more mysterious. Talagrand proves T5(1) for

the usual Gaussian measure.



Otto—Villani theorem (1999)
LSI(K) = T5(K)

[Vu H,(p) < L’(M)}

~ 2K
— [Vu Wa(p, v) < \/2 HI”((“)}
Hy(u)z/plogpdv Iy(u)z/wpp‘2 dv




Why is it (hopefully) interesting?

e LSIisin terms of “local” quantities = easy to
perturb

Ex: If v satisifes LSI then so does e7 v, if v is bounded

e All known criteria for LSI apply

e Useful in the study of hydrodynamical limits of
particle systems (Griinewald, Otto,
Reznikoff-Westdickenberg, V.)



Proofs

Three genuinely different arguments known:

e heat semigroup method (Otto—V): works on a
Riemannian manifold with Ricci curvature bounded
below

e Hamilton—Jacobi semigroup method
(Bobkov—Gentil-Ledoux): works on a geodesic space

satistying local doubling and Poincaré inequalities
(Lott—V.)

e Large deviation method (Gozlan): works on any
Polish space!



Sketch of Gozlan’s proof of the Otto—V theorem

(Reverse things: concentration implies T5!)

Step 1
Well-known (Herbst, Ledoux, Bobkov...)

(X,d,v) sat. LSI(K) = (&N, d\™, v®V) sat. LSI(K)

—  Qaussian concentration in XY

VN e N Vf e Lip(x™,d™),

V®N[{ZC c XV, f(z) > m+’rH <e Wiy




Step 2
Let fy : (XN, d\Y)) — R be defined by

fN(x):WQ(//L\iV,V) AN__Z(S%

R
X
2

=

v

3

2

_l_

=

A

° |

1
| fvl|Lip = T




Step 3

2
e Start from v®" [fN > my + 7“} <e 2

As N — oo, i — v a.s. (Varadarajan), so my — 0

1
—> lim inf (—N log V=N [Wa(ph ,v) > T]) >

N —o0

e (Compare with Sanov:

1
lim sup (_N log 1, ON [WQ(ﬁiV, V) > r})

N —o0

< inf {H,,(,u); Wo(p,v) > 7“}

Lo

o So [Wo(u,v)>r]= [H,(u) > Kr*/2],
which is T5(K).



Conclusion: Chain of functional inequalities

CD(K,0) = (LS) = (15) = (P) = (exp,)
U

(Th) <= (exp,) = (exp,)

C’I"2

(Th) <= (X,d,v) Gaussian concentration profile e~

2

(1) <= (XY, déN), v®N) Gaussian profile e,
for all NV

(dimension-free Gaussian concentration)

Rk: Other criteria for exponential concentration, related

to the quadratic-linear transport cost
Cqe(z,y) = min(d(z,y), d(z, y)?)






V. PASSING TO THE LIMIT IN A
CURVATURE CONDITION

Frequent situation

A “hard” property is equivalent to a “soft” property,
which is well-adapted to pass to a weak limit

This principle will be illustrated on the
Ma—Trudinger-Wang condition

Convention: geodesic = constant-speed minimizing

geodesic



The Ma—Trudinger—Wang condition

d(z,y)?
2

cut(M) = {(ZE, y) € M x M where d fails to be Smooth}

(M, g) compact Riemannian manifold, ¢(x,y) =

(z,y) & cut(M); ', ..., 2", y',...,y" local coordinates
_ 0" e(z,y)
Civ.ip, j1ge +— Ozt ... Ot Oyit ... Oyyie

For(fan)557}A4_X71§ﬂf,deﬁne
3
6(%9) ' (5777) - = 5 Z (Cij,,,n ¢’ Cs.kt — Cij, M)g 5‘7 k E

17klrs

] = [Cz',j]_l

(MTW) Vm? y? f? 77

— Y& =0l = S(z,y)- (&) =




The Ma—Trudinger—Wang tensor G

e is a fourth-order, nonlocal, nonlinear expression of the

Riemannian metric

e is covariant (independent of coordinate change)
'Loeper, Kim—McCann]|

e generalizes sectional curvature (Loeper): &, 71 two
orthogonal unit vectors in 1, M

—  6(x,7) - (&) = Sect({&,n})

So the MTW condition is stronger than (Sect > 0).

It is satisfied e.g. by the sphere S™ and its quotients.



Influence on regularity theory

(MTW) comes close to be equivalent to the smoothness
of optimal transport.

e If it is violated, then 3 f, g € C°°(M), positive
probability densities, such that the optimal transport
map 1’ between = f vol and v = gvol, for the cost
c = d*/2, is discontinuous.

e If it is satisfied, one can hope that T is C'°°. This has
been proven under “slightly” stronger assumptions.

References: [oldnew, Chap. 12]

+ recent papers by Delanoe, Figalli, Ge, Kim, Loeper,
Ma, McCann, Rifford, Trudinger, V., Wang



Influence on geometry

V() = {v =4(0); v:[0,1] - M geodesic}

e V(x) is the manifold M, “written in T, M”
e boundary of V(z) = tangent cut locus of z, TCL(z)

e interior of V(x) = tangent injectivity locus, TIL(x)

Open problem (Itoh—Tanaka): Is TCL(x) an
Alexandrov space?

Conjecture (V.):
(MTW) = (CTIL) Vz, TIL(x) is convex

Proven (Loeper—V.) under some additional assumptions
(“nonfocalization” + strict MTW)



Stability of MTW
Question: (Mg, gr) —— (M, g)

k— 00

Assume M}, sat. MTW, does M satisfy MTW??

Natural topology: C* convergence of gj.

Even in this topology, this is quite nontrivial, because of

the cut locus analysis (focalization)



Passing to the Gromov—Hausdorff limit (V.)

Thm 1: If (M, i) —2 (M, g)

k— 00

and M sat. (MTW) 4 (CTIL) + (Sect. < const.),

then also M satisfies these properties.

Thm 2: If (M, g) —s (M, g)

k— 00

and My sat. (MTW) + (CTIL),

then also M satisfies (MTW).

Thm 1 is proven by metric geometry.

Thm 2 is proven by metric-measure analysis.



Comment: other examples of weak stability

Other curvature conditions passing to the limit:

e Sect > K, or Sect < k, under GH topology
(Gromov...)

e Ric> K or CD(K, N) under MGH topology
(Lott—Sturm—V.)

Always same strategy: reformulate the differential
condition into a robust synthetic property (e.g.
Cartan—Alexandrov—Toponogov formulation of sectional

bounds)

In the case of the Ma—Trudinger—Wang condition, we’ll

use some geometric properties studied by Loeper,
Kim—McCann, V.



Metric reformulation

(MTW) + (CTIL)
<

VZ € M, V pair of geodesics (7p,71) originating from T
with angle 6 € (0, 7), 3 v geodesic forming angles /2
with vy and vy, with length L£(v) = £, s.t. Vo € M,

d(§77(1)>2 - d(aj?fy(l))Q <
max (d(f, Y0(1))? —d(z,v(1))?, d(Z, 71(1))2—61(557%(1))2)
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Rk: Upper (and lower) sectional curvature bounds are
used to pass to the limit in the angles



c-convexity reformulation

)
(CTIL)
— Vi c-convex, Vx € M,
(MTW) ¢ Y c-convex, Vx
= 0.1 (x) is (L-Lipschitz-)connected
\

Probabilistic reformulation (slightly cheating)

’vw solution of the

)
(CTIL) .
— dual Kantorovich problem,
(MTW) < \
— Ve € M,
\

 Ocp(x) is (L-Lipschitz-)connected

Passing to the limit

e [-Lipschitz-connectedness passes to the GH limit

e The dual Kantorovich problem passes to the GH limit



Gromov—Hausdorff stability of dual Kantorovich pb
o (X, di) N (X,d) via gp-isometries fi : XA — X

k— o0

o ci(x,y) =di(x,y)*/2 on X} x X
® [, Vg € P(Xk) (fk)#:uk — M (fk)#Vk —— v

k— 00 k— 00

® ¢k : sz — R Ci-CONveEX, w;k (y) — Hlfx wk (CC) T Ck (37, y)]?

achieving  sup {/w,‘;’“ dvy, — /wk d iy,

vV

Then up to extr. 3 a € Rs.t. (¢, —ay)o fl, —— 1,

k— 00

Y c-convex achieving sup {/ Y dy — /¢ d,u}.

Moreover Vx € X, limsup [ (ﬁckwk(f,;(x))) C 0.4(x).

k— o0









