First MSJ Seasonal Institute – Kyoto 2008 Probabilistic Approach to Geometry Heat kernel estimates

Laurent Saloff-Coste Cornell University

August 6 2008

PROBABILISTIC APPROACH TO GEOMETRY Heat kernel estimates, III

 $\lim_{t \to 0} (-t \log \mathbf{P}_{\mu}(X_0 \in A \& X_t \in B)) = \frac{d(A, B)^2}{4}$

Manifolds with ends

We will consider manifolds with ends:

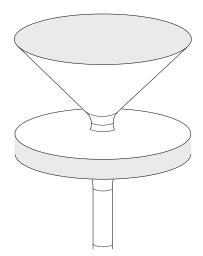
 $M = M_1 \# M_2 \# \ldots \# M_k$

where the ends M_i , $1 \le i \le k$ are of Harnack type.

 $M = K \cup E_1 \cup \cdots \cup E_k$ (disjoint union)

with K compact with smooth boundary and E_i isometric to an open set in M_i (we can allow $\overline{E_i} = M_i$). Curvature conditions that yield such manifolds: (c1) Asymptotically non-negative sectional curvature, (c2) Non-negative Ricci curvature outside a compact set with ends satisfying (RCA)

Euclidean domains



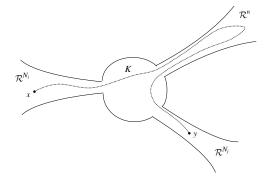
The heat kernel on manifolds with ends

Consider $M = M_1 \# \cdots \# M_k$ and assume that each M_k is of Harnack type, transient. Then the heat kernel is bounded above and below by expressions of the type

$$\frac{1}{\sqrt{V_{i_x}(x,\sqrt{t})V_{i_y}(y,\sqrt{t})}} \exp\left(-\frac{d_{\emptyset}(x,y)^2}{t}\right) + \left(\frac{H(x,t)H(y,t)}{V_0(\sqrt{t})} + \frac{H(x,t)}{V_{i_y}(\sqrt{t})} + \frac{H(y,t)}{V_{i_x}(\sqrt{t})}\right) \exp\left(-\frac{d_+(x,y)^2}{t}\right)$$
$$|x| = d(o,x), \ V_0(r) = \min_i V_i(r) \text{ and}$$

$$H(x,t) = \min\left\{1, \frac{|x|^2}{V_{i_x}(|x|)} + \left(\int_{|x|^2}^t \frac{ds}{V_{i_x}(\sqrt{s})}\right)_+\right\}, \ x \in M_{i_x}.$$

Brownian motion on M



For any closed set $\Gamma \subset M$, define the first hitting time by

 $\tau_{\Gamma} = \inf\{t \ge 0 : X_t \in \Gamma\}.$

Let us set

$$\psi_{\Gamma}(t,x) := \mathbb{P}_{x}(\tau_{\Gamma} \leq t).$$

This is the probability to hit Γ before time *t*, starting from *x*. It is increasing with *t*.

Let Ω be open with smooth boundary Γ . Then for all $x \in \Omega$, $y \in M$, and t > 0

$$p(t,x,y) \leq p_{\Omega}(t,x,y) + \sup_{\substack{0 \leq s \leq t \\ z \in \Gamma}} p(s,z,y) \psi_{\Gamma}(t,x).$$

Furthermore

$$p(t, x, y) \leq p_{\Omega}(t, x, y) + \sup_{\substack{t/2 \leq s \leq t \\ z \in \Gamma}} p(s, z, y) \psi_{\Gamma}(\frac{t}{2}, x) \\ + \sup_{\substack{t/2 \leq s \leq t \\ t/2 \leq s \leq t}} \psi_{\Gamma}'(s, x) \int_{0}^{t/2} \sup_{z \in \Gamma} p(\theta, z, y) d\theta$$

 $\quad \text{and} \quad$

$$p(t, x, y) \geq p_{\Omega}(t, x, y) + \inf_{\substack{t/2 \leq s \leq t \\ z \in \Gamma}} p(s, z, y) \psi_{\Gamma}(\frac{t}{2}, x) \\ + \inf_{\substack{t/2 \leq s \leq t \\ t/2 \leq s \leq t}} \psi'_{\Gamma}(s, x) \int_{0}^{t/2} \inf_{z \in \Gamma} p(\theta, z, y) d\theta$$

Let Ω_1 and Ω_2 be two open sets in M with boundaries Γ_1 and Γ_2 respectively. Assume that Γ_2 separates Ω_2 from Γ_1 . Set

$$\overline{G}(t) := \int_{0}^{t} \sup_{v \in \Gamma_{1}, w \in \Gamma_{2}} p(s, v, w) ds, \quad \underline{G}(t) := \int_{0}^{t} \inf_{v \in \Gamma_{1}, w \in \Gamma_{2}} p(s, v, w) ds.$$

Then, for all $x \in \Omega_1$, $y \in \Omega_2$, and t > 0,

$$p(t, x, y) \leq p_{\Omega_1}(t, x, y) \\ + 2 \left(\sup_{s \in [t/4, t]} \sup_{v \in \Gamma_1, w \in \Gamma_2} p(s, v, w) \right) \psi_1(t, x) \psi_2(t, y) \\ + \overline{G}(t) \left[\sup_{s \in [t/4, t]} \psi_1'(s, x) \right] \psi_2(t, y) \\ + \overline{G}(t) \left[\sup_{s \in [t/4, t]} \psi_2'(s, y) \right] \psi_1(t, x)$$

$$p(t, x, y) \geq (1/2)p_{\Omega_1}(t, x, y) \\ + \left[\inf_{s \in [t/4, t]} \inf_{v \in \Gamma_1, w \in \Gamma_2} p(s, v, w)\right] \psi_1(\frac{t}{4}, x)\psi_2(\frac{t}{4}, y) \\ + \underline{G}(\frac{t}{4}) \left[\inf_{s \in [t/4, t]} \psi'_1(s, x)\right] \psi_2(\frac{t}{4}, y) \\ + \underline{G}(\frac{t}{4}) \left[\inf_{s \in [t/4, t]} \psi'_2(s, y)\right] \psi_1(\frac{t}{4}, x).$$

Hitting probability ψ_{κ}

Let M be of Harnack type. Fix a compact set K with non-empty interior and a reference interior point $o \in K$. set |x| = d(o, y) and $H_*(x,t) := \min \left\{ 1, \ \frac{|x|^2}{V(o,|x|)} + \left(\int_{|x|^2}^t \frac{ds}{V(o,\sqrt{s})} \right)_+ \right\}.$ Then, for all $x \in M \setminus K_{\delta}$ and t > 0 (Grigor'yan and LSC, 2002),

$$\psi_{\mathcal{K}}(t,x) \simeq \mathcal{H}_{*}\left(x,t
ight) \exp\left(-rac{\left|x
ight|^{2}}{t}
ight)$$

$$\partial_t \psi_{\mathcal{K}}(t,x) \leq rac{\mathcal{C}}{\mathcal{V}(o,\sqrt{t})} \exp\left(-c rac{|x|^2}{t}
ight).$$

Dirichlet heat kernel p_{Ω}^{D}

Let M be of Harnack type and transient. Fix a compact set K with non-empty interior and $\Omega = M \setminus K$. Then, at bounded distance of K,

$$p_{\Omega}^{D}(t,x,y)\simeq p(t,x,y).$$

The central estimate

Set $V_0(r) = \min_i V_i(r)$. Then, for all x, y at bounded distance from o,

$$p(t,x,y) \leq \frac{C}{V_0(\sqrt{t})} \exp\left(-\frac{d(x,y)^2}{t}\right).$$

Also, if all ends are transient, for x, y at bounded distance of the central point o,

$$p(t,x,y) \geq \frac{c}{V_0(\sqrt{t})} \exp\left(-\frac{d(x,y)^2}{t}\right)$$

The heat kernel on manifolds with ends

Consider $M = M_1 \# \cdots \# M_k$ and assume that each M_k is of Harnack type, transient. Then the heat kernel is bounded above and below by expressions of the type

$$\frac{1}{\sqrt{V_{i_x}(x,\sqrt{t})V_{i_y}(y,\sqrt{t})}}\exp\left(-\frac{d_{\emptyset}(x,y)^2}{t}\right) + \left(\frac{H(x,t)H(y,t)}{V_0(\sqrt{t})} + \frac{H(x,t)}{V_{i_y}(\sqrt{t})} + \frac{H(y,t)}{V_{i_x}(\sqrt{t})}\right)\exp\left(-\frac{d_+(x,y)^2}{t}\right)$$

The harmonic function h

(RCA) with respect to o: There exists A > 1 such that any two points x_1, x_2 with $d(o, x_i) = r$, R > a, are connecetd in $B(o, Ar) \setminus B(o, A^{-1}R)$.

Let $M = M_1 \# \dots \# M_k$. Assume that M is transient and that, for each $i = 1, \dots, k$, M_i is Harnack type and satisfies (*RCA*). Then there exists a positive harmonic function h on M such that, for all $x \in M$,

$$h(x) symp 1 + \left(\int_1^{|x|^2} rac{ds}{V_{i_x}(\sqrt{s})}
ight)_+$$

(Sung, Tam and Wang — Grigor'yan and LSC)

The general transient case

Consider $M = M_1 \# \cdots \# M_k$. Assume that each M_k is of Harnack type, and satisfies (RCA). Assume that M is transient. Then the heat kernel is bounded above and below by expressions of the type

$$h(x)h(y)\left(\frac{\widetilde{H}(x,t)\widetilde{H}(y,t)}{\widetilde{V}_{\min}(\sqrt{t})} + \frac{\widetilde{H}(x,t)}{\widetilde{V}_{i_{y}}(\sqrt{t})}\right)$$
$$+ \frac{\widetilde{H}(y,t)}{\widetilde{V}_{i_{x}}(\sqrt{t})}\right)\exp\left(-\frac{d_{+}^{2}(x,y)}{t}\right)$$
$$+ \frac{h(x)h(y)}{\sqrt{\widetilde{V}_{i_{x}}(x,\sqrt{t})}\widetilde{V}_{i_{y}}(y,\sqrt{t})}}\exp\left(-\frac{d_{\emptyset}^{2}(x,y)}{t}\right)$$

The tilde means relative to $(M, h^2 d\mu)!$

The general transient case

Set

$$\eta_i(r) := 1 + \left(\int_1^{r^2} rac{ds}{V_i(\sqrt{s})}
ight)_+$$

Then

$$\widetilde{V}_i(r) \asymp \eta_i^2(r) V_i(r).$$
 (1)

and

$$\widetilde{H}(x,t) \simeq \frac{|x|^2}{\eta_{i_x}^2(|x|)V_{i_x}(|x|)} + \frac{1}{\eta_{i_x}(|x|)\eta_{i_x}(\sqrt{t})} \left(\int_{|x|^2}^t \frac{ds}{V_{i_x}(\sqrt{s})}\right)_+.$$

The general transient case

Corollary

Assume that $M = M_1 \# \cdots \# M_k$ is transient with each M_k of Harnack type and satisfying (RCA). Then

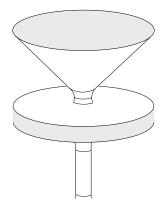
- $\sup_{x,y} \{p(t,x,y)\} \simeq max_i \{V_i(\sqrt{t})^{-1}\}$
- $\sup_{y} \{p(t, x, y)\} \simeq max_i \{[\eta_i(\sqrt{t})V_i(\sqrt{t})]^{-1}\}$
- $p(t, x, y) \simeq \max_i \{ [\eta_i(\sqrt{t})^2 V_i(\sqrt{t})]^{-1} \}$

$$\eta_i(r):=1+\left(\int_1^{r^2}rac{ds}{V_i(\sqrt{s})}
ight)_+.$$

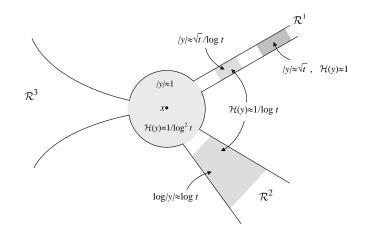
title Manifolds with finitely many ends The heat kernel on Manifolds with ends Gluing techniques The general transient case

$\mathcal{R}^1 \# \mathcal{R}^2 \# \mathcal{R}^3$

 $\mathcal{H}(y) = \frac{p(t,x,y)}{\sup_{z} p(t,x,z)}.$



Example $\mathcal{R}^1 \# \mathcal{R}^2 \# \mathcal{R}^3$



title Manifolds with finitely many ends The heat kernel on Manifolds with ends Gluing techniques The general transient case

$\mathcal{R}^2 \# \mathcal{R}^2$

Set

$$Q(x,t) \asymp \frac{1}{\log(2+|x|)} + \left(\frac{1}{2} - \frac{\log(2+|x|)}{\log(2+t)}\right)_{+}$$
$$D(x,t) \asymp \frac{\log(2+|x|)}{\log(2+|x|) + \log(2+t)}.$$
For $t \ge 1, x \in E_1, |y| \in E_2$ and $|x|, |y| \le C\sqrt{t}$, we have
$$p(t,x,y) \asymp \frac{C}{t} \left(Q(x,t)D(y,t) + D(x,t)Q(y,t) + Q(x,t)Q(y,t)\right).$$

References

- Chavel and Feldman *Isoperimetric constants, the geometry of ends, and large time heat diffusion on Riemannian manifolds.* Proc. London Math. Soc. 1991.
- Davies, E.B.: *Non-Gaussian aspects of heat kernel behavior*. J. Londom Math. Soc. 1997.
- Grigor'yan and LSC: *Heat kernel on connected sums of Riemannian manifolds.* Math. Res. Letters, 1999.
- — *Stability results for Harnack inequalities* Ann. Inst. Fourier, 2005.
- Hitting probabilities for Brownian motion on Riemannian manifolds. J. Math. Pure et Appl. 2002.
- — Dirichlet heat kernel in the exterior of a compact set. Comm. Pure Appl. Math. 2002.
- *heat kernel on manifolds with ends.* To appear in Ann. Inst. Fourier.