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PROBABILISTIC APPROACH TO GEOMETRY
Heat kernel estimates, Il

d(A, B)?

m (—tlogP,(Xo € A& X; € B)) = 4
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t—0
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The heat kernel on Manifolds with ends
Spaces of Harnack type
On, say, a weighted complete Riemannian manifold:

Theorem (Grigor'yan, 91; LSC, 92)

The following properties are equivalent:
(a) The conjunction of

e The doubling property: V(x,2r) < DV(x,r), for all x, r.
e The Poincaré inequality: For all B = B(x,r),

Y f € Lip(B), / |f — fgl?du < Pr2/ |VF2du.
B B
(b) The two-sided Gaussian bound: for all x,y, t > 0,

o1 d(x,y)?
o= oo (V)

Call this a space of Harnack type.
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Sobolev and elliptic Harnack

Fix R € (0,00]. Assume that (for some a > 2)

F20/(a—2) (=2 Cr? \va3 2 =272
</B‘ | ) B V(X7r)2/oc/(| ‘ r | ‘ )

B = B(x,r), f €Cc(B), xe M, r e (0,R).

Theorem (W. Hebish, LSC, 2001)

Under this hypothesis, the following properties are equivalent:
e The two-sided Gaussian bound: for all x,y, t € (0,/R),

L1 d(x.y)?
o=y e ()

e The Elliptic Harnack inequality up to scale R:
3C, Yu > 0 harmonic in B(x,2r),

u(y) < Cu(z), y,z € B(x,r).
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Elliptic Harnack on M x R

Theorem (W. Hebish, LSC, 2001)
For any fixed R € (0, o], the following properties are equivalent:
e The two-sided Gaussian bound: for all x,y € M, t € (0, \/ﬁ)

\/(X:}\/E) exp <—d(X;.Ly)2> .

e The elliptic Harnack inequality up to scale R on M x R.

p(t,x,y) ~

A Riemannian manifold of the product form M x R is of Harnack
type if and only if it satisfies the elliptic Harnack inequality.
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Examples of spaces of Harnack type

e Convex domains in Euclidean space.

e Complete Riemannian manifolds with Ric > 0.
Bishop-Gromov (Cheeger-Gromov-Taylor) and P. Buser, 1982.
Li-Yau, 1986.

e Lie groups with polynomial volume growth.
Gromov 1981, Varopoulos 1987.

e Quotients of any space of Harnack type by an isometric group
action.

e Spaces that are (measure) quasi-isometric to a space of
Harnack type. (Kanai, Coulhon, LSC)

e Coverings of compact manifolds which have polynomial
volume growth

e and more ...
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Manifolds with ends

We will consider manifolds with ends:

M = My#Modt . .. %M,

where the ends M;, 1 < i < k are of Harnack type.

M=KUE;U---U E (disjoint union)

with K compact with smooth boundary and E; isometric to an
open set in M; (we can allow E; = M;).

p(t,x,y) =7, sup, p(t,x,y) =7, sup, , p(t,x,y) =7
For a fixed x, describe roughly the set

{y : p(t,x,y) > esupp(t, x, z)}
z
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Catenoid like surfaces




title Scale and location homogeneity Manifolds with finitely many ends The heat kernel on Manifolds with ends

Euclidean domains
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Curvature conditions

Consider the following two curvature conditions:

(c1) Asymptotically non-negative sectional curvature:
3k :(0,00) — (0,00), continuous decreasing,
[ sk(s)ds < oo such that Sect(x) > —k(d(o, x)).

(c2) Non-negative Ricci curvature outside a compact set whose
ends satisfy condition (RCA) below.

Under any one of these two conditions:
e M has finitely many ends (Cai, Kasue, Liu, Li-Tam)
e these ends are Harnack type (Grigor'yan, LSC).

o these ends also have relatively connected annuli, i.e., (RCA):
For any o € M, any two points x, y at distance r > A2 from o
are connected in B(0.Ar) \ B(o, A 1r).
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Can such manifolds be Harnack?

Consider M = My# - - - #M, and assume that each M, is of
Harnack type and satisfies (RCA). Fix o and set

V(r) = u(B(o,r)), Vi(r) = u(B(o,r) N M;).

Theorem (Grigor'yan, LSC 2005)

M is of Harnack type if and only if M has only one end or:
(1) Vi) = V() 17 < <k

(v2) f{ \7(15 ~ V(,) (when V/(r) ~ r®, this means o € (0,2)).

Sketch of proof: All ends satisfy the same good localized Sobolev
inequality (or Faber-Krahn), Hence M also. Conditions (v1)-v(2)
can be used to prove the elliptic Harnack inequality (they are in
fact necessary for it).

The result of Hebisch-LSC then gives that M is Harnack type.
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The heat kernel on manifolds with ends

Consider M = My# - - - #M, and assume that each M, is of
Harnack type, transient. Then the heat kernel is bounded above
and below by expressions of the type

1 o b(x, )
¢nw¢mm%ﬁfp< ‘ >+

HOGOH(.t) | HG0t) | H 0 ) [ diloy)?
( Wﬁ>+MM®+MﬁJP( : )

|x| = d(o0,x), Vo(r) = min; Vi(r) and

= min 7|X|2 t ds X ;
Hixt) = {1’ ACHM </|| v,-x(ﬁ))+}’ € M.
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ROHR™ n < m
For x e R" and y € R™,

1 1 d(X7.y)2
t = ot )
p( ,X,Y) <t,-,/2|y‘m—2 + tm/2|X’n_2> exp < t

For fixed x,y and t — oo, p(t,x,y) ~ t"/2.

For |x], |y|, t — oo, |x| =~ |y| = Vt, p(t, x,y) =~ p—(n+m)/2+1

= 8
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n n n N 1
RMHRMRHR™, n = min{n;}

For x € Ej and y € E;, i # j and all t > 1 the heat kernel is
estimated by:

1 N 1 N 1 . d(x,y)?
X —_— .
N R N O T AN
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