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PROBABILISTIC APPROACH TO GEOMETRY
Heat kernel estimates, |

d(A, B)?
tling)(—tlogPM(Xo €A& X, €B)) = (21)

localized bounds

[e]
[e]e]e}

This is the Hino-Ramirez version of Varadhan formula relating the probability that

Brownian motion moves from A to B (left-hand side) to the distance between the two

sets (right-hand side)
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Plan of the 4 lectures

o1 d(x,y)?
)= g e ()

(1) An overview of diffusive heat kernel upper bounds and
two-sided bounds

(2-3) Manifolds with finitely many ends
(4) Heat kernels with Dirichlet boundary conditions.
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The ubiquitous heat kernel

1 (P
(47t)n/2 4t

The various guises of the heat kernel p(t,x,y):
1. The fundamental solution of the most basic parabolic PDE
(0 — A)u=0.
2. The kernel of the heat semigroup et2.

3. The density of the distribution of the position at time t of the
stochastic process driven by A.

u(t x) = ePup(x) = / p(t. %,y )uo(y)dy = Ex(u0(Xe)).

(0t — A)u=0, u(0,x) = up(x).
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The ubiquitous heat kernel

The various applications of the heat kernel/semigroup:

1. Smoothing/appoximation et~ f =0y
2. Defining/studying other objects:
e Function spaces, e.g., Hardy spaces
Hi = {f € L' : sup,.q |H:f| € L'}.
e Operators, e.g., m(A), Green function, Riesz transforms.
e Spectral theory of A + V.
e Subordination: e t(=4)"
3. Large time behavior of the sample paths of BM:
recurrence/transience, rate of escape

4. Capture some geometric properties: amenability, isoperimetry

5. The heat kernel measure p(dy) = p(t, x,y)dy, L2(u).
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The ubiquitous heat kernel

Many different setups, many variants:

n o 2
° Ian A:ZI <W)
e Uniformly elliptic operators: Z,J 2aij(x)Z
i j
e Heat equation in domains with Neumann/Dirichlet boundary

conditions. Lower order terms, potentials.
e Non linear variants: 9,f — div(|]Vf|P~1Vf) =0,

Oef — AF™ =0,
¢ On Riemannian manifolds: A = div grad, dd* + d*d (forms,
tensors).

On Lie groups: A = ZX,?, subRiemannian geometry.

Dirichlet forms.

Finsler geometry semigroups/ Aspects of mass transport
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What are the fundamental questions/results?
Asymptotic expansion as t — O:
1 —d(x,y)?/4t = k
p(t,X,y)N (47Tt)n/2e ZO:Ak(Xay)t :

Behavior as t — oo:
o p(t,x,y) ~?, o(t) =sup,{p(t,x,x)} ~?
e Recurrence/transience; parabolicity/non-parabolicity;
e Amenability, Isoperimetry;
e Volume growth, other geometric invariants.

Gaussian behavior: Varadhan's result
tli_rg 4tlog p(t,x,y) = —d(x,y)>.
Large scale space-time estimates: Aronson’s estimate
p(t, x,y) ~ t~ " 2e=clx—yIP/t

for uniformly elliptic operators on R".
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On-diagonal behavior: the classical case

Let (M, g) be a complete (non-compact) Riemanian manifold.
What controls the behavior of p(t, x, x), sup, {p(t,x,x)}?

e The bound sup, {p(t,x,x)} < Ct~"/?, t > 0 is equivalent to
Sobolev/Nash/Faber-Krahn/RCL inequalities:

e Sobolev (n>2):  ||f|l2n/(n—2) < C||Vf]2.
o Nash: [IF5"" < C2|[wF|3) 7",
e Faber-Krahn \p(Q) > c|Q|~%/".
e RCL (n>2): N_(=A+ V)< C[V"”2d) where N_(A) is
the number of negative eigenvalues of A in L%, (n > 2).
RCL=Rozenblum-Cwikel-Lieb; The equivalence with the Sobolev
inequality, in a wider context, is a theorem of Varopoulos.
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On-diagonal behavior

Consider a pair of positive monotone functions v, A with A
decreasing continuous and related to v by

v(t) ds
‘ ‘/o SA(s)

V/(t) = v(t)A(v(t)), v(0) = 0.

Assume that u = v'/v satisfies u(At) > au(t) for some
0<a<l<A

equivalently,

Theorem (A. Grigor'yan)

sgp{p(tax,X)} <

localized bounds
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[e]e]e}



title Plan of the 4 lectures Introduction On diagonal behavior Gaussian bounds localized bounds

(e} o [e]
(e} oce [e]e]e}

On-diagonal behavior and volume growth

Consider the volume growth condition (V/(x, r) = u(B(x,r))
inf{V(x,t)} > ct?, t>1.

e This condition implies

sup{p(t,x,x)} < Ct=9/(d+1) + 5 1,

e If we add the condition that (this is called a pseudo-Poincaré
inequality, fr(x) = V(x, )" [g(, ,y fdX)

\f = fr]l2 < Cr||Vfll2, f€Cc(M), r>0
then we get the much stronger result that

sup{p(t,x,x)} < Ct~9/2.
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Flat Gaussian bounds

Consider a pair of positive monotone functions v, A with A
decreasing continuous and related as before by

v/ (t) = v(t)A(v(t)), v(0) = 0.

Assume that u = v/ /v satisfies u(At) > au(t) for some
O<a<l<A

Theorem (E.B. Davies, A. Grigor'yan, ...)

The condition
Ao(Q) > cA(clQl), 2 M

() o] = g (-5

implies

localized bounds
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Localized on-diagonal behavior

The following conditions are equivalent for a ball By = B(xp, Ro):
e Localized Sobolev inequality (some o > 2):

2a/(a—2) (a=2)/e Cr? 2 2122
f|ee/e=2)d \ < VFf “2If|9)dA
</; | ‘ ) B V(Xa r)2/oz »/B(’ | o ‘ ’ )

B = B(x,r), f €Cc(B), x € By, r € (0, Ro).
e Localized Faber-Krahn inequality (some a > 0):

c [ V(x,r)\*/®
Ap(U) > 2 ( |U’] ) , UC B(x,r), x€ By, re(0,Ry).

e Doubling and on-diagonal upper bound (some a > 0):

V(x,r) r\e C
Vs 2 <) e <

x€By, 0<t<R:0<r<s<Ry.
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Doubling and Poincaré

Theorem (Grigor'yan, 91; LSC, 92)

For fixed R € (0, 0], the following properties are equivalent:
(a) The conjunction of

e The doubling property: V(x,2r) < DV(x,r), for all r € (0, R).
e The Poincaré inequality: For all r € (0, ) B = B(x,r),

Y f € Lip(B), / |f — fgl?du < Pr2/ |VF2du.
B B

(b) The two-sided Gaussian bound: for all x,y, t € (0,VR),

1 o).

p(t, x,y) ~ Vv 2P (— ;

(c) The parabolic Harnack inequality up to scale R.
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Examples with R = oo

Convex domains in Euclidean space.

Complete Riemannian manifolds with Ric > 0.
Bishop-Gromov (Cheeger-Gromov-Taylor) and P. Buser, 1982.
Li-Yau, 1986.

Lie groups with polynomial volume growth.
Gromov 1981, Varopoulos 1987.

Quotients of any such space by an isometric group action.

Spaces that are (measure) quasi-isometric to such a space.
(Kanai, Coulhon, LSC)

Coverings of compact manifolds which have polynomial
volume growth

and more ...
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