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Kostka polynomials K ,(t)

A=(Ag,..., A

)

k) : partition of n
Ni€Zsg, M >--2>X2>0, > .Ai=n

P, . the set of partitions of n

sa(x) = sa(x1, ..., xk) € Z[xi,...,xk] : Schur function

sx(x) = det(x ")/ det(x )

Px(x; t) = Px(x1,...,Xk; t) € Z[x1, ..., Xk; t] : Hall-Littlewood function

]
Py(x;t) = Z W(Xl)\l-"Xli\k H X5 XJ)

Xi — Xj
WESk/S;\ >\,‘>)\j
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{sx(x) | A € Zn}, {Px(x;t) | A € P} : bases of
the space (free Z[t]-module) of homog. symmetric functions of degee n

For \, u € &, define Kostka polynomials K) ,(t) by

S)\(X Z K)\H X t)

HEPn
(Kxu(t))rpez, : Transition matrix of two bases {sx(x)}, {P.(x;t)}
Kxu(t) € Z[t]
Notation: n(A) = >, (i — 1)\

R,\,#(t) = t"WK) ,(t71) : modified Kostka polynomials
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Geometric realization of Kostka polynomials

Lusztig (1981) : geometric realization of Kostka polynomials
in connection with unipotent classes.

V=C", G=GL(V)
Guni = {x € G | x : unipotent} : unipotent variety
Pn = Guni/G
A <— Oy > x: Jordan type A
e Dominance order of &,
For partitions A = (A1, Aoy ..., Ak), o= (1, 2, - - -, tk)
p<Ae= Y i <SY_ N for each j

e Closure relations :

Oy = H 0, (O : Zariski closure of 0))
HSA
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K =1C(0y,C) : intersection cohomology complex

di—1 d; dit1
K: o —— K3 K; Kiyp —— .-

K = (K;) : bounded complex of C-sheaves on &'y

H'K = Ker di/Imd;_1 : i-th cohomology sheaf

HJK : stalk of #'K at x € 0y (fin. dim. vector space ove C)
Theorem (Lusztig 1981)

For any odd i, we have J#'K = 0. Moreover, for x € 0, C 0>,

Rault) = €7 3 (dime 42 K)t

i>0

In particular, K ,[t] € Z>o[t]. (Theorem of Lascoux-Schiitzenberger)
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Springer corresp. of GL, and Kostka polynomials
G = GL,, B : Borel subgroup of G, T C B : maximal torus,

U C B : maximal unipotent subgroup
Ng(T)/T ~ S, : Weyl group of GL,

e Guni ={(x,gB) € Guni x G/B | g lxg € U} = Guni, (x,8B) — x
Guni : smooth, 71 : proper surjective (Springer resolution of G,p;)

Theorem (Lusztig, Borho-MacPherson)

(m1)«C[dim Gypi] is a semisimple perverse sheaf on Gpi, equipped with
Sp-action, and is decomposed as

(m1).Cldim Guni] =~ €D Vi ® IC(F)5, C)[dim 03],
AEP),

where V) : irreducible S,-module corresp. to A € &2,,.

V.
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For x € Gyni,

B ={gB € G/B|g 'xg € B} =71 (x)
is called the Springer fibre of x.
K = (m1)«C : complex with S,-action

HK ~ H'(r71(x),C) ~ H'(%,,C) as S,-modules
Sp-module H'(A,,C) : called the Springer module of S,
Put d, = dim %,. H?*%(%,,C) : cohomology of highest degree

Corollary (Springer correps.)

For x € 0}, H*¥(%,,C) ~ V, as S,-modules. By the corresp.
x = H?%(4%,,C), obtain a natural bijection Gyni/G — Sp.

Proposition

Kou(t) = > (Va, H(B,C))s, £ (x€0,)
i>n(\)
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Generalization of Kostka polynomials

A= (M A, S A = n: r-partition of n

Pn.r ¢ the set of r-partitions of n.

S (2004) Introduced Kostka functions Kj\t“(t) cQ(t) (A€ Pnr)
assoc. to complex reflection group W, , = S, x (Z/rZ)"

o (Kxu(t)) :Transition matrix between basis {sx(x)} of Schur
functions and basis {Pff(x; t)} of “Hall-Littlewood functions”

o If r=1,2, Ky ,(t) = Ky ,(t) € Z[t]. (write as Ky (t))

o If r=2, W,2 : Weyl group of type B, (C,). But those Kostka
functins have no relations with Spy, or SOzp41.
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- . +
Characterization of Ky (t)

For A=)\ ... ANy e 2, ., put

a(A) = r-n(A) + DO 22O 4. (r = )AO
where n(A) = n(AM) + ... + p(A(N).
l?i“(t) = ta(”)Kfjﬂ(t_l) :  modified Kostka function

For A=\, ..., \D) € 2, ,, choose m > 0 so that
AR = ()\gl), ...\ for any k. Define a sequence c()) € Z75 by

cA) =P AR AR AW AD AN AR AR ).

Define a partial order & < X in &, , (dominance order on %, ,)
by c(p) < c(A) under (gen. of ) the dominance order on ;.
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For any character x of W, ,, define R(x) by

R(x) = [Lcic (8" = Z ddetv x(w)

|W,,7,| et\/ t-ly — W)
where V : reflection representation of W,,,,.

Fix a total order < on &, , compatible with <,
consider matrices indexed by &2, . with respect to <. .

Define a matrix Q = (wx u ) pez,, by

Wi p = N R(pA ®,07®ﬁv)

where p* : irred. character of W, , corresp. to A € &, ,,
N* : number of reflections in W, ,.
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Theorem (S 2004)

There exist unique matrices P, A on Q(t) satisfying the relation
P-APT =Q,

where A : diagonal, pE = (piu) . lower triangular with pi)\ = ¢a(¥),

Then pfu = Kic,u(t).

Remarks.
@ Construction of K)\iu depends on the choice of <. Later we show
independence of <, and K;f“(t) € Z[t].

Q If r=1,2, W,, : Weyl group, 2 : symmetric, so Pt =pP—.
If r >3, Q: not symmetric, so P # P~.

@ K, ,(t) have better properties than K)tu(t) w.r.t geometry.
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Enhanced variety GL(V) x V

Achar-Henderson (2008) : geometric realization of K} ,(t)
in the case where r = 2.

G =GL(V), V =C" n-dim. vector space
Guni X V C G x V : Enhanced variety , G acts diagonally
(Achar-Henderson, Travkin) :

(GuniX V)/ngzmz, ﬁ)‘<—>>\

Theorem (Achar-Henderson 2008)

Put K =IC(0x,C). If i is odd, theL%iK =0.
For A\, € Zpo and (x,v) € 0, C O3,

t( )Z(dlm(c jﬁx v) ) KA M( )

i>0
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Exotic symmetric space GL(V)/Sp(V) x V

G = GLpy(C) ~ GL(V), V : 2n-dim. vector space

0:G— G, 0(g)=J"(tgt)J : involution, J = ( 0/ l(')')
—In

H:={ge G|0(g)=g}~Spn(C) G/H: symmetric space

Define G ={ge G|o(g)=g7'} ={gbg) " | g € G},

where 1 : G — G,g — g L.

The map G — G, g~ g0(g)~! gives isom. G/H ~ GY.

Z =GYxV :exotic symmetric space

Zimi = GY x V =~ exotic nilpotent cone by Kato

uni

H acts diagonally on 2" and Zun;.
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(Kato) e%uni/H aS) e@mz (ﬁ)‘ A4 A)

B = TU : 0-stable Borel subgroup, maximal torus,
and maximal unipotent subgroup of G

T% ¢ B? : maximal torus and Borel subgroup of H

B = H/BY : flag variety of H, Ny(T%)/T? ~ W,

Fix an isotropic flag in V stable by B?
MicM,Cc---CcM,CV (dim M; =)

Put Zum = {(x,v,gB%) € G¥

uni

xVxB|gixgeBY glve M,)
and 71 : ﬁini — Zuni (x, vaBe) = (X, v).

For z = (x,v) € Oy, consider 771(z) C T (exotic Springer fibre)

7Y 2)~ B, ={gB’ ¢ B |g xg c BY, g7 lve M,}
Put dy = (dim Zuni — dim ﬁx)/2
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Theorem (Kato, S.-Sorlin)

(m1)+C[dim Zyni] is a semisimple perverse sheaf on 2, equipped with

W 2-action, and is decomposed as

(m1):Cldim Zimil = ) Va ® IC(Fx,C)[dim &3],
Aeyn,Z

where \7,\ ; irred. representation of W, o corresp. to A € & 5.

Corollary (Springer corresp.) (Kato, S.-Sorlin)

Q Hi(%’z,C) has a structure of W), >-module (Springer module).

Q dim %, = dy for z € O},

Q@ H?*N(4%,,C) ~ Vy as W, 2-modules for z € Oj.
The corresp. Oy +— H?I(4%,,C) gives a natural bijection
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Geometric realization of Kostka functions

Theorem (Kato, S. -Sorlin)

Put K = IC(0x,C). Then for z € 6, C O, we have 7K = 0 unless
i=0 (mod 4), and

Kau(t) = 2N "(dim 724 K) 1
i>0

Corollary

Forz€ 0, Kau(t)= Y (H¥(#.,C), Va)y,, t"
i>a(A)

Remark. Springer correspondence can be formulated also for the
enhanced variety. But in that case, W, > does not appear. Only the
produc of symmetric groups Sp, X Sp—m (0 < m < n) appears.
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Exotic symmeric space of higher level

For an integer r > 2, consider the varieties

X =G?x V12, =GP xv1

uni
with diagonal action of H on 2", Z.,ni (exotic sym. space of level r).
Remark. If r =2, 2 = GY x V : exotic symmetric space.
If r >3, Zuni has infinitely many H-orbits.
In fact, since dim G'%. = 2n? — 2n,

dim Zuni = 20> —2n+ (r —1)2n > dimH = 2n* + n
Put

Zuni = {(x,v,gB°) € GO x VL x B | g xg € BY g v e M1},

T 3&7;”1 — Zunis (x,v,gBe) — (x,v) : not surjective.
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Fixm=(my,...,m,_1) € Zrz_ol st. Y. mj=n.
Put p; = my + --- 4+ m; for each i.

Define , r-1
Zmuni = | 8(U° x [ Mp) € Zimi
gEeH i=1

%m,uni = 7I'171(3?//‘m,uni)a

let Tm,1 @ Zmuni = Zm,uni © restriction of p,

Zm)={A=0D .. AXNeP, | AD|=mfor1<i<r—2}.

Theorem (S) (Springer correspondence for W, , )

Let dj, = dim Zm uni- Then (mm 1)«Cld,] is a semisimple perverse sheaf
on Zm.uni equipped with W, ,-action, and is decomposed as

(7m1)+Cldn] ~ D Va @ 1C(Xa, C)[dim Xa],

A€ Z(m)

where \7>\ . irred. rep. of W, , corresp. to A € é*;(m) C P

V.
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Varieties X

Note: [],, Z(m)= Z,,

For each A € &, ,, one can construct a locally closed, smooth,
irreducible, H-stable subvariety Xy of Zuni satisfying the following
properties;

@ m1(Zuni) =Ures,, Xa.
@ Xi(m) = Zmuni for A(m) = ((my), (m2),...,(m,—1),0).

© Assume that u € #(m). Then X, C Zm uni-
Q If r =2, X, coincides with H-orbit 0.

Remark. X, : analogue of H-orbit &) in the case r = 1,2. However, if
r >3, m1(Zuni) # UAe@n,XA' and Xy are not mutually disjoint.

Toshiaki Shoji (Tongji University) Kostka functions associated to complex refi March 25, 2017 Tokyo 19 / 30



Springer fibres
For z = (x,v) € Zmuni, put

B, =n(2) = {gB’ ¢ B | g xg € BY, g7 v e M1},

r—1
B = {(gB% ¢ B, | g7 lv e H My, }..

(m) =t
Hence %A, ' C %,.
A, . called Springer fibre

%’9“) :  called small Springer fibre

Remark. If r > 3, dim %,,dim 939“) are not necessarily constant
for z € Xj.

Assume that A € Z(m) (then Xy C Zm.uni). Put
d)\ = (dim %m,uni —dim X)\)/Q.
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Proposition (Springer correspondence)

Assume that XA € Z(m).
QO X?={ze X, |dim @ﬁ"‘) = d)} forms open dense subset of Xj.

@ Take z € X?. Then H2%(%,,C) ~ Vy as W, ,-modules.
The map Xy — H2I(4%,, C) gives a bijective correspondence

{Xa | A€ P} W,f?,

Remarks.
@ In the case of GL(V) x V"' (enhanced variety of higher level),
Springer correspondence can be proved. In that case,
subgroups Sp, X -+ X S5y, C S, with Y. mj = n appear.
@ Geometric realization of Kostka functions for r > 3 is not yet known.
Only exist partial results in case of enhanced vareity of higher level.
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Kostka functions with multi-variables

y = (v1,¥2,...) : infinitely many variables

A= Aly) = D,50A" : ring of symmetric functions w.r.t. y over Z.
{sx(y) | A € P,} : free Z-basis of A".

Prepare r-types variables x = (x(1), ... x()
with x() = () x{ )+ infinitely many variables

=Z(x) = AxM) @ - @ A(x(M)
= @D,>0=" : ring of symmetric functions w.r.t. xM o x(0),

For A= (\®, ... X)) € 2, ., define Schur function sy (x) by

() = [T s (x9).
k=1

Then {sx(x) | A € Py} : free Z-basis of =".
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Z[t] = Z[t1, ..., t;] : polynomial ring with r-variables t = (t1,...,t,).

St =Z[t] 2= = D50 ="t =(t) = Qt) ®z = = D50 =5 (t)

Fixing m > 1, consider finitely many variables xl(k) ,x,(,,k) for each k.

I

For a parameter t, define a function qgg(x; t) by

m L) (k)
) (. 1y — Ny st Lz (6 — 067 7)
i) = 2 00) RO

i=1 [Tji(x; x)

if s> 1, and by q (x t)=1if s=0. (Here we regard k € Z/rZ)

Note : qsi(x t) € Z[x; t], symmetric w.r.t. x(6) and x(kF1).

For A € &, ., choose m > 0 s.t. k) = ()\gk), ol )\S,f)) for any k.
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Define gy (x;t) € Z[x;t] by

q)\ X, t H Hq X tk—c)a
kezZ/rZ i=1 A

where ¢ = 1 in the “+"-case, and ¢ = 0 in the “-"-case.

Bt taklng m — oo, obtain symmetric function gy (x t) € ="[t].
{%\(X t) [ A€ P} Qt)-basis of Z{(t).

We fix the total order < on &, , compatible with <.

Theorem (S, 2004, 2017)
For any A € 2, ,, there exists a unique function P{(x;t) € =p(t)
satisfying the following properties;

o P;f = Zuik C)‘#qil‘: with ¢y, € Q(t), and cax # 0.

Qo Pi = Zp%)\ UxpSp with Uxpy € @(t) and uyy = 1,
Similarly, there exists a unique function Q3 (x;t) € = (t), defined
by the condition cxx = 1 in (i), and uyy # 0 in (ii).
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Bt taking m ~ oo, we obtain Py (x;t), Q(x;t) € =p(b),
called Hall-Littlewood functions with multi-parameter.

e By definition, Py coincides with Q3, up to constant € Q(t).
o {PXIA€E Pns}, {Qx | X € Pn,} give Q(t)-bases of Z7(t).

For A\, pu € Py, define Ky (t) by

a(x)= Y Ky, (OPs(xt).

l—'/eyn,r
Kyu(t) = K5, (t1,. .., t,) : Kostka function with multi-variable
Remarks. (i) When t; =--- =t, = t, P5(x;t) coincides with
Pi(x; t) introduced in (S, 2004). Hence in this case,
Kx.u(ts - -, t) coincides with one variable K)jj“(t) introduced there.

(i) In multi-variable case, no formula such as P~ AP+ = Q.
So the relation with complex reflection groups is not clear.
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Hall-Littlewood functions

From the definition, P (x;t), Q3 (x;t) are functions of x with coefficients
in Q(t), and depend on the choice of < on &, ,.
Hence Kfu(t) € Q(t), and may depend on the choice of <.

Theorem
There exists a closed formula for P)\i and Qf. In particular we have
0 Pi(x;t), Qx(x;t) € ="[t].
@ {P5|X€ Z,,} gives a Z[t]-basis of ="[t].
Q@ Ky ,(t) € Z[t].
@ In the defining formula of Pf in terms of q,f or s, possible to replace
=< by <. Hence, Pt K;\t,“ are independent of the choice of <.

v

Remark. For the proof of the closed formula, we use, in an essential way,
the argument based on the multi-parameter case.
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Conjecture of Finkelberg-lonov
€1,...,Em . standard basis of Z™,
Rt ={ej—¢j |1 <i<j<m}: positive roots of type Apn_1

For any £ = (§;) € Z™, define a polynomial L(&; t) € Z[t] by

L(f; t) = Z tha’
(ma)

where (m,,) runs over all non-negative integers such that
£ =D acr+ Mac. L(§;t) : called Lusztig’s partition function.
e Kostka polynomials and Lusztig’s partition function

For \,u € &, take m > 0s.t. A= ()\qg,.

"7)\m)1/1’:(/~'L1)"'7/’Lm)-
Putdo=(m—1,m—2,.

..,1,0). Then XA+ dg, 0+ o € Z™.

Kau(t) = D e(w)L(w (A + o) — (1 + b0)i t)

WESH
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Remark. Lusztig : gave g-analogue of weight multiplicity
by affine Kazhdan-Lusztig polynomials

Lusztig's conjecture : g-analogue of Kostant's weight multiplicity
formula by Lusztig's partition function = proved by S.-l. Kato.

e Generalization to multi-variable Kostka functions

Fix m > 0, corresp. to A € &, ,, consider
s DY 1<k<r1<i<m)

Put # ={(k,i)|1<k<r,1<i<m}. PutM=|H|=rm.
Give a total order on . by (similarly as XA <+ c(\) € ZM))

(L)< (2,)<---<(r,1)<(1,2) < (2,2) <--- < (r,m).

By using this order, identify ZM ~ 74
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Let €1,...,epn : standard basis of ZM, Rt ¢ ZM : positive roots
For ¢ = (&) € ZM, define L_(&;t) by

Z H to))™, (Lusztig’s partition function)

(ma) «

where (my,) runs over all non-negative integers satisfying (*):

(*) €= ncrt Mo With a=¢, — e, s.t. b(v') = b(v) +1
(Here b(v) = k € Z/rZ for v = (k,i) € A .)

Theorem (conjecture of F-1)
Putd=(M—-1,M—-2,...,1,0). For \,pp € Z,,, we have

Kau® = > e(w)L(wH(c(A) +6) = (c(n) + 6): t).

we(Sm)"

In particular, Ky ,(t) is a monic of degree a(p) — a(A).

v
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Stability of Kostka functions

Finkelberg-lonov : geometric realization of K,  (t) by coherent sheaf
on a certain vector bundle on (GL,,)" (under condition below).
Corollary

Assume that u:(lk) > > uﬁ,’f) > 0 for any k. Then Ky (t) € Z>o[t].

Let @ = (01, ..., 0()) be r-partitions s.t. 0K) = (61,....6,)
(indep. of k). For A\,p € &, ,, we have A+ 0,0+ 0 € F, , for some n'.
Proposition (stability)

Let X\, u € &, ,, and assume that 61 > 6> > --- > 0, > 0. Then
K., (t) takes a value independent of the choice of 6. We have

Kxeouro(t) = Lo(c(A) — c(p);b).

V.
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