Kostka functions associated to complex reflection groups

Toshiaki Shoji

Tongji University

March 25, 2017 Tokyo

Kostka polynomials $K_{\lambda \mu}(t)$

$$\lambda = (\lambda_1, \dots, \lambda_k)$$
: partition of n

$$\lambda_i \in \mathbb{Z}_{\geq 0}, \quad \lambda_1 \geq \cdots \geq \lambda_k \geq 0, \quad \sum_i \lambda_i = n$$

 \mathcal{P}_n : the set of partitions of n

$$s_{\lambda}(x) = s_{\lambda}(x_1, \dots, x_k) \in \mathbb{Z}[x_1, \dots, x_k]$$
: Schur function
$$s_{\lambda}(x) = \det(x_i^{\lambda_j + k - j}) / \det(x_i^{k - j})$$

$$P_{\lambda}(x;t) = P_{\lambda}(x_1,\ldots,x_k;t) \in \mathbb{Z}[x_1,\ldots,x_k;t]$$
: Hall-Littlewood function

$$P_{\lambda}(x;t) = \sum_{w \in S_k/S_k^{\lambda}} w \left(x_1^{\lambda_1} \cdots x_k^{\lambda_k} \prod_{\lambda_i > \lambda_j} \frac{x_i - t x_j}{x_i - x_j} \right)$$

 $\{s_{\lambda}(x) \mid \lambda \in \mathscr{P}_n\}, \{P_{\lambda}(x;t) \mid \lambda \in \mathscr{P}_n\}$: bases of the space (free $\mathbb{Z}[t]$ -module) of homog. symmetric functions of degee n For $\lambda, \mu \in \mathscr{P}_n$, define **Kostka polynomials** $K_{\lambda,\mu}(t)$ by

$$s_{\lambda}(x) = \sum_{\mu \in \mathscr{P}_n} \mathsf{K}_{\lambda,\mu}(t) \mathsf{P}_{\mu}(x;t)$$

 $(K_{\lambda,\mu}(t))_{\lambda,\mu\in\mathscr{P}_n}$: Transition matrix of two bases $\{s_\lambda(x)\}$, $\{P_\mu(x;t)\}$ $K_{\lambda,\mu}(t)\in\mathbb{Z}[t]$

Notation: $n(\lambda) = \sum_{i>1} (i-1)\lambda_i$

 $\widetilde{K}_{\lambda,\mu}(t) = t^{n(\mu)} K_{\lambda,\mu}(t^{-1})$: modified Kostka polynomials

Geometric realization of Kostka polynomials

Lusztig (1981): geometric realization of Kostka polynomials in connection with unipotent classes.

$$V=\mathbb{C}^n$$
, $G=GL(V)$
 $G_{\mathrm{uni}}=\{x\in G\mid x: \mathrm{unipotent}\}: \mathrm{unipotent}$ variety

$$\mathscr{P}_{n} \simeq \mathsf{G}_{\mathsf{uni}}/\mathsf{G}$$
 $\lambda \longleftrightarrow \mathscr{O}_{\lambda} \ni x$: Jordan type λ

• Dominance order of \mathcal{P}_n

For partitions
$$\lambda = (\lambda_1, \lambda_2, \dots, \lambda_k)$$
, $\mu = (\mu_1, \mu_2, \dots, \mu_k)$
 $\mu \leq \lambda \iff \sum_{i=1}^{j} \mu_i \leq \sum_{i=1}^{j} \lambda_i$ for each j

Closure relations :

$$\overline{\mathscr{O}}_{\lambda} = \coprod_{\mu \leq \lambda} \mathscr{O}_{\mu} \quad (\overline{\mathscr{O}}_{\lambda} : \mathsf{Zariski} \; \mathsf{closure} \; \mathsf{of} \; \mathscr{O}_{\lambda})$$

 $K = IC(\overline{\mathcal{O}}_{\lambda}, \mathbb{C})$: intersection cohomology complex

$$K: \cdots \longrightarrow K_{i-1} \xrightarrow{d_{i-1}} K_i \xrightarrow{d_i} K_{i+1} \xrightarrow{d_{i+1}} \cdots$$

 $K = (K_i)$: bounded complex of \mathbb{C} -sheaves on $\overline{\mathscr{O}}_{\lambda}$

 $\mathcal{H}^i K = \operatorname{Ker} d_i / \operatorname{Im} d_{i-1} : i$ -th cohomology sheaf

 $\mathscr{H}^i_{\mathcal{K}} K$: stalk of $\mathscr{H}^i K$ at $x \in \overline{\mathscr{O}}_{\lambda}$ (fin. dim. vector space ove \mathbb{C})

Theorem (Lusztig 1981)

For any odd i, we have $\mathscr{H}^iK=0$. Moreover, for $x\in\mathscr{O}_\mu\subset\overline{\mathscr{O}}_\lambda$,

$$\widetilde{K}_{\lambda,\mu}(t) = t^{n(\lambda)} \sum_{i>0} (\dim_{\mathbb{C}} \mathscr{H}_{\mathsf{x}}^{2i} K) t^i$$

In particular, $K_{\lambda,\mu}[t] \in \mathbb{Z}_{>0}[t]$. (Theorem of Lascoux-Schützenberger)

Springer corresp. of GL_n and Kostka polynomials

 $G = GL_n$, B: Borel subgroup of G, $T \subset B$: maximal torus,

 $U \subset B$: maximal unipotent subgroup

 $N_G(T)/T \simeq S_n$: Weyl group of GL_n

$$\pi_1: \widetilde{G}_{\mathsf{uni}} = \{(x, gB) \in G_{\mathsf{uni}} \times G/B \mid g^{-1}xg \in U\} \to G_{\mathsf{uni}}, \quad (x, gB) \mapsto x$$

 $\widetilde{G}_{\text{uni}}$: smooth, π_1 : proper surjective (**Springer resolution** of G_{uni})

Theorem (Lusztig, Borho-MacPherson)

 $(\pi_1)_*\mathbb{C}[\dim G_{uni}]$ is a semisimple perverse sheaf on G_{uni} , equipped with S_n -action, and is decomposed as

$$(\pi_1)_*\mathbb{C}[\dim G_{\mathsf{uni}}]\simeq igoplus_{\lambda\in\mathscr{P}_n} V_\lambda\otimes \mathsf{IC}(\overline{\mathscr{O}}_\lambda,\mathbb{C})[\dim\mathscr{O}_\lambda],$$

where V_{λ} : irreducible S_n -module corresp. to $\lambda \in \mathscr{P}_n$.

For $x \in G_{uni}$,

$$\mathscr{B}_{x} = \{ gB \in G/B \mid g^{-1}xg \in B \} \simeq \pi_{1}^{-1}(x)$$

is called the **Springer fibre** of x.

 $K = (\pi_1)_* \mathbb{C}$: complex with S_n -action

$$\mathscr{H}_{x}^{i}K \simeq H^{i}(\pi_{1}^{-1}(x),\mathbb{C}) \simeq H^{i}(\mathscr{B}_{x},\mathbb{C})$$
 as S_{n} -modules

 S_n -module $H^i(\mathscr{B}_x,\mathbb{C})$: called the **Springer module** of S_n

Put $d_{x}=\dim\mathscr{B}_{x}.$ $H^{2d_{x}}(\mathscr{B}_{x},\mathbb{C}):$ cohomology of highest degree

Corollary (Springer correps.)

For $x \in \mathcal{O}_{\mu}$, $H^{2d_x}(\mathscr{B}_x, \mathbb{C}) \simeq V_{\lambda}$ as S_n -modules. By the corresp. $x \mapsto H^{2d_x}(\mathscr{B}_x, \mathbb{C})$, obtain a natural bijection $G_{\text{uni}}/G \to S_n^{\wedge}$.

Proposition

$$\widetilde{K}_{\lambda,\mu}(t) = \sum_{i \geq n(\lambda)} \langle V_{\lambda}, H^{2i}(\mathscr{B}_{\mathsf{x}}, \mathbb{C}) \rangle_{\mathcal{S}_n} \, t^i \qquad (\mathsf{x} \in \mathscr{O}_{\mu})$$

Generalization of Kostka polynomials

$$\lambda = (\lambda^{(1)}, \dots, \lambda^{(r)}), \quad \sum_{i=1}^r |\lambda^{(i)}| = n : r$$
-partition of n . $\mathscr{P}_{n,r}$: the set of r -partitions of n .

S (2004) Introduced Kostka functions $K_{\lambda,\mu}^{\pm}(t) \in \mathbb{Q}(t)$ ($\lambda, \mu \in \mathscr{P}_{n,r}$) assoc. to complex reflection group $W_{n,r} = S_n \ltimes (\mathbb{Z}/r\mathbb{Z})^n$

- $(K_{\lambda,\mu}(t))$: Transition matrix between basis $\{s_{\lambda}(x)\}$ of Schur functions and basis $\{P_{\mu}^{\pm}(x;t)\}$ of "Hall-Littlewood functions"
- ullet If r=1,2, $K_{oldsymbol{\lambda},oldsymbol{\mu}}^+(t)=K_{oldsymbol{\lambda},oldsymbol{\mu}}^-(t)\in\mathbb{Z}[t].$ (write as $K_{oldsymbol{\lambda},oldsymbol{\mu}}(t)$)
- If r = 2, $W_{n,2}$: Weyl group of type B_n (C_n). But those Kostka functins have no relations with Sp_{2n} or SO_{2n+1} .

Characterization of $K_{\lambda,\mu}^{\pm}(t)$

For
$$\lambda = \lambda^{(1)}, \dots, \lambda^{(r)}) \in \mathscr{P}_{n,r}$$
, put
$$a(\lambda) = r \cdot n(\lambda) + |\lambda^{(2)}| + 2|\lambda^{(3)}| + \dots + (r-1)|\lambda^{(r)}|$$

where $n(\lambda) = n(\lambda^{(1)}) + \cdots + n(\lambda^{(r)})$.

$$\widetilde{K}^\pm_{\pmb{\lambda},\pmb{\mu}}(t)=t^{a(\pmb{\mu})}K^\pm_{\pmb{\lambda},\pmb{\mu}}(t^{-1}):$$
 modified Kostka function

For $\lambda = (\lambda^{(1)}, \dots, \lambda^{(r)}) \in \mathscr{P}_{n,r}$, choose $m \gg 0$ so that $\lambda^{(k)} = (\lambda^{(1)}_1, \dots, \lambda^{(k)}_m)$ for any k. Define a sequence $c(\lambda) \in \mathbf{Z}_{\geq 0}^{rm}$ by

$$c(\lambda) = (\lambda_1^{(1)}, \lambda_1^{(2)}, \dots, \lambda_1^{(r)}, \lambda_2^{(1)}, \lambda_2^{(2)}, \dots, \lambda_2^{(r)}, \dots, \lambda_m^{(1)}, \lambda_m^{(2)}, \dots, \lambda_m^{(r)}).$$

Define a partial order $\mu \leq \lambda$ in $\mathscr{P}_{n,r}$ (dominance order on $\mathscr{P}_{n,r}$) by $c(\mu) \leq c(\lambda)$ under (gen. of) the dominance order on \mathscr{P}_{mr} .

For any character χ of $W_{n,r}$, define $R(\chi)$ by

$$R(\chi) = \frac{\prod_{1 \leq i \leq r} (t^{ir} - 1)}{|W_{n,r}|} \sum_{w \in W_{n,r}} \frac{\det_{\mathbf{V}}(w)\chi(w)}{\det_{\mathbf{V}}(t \cdot 1_{\mathbf{V}} - w)}$$

where V: reflection representation of $W_{n,r}$.

Fix a total order \leq on $\mathscr{P}_{n,r}$ compatible with \leq , consider matrices indexed by $\mathscr{P}_{n,r}$ with respect to \leq .

Define a matrix $\Omega=(\omega_{\pmb{\lambda},\pmb{\mu}})_{\pmb{\lambda},\pmb{\mu}\in\mathscr{P}_{n,r}}$ by

$$\omega_{\lambda,\mu} = t^{N^*} R(\rho^{\lambda} \otimes \overline{\rho^{\mu}} \otimes \overline{\mathsf{det}}_{\mathbf{V}})$$

where ρ^{λ} : irred. character of $W_{n,r}$ corresp. to $\lambda \in \mathscr{P}_{n,r}$, N^* : number of reflections in $W_{n,r}$.

Theorem (S 2004)

There exist unique matrices P^\pm, Λ on $\mathbb{Q}(t)$ satisfying the relation

$$P^-\Lambda^t P^+ = \Omega,$$

where Λ : diagonal, $P^{\pm}=(p_{\lambda,\mu}^{\pm})$: lower triangular with $p_{\lambda,\lambda}^{\pm}=t^{a(\lambda)}$. Then $p_{\lambda,\mu}^{\pm}=\widetilde{K}_{\lambda,\mu}^{\pm}(t)$.

Remarks.

- Construction of $K^{\pm}_{\lambda,\mu}$ depends on the choice of \preceq . Later we show independence of \preceq , and $K^{\pm}_{\lambda,\mu}(t) \in \mathbb{Z}[t]$.
- ② If r = 1, 2, $W_{n,r}$: Weyl group, Ω : symmetric, so $P^+ = P^-$. If $r \ge 3$, Ω : not symmetric, so $P^+ \ne P^-$.
- **3** $K_{\lambda,\mu}^-(t)$ have better properties than $K_{\lambda,\mu}^+(t)$ w.r.t geometry.

Enhanced variety $GL(V) \times V$

Achar-Henderson (2008): geometric realization of $K_{\lambda,\mu}(t)$ in the case where r=2.

G=GL(V), $V=\mathbb{C}^n$: n-dim. vector space $G_{\mathrm{uni}}\times V\subset G\times V$: **Enhanced variety** , G acts diagonally

(Achar-Henderson, Travkin) :

$$(G_{\mathsf{uni}} \times V)/G \simeq \mathscr{P}_{n,2}, \quad \mathscr{O}_{\boldsymbol{\lambda}} \leftrightarrow \boldsymbol{\lambda}$$

Theorem (Achar-Henderson 2008)

Put $K = IC(\overline{\mathcal{O}}_{\lambda}, \mathbb{C})$. If i is odd, then $\mathscr{H}^{i}K = 0$. For $\lambda, \mu \in \mathscr{P}_{n,2}$ and $(x, v) \in \mathscr{O}_{\mu} \subseteq \overline{\mathscr{O}}_{\lambda}$,

$$t^{a(\lambda)} \sum_{i > 0} (\dim_{\mathbb{C}} \mathscr{H}^{2i}_{(x,\nu)} K) t^{2i} = \widetilde{K}_{\lambda,\mu}(t).$$

Exotic symmetric space $GL(V)/Sp(V) \times V$

$$G = GL_{2n}(\mathbb{C}) \simeq GL(V), \quad V : 2n$$
-dim. vector space $\theta : G \to G, \ \theta(g) = J^{-1}({}^tg^{-1})J : \text{ involution, } J = \begin{pmatrix} 0 & I_n \\ -I_n & 0 \end{pmatrix}$

$$H:=\{g\in G\mid heta(g)=g\}\simeq Sp_{2n}(\mathbb{C}) \ \ \ \ \ G/H:$$
 symmetric space

Define
$$G^{\iota\theta}=\{g\in G\mid \theta(g)=g^{-1}\}=\{g\theta(g)^{-1}\mid g\in G\},$$
 where $\iota:G\to G,g\mapsto g^{-1}.$

The map $G \to G$, $g \mapsto g\theta(g)^{-1}$ gives isom. $G/H \xrightarrow{\sim} G^{\iota\theta}$.

$$\mathscr{X} = G^{\iota\theta} \times V$$
 : exotic symmetric space $\mathscr{X}_{\mathsf{uni}} = G^{\iota\theta}_{\mathsf{uni}} \times V$ \simeq exotic nilpotent cone by Kato

H acts diagonally on $\mathscr X$ and $\mathscr X_{\mathsf{uni}}$.

(Kato)
$$\mathscr{X}_{\mathsf{uni}}/\mathsf{H} \simeq \mathscr{P}_{\mathsf{n},2} \qquad (\mathscr{O}_{\boldsymbol{\lambda}} \leftrightarrow \boldsymbol{\lambda})$$

B = TU: θ -stable Borel subgroup, maximal torus, and maximal unipotent subgroup of G $T^{\theta} \subset B^{\theta}$: maximal torus and Borel subgroup of H $\mathscr{B} = H/B^{\theta}$: flag variety of H, $N_H(T^{\theta})/T^{\theta} \simeq W_{n,2}$

Fix an isotropic flag in V stable by B^{θ}

$$M_1 \subset M_2 \subset \cdots \subset M_n \subset V$$
 $(\dim M_i = i)$

Put
$$\widetilde{\mathscr{X}}_{\mathsf{uni}} = \{(x, v, gB^{\theta}) \in G^{\iota\theta}_{\mathsf{uni}} \times V \times \mathscr{B} \mid g^{-1}xg \in B^{\iota\theta}, g^{-1}v \in M_n\}$$

and $\pi_1 : \widetilde{\mathscr{X}}_{\mathsf{uni}} \to \mathscr{X}_{\mathsf{uni}} \quad (x, v, gB^{\theta}) \mapsto (x, v).$

For
$$z=(x,v)\in\mathscr{O}_{\lambda}$$
, consider $\pi^{-1}(z)\subset\widetilde{\mathscr{X}}_{\mathsf{uni}}$ (exotic Springer fibre)

$$\pi^{-1}(z) \simeq \mathscr{B}_z = \{ gB^\theta \in \mathscr{B} \mid g^{-1}xg \in B^{\iota\theta}, g^{-1}v \in M_n \}$$

Put
$$d_{\lambda} = (\dim \mathscr{X}_{uni} - \dim \mathscr{O}_{\lambda})/2$$

Theorem (Kato, S.-Sorlin)

 $(\pi_1)_*\mathbb{C}[\dim \mathscr{X}_{\mathsf{uni}}]$ is a semisimple perverse sheaf on $\mathscr{X}_{\mathsf{uni}}$, equipped with $W_{n,2}$ -action, and is decomposed as

$$(\pi_1)_*\mathbb{C}[\dim\mathscr{X}_{\mathsf{uni}}] \simeq \bigoplus_{\pmb{\lambda} \in \mathscr{P}_{n,2}} \widetilde{V}_{\pmb{\lambda}} \otimes \mathsf{IC}(\overline{\mathscr{O}}_{\pmb{\lambda}}, \mathbb{C})[\dim\mathscr{O}_{\pmb{\lambda}}],$$

where \widetilde{V}_{λ} ; irred. representation of $W_{n,2}$ corresp. to $\lambda \in \mathscr{P}_{n,2}$.

Corollary (Springer corresp.) (Kato, S.-Sorlin)

- **1** $H^i(\mathcal{B}_z,\mathbb{C})$ has a structure of $W_{n,2}$ -module (Springer module).
- 2 dim $\mathscr{B}_z = d_{\lambda}$ for $z \in \mathscr{O}_{\lambda}$.
- H^{2d_λ}(𝔞_z, ℂ) ≃ V̄_λ as W_{n,2}-modules for z ∈ 𝒪_λ.

 • The corresp. 𝒪_λ → H^{2d_λ}(𝔞_z, ℂ) gives a natural bijection

$$\mathscr{X}_{\mathsf{uni}}/H \simeq W_{n,2}^{\wedge}$$

Geometric realization of Kostka functions

Theorem (Kato, S. -Sorlin)

Put $K=\operatorname{IC}(\overline{\mathscr{O}}_{\lambda},\mathbb{C})$. Then for $z\in\mathscr{O}_{\mu}\subset\overline{\mathscr{O}}_{\lambda}$, we have $\mathscr{H}^{i}K=0$ unless $i\equiv 0\pmod 4$, and

$$\widetilde{K}_{\pmb{\lambda},\pmb{\mu}}(t)=t^{a(\pmb{\lambda})}\sum_{i\geq 0}(\dim\mathscr{H}^{4i}_{\mathbf{z}}K)t^{2i}$$

Corollary

For
$$z \in \mathscr{O}_{\mu}$$
, $\widetilde{K}_{\lambda,\mu}(t) = \sum_{i \geq a(\lambda)} \langle H^{2i}(\mathscr{B}_z, \mathbb{C}), \widetilde{V}_{\lambda} \rangle_{W_{n,2}} t^i$.

Remark. Springer correspondence can be formulated also for the enhanced variety. But in that case, $W_{n,2}$ does not appear. Only the produc of symmetric groups $S_m \times S_{n-m}$ $(0 \le m \le n)$ appears.

Exotic symmetric space of higher level

For an integer $r \geq 2$, consider the varieties

$$\mathscr{X} = G^{\iota\theta} \times V^{r-1} \supset \mathscr{X}_{\mathsf{uni}} = G^{\iota\theta}_{\mathsf{uni}} \times V^{r-1}$$

with diagonal action of H on \mathcal{X} , \mathcal{X}_{uni} (exotic sym. space of level r).

Remark. If r=2, $\mathscr{X}=G^{i\theta}\times V$: exotic symmetric space. If $r \geq 3$, \mathcal{X}_{uni} has **infinitely many** H-orbits.

In fact, since dim $G_{\text{uni}}^{i\theta} = 2n^2 - 2n$,

$$\dim \mathscr{X}_{\mathsf{uni}} = 2n^2 - 2n + (r - 1)2n > \dim H = 2n^2 + n$$

Put

$$\begin{split} \widetilde{\mathscr{X}}_{\mathrm{uni}} &= \{ (x, \mathbf{v}, gB^{\theta}) \in G_{\mathrm{uni}}^{\iota\theta} \times V^{r-1} \times \mathscr{B} \mid g^{-1}xg \in B^{\iota\theta}, g^{-1}\mathbf{v} \in M_n^{r-1} \}, \\ \pi_1 &: \widetilde{\mathscr{X}}_{\mathrm{uni}} \to \mathscr{X}_{\mathrm{uni}}, \quad (x, \mathbf{v}, gB^{\theta}) \mapsto (x, \mathbf{v}) \quad \text{: not surjective}. \end{split}$$

Fix $\mathbf{m} = (m_1, \dots, m_{r-1}) \in \mathbb{Z}_{>0}^{r-1}$ s.t. $\sum m_i = n$. Put $p_i = m_1 + \cdots + m_i$ for each i.

Define

$$\mathscr{X}_{\mathbf{m},\mathsf{uni}} = \bigcup_{g \in H} g(U^{\iota \theta} imes \prod_{i=1}^{r-1} M_{p_i}) \subset \mathscr{X}_{\mathsf{uni}},$$
 $\widetilde{\mathscr{X}}_{\mathbf{m},\mathsf{uni}} = \pi_1^{-1}(\mathscr{X}_{\mathbf{m},\mathsf{uni}}),$

let $\pi_{\mathbf{m},1}: \widetilde{\mathscr{X}}_{\mathbf{m},\mathsf{uni}} \to \mathscr{X}_{\mathbf{m},\mathsf{uni}}: \text{restriction of } \pi_1,$

$$\widetilde{\mathscr{P}}(\mathbf{m}) = \{ \boldsymbol{\lambda} = (\lambda^{(1)}, \dots, \lambda^{(r)}) \in \mathscr{P}_{n,r} \mid |\lambda^{(i)}| = m_i \text{ for } 1 \leq i \leq r - 2 \}.$$

Theorem (S) (Springer correspondence for $W_{n,r}$)

Let $d'_{\mathbf{m}} = \dim \mathscr{X}_{\mathbf{m},\mathsf{uni}}$. Then $(\pi_{\mathbf{m},1})_*\mathbb{C}[d'_{\mathbf{m}}]$ is a semisimple perverse sheaf on $\mathscr{X}_{\mathbf{m},\mathsf{uni}}$ equipped with $W_{n,r}$ -action, and is decomposed as

$$(\pi_{\mathbf{m},1})_*\mathbb{C}[d'_{\mathbf{m}}]\simeq igoplus_{oldsymbol{\lambda}\in\widetilde{\mathscr{D}}(\mathbf{m})} \widetilde{V}_{oldsymbol{\lambda}}\otimes \mathsf{IC}(\overline{X}_{oldsymbol{\lambda}},\mathbb{C})[\mathsf{dim}\,X_{oldsymbol{\lambda}}],$$

where \widetilde{V}_{λ} : irred. rep. of $W_{n,r}$ corresp. to $\lambda \in \mathscr{P}(\mathbf{m}) \subset \mathscr{P}_{n,r}$.

Varieties X_{λ}

Note:
$$\coprod_{\mathbf{m}} \widetilde{\mathscr{P}}(\mathbf{m}) = \mathscr{P}_{n,r}$$

For each $\lambda \in \mathscr{P}_{n,r}$, one can construct a locally closed, smooth, irreducible, H-stable subvariety X_{λ} of \mathscr{X}_{uni} satisfying the following properties;

②
$$\overline{X}_{\lambda(\mathbf{m})} = \mathscr{X}_{\mathbf{m},\mathsf{uni}}$$
 for $\lambda(\mathbf{m}) = ((m_1),(m_2),\ldots,(m_{r-1}),\emptyset)$.

- **3** Assume that $\mu \in \widetilde{\mathscr{P}}(\mathbf{m})$. Then $X_{\mu} \subset \mathscr{X}_{\mathbf{m},\mathsf{uni}}$.
- If r = 2, X_{λ} coincides with H-orbit \mathcal{O}_{λ} .

Remark. X_{λ} : analogue of H-orbit \mathscr{O}_{λ} in the case r=1,2. However, if $r\geq 3$, $\pi_1(\mathscr{X}_{\mathsf{uni}})\neq \bigcup_{\lambda\in\mathscr{P}_{n,r}}X_{\lambda}$, and X_{λ} are not mutually disjoint.

Springer fibres

For
$$z=(x,\mathbf{v})\in\mathscr{X}_{\mathbf{m},\mathsf{uni}}$$
, put
$$\mathscr{B}_z=\pi_1^{-1}(z)\simeq\{gB^\theta\in\mathscr{B}\mid g^{-1}xg\in B^{\iota\theta},g^{-1}\mathbf{v}\in M_n^{r-1}\},$$

$$\mathscr{B}_z^{(\mathbf{m})}=\{gB^\theta\in\mathscr{B}_z\mid g^{-1}\mathbf{v}\in\prod_{i=1}^{r-1}M_{p_i}\}..$$

Hence $\mathscr{B}_{z}^{(m)} \subset \mathscr{B}_{z}$.

 \mathcal{B}_z : called **Springer fibre**

 $\mathscr{B}_{z}^{(m)}$: called small Springer fibre

Remark. If $r \geq 3$, dim \mathcal{B}_z , dim $\mathcal{B}_z^{(m)}$ are **not necessarily constant** for $z \in X_{\lambda}$.

Assume that $\lambda \in \widetilde{\mathscr{P}}(\mathbf{m})$ (then $X_{\lambda} \subset \mathscr{X}_{\mathbf{m},\mathsf{uni}}$). Put $d_{\lambda} = (\dim \mathscr{X}_{\mathbf{m},\mathsf{uni}} - \dim X_{\lambda})/2.$

Proposition (Springer correspondence)

Assume that $\lambda \in \widetilde{\mathscr{P}}(\mathbf{m})$.

- ② Take $z \in X^0_{\lambda}$. Then $H^{2d_{\lambda}}(\mathscr{B}_z, \mathbb{C}) \simeq \widetilde{V}_{\lambda}$ as $W_{n,r}$ -modules.

The map $X_{\lambda}\mapsto H^{2d_{\lambda}}(\mathscr{B}_{z},\mathbb{C})$ gives a bijective correspondence

$$\{X_{\lambda} \mid \lambda \in \mathscr{P}_{n,r}\} \simeq W_{n,r}^{\wedge}$$

Remarks.

- **1** In the case of $GL(V) \times V^{r-1}$ (enhanced variety of higher level), Springer correspondence can be proved. In that case, subgroups $S_{m_1} \times \cdots \times S_{m_r} \subset S_n$ with $\sum_i m_i = n$ appear.
- ② Geometric realization of Kostka functions for $r \ge 3$ is not yet known. Only exist partial results in case of enhanced vareity of higher level.

Kostka functions with multi-variables

 $y=(y_1,y_2,\dots)$: infinitely many variables $\Lambda=\Lambda(y)=\bigoplus_{n\geq 0}\Lambda^n$: ring of symmetric functions w.r.t. y over \mathbb{Z} . $\{s_\lambda(y)\mid \lambda\in\mathscr{P}_n\}$: free \mathbb{Z} -basis of Λ^n .

Prepare *r*-types variables $x = (x^{(1)}, \dots, x^{(r)})$ with $x^{(i)} = (x_1^{(i)}, x_2^{(i)}, \dots)$: infinitely many variables

$$\Xi = \Xi(x) = \Lambda(x^{(1)}) \otimes \cdots \otimes \Lambda(x^{(r)})$$

 $\Xi = \bigoplus_{n \geq 0} \Xi^n$: ring of symmetric functions w.r.t. $x^{(1)}, \dots, x^{(r)}$.

For $\lambda = (\lambda^{(1)}, \dots, \lambda^{(r)}) \in \mathscr{P}_{n,r}$, define **Schur function** $s_{\lambda}(x)$ by

$$s_{\lambda}(x) = \prod_{k=1}^{r} s_{\lambda(k)}(x^{(k)}).$$

Then $\{s_{\lambda}(x) \mid \lambda \in \mathscr{P}_{n,r}\}$: free \mathbb{Z} -basis of Ξ^n .

 $\mathbb{Z}[\mathbf{t}] = \mathbb{Z}[t_1, \dots, t_r]$: polynomial ring with *r*-variables $\mathbf{t} = (t_1, \dots, t_r)$.

$$\textstyle \Xi[t] = \mathbb{Z}[t] \otimes_{\mathbb{Z}} \Xi = \bigoplus_{n \geq 0} \Xi^n[t], \quad \Xi(t) = \mathbb{Q}(t) \otimes_{Z} \Xi = \bigoplus_{n \geq 0} \Xi^n_{\mathbb{Q}}(t)$$

Fixing $m \ge 1$, consider finitely many variables $x_1^{(k)}, \ldots, x_m^{(k)}$ for each k.

For a parameter t, define a function $q_{s,\pm}^{(k)}(x;t)$ by

$$q_{s,\pm}^{(k)}(x;t) = \sum_{i=1}^{m} (x_i^{(k)})^{s-1} \frac{\prod_{j\geq 1} (x_i^{(k)} - t x_j^{(k\mp 1)})}{\prod_{j\neq i} (x_i^{(k)} - x_j^{(k)})},$$

if $s \ge 1$, and by $q_{s,\pm}^{(k)}(x;t) = 1$ if s = 0. (Here we regard $k \in \mathbb{Z}/r\mathbb{Z}$)

Note: $q_{s,\pm}^{(k)}(x;t) \in \mathbb{Z}[x;t]$, symmetric w.r.t. $x^{(k)}$ and $x^{(k\mp 1)}$.

For $\lambda \in \mathscr{P}_{n,r}$, choose $m \gg 0$ s.t. $\lambda^{(k)} = (\lambda_1^{(k)}, \dots, \lambda_m^{(k)})$ for any k.

Define $q^{\pm}_{oldsymbol{\lambda}}(x;\mathbf{t})\in\mathbb{Z}[x;\mathbf{t}]$ by

$$q_{\boldsymbol{\lambda}}^{\pm}(x;\mathbf{t}) = \prod_{k \in \mathbb{Z}/r\mathbb{Z}} \prod_{i=1} q_{\lambda_i^{(k)},\pm}^{(k)}(x;t_{k-c}),$$

where c=1 in the "+"-case, and c=0 in the "-"-case.

Bt taking $m \mapsto \infty$, obtain symmetric function $q_{\lambda}^{\pm}(x; \mathbf{t}) \in \Xi^{n}[\mathbf{t}]$. $\{q_{\lambda}^{\pm}(x; \mathbf{t}) \mid \lambda \in \mathscr{P}_{n,r}\} : \mathbb{Q}(\mathbf{t})$ -basis of $\Xi_{\mathbb{Q}}^{n}(\mathbf{t})$.

We fix the total order \leq on $\mathcal{P}_{n,r}$ compatible with \leq .

Theorem (S, 2004, 2017)

For any $\lambda \in \mathscr{P}_{n,r}$, there exists a unique function $P_{\lambda}^{\pm}(x;\mathbf{t}) \in \Xi_{\mathbb{Q}}^{n}(\mathbf{t})$ satisfying the following properties;

$$\bullet P_{\lambda}^{\pm} = \sum_{\mu \succeq \lambda} c_{\lambda,\mu} q_{\mu}^{\pm} \quad \text{with } c_{\lambda\mu} \in \mathbb{Q}(\mathbf{t}), \text{ and } c_{\lambda\lambda} \neq 0.$$

Similarly, there exists a unique function $Q_{\lambda}^{\pm}(x;\mathbf{t}) \in \Xi_{\mathbb{Q}}^{n}(\mathbf{t})$, defined by the condition $c_{\lambda\lambda} = 1$ in (i), and $u_{\lambda\lambda} \neq 0$ in (ii).

Bt taking $m \mapsto \infty$, we obtain $P_{\lambda}^{\pm}(x; \mathbf{t}), Q_{\lambda}^{\pm}(x; \mathbf{t}) \in \Xi_{\mathbb{Q}}^{n}(\mathbf{t})$, called **Hall-Littlewood functions with multi-parameter**.

- ullet By definition, $P^{\pm}_{oldsymbol{\lambda}}$ coincides with $Q^{\pm}_{oldsymbol{\lambda}}$, up to constant $\in \mathbb{Q}(\mathbf{t})$.
- $\{P_{\lambda}^{\pm} \mid \lambda \in \mathscr{P}_{n,r}\}, \{Q_{\lambda}^{\pm} \mid \lambda \in \mathscr{P}_{n,r}\} \text{ give } \mathbb{Q}(\mathbf{t})\text{-bases of } \Xi_{\mathbb{Q}}^{n}(\mathbf{t}).$

For $\lambda, \mu \in \mathscr{P}_{n,r}$, define $\mathit{K}^{\pm}_{\lambda,\mu}(\mathbf{t})$ by

$$s_{\lambda}(x) = \sum_{\mu \in \mathscr{P}_{n,r}} K_{\lambda,\mu}^{\pm}(\mathbf{t}) P_{\mu}^{\pm}(x;\mathbf{t}).$$

 $K^{\pm}_{\lambda\mu}(\mathbf{t})=K^{\pm}_{\lambda,\mu}(t_1,\ldots,t_r)$: Kostka function with multi-variable

Remarks. (i) When $t_1 = \cdots = t_r = t$, $P^{\pm}_{\lambda}(x; \mathbf{t})$ coincides with $P^{\pm}_{\lambda}(x; t)$ introduced in (S, 2004). Hence in this case, $K^{\pm}_{\lambda,\mu}(t,\ldots,t)$ coincides with one variable $K^{\pm}_{\lambda,\mu}(t)$ introduced there.

(ii) In multi-variable case, no formula such as $P^-\Lambda tP^+ = \Omega$. So the relation with complex reflection groups is not clear.

Hall-Littlewood functions

From the definition, $P_{\lambda}^{\pm}(x;\mathbf{t})$, $Q_{\lambda}^{\pm}(x;\mathbf{t})$ are functions of x with coefficients in $\mathbb{Q}(\mathbf{t})$, and depend on the choice of \leq on $\mathscr{P}_{n,r}$. Hence $K_{\lambda,\mu}^{\pm}(\mathbf{t}) \in \mathbb{Q}(\mathbf{t})$, and may depend on the choice of \leq .

Theorem

There exists a closed formula for P^\pm_λ and Q^\pm_λ . In particular we have

- $K_{\lambda,\mu}^{\pm}(\mathbf{t}) \in \mathbb{Z}[\mathbf{t}].$
- In the defining formula of P_{λ}^{\pm} in terms of q_{μ}^{\pm} or s_{μ} , possible to replace \leq by \leq . Hence, P_{λ}^{\pm} , $K_{\lambda,\mu}^{\pm}$ are independent of the choice of \leq .

Remark. For the proof of the closed formula, we use, in an essential way, the argument based on the multi-parameter case.

Conjecture of Finkelberg-Ionov

 $\varepsilon_1,\ldots,\varepsilon_m$: standard basis of \mathbb{Z}^m ,

 $R^+ = \{ \varepsilon_i - \varepsilon_j \mid 1 \le i < j \le m \}$: positive roots of type A_{m-1}

For any $\xi=(\xi_i)\in\mathbb{Z}^m$, define a polynomial $L(\xi;t)\in\mathbb{Z}[t]$ by

$$L(\xi;t)=\sum_{(m_{\alpha})}t^{\sum m_{\alpha}},$$

where (m_{α}) runs over all non-negative integers such that $\xi = \sum_{\alpha \in R^+} m_{\alpha} \alpha$. $L(\xi; t)$: called **Lusztig's partition function**.

• Kostka polynomials and Lusztig's partition function

For $\lambda, \mu \in \mathscr{P}_n$, take $m \gg 0$ s.t. $\lambda = (\lambda_1, \dots, \lambda_m)$, $\mu = (\mu_1, \dots, \mu_m)$. Put $\delta_0 = (m-1, m-2, \dots, 1, 0)$. Then $\lambda + \delta_0, \mu + \delta_0 \in \mathbb{Z}^m$.

$$K_{\lambda,\mu}(t) = \sum_{w \in S_m} \varepsilon(w) L(w^{-1}(\lambda + \delta_0) - (\mu + \delta_0); t)$$

Remark. Lusztig: gave *q*-analogue of weight multiplicity by affine Kazhdan-Lusztig polynomials

Lusztig's conjecture : q-analogue of Kostant's weight multiplicity formula by Lusztig's partition function \implies proved by **S.-I. Kato**.

• Generalization to multi-variable Kostka functions

Fix $m\gg 0$, corresp. to $\pmb{\lambda}\in\mathscr{P}_{n,r}$, consider

$$\{x_i^{(k)}\}\longleftrightarrow\{\lambda_i^{(k)}\}\quad (1\leq k\leq r, 1\leq i\leq m).$$

Put
$$\mathcal{M} = \{(k, i) \mid 1 \le k \le r, 1 \le i \le m\}$$
. Put $M = |\mathcal{M}| = rm$.

Give a total order on \mathscr{M} by \quad (similarly as $oldsymbol{\lambda} \leftrightarrow c(oldsymbol{\lambda}) \in \mathbb{Z}^M$)

$$(1,1) < (2,1) < \cdots < (r,1) < (1,2) < (2,2) < \cdots < (r,m).$$

By using this order, identify $\mathbb{Z}^M \simeq \mathbb{Z}^M$

Let $\varepsilon_1, \dots, \varepsilon_M$: standard basis of \mathbb{Z}^M , $R^+ \subset \mathbb{Z}^M$: positive roots

For $\xi = (\xi_i) \in \mathbb{Z}^M$, define $L_-(\xi; \mathbf{t})$ by

$$L_{-}(\xi;\mathbf{t}) = \sum_{(m_{lpha})} \prod_{lpha} (t_{b(
u)})^{m_{lpha}},$$
 (Lusztig's partition function)

where (m_{α}) runs over all non-negative integers satisfying (*):

(*)
$$\xi = \sum_{\alpha \in R^+} m_{\alpha} \alpha$$
 with $\alpha = \varepsilon_{\nu} - \varepsilon_{\nu'}$ s.t. $b(\nu') = b(\nu) + 1$. (Here $b(\nu) = k \in \mathbb{Z}/r\mathbb{Z}$ for $\nu = (k, i) \in \mathcal{M}$.)

Theorem (conjecture of F-I)

Put $\delta = (M-1, M-2, \ldots, 1, 0)$. For $\pmb{\lambda}, \pmb{\mu} \in \mathscr{P}_{\pmb{n},\pmb{r}}$, we have

$$K_{\lambda,\mu}^{-}(\mathbf{t}) = \sum_{w \in (S_m)^r} \varepsilon(w) L_{-}(w^{-1}(c(\lambda) + \delta) - (c(\mu) + \delta); \mathbf{t}).$$

In particular, $K_{\lambda,\mu}^{-}(\mathbf{t})$ is a monic of degree $a(\mu) - a(\lambda)$.

Stability of Kostka functions

Finkelberg-lonov: geometric realization of $K_{\lambda,\mu}^-(\mathbf{t})$ by coherent sheaf on a certain vector bundle on $(GL_m)^r$ (under condition below).

Corollary

Assume that $\mu_1^{(k)} > \cdots > \mu_m^{(k)} > 0$ for any k. Then $K_{\lambda,\mu}^-(\mathbf{t}) \in \mathbb{Z}_{\geq 0}[\mathbf{t}]$.

Let $\theta = (\theta^{(1)}, \dots, \theta^{(r)})$ be *r*-partitions s.t. $\theta^{(k)} = (\theta_1, \dots, \theta_m)$ (indep. of *k*). For $\lambda, \mu \in \mathscr{P}_{n,r}$, we have $\lambda + \theta, \mu + \theta \in \mathscr{P}_{n',r}$ for some n'.

Proposition (stability)

Let $\lambda, \mu \in \mathscr{P}_{n,r}$, and assume that $\theta_1 \gg \theta_2 \gg \cdots \gg \theta_m > 0$. Then $K_{\lambda,\mu}^-(\mathbf{t})$ takes a value independent of the choice of θ . We have

$$K_{\lambda+\theta,\mu+\theta}^{-}(\mathbf{t}) = L_{-}(c(\lambda) - c(\mu); \mathbf{t}).$$